UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Documentation for the UCLA++ C++ Class Library

Christopher R. Anderson

October 1993
CAM Report 93-37

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555



L NS

UCLA-

Class
Libraries

(7L
l,’.//’“\ "

Y <3
1\;\{‘,0; ¥,

CYTTYTT T T3 1T

TR [T T[T T T TR TT I 77T g

AEEERNERN

SIRERERREREN

IERAERRRAN!

paabev e leeevdrann oo elooedboraebiig

CONTOUR FROM —5.368 TC 8.881 BY 1.122



DOGCUMENTATION FOR THE UCLA++ C++ CLASS LIBRARY
CHRISTOPHER R. ANDERSON*

* Department of Mathematics, UCLA, Los Angeles, California, 90024
Research Supported by ONR Contract #N00014-92-J-1890

1



Preface

in order io use the YCLA++ class libraries you do not need to know C++. What
yvou need to know is the basic syntax for C. I have found that it is better to lock at
C-+-+ books than to lock at books only concerned with C. The requisite C knowledge
is usually summarized in the early chapters of C4++ books, A presentation of this
material which T like is that given in chapters 1-4 of “C++ Primer” (2nd edition)
by Stanley B. Lippman. C+4++ books can be very intimidating - there are words
and concepts which are unfamiliar to most programmers - derivation, inheritance,
templates etc. Fortunately, you don’t have to know these in order to use a C4+
class library effectively. These concepts are needed by those who wish to create class
libraries - not necessarily those that wish to use them.

The UCLA++ class library is incomplete. In fact, it is my hope that the library
will never be completed. Like a true library in which books are continually added - the
UCLA-++ class library is meant to be a repository of software. At the present time
the library contains routines of general utility, The library has incorporated existing
subroutine libraries and packages - LAPACK for dense matrix compnutations and
NCAR graphics for the UNIX graphics implementation. The library also includes the
product of recent research results - in particular the sparse matrix routines developed
by Barry Smith and William Gropp [5). In the coming months more software will be
added - so watch for announcements. We are also finmishing up a version which will
run on PC’s,

This is the first general release of the class libraries, and we expect that there
will be problems which our initial testing did not uncover. Please let us know if you
encounter problems.

David Sansot provided the UNIX graphics implementation and the graphics docu-
mentation. Significant contributions to the library were also made by Matt Bookman
and Robert MacDanial. I wish to express my thanks to these individuals, as well
as all of the other individuals (and there are many) with whom conversations led to
improvements in the design of this class library.



Documentation for the UCLA+4+ C++ Class Library
Contents

e Introduction

o Accessing the UCLA-++ Class Library
¢ Beginning Samples

Important Aspects of G-k

Class Library Summary

Class Library Explanations

Class Library Samples

References

1. Introduction. The purpose of this report is to describe and document a C++
class library which has been developed to assist in the construction of programs for
doing scientific computation.

First, for those who don’t have experience with C++, a discussion of what C+-+
is, and what is meant by “class library” is needed. C++ is a language which is built
upon C, it is C with extensions. The reason for wanting to use C++ instead of C is
precisely because of these extensions. In C++ one can enhance the langnage - i.e. add
data types and define operations such as ¥ and + upon them. For example, we are
able to create data types matrix and vector which are used to represent matrices and
vectors of floating point numbers. Within C++, the C language can be extended, so
that if A is 2 matrix and x and b are vectors then the assignment of b to the product
of A and x is programmed as

b = A%x;

A class in C4+ is a constructed data type with operations and functions associ-
ated with that data type. A class Hbrary is just a collection of classes. For instance,
in the class library UCLA 4+ is the class matrix. In this class the data structure
for a matrix of values of type double is defined. Also associated with {or in} this
class are functions and operators which work with the matrix data type. Besides
an extension of the multiplication operator, there are also routines for solving linear
systems, finding eigenvalues etc.

We envision two levels of use of C++ and the UCLA++4 class library. The
first level of use is to program “as usual” (which is essentially to program in C) and
just use the classes which are provided. In this mode, you just need to know the
elementary aspects of the C4++ language - essentially the C “core” consisting of the
standard data types, control loops, calling functions, declaration of variables etc. You
also need documentation about the classes so that they can be used effectively. It is
our expectation that most users will be satisfied with programming at this level.

The second level of use is to program in a manner which ufilizes the new features
which C++ provides. This requires knowledge of the more advanced topics of the
language; the construction of classes, the use of inheritance and derivation, operator
and function overioading, templates etc. The class libraries which we provide should
form a goed basis for building more elaborate classes and make the task of constructing
more elaborate classes easter,



For those of you that know C, the use of C++ with this class library shouldn’t
be a big change. You will still program in much the same way as C, but the task
should be simpler because certain common data structures and operations on those
data structures will be readily available. For those of you that program in Fortran,
using C++ and the class library will be a substantial change. Most of the difference
is due to the fact that the base language for C++ is C, and hence one has to learn
new constructs for loops, flow control statements etc. However, your method and
style of programming will be similar to Fortran — the form of the data structures
in the UCLA++ class library was motivated by the inherent data structures used
in Fortran programs for scientific computation We also discuss how to call Fortran
rountines from C4++ and so one does not have to completely abandon Fortran or
necessarily rewrite old codes. (In fact, many of the operations for the matrix and
vector classes are computed by calling Fortran subroutines.)

In this report we provide information about the basic classes contained within the
UCLA++ class library. At the present time these classes consist of the following :

matrix : A class for matrices of type double.
vector 1 A class for vectors of type double.
sparse_matrix : A class for matrices of type double

which are stored in sparse form.

complex_matrix ¢ A class for matrices of type complex.

complex_vector ¢ A class for vectors of type complex.

arraylD ¢ A class for a one dimensional array of values of type double.
array2D A class for a two dimensional array of values of type double.

Routines for graphical output are also contained within the class library.

The information provided here is intended to be sufficient for those who wish to
program in C4++ at the “first level”. In a related report “On the Construction of
C++ Classes for Scientific Computation” we provide a discussion and examples of
the use of C4++ and the UCLA++ class library for programming at the “second
level”.



2. Accessing The UCLA++ C+4-+4 class library. In order to use the elass
library, you must include the UCLA++ header file UCLA++.h. This file should be
ineluded in all files which use the UCLA++ classes,

Using the library requires linking to several different object files and to make
this task easier we have created a new command. For versions of the library which
are compatible with the SUN CC compiler, the command is called UCC. For the first
program in the next section one would use a command of the form

UCC firstexamp.c —o firstexamp

This compiles the program firstexamp.c and places the executable code in a file called
firstexamp.

Ug++ is the corresponding command for those who wish to use the GNU g++
compiler,

2.1, Getting Graphics Output. The graphics routines are based on an NCAR
(National Center for Atmospheric Research) graphics package, If your program uses
graphics calls, then when if runs it creates a graphics“metafile” in which the graphics
output is placed. The defaunlt name for this file is gmeta. To view your graphics output
you must execute a translator which translates the information in the metafile and
displays the results on a viewing device — like your screen or a printer. The simplest
way to view your graphics output is with the command ctrans. When executed the
command

ctrans gmeta

causes a window to appear and you should mouse-click in the graph window to see
the first frame. You then click to see each successive frame, and click to exit. There
are fancier translators, namely, idt and ictrans. See the handout on NCARG for
details,

To name the metafile other than the default name gmeta or to view the plots
in “real” time (i.e. as the program runs) you must set the environment variable
NCARG.GKS_OUTPUT. Here is how this is done:

setenv NCARG_GKS_OUTPUT filename To send output to filename
setenv NCARG_GKS OUTPUT *| ctrans" To view in real time
You can also get a hard copy with ctrans by typing :
ctrans —d ps.mono gmeta | 1lpr —P<PostScript printer>

The variable <PostScript printer> should be replaced by your PostScript printer. If
yvou have access to the Imagen printer then you can take advantage of the special
Imagen encoding by typing:

ctrans -d imagen gmeta | lpr -Pimagen

This is useful with very complicated graphs that may show fragmentation using
postscript.



2.2. Decreasing Compilation Time. If you include the file UCLA++.h you
need not include any other file to access the classes in the UCLA++ class library.
However, the simplicity of this arrangement comes at a cost - the compile time can
be long because the headers for all the classes are compiled. You can decrease your
computation time by including header files which relate only to the specific classes
which you use. The required files and the classes they perfain to are given in the
following list:

Desired Class Required Include File
vector UCvector.h

matrix UCmatrix.h
sparse_matrix UCsparse.h
complex_vector UCcomplex.vector.h
complex. matrix UCcomplex_matrix.h
arraylD and array2D UQCarray.h

graphics routines UCgraphics.h

As an example — if you are writing a program which only uses matrices and
vectors and graphics, then you would use the three include statements

#include "UCvector.h"
#include "“UCmatrix.h"
#include "UCgraphics.h"



3. Beginning Samples. When one is working with a new language it is always
useful to have a sample program which one can type in to see if things are working
properly. Here is a complete C++4 code which constructs a three by three Hilbert
matrix and then solves a linear system of equations which involves this matrix.

#include "UCLA++.h"

void main(){

matrix A(3,3);
vector b{3);

vector x(3);

vector residual(3)};

long 1i,j;

for(iz=1; i<= 3; it++)
for(j=1; j<= 3; j++)

{

// declare a matrix
// declare vectors

// variables for loop index

// nested do-loop for initializing
// the matrix 4.

A(1,j)=1.0/(double(i) + double(j));

}

for(i=1; i<=3; i++)

{

b(i)=double(i)};

}

x=4/b;
residual=A%x - b;

// initialize b

// solve the system A*x=b for x
// compute the residual

// set scientific notation output
// format

cont,setf(ios::scientific, ios::floatfield)

cout
cout
cout
cout
cout
cout
cout
cout

<<
<L
<<
<<
<<
<<
<<
<<

" The matrix 4
A;

" The vector b
b;

" The solution
X;

" The residual
residual;

" << endl;
" << endl;
of A¥x=b " << endl;

" << endl;



The second sample is a slight modification of the first, and involves working with
file input and output.

#include "“UCLA++.h"

void main(){
matrix A(3,3); // declare a matrix
vector b{(3); // declare vectors
vector x{3);
vector residual(3);

ifstream InFile; // declare an input file stream

// connect the file stream with

InFile.open{"tinput"”,ios::in); // the external file tinput

if ({InFile )

{cerr << " Exror in Opening input File "; exit(1); }

InFile >> 4; // read in the matrix A

InFile >> b; // read in the vector b

x=A/b; // solve the system A*x=b for x
residual=4*x - b; // compute the residual

ofstream QutFile; // declare an output file stream

// connect the file stream with
OutFile.open("toutput',icg::out); // the external file toutput.
if {10utFile )
{cerr << " Error in Opening Output File "; exit{(1); }

// print our results to the file
// first set scientific notation
// output format

OutFile.setf{ios::scientific, ios::floatfield)

OutFile << " The matrix A " << endl;

OutFile << 4;

OutFile << " The vector b " << endl;

DutFile << b;

OutFile << " The solution of A*x=b " << endl;
OutFile << x;

OutFile << * The residual " << endl;

OutFile << residual;



oo,

W A =

For the above example, the file tinput has the form

.0000e-01 3.3333e-01 2.5000e~01
.3333e~01 2.5000e~01 2.0000e-01
.5000e~01 2.0000e-01 1.666Te-01%

.0000e+00
.0000e+00
.0000e+00



4, ITmportant Aspects of C++. C++ has new features within it which dis-
tinguish it from other languages. While many of these features do not need to be
understood or used to get quite a bit of work done, there are some aspects about
C++ which one must be aware of. In this section we give those elements of the C++
language which we think are worth knowing about and a brief description of them.

class : Classes are natural extensions of the standard data types which are available in
the C language. Just as one declares variables to be of a particular type, one declares
variables to be of a particular class. It is common practice to call a variable which
is of a given class to be an “object” of that class. There are predefined operations
associated with the standard data types — for example +, -, *, /, on integers and
floating point numbers. A class also has the capability of having predefined operators
associated with it. This association allows one to have the compiler give meaning to
expressions involving objects of a class and the symbols +,- ¥, =, etc.. Within C++
one can go further than just associating the common mathematical symbols with
the objects of the class, one also has the capability of defining functions which are
intimately linked with objects of that class. These functions are called class member
funciions.

Thus, a particular class can be considered as a data structure and a set of functions
and operators which are associated with that data structure.

member function : A member function of a class is a function which is associated
with that class. Member functions are referred to (or invoked) using the “” (dot)
syntax. For example, if P is an chject of a certain class, then one invokes the member
function myfun() by the syntax P.myfun();.

operator overloading : This refers to the capability within C++4 of defining the mean-
ings of symbols such as +, -, =, etc. when the variables in the expressions involving
these symbols are objects associated with a particular class.

function overloading : Th C++ a function is determined by both it’s name and it’s
calling sequence {or signature). Thus, one can have functions with the same name but
which are distinguished by their input variables. The routine plot in the UCLA++
library is a good example of this. One can invoke plot with a vector or a matrix
object and the compiler distinguishes these calls, and uses the appropriate version of
the command.

10



5. Class Library Summary. In this section we summarize the classes in the
UCLA++ class library and their associated operators and routines. The different
classes which are contained within the library are

matrix : A class for matrices of type double.
vector : A class for vectors of type double,
sparse_matrix : A class for matrices of type double

which are stored in sparse form.

complex matrix : A class for matrices of type complex.

complex_vector : A class for vectors of type complex.

arraylD A class for a one dimensional array of values of type double.
array2D A class for a two dimensional array of values of type double.

The use of the classes associated with matrices and vectors is similar for the different
data types and storage format. For example, the syntax for accessing an element
of a matrix which is declared with sparse_matrix is the same as that for accessing
an element of a matrix which is declared with matrix. For this reason, we only give
complete suminaries of the commands for matrices and vectors of type double. For the
matrices and vectors of different types we just summarize the functions and routines
which are different from their double counterparts.

5.1. Classes for Matrix and Vector Computation. There are two compe-
pents of the class libraries for matrix and vector computation. The first component is
that which implements vector and matrix data types and provides basic functionality
for these data types. The second component provides high level functionality asso-
ciated with the vector and matrix data types. (While we consider these components
separate for our discussion, both components are available when the UCLA+4 library
is linked to a users program.)

Since vectors and matrices are fundamental construct for a large number of sci-
entific programring tasks, we expect the first component of the classes to be used
extensively. Thus, in the design of the first component of the classes for matrix and
vector computations it was our goal to introduce as little new syntax as possible - i.e.
we followed the standard mathematical syntax associated with matrices and vectors.
For langnage constructs which are not in the realm of standard mathematical notation
but available for data types in C++ (such as the operators +=, or << and >>) we
extended such constructs in the “natural way” to matrices and vectors. It is our hope
that a user can write syntactically correct expressions involving vector and matrix
data types without having to consult the documentation very often.

In creating the functions necessary for working with the matrix and vector data
structures (functions and expressions associated with initialization, determination of
size, etc.) we sought to keep the number of functions to a minimum. Again, a goal
was to create matrix and vector classes so that a minimal amount of information
needs to be remembered by a user in order to carry his or her work,

At this time, the second component consists primarily of C-+4-+ bindings to Fortran
routines in the LAPACK, LINPACK and EISPACK libraries. As C++ becomes more
widely used and new routines for matrix computations are developed, this component
will be expanded.

i1



The classes for matrix and vector computations associated with the double data
type are :

class vector : A class for a vector of values of type double and
whose member functions are operations on vectors.
The vectors are column vectors (by default).

class matrix A class for a matrix of values of type double and
whose member functions are operations on matrices
as well as matrix/vector operations.

The following table describes unary and binary operations which are defined on
instances of these classes :

Operator Description

= assignment

+ addition

- subtraction

* multiplication

/ x=A/b=z=A"1%b
i adjoint

~() negation
3= incremental addition
-= incremental subtraction
*= incremental multiplication
<< vector and matrix output
> vector and matrix input

Table 5.1
Operators for Class Objects of matrix and vector type

The description of ~ as ”adjoint” means that for real matrices and vectors the ~ opera-
tion is the transpose operator, and for complex vectors and matrices the ~ operation is
the conjugate transpose operator. The operators in Table 5.1 are applicable whenever
the expression in which they are contained makes mathematical sense. Some of the
operators have been extended to have meaning when an expression does not make
strict mathematical sense; for example if v and w are vectors and ¢ is a scalar, then
the expression v =mw+e; adds ¢ to each component of w and stores the result in
v,

In C++ one must declare variables and class objects before use. For objects this
is accomplished by a statement consisting of the class name and a variable name to
represent the particular object. In the declaration of a class object one can optionally
specify parameters to be used for the initialization of that object. The following table
describes the declaration statements for objects of the vector and matrix classes.

12



Statement

Result of Declaration

vector vi{m):

A vector v of size m with index starting at 1.

vecter v(mi,m2);

A vector v with index from m1l to m2.

vactor v;

A vector v of 0 size (a null vector - see below).

vector v = w;

A vector v which is a copy of a vector w.

vector v = M;

A veetor v which 1s a copy of a column or row matrix M.

matrix M(m,n);

A matrix M of size m by n with index starting at (1,1).

matrix M(m1,m2,ni,n2);

A matrix M with index from (ml,nl) to (m2,n2).

natrix M;

A matrix ¥ of 0 size (a null matrix - see below).

matrix M = T;

A matrix M which is a copy of a matrix T.

matrix M = v;

A matrix ¥ which is a copy of a vector v.

Table 5.2

Class vector and matrix Declaration Statements

As with the standard data types, one forms expressions which involve objects of
classes. One uses the names of the variables to represent the objects - for example,
if & and B are two square matrices of the same size, then to express their product as
a matrix ¢ we would simply write ¢ = A%B;. However, to only allow access to the
objects as complete entities would severely limit our capability for using them. So, in
order to access the values of the data in a matrix or vector object we have a certain
number of access functions. These are listed below.

Statement Deseription
v(i); The element of the vector v whose index is i.
v(i1,i2)}; The sub-vector of the vector v with indices

from il to i2.

v.sub.vector(ii,i2);

Another form of v(it,i2);

M{i); The element of the row or column matrix with index i
M(i,3); The element of the matrix ¥ whose index is {1,j).
M(i,_); The ith row of the matrix M.

M.row(i); The ith row of the matrix M.

M{_,j); The jth column of the matrix M,

M.column(j); The jth column of the matrix ¥,

M(i1,i2,31,32);

The sub-matrix of M whose indices run
from (il,j1) to (i2,j2)

K.submatrix(il,i2,j1,3j2); | Another form of M(il,i2,j1,32)

Table 5.3

Class vector and matrix Access Statements

13




Each of the expressions in the previous table can occur on the left as well as the
right hand side of an assignment statement. So, for example, to add the second and
the fourth row of a matrix A to its first Tow, one could use either of the expressions

A(1,) = A2, + A(4,);
or
A.row(l) = A.row(2) + A.row(4);.

There is one syntax construction in C++ which does not work when dealing with
sub-vectors and sub-matrices - “multiple assignment” statements of the form

A=B=2¢C;.

For example A = B(2,3,2,3) = C; will cause the compiler to issue an error and stop.
This is an artifact of our particular implementation of these classes which may or may
not go away depending on how clever we are in the future. Another aspect of using
sub-matrices and sub-vectors is that they are always passed by value — so it is not
possible to modify a sub-matrix or sub-vector by passing it to another routine. (You
need to copy the sub-matrix or sub-vector to a temporary variable, call the routine
with the temporary variable, and then copy the result back to the appropriate place
in the sub-vector or sub-matrix.)

Along with the values which are associated with the matrix or vector elements,
there are also values associated with the data structure - the size of a vector or matrix,
and its beginning and ending index. There are member functions which allow one to
access to these values. These are given in the table below,

Statement Result of the Statement
v is of type vector
n = v.get numrows(); The integer n is the number of rows in v.
n = v.get row. begin{); The integer n is the starting row index of v.
n = v.get row.end(); The integer n is the ending row index of v.
n = v.get num.columns(); | The integer n is the number of columns in v.
n = v.get_column begin(); | The integer n is the starting column index of v.
n = v.get_column_end(); The integer n is the ending column index of v.
d = v.get dataptr(); The pointer d {of type double* ) is

set to the address of the first element of v
v.set row.begin{(n); ‘The starting index of v is set to the integer n
v.resize(m}; The size of v is changed by m elements.

(m may be positive or negative)
v.resize{ml,m2); The null vector ¥ is resized o a vector whose index

runs from mi to m2.

Table 5.4
Class vector Data Structure Access Functions

14



Statement Result of the Statement
M is of type matrix, n an integer
n = M.get numrows(); 1 18 the number of rows in M.
n = M.get.num_columns(); 1 1¢ the number of columns M.
n = M.get_row begin(); n is the first index starting value for M.
n = M.get row_end(); 1 is the first index ending value for M.
n = M.get_column begin(); n is the second index starting value for M.
n = M.get column end(); 1 is the second index ending value for M.
d = M.get dataptr(); The pointer 4 (of type double* ) is
set to the address of the first element of ¥
M.set row begin(n); The starting value of the first index of ¥ is set ton

=

.set_row begin(n);

The starting value of the second index of M is set to n

.resize{m,n};

The sive of the ¥ is changed by m row and n columns.
(m and n may be positive or negative)

.resize(mi,n2,n1,n2);

The null matrix ¥ is resized to a mairix whose index
runs from (m1,n1) to (m2,n2).

Table 5.5

Class matrix Data Structure Access Functions

In addition to providing the basic functions and operations for matrix vector
computations, there is also a collection of higher level functions associated with each
class. The statements used to invoke the functions are given below.

Statement Result of Statement

(v, w are vectors, d is a double}

d = v.norm(p}; The value of d is assigned the discrete
p-norm of v. p (an integer) with 1 < p < co.

d = v.norm("inf"); The value of d is the infinity norm of v.

d = v.dot{w); The value of d is the dot product of v and w.

v.init(£); v{i) is assigned the value £(i). £ specified as
double f(long).

w = v.apply(f); w(i) is assigned the value £(v(i)). f specified as
double f(double).

w = v.elemsin(); w(i) is assigned the value sin(v(i)}.

w = v.elem cos(); w(i) is assigned the value cos{v{i)).

W = v.elem tan(); w(i) is assigned the value tan(v(i)).

w = v.elempow(p); w(i) is assigned the the pth power of v{i).

Table 5.6

Class Member Functions for vector

15




Statement
(M, T are matrices, d is a double)

Result of Statement

d = M.norm(p);

‘I'he value of 4 is assigned the matrix
p-norm of M. p (an integer) with p =1.

d = M.noxm("inf"); The value of d 1s the infinity norm of M.
= M.max_abs(); The value of d is max |M(¢, j)|.
i
M.init(£); M(i,j) is assigned the value f(i,j). f specified as

double f(long, long).

.det();

The value of d i1s the determinant of ¥,

,condition number();

The value of d is the condition number of .

.pow(p);

T is M raised to the pth power, p < 0 is allowed.

Linv();

T is the inverse of M.

L IR IR
i}
===

.apply(f};

T(i,j) is assigned the value £(M{i,j)). £ specified as
double f(double).

.elem_sin();

T(i,3) is assigned the value sin(M(i,j)).

.elem_cos();

T(i,j) is assigned the value cos(M{(i,j)).

.elem_tan();

T(i,3) is assigned the value tan(M(i,j)).

.elemlog();

T(i,j) is assigned the value Jog(M(1,3))}.

.elem.logiQ(};

T(i,j) is assigned the value log10(M(i,j)).

.elem pow(r);

T(i,j) is assigned the the rth power of M(i, j).

I ICICIEIE
i}
=l=z==zi=x=

= matrix::Id(p);

T(i,j)1s ap X p identity matrix.

Table 5.7

Class Member Functions for matrix

16




5.1.1. Complex Matrices and Vectors. The declaration and access syntax
of matrices and vectors of complex data type is identical to that for those of double
data type. The additional member functions associated with the complex data type
are given in the following tables.

Statement Result of Statemnent
v,w are of type complex_vector
s is of type vector

g = v.real(); g is the real part of v.

s = v.imag(); s is the imaginary part of v.

w = v.conj(); w is the complex conjugate of v.
x = complex.vector::fortran.pack(v); paek v info fortran acceptable

vector (x of type vector)
complex vector::fortranunpack(x); | unpack vector x into
a complex_vector type.

-
[l

Table .8
Additional Class Member Functions for complex_vector

Statement Result of Statement
M, N are of type complex_matrix
T is of iype matrix

T = M.real(); T is the real part of M.

T = M.imag(); T is the imaginary part of M.

N = M.conj{(}; N is the complex conjugate of M.

X = complexmatrix::fortran pack(l); pack M into fortran acceptable
matrix (X of type matrix )

¥ = complex.matrix::fortranunpack(X); | unpack matrix X into

a complex.matrix type.

Table 5.9
Additional Class Member Functions for complex matrix

The ability to combine complex scaler operations with matrices and vectors de-
clared as matrix and vector is provided. Assigning a complex quantity to one of type
double is an error. An expression which involves arguments of type double and com-
plex must be assigned to an object of type complex. If one wants to assign the result
of an expression to an object of type double, then one must use an explicit conver-
sion (e.g. the member function *.real();). As mentioned previously the transpose
operator ~ gives the conjugate transpose of a vector or matrix. If you want just the
transpose, then you should form the conjugate of the the complex transpose.

The routines involving fortran_pack(*) and fortran unpack(*) are used when
one wants to pass a complex_vector or complex.matrix object to an external
Fortran subroutine. The use of these routines is documented in the section “Class
Library Explanations”.

17



5.1.2. Sparse Matrices. The declaration and access syntax for a matrix of type
sparse.matrix is identical to that for matrices declared as objects of class matrix.
The designation of a matrix as belonging to the sparse matrix class causes the
matrix values to be stored in compact form which represents only non-zero values.

For matrices with many non-zero elements (such as banded matrices), one should
declare them to be of type sparse_matrix as this will use up less storage than a
matrix declared of type matrix. The operators and member functions for matrices
of type sparse_matrix are identical to those for type matrix. While the syntax
is the same, the operations themselves are different — those for the objects of type
sparse.matrix are optimized for that type. One can mix matrices of matrix and
sparse_matrix type freely in expressions,

In order to make best use of the class sparse_matrix one should avoid operations
which results in the sparse_matrix becoming a dense matrix. In particular, assigning
a sparse.matrix to a constant (except 0.0) will yield a dense matrix - a matrix more
efficiently handled using objects of type matrix.

18



5.2. arrayilD and array2D Classes. Objects of type arraylD and array2D
are one and two dimensional arrays of numbers of type double. These classes are sim-
ilar, but not identical, to the classes vector and matrix. (The # operator and several
others are not defined for objects of type array2D.) The following tables summarize
the operators, declarations, access functions, and member functions associated with

these classes.

Operator Description
= assignment

4 addition
- subtraction

-0 negation

mcremental addition

incremental subtraction

arraylD and array2D output

array1D and array2D input

Table 5.10

Operators for Objects of arraylD and array2D type

Statement Result of Declaration
arrayiD a(m); An arraylD a of size m with index starting at 1.
arrayiD a(mi,m2); An arraylD a with index from ml to m2.
arrayiD a; An arraylD a of 0 size (a null arraylD - see below).
arrayiD a = b; An arraylD) a which is a copy of an arraylD b,
array2D A(m,n); An array2D A of size m by n with index starting at (1,1).
array2D A(mi,m2,n1,n2); | An array2D A with index from (m1,n1) to (m2,n2).
array2D 4; An array2D A of 0 size (& null array2D - see below).
array2D 4 = T; An array2D A which is a copy of an array2D T.
array2D A = v; An array2D A which is a copy of an arraylD v.
Table 5.11

Class arraylD and array2D Declaration Statements
Statement Description
a(i); The element of an arraylD a with index i
a(il,i2); The sub-array1D of a whose indices run

from 11 to i2.

a.sub.arrayiD(il,i2);

Another form of a(i1,1i2)

4(i); The element of a 1 x * or * x 1 array2D with index i
ACL, ), The element of the array2D A whose index is (i,j).
A(i, ) All of the elements of the array2D A with first index 1.
AC.,3); All of the elements of the array2D A with second index j.
4(i1,i2,31,§2); The sub-array2D of A whose indices run

from (i1,j1) to (i2,j2)

A.sub_array2D{il,i2,j1,32);

Another form of A(i1,12,j1,32)

Table 5.12

Class arraylD and array2D Access Statements

19




Staternent (a is an arraylD, m an integer)

Result of the Statement

m is the number of values for the index.

m = a.get num_index1();
m = a,get_indexi begin(); m is the index starting value.
m = a.get_indexi_end(); m is the index ending value.
d = a.get dataptr(); The pointer d (of type double* ) is
set to the address of the first element of a
a.set_index1 begin(m); The starting value of the index is set to m.

a.resize(m);

The size of the a is changed by m values in
the first index.
(m may be positive or negative)

a.resize(mi,m2);

The null arraylD a is resized to an arraylD
whose index runs from mi to m2,

Table 5.13a
Class arraylD Data Access Statements

Statement (A is an array2D, m,n are integers)

Result of the Statement

.get num_index1();

m is the number of values for the first index.

.getnum_index2();

n is the number of values for the second index.

.get_index1 begin();

m is the first index starting value,

.get-index1_end();

m is the first index ending value.

.get_index2 begin(};

n is the second index starting value..

.get_index2_end();

1 15 the second index ending value..

AR IE|IR|E
1l
e AR

.get dataptr();

The pointer d {of type double* ) is
get to the address of the first element of A

o

.set_index1.begin{m);

The starting value of the first index is set to m.

=

.set_index2 begin(n);

The starting value of the second index is set to n.

A.resize(m,n);

The size of the A is changed by m values in
the first index and n in the second index.
(m and n may be positive or negative)

A.regize(ml,m2,nl1,n2);

The null array2D A is resized to an array2D
whose index runs from (mi,n1) to (m2,n2).

Table 5.13b
Class array2D Data Access Statements

20




Statement
(a, s are of type arraylD, d is a double)

Result of Statement

d = a.norm(p); The value of d is assigned the pth root
of the sum of the pth powers of the values a(i).
(the discrete IP norm).

= a.abs(); The value of d is max [a(i)].

d = a.norm("inf"}); The same as a.abs();

a.init(£); a(i) is assigned the value £(i}. £ specified as
double f(long).

s = a.apply(f); s(i) is assigned the value £(a(i)) . £ specified as
double f{double).

g = a.elemsin(); s(i) is assigned the value sin(a(i)).

g = a.elem.cos(); s(i) is assigned the value cos(a(i}).

g = a,elem tan(); s(i) is assigned the value tan(a(i)).

g = a.elemlog(); s(i) is assigned the value log(a(i}).

8 = a.elemlogl0(); s{1i) is assigned the value log10{(a(i)).

s = a.elempow(r); s(1i) is assigned the the rth power of a{1).

Table 5.14a
Class Member Functions for arraylD
Statement Result of Statement

(A, T are of type array2D, d is a double)

d = A.nerm(p);

The value of d is assigned the pth root
of the sum of the pth powers of the values A(1, j)
(the discrete I’ norm).

d = A.abs(); The value of d is rrila}x]A(i,j)i.

d = A.norm("inf"): The same as A.abs{);

A.init(f); 4€i,j) is assigned the value {{1,3). f specified as
double £(long, long).

T = A.apply(f); T(i,j) is assigned the value f(A(i,j)). f specified as
double f(double).

T = A,elemsin(); T(i,j) is assigned the value sin(A(1,3)).

T = A.elemcos(); T(i,j) is assigned the value cos(A(1,])).

T = A.elemtan(); T(i,j) is assigned the value tan{A(i,3)).

T = A.elemlog(); "T(i,j) is assigned the value log(A(i,3)).

T = 4,elemlogi0(); T(i,j) is assigned the value loglO(A(d,j)).

T = A.elempow(x); T(i,j) is assigned the the rth power of 4(i,]).

Table 5.14b
Class Member Functions for array2D

21




5.3. Graphics. There are three sets of routines associated with the UCLA~--+
graphics class. There are system control routines, plotting routines, and graphics
style (or formatting) routines. The basic structure of a code for using the graphics
routines has the form

graphics::open();

. 8tyle commands for first picture .

. plotting commands for first picture ...

graphics: :frame();

. style commands for second picture ...

plotting commands for second picturs ...

graphics: :frame();

graphics::close();

// initialize graphics

// close first picture

// close second picture

// close graphics.

As the pseudo code illustrates, the plotiing and style routines are sandwiched be-
tween graphic system control routines graphics: :open();, graphics::frame() and
graphics::close();. The style routines are called before the plotting routines. The
fellowing tables summarize the different sefs of commands.

Statement Description
graphics::open{(); Open the graphics system.
graphics::frame(); Advance to new frame.
graphics::close(); Close the graphic system.

graphics:

rset frame(left,right,bottom,top);

Sets the portion of the window the plot
will occupy. Specified w.r.t [0,1] x [0,1].

graphics::subploton(m,n); Enter subplot mode with an m by n grid
of subplots.

graphics::subplot(i,j); Plot to the 1,j subplot.

graphics: :subplotoff(); Leave subplot mode.

graphics::axis(flag); Turn on or off autoscaling, Flag is

either AUTO or AUTO_OFF.

graphics::

axis (xmin, xmax,ymin,ymax) ;

Set range for future plots and tuorn off
autoscaling.

graphics::set plot style(style); style 1s CURVE, POINTS, or
CURVE_AND_POINTS
graphics::set point_style(char); The character char to be plotted

when plot.style is POINTS.

Table 5.15

Graphics System Control Routines

22




Statement
x and y are of type vector or arraylD.

Description

y.plot(<style>);

Plot the values of y vs. its index.

y.plot(x,<style>);

Plot the values of y vs. corresponding
value of x.

graphics: :plot(f,xmin,xmax,<style>);

Plots the function £ between xmin
and x_nax.

graphics;:plot(f,<style>);

Plots the function over range stored
by the internal variables.

Statement

Description

M is of type matrix, sparse_matrix
or arrayZ2i.

M.contour();

Contour plot of the values of M.

M.contour(n);

n evenly spaced contour lines.

M.contour(inc);

Contours at values k * inc, where k is an
integer.

=

.contour(low,hi);

Only contours between low and hi drawn.

=

.contour(n,low,hi);

1t contours between low and hi.

M.contour(inc,low,hi);

Contours at values k * inc + low, where &
is an integer.

=

.contour(v);

Contours at values stored in a vector v,

.surface(};

=

Surface (3-D perspective) plot of the M.

M.surface(hang,v_ang);

Surface plot of ¥ from a

view point rotated h_ang degrees
counterclockwise in the X-Y plane and
v_ang degrees up from the X-Y plane.

graphics::turn on.contour scaling();

The aspect ratio of the contour
is that of that of the data (default),

graphics: :turnoff _contourscaling();

Contour plots fill the frame,

graphics::set horizontal angle(h.ang);

Set the horizontal viewing angle
of surface plots.

graphics::set.vertical angle(v_ang);

Set the vertical viewing angle.

M.plot(<style>};

Plot the columns of M vs. the indices.

M.plot(v,<style>};

Plot the columns of ¥ vs. the vector v,

M.plot(M2,<style>);

Plot the columns of M vs. the columns
of M2

Table 5.16

Plotting Routines for Class Objects

<style>is an optional parameter list. If <style> is nothing then the default valnes of
plot._style and point_style are used for the plot. If <style> is a single argument,
it can be one of the constants CURVE, PQINTS, or CURVE_AND_POINTS, resulting in the
plot being drawn in the style described by the constant. If it is just a character,
e.g. v.plot(’*’)), the the points are plotted and marked by the character specified.
If the <style> represents two arguments, then the first should be one of the con-
stants CURVE, POINTS, or CURVE_AND POINTS and the second should be a character,

e.g. v.plot (CURVEAND POINTS, '+°) .
23




Statement Description
graphics::title(string); Draws string at top of window.
graphics::label x{string); Draws string under graph.
graphics::label y(string,<place>); Draws string to side of graph.
graphics::drawstring(x,y,string,size, | General purpose string drawing routine

angle,cntr);

Table 5.17

Character Drawing and Labelling Routines

<place> is an optional argument. If equal to 1, then the label will be on the right
side of the graph. Any other value (or absence) causes the label to be drawn on the

left.
Staterment Description
graphics::set.ticks(majorx,minorx, Set the major and minor sub-
majory,minory); divisions of both axes.

graphics::setx_ticks(major,minor); Set the major and minor sub-

graphics::set_y ticks(major,minor); divisions of respective axis.

graphics::set.scale(scaletype); Choose between LIN_LIN, LIN_.LOG,
L.LOG_LIN, and LOG_LOG scales.

graphics::set label format (format); Set format to either SCIENTIFIC
of FLOATING POINT

graphics::set_label format{width,precision); | Set the format of the labels.

graphics::set char size(size); Set the size of the labels.

graphics::turn off labels(); Suppresses the drawing of labels

graphics::turn off x labels{); on the appropriate axis.

graphics: :turnoff_y labels(};

graphics::turnon labels(); Enables the drawing of labels on

graphics::turnonx labels(); the appropriate axis

graphics::turnon_y labels{();

graphics::turn off axis(); Suppresses the drawing of axis

graphics::turnoff x_axis(); and labels.

graphics::turnoff_y axis();

graphics: :turnon_axis(); Enables the drawing of axis.

graphics::turnon x axis();

graphics::turnon.y.axis();

graphics::set_axis type(type); Choose between a GRID, PERIMETER,
or FLOATING.

graphics::set_dntercepts(x,y); Set where axes intercept each

other when of type FLOATING.

Table 5.18
Formatting Routines

24




6. Class Library Explanations. In this section we go over in more detail the
procedures and functions which are associated with UCLA++ classes. The following
tapics are covered

Declaration

Null Vectors

Standard Input and Qutput

File Input and Qutput
Formatting

Graphics

Calling External Fortran Routines

* & & & ¢ 9 0@

6.1. Declaration. Classes are a natural extension of the standard data types
which are available in the C langnage. The standard data types must be declared be-
fore use and the same is true of variables or “objects” of a particular class type. With
the standard data types, one can initialize a variable in a declaration statement, e.g.
double x = 1.0; . With class objects one can also initialize within a declaration.
However, the syntax with which one initializes objects of a class type is particular to
the implementation of that class. The purpose of this section is to present the syntax
and meaning of declaration and initialization for the classes vector and matrix. The
initiakization for the other classes in the UCLA 44 class library is similar.

The standard declaration for a vector v of dimension n or a matrix A of dimensions
mbynis

vector v{n): // ¥ = a vector of dimension n

matrix 4(m,n); // A = a matrix of dimension m by n

In this declaration n or m and n are specific integers or variables of type int or long.
The entries of the vector v and the matrix A are initialized to zero. The starting index
of the vector v is 1 and the starting index of the matrix A is (1,1} (1 is the default
starting index). Elements of v and 4 may be accessed using the notation () and

( , ). For example, the following expression adds 6 to the element with index (3,4)
of & and stores the result in the element with index 2 of v,

v(2) = A(3,4} + 6.0;

An alternate method of declaring vectors and matrices allows one to have indexing
which does not start at 1. If one desires a vector whose indices run from ni to n2 or
a matrix with indices which run from m1 to m2 and ni to n2 one uses expressions of
the form

vector v{ni n2); // v = a vector whose index runs
// from nl to n2. v has dimension

// {n2 - n1) +1)

matrix A(mi, m2, ni ,n2); // A& = a matrix whose index runs
// from (m1,n1) to (m2,n2}.
// A has dimension (m2 - m1)+1
// by (n2 - n1) +1

25



As with the previous method of declaration, the elements of the vector v and the
matrix A are initialized to zero. As discussed in the section on indexing - one can mix
matrices and vectors with different indexing in expressions as long as the dimensions
are correct.

One can declare a vector or & matrix and initialize it within the same statement,
For example if 4 is a previously declared matrix of size m by n then the expression

matrix B = A; // B is given the size and indexing of A.
// The elements of B are initialized to
// those of A.

creabes a matrix B with the same dimensions and index as A. The elements of B are
initialized to the values of the elements of 4.

8



6.2. Null Vectors. One can also declare a null vector or matrix. This is a vector
or matrix with zero dimensions i.e. it is an “empty” vector or “empty” matrix. The
following is an example of such a declarations;

vector v; // v is a null vector.

matrix A; // A& is a null matrix.

Null vectors and matrices can be initialized (and hence acquire dimensions) by as-
signmen$ to a non-null vector or matrix. A null vector or mafrix can also be given
dimension by using the command resize - a command which adds rows to a vector
or rows and columns to a matrix. Some examples -

vector w(3); // w is a vector with 2 elements - each
// initialized to zero

vector v; // v and z are a null vectors
vector z;
v=w; // v acquires the dimension of w and it’'s

// entries are initialized to those of w
z.resizel20}); // z is now resized with the addition of 20
// rows. The new elements are initialized with
// zero. Indexing begins with 1.
matrix 4; // 4 is a null matrix.
A.resize(3,4) // A is resized to a matrix of dimensions
// 3 by 4. Its elements are set to zero and
// the indexing begins with (1,1).
matrix B; // B is a null matrix.
B.resize(1,3,2,4) // B is resized to a matrix of dimensions

// 3 by 2. Its elements are set to zero and
// the indexing begins with (1,2).

27



6.3. Indexing. Vectors and matrices have indices and dimensions. When one
is carrying out linear algebra operations, what is important are the dimensions of
the matrices and the vectors - not the indices used to label the individual elements.
This fact is reflected in our implementation of the matrix and vector classes. In an
algebraic expression with matrices and vectors the index of the objects is not used
- so one can freely mix matrices and veetors with different indexing as long as the
dimensions are correct.

Through the initialization process and various member functions one can set (or
reset) the starting value of the indices used for vectors and matrices. The default
starting index is 1 for vectors and (1,1) for matrices. The indexing of a vector or
matrix is not propagated across assignment statements - so the indexing of the result
of a particular expression is the indexing associated with the left hand side of the
assignment statement, (There are two exceptions to this rule abount propagation of
indexing across assignments - the initialization of one matrix by another and the
assignment of a non-null matrix to a null-matrix.)

When one declares a vector one can specify the indexing by using notation of the
form

vector w( mi, m2);
to obtain a vector w whose index starts at m1 and ends at m2. Similarly for a matrix,
one can specify the indexing with syntax of the form
matrix A( ml, m2, ni, n2);

to obtain a matrix 4 with indices starting at (m1, n1) and ending at (m2, n2).
Here are some annotated examples associated with indexing.

vector w(3) // vector with 3 elements and index starting at 1
vector x(1,2); // vector with index from 1 to 2
vector y{(2,3); // vector with index frxrom 2 to 3
vector z(0,1); // vector with index from 0 to 1
matrix 4(3,3); // The matrix A has 3 rows and 3 columns
// it's index starts at (1,1)
matrix B(0,2,-1,1); // The matrix B has 3 rows and 3 columns

// it’s index starts at (0,-1)

z=x +y; // The data in =z is the sum of the data in x and y.
// The indexing of z is preserved.

z=B*x + y; // The data in z is the sum of B*x and y. The indexing
// of z is preserved.

vector p=x; // The data in x initializes that of p. The indexing
// of p is the same as that of x.

vector w; // w is initialized as a null vector.
WX} // Since w is a null vector, w is extended to bhe a

// copy of x. w is given the indexing of x.

28



6.4. Standard Input and Output. To perform input and output in C++ one
can either use C procedures or those procedures specifically associated with C4++4. In
this section we discuss the use of the C++ specific routines. To use the functions
and constructs described here one must include the file ijostream.h. Our discussion
will include the input and cutput of the standard data types as well as objects of the
matrix and vector classes.

The input and output of data within C++ seems peculiar at first glance. However,
this appearance is due to the syntax - the procedures and actions accomplished by
the input/output functions are standard. For example, to input or output a standard
data type one uses “streams”. A stream is another name for an input or output device
— a file, the screen, the keyboard etc. C++ comes with some pre-defined streams for
dealing with the standard input and standard output devices (usually the keyboard
and your screen.) These streams have the names - cin for input and cout for output.
The C++ syntax to output the valne of a variable d to the standard output takes the
form

cout << d;

This notation is suggestive of the operation of “putting” or “sending” the value
of d to the standard output (represented here by the name cout). An alternate
interpretation is that a function called << is being invoked with the arguments cout
and d - we might think of the same expression as being <<(cout,d). The latter
interpretation is similar to other languages in which one calls an output routine and
specifies the output device and variables as arguments. (Statements of the form
<<(cout,d); don’t compile, but when one defines the meaning of the symbol << then
one does use such syntax.)

6.4.1. Standard Output. To oulpui a standard data type to the standard
output one uses the operator << and the output stream cout. Examples of its use are

cout << d; // 4 is output
cout << d << endl; // d followed by endl
cout << “This is the value of d : " << d << endl; // message, d, then endl

The use of multiple instances of << is equivalent to several instances of << individually,
i.e. the last command given above is equivalent to

cout << "This is the valus of 4 : " ;
cout << d;
cout << endl;

The symbol endl generates a new line and flushes the output buffer. The values
of the variables are printed with a default format. The method for changing this
format is described in the section on formatting.

To output objects of the vector and matrix class we have overloaded (defined) the
operator << so that it accepts vector and matrix arguments. If v is the vector

1
.2
.3

then the statement

28



cout << v << endl;
results in the the ocutput

1.0000e-01
2.0000e~01
3.0000e-01

If ¥ is the matnx

T B
& b

then the statement
cout << M << endl;
results in the the output

1.0000e-01 2.0000e-01
3.0000e-01 4.,0000e-01
5.0000e~01 6.0000e-01

As with the standard data types one can control the cutput formatting when using
the operator << with objects of the vector and matrix class. (This is also discussed
in the formatting section.) The operator << provides a quick and convenient way for
the output of matrices and vectors. Of course one need not (or may not want to) use
this operator. In such cases one writes and uses output routines in the same manner
as other languages.

6.4.2. Standard Input. The use of the standard input is similar to that of the
standard output. One uses the operator >> and the stream cin. The statement
cin >> d;

reads {or “extracts”} from the standard input a value for the variable d.

‘The operator >> is a “smart” operator; it extracts the data in a way which is
appropriate for the data type which is occurring in the input statement. For example,
if d is an integer, the command above reads digits until a non-digit is encountered.
If d is a floating point value then the command reads digits, decimal points, and
exponents until a non-appropriate character is encountered.

One can input vectors and matrices from the standard input. H a vector v has
been declared with specific dimensions and has size n then the command

cin >> v;

will extract values from the input until n values have been input. The extraction
will skip spaces and line feeds. If one doesn’t provide enough values, then an error
message 1s generated which reports that an insufficient number of values was input.

If v is declared as a null vector (i.e. with a statement such as vector v; }, then
the input command will extract values until an inappropriate character is reached.
(An isolated decimal point works well to terminate the input.) The vector v is then
returned with the size determined by the number of elements input.

If M is a matrix with finite dimensions, then the command

cin >> M;
30



will read values into M by rows. The elements of the same row need not be on the
same line, nor must the individual rows be separated by a newline. For examnple, if
the statements

matrix M{2,2);
cin >> M;

are executed and we type at the keyboard the values
.1 .2 .3 4

Then M is the matrix

d .2
(3 %)

A matrix object must be dimensioned before input with the >> operator - so there
is not instance of statements of the form cin >> M in which ¥ is a null matrix.

A problem with input can occur if one combines output and input statements
together. Omne often writes programs which query the user to input numerical data.
In such programs there is an output statement which writes a prompt to the user
followed by an inpui statement to read in the users response. With some C-++

compilers, it is important that one outputs a line feed before the execution of the
input statement. For example, one should use pairs of statements such as

cout << " Enter the value of n : " << endl;
cin >> n;
and not

cout << " Enter the value of n : ';
cin >> 1n;

31



6.5. File Input and Output. The method by which one reads or writes to files
consists of declaring a stream and connecting it to an input or output file. To read
or write fo a file one just reads or writes to the stream in the same way as one uses
the standard input and output streams cin and cout. In order to use the routines
described in this section one must include the file fatream.h.

6.5.1. File Input. The declaration of an input file stream is a statement of the
form

ifgtream InFile;

Here we have given the siream a name InFile — it may be given any valid vari-
able name. To connect the stream to a particular file one invokes the open member
function;

InFile.open("finput®, ios::in);

The first argument of the open function is a string, or a string pointer, containing the
file name. The remaining arguments are flags which specify attributes to be associated
with the stream. In the instance above ios::in specifies that the stream is open for
input. (This is the default, but we include it here so that one can see how flags are
gpecified.)

When dealing with external files it is useful to know when an error has occurred
in the process of connecting (or opening) a file. This can be checked by seeing if the
error flags of the stream have been set after the open invocation. For example, a
construct we often use is

InFile.open("finput”, ios::in);
if (1InFile)
{ cerr << " Error In Opening File For Imnput " << endl; exit(1); }

When applied to a stream the operator ! returns a non-zero value if an error flag
associated with that stream has been set. We use the “error output” stream, cerr,
to send a message to the user and the command exit (1) to terminate the program.

Declarations and open invecations can be combined in a single statement, e.g.
the statements

ifstream InFile("finput", ios::in);
if (1 InFile)
{ cerr << " Error In Opening File For Input " << endl; exit(i); }

are equivalent to the declaration and open statements given previously.
To break the connection between a stream and a file one invokes the member
function close. The statement

InFile.close();

closes the file £input which has been associated with the stream InFile.

Once a file stream has been declared, it may be connected to several different
files within a program (one at a time of course). So, for example, after InFile is
closed with respect to finput it may be connected to another file by invoking the
open function once again. (It may be re-connected to finput if one so desires.)

32



6.5.2. File Output. The declaration of an output file stream is a statement of
the form

ofstream DutFile;

Here we have given the name OutFile to the output file stream. To connect this
stream to a file we use the open member function;

OutFile.open("foutput", (ios;:out | ios::ate));

The statement connects JutFile to the file foutput. The flags 1os: :out and ios::app
which have been “or”d together dictate that the file is opened for output and that
the output will be appended to the end of the file. Any number of flags may be “or”d
together and used as the second argument to the open command. Useful flags are
given in the following table

Flag Description

ios::app Append data - write at end of file.
ios:!:ate Seek end of file upon open.

ios::out Open for output - default for ofstreams,
ios::trunc Discard contents if file exits. Default with

ios::out unless an append mode is set.
ios::nocreate | Does not create a file if open fails.

ios: :noreplace | If files exits, open for output fails
unless an append mode is set.

33



6.6. Formatting. There are two ways to format the output of variables. One
.way is to directly set the format state of the output stream, and the other way is
through input/output manipulators. When one chooses to work with the format
state, one sets flags and variables associated with the output stream, then, when any
data is output to this stream, the resulting output will be formatted in the style
which determined by these flags and variables. The use of input/output manipulators
allows one to embed format$ing commands within an input/output statement. (This is
similar to other languages in which the formatting of output and the output statement
are combined.) We favor the former because in numerical work one doesn’t usually
require a large number of different output formats - usually we choose one format for
all of our output. Setting the output format state is a convenient way to have a single
output format used.

The format operations we deseribe here apply to the pre-defined streams ¢in and
cout as well as to any streams which have been declared within a program. In our
examples we use the stream cout — for other streams one just substitutes their names
in place of cout.

There are many variables and flags associated with the setting of the format state
of an output stream. We will discuss those which we found most useful and not give a
complete description. (For a complete description one should consult a C++ compiler
manual.} The variables which we find most useful in numerical work are precision
and width. The variable precision dictates the number of digits past the decimal
point in the output format and the variable width is the number of spaces allowed in
the output. To set these variables one uses statements of the form

cout.precision(4); // sets the number of digits output to 4
cout .width(10); // sets the width of the output field to 10

To determine their value at any time one can use statements of the form

n
m

cout.precision(); // n is set to the current number of digits output.
cout.width(); // m iz set to the current output width.

Once the variable precision is set, its value remains constant until set again,
‘The variable width is the minimum number of spaces which are allocated to output
a variable. If more spaces are needed, then more spaces are allocated. (Values will
never be truncated if the width is insufficient.) The variable width only applies to the
very next output operation. Once the output operation is completed width is reset
to it’s default value.

Also useful are formast flags associated with ontput streams, There are flags which
allow one to specify either fixed or scientific notation, the justification of the output
values (either right, left or internal) and whether or not trailing zeros should be shown.
These flags are set using the member function setf.

As an example, to specify that one wants scientific notation, left justified values,
and that trailing zeros be shown with the standard output one uses statements of the
form

cout.setf(ios::left, ios::adjustfield);
cout.setf(ios::showpoint, ios::showpoint});
cout.setf(ios::scientific, ios::floatfield);

34



In the above statements the first argument to setf is the value of the flag (i.e.
ios::left refers to a static enumerated constant) and the second argument is the
flag to be set. The specification of scientific or fixed notation does not apply when an
integer is output.

To set the format state of another stream, one just uses statements of similar to
those above, but with a stream other than cout. For example

OutFile.setf(ios::fixed, ios::floatfield);

sets the output format associated with the stream OutFile to have fixed decimal
poinit notation for floating point values. A format state is tied to a particular stream
- s0 the setting of flags for one stream does not effect the flags for another stream.

An example which demonstrates these calls as well as indicating some of the other
aspects of output is the following:

void main(){

long IntVald = 12345;
long IntValB = 54321;
double RealVald = 123.45b;
double RealValB = 543.21;
cout.precision(4); // 4 digits output

cout.getf(ios::internal, ios::adjustfield); // internal justification
cout.setf(ios::showpoint, ios::showpoint); // show trailing zeros
cout.setf(ios: :scientific, ios::floatfield); // scientific notation

cout << IntVald << " " << IntValB << endl; // Both integers on one line with
// character space between them.
cout.width(15); // next output field will have 15 spaces

cout << RealVall << endl;
cout << RealValB << endl;

When the above program is run, the following output is obtained.

12345 54321
1.2345¢+02
5.4321e+02

Note that in the statement which outputs IntValA and IntValB that there is also
the output of the string of spaces * ". This string is included so that spaces are
printed between the two integers output. If it were not included the digits for the two
values would run together.

Another way to set the format state of a stream is through the use of io manip-
ulators. One can embed formatting commands within an ontput statement and thus
avoid the use of the function setf. The manipulators which set the output precision
and width are setprecision(n) and setw(n). In setprecision, n is an infeger
specifying the number of digits past the decimal point and in setw, n is the number
of spaces in the output field. Manipulators are “sent” to the output stream before the

35



output of a variable. As an example, in the output of a variable v, to specify 8 digits
to be printed past the decimmal point and a minimum of 10 spaces for the output field,
one would use the command

cout << setprecsion(10) << setw(10) << v;

6.6.1. Format of UCLA++4 Class Objects. When using the operator << on
objects associated with the UCLA 4+ classes, the format of the output is determined
by the output state of the stream. Thus, the format of the output of these objecis is
the same as for the standard data types.

When one sends a vector to the output, then the values come out in a single
column. (The transpose of the vector will come out in a single row). A matrix
(declared as matrix, complex_matrix or sparse_matrix) is printed row by row,
with the first row being at the top of a page. The element with lowest first and second
index is in the upper left hand corner,

An object of type array2D is output so that the element with the lowest first
and second index is in the lower left hand corner. The values associated with an
increasing first index are printed across the page. The values associated with an
increasing second index are printed up the page. (This is a natural form of output if
the values of the array2D are associated with the set of points in the first quadrant
of the Cartesian plane.)

The following code and it’s output illustrates the difference between the output of a
matrix and an object of type array2D.

void main()

{
matrix M(3,3);
M{1,1) = 1;
M(2,2) = 2;
M(3,3) = 3;
cout << " matrix M Output " << endl << endl;
cout << M << endl;
array2D A(3,3);
A(1,1) = 1;
A(2,2) = 2;
A(3,3) = 3;
cout << " array2D A Output " << endl << endl;
cout << 4 << endl;
}

36



The output of the code is
matrix M Output
0

4]
3

O O
o N O

array2D A Output

- OO
o N O
o o W

37



6.7. Graphics, The graphics commands fall into three categories - system con-
trol routines, plotting routines, and graphics style (or formatting) routines, The
routines for system control and graphics style initialize the graphics system and set
parameters used by the general plotting functions. These system and style routines are
distinguished by the specifier graphics: :. The general plotting routines are member
functions of each of the classes, so the normal member function selection procedures
are used. For example, M. contour (), where M is of type array2D, is a call which will
contour the values associated with M.

6.8. System Control Routines.

6.8.1. Open, Close and Frame Routines. There are a few routines that con-
trol the plotting process which must be included in all programs. These are the rou-
tines which open and close the graphics system and advance the frame. A call to
open() is necessary before any call to a plotting function. There is also a corre-
sponding required call to close(). This routine is called after all the plot calls are
completed but before the end of the program. All plotting output is drawn on the
same frame (or window) until frame() is called. Thus, a call to frame() is necessary
to separate different plots,

6.8.2. Plot Placement. The user can set the part of the window in which the
plots are to appear with set.frame. By default, graphics leaves a tenth of the window
width between the edge of the window and the edge of the plot on the left and right,
and a tenth of the window height on the top and bottom. The arguments to set_frame
are required to be between 0 and 1, and represent the position of the edge of the plot
from: the left or bottom edge of the window, For example, the default is obtained by
the call:

graphics::set_frame(0.1,0.9,0.1,0.9)

6.8.3. Subplots. The subplot commands allow one to draw several graphs next
to each other in the same frame. In order to produce subplots, the graphics system has
to be in the subplot state. This state is entered with a call to subplot_on{m,n) and ex-
ited with a call to subplot_off{). Besides turning on subplot mode, subplot on{m,n)
also defines the size of the grid of subplots - 1.e. m rows and n columns of plots. When
in subplot mode, the user tells the system where to put the output of the plotting
routines with a call to subplot (i, ). All plof calls after the statement subplot(i,j)
will be plotted in the subplot corresponding to ith row and the jth column of sub-
plots. Plotting will continue in this subplot until another call to subplot or a call to
subplot.off() is encountered. The statement subplot.off(); returns the system
to plotting to the full frame. Here is an example session in which the vector vi is
plotted in the (1,1) subplot, v2 in the (1,2} subplot, etc.

38



vector vi(40), v2(40), v3(40), v4(40);
v1,v2,v3 and v4 are given values

graphics::open(};
graphics: :subplot_on(2,2);
graphics::subplot{1,1);
vi.plot();

graphics: :subplot{1,2);
v2.plet();

graphics: :subplot(2,1);
v3.plot();
graphics::subplot(2,2);
v4.plot();

graphics: ;subplot_off(};
graphics: :frame();
graphics::close();

6.8.4. Auto-Scaling. The UCLA++ plotting routines perform autoscaling by
default, One can change this with a call fo axis. Passing the constant AUTOOFF
to axis will set an internal flag so that following plots (contour and surface plots
excepted) will be plotted over the range held by the internal variables xmin, xmax,
ymin, and ymax until the flag is reset with another call to axis with the argument
AUTO. The call axis(x1,x2,y1,y2) is egivalent to the call axis{AUTO.OFF) and a
setting of the internal values xmin = x1, xmax = x2, ymin = yi and ymin = y2.

6.8.5. Setting Default Plotting Styles. The functions set plot_style and
set_point_style set the default plotting style. The changes are permanent (until
reset) allowing the user to make one call which affect all the following plots. The
three constants CURVE, POINTS, and CURVE_AND POINTS are the possible arguments to
set_plot.style. The routine set_point_style accepts any character. For example

graphics::set_point_style{’#’);
will set the point style to be an asterisk. The default plot style is CURVE and the
default point style is a dot *.”.

6.9. General Plotting Routines,

6.9.1. Curve Plotting. The routine for plotting a one dimensional set of values
such as those in an object of type vector or arraylD, as well as plotting a user
specified function, is plot. Different actions are taken depending on the form of
invocation and the type and number of arguments. The two simplest calls are

¥y.plot(};
y.plot{x);

If x and y are of type vector, then the first call plots the values of y verses the
index of y and the second plots the values if y verses the values of x - i.e. it plots the

39



values (x{i),y(i)) where i runs over the index of the vectors. The vectors must be
the same length.

The defanlt plotting style is used to create the plot unless the a plot style variable
is specified as an argument to the plot command. The plotting style variable is one
one of the constants CURVE, POINTS, or CURVE_AND_POINTS, resulting in the plot being
drawn in the style described by the constant. For example to plot a vector y verses x
with just the the data points being marked is accomplished with

y.plot(x,POINTS);

The marker used in the plot is the default marker - a value specified using the com-
mand graphics: set point_style. One can also have a character as an input argu-
ment - for example, y.plot{(’*'), results in just the points being plotted and marked
by the character *, The use of a plot or line style specification within a given plotting
call does not set the default state of the system. To set the default state, see the
previous section “Setting Defaunlt Plotting Styles”.

In order to allow users o plot functions of a single variable there is the command
graphics::plot(f, * } where f is a user defined function. Table 5.168 “Plotting
Routines for Class Objects” describes the input options and syntax for this rontine.

6.9.2. Contour Plotting. The routines for contouring the two-dimensional sets
of values in an array2D, matrix or sparse_matrix object are provided by a call
to the routine contour. By specifying different input arguments, different contouring
styles can be selected. These styles and the required input arguments are specified in
Table 5.16 in the Clags Summaries section.

Since the different contouring styles are selected by the arguments to the contour
call some problems can arise. In particular, this is the case when a contouring style
is determined by its value as well as its type. For example consider the statement

M.contour{2);

There is a possible ambiguity — will the contour plot be drawn with two contours
or will the contour plot be drawn with contours associated with values which differ
by 2 (i.e. a contour increment of 2)7 In this case the contour plot would be drawn
with two contours. If the argument is a integer (int or long) then the argument is
agsumed to be the number of contours, while if the argument is a floating point (float
or double) then the argument is assumed to be the desired spacing between contours.
For contour plot with contours associated with values which are 2.0 units apart, the
call would be

M.contour(2.0);

If the contour routines do not do what you expect or if you receive a compiler
error, you should try explicitly casting the arguments sent to contour. For example,

M.contour{int(num_lines)}, low, hi)}:

If one is confouring an array of values in which the number of data points asso-
ciated with one index is not the same as the second index (e.g. a non-square matrix
or array2D)}, then the contour plot which results will have the same aspect ratio as
the set of values which are being contoured. If one desires to have the contour plot fill
out the frame independently of the number of data values associated with each index,
one executes the call graphics::turnoff contour scaling(};. One can return to
the default state with the command graphics: :turnon_contour_scaling();.

40



6.9.3. Surface Plotting. A surface, or perspective, plot of a two dimensional
set of values is created with the surface command. The user can choose the angle
from which to view a surface plot by setting the horizontal and vertical viewing angles.
The horizontal angle is measured in degrees counterclockwise from the positive x axis
to the projection of the line of sight in the x~y plane. The vertical angle is the
number of degrees up from the x—y plane to the line of sight. These angles can be
set permanently with set horizontal angle and set_verticle.angle or the can
be passed to the routine surface as parameters, The default for both angles is 30
degrees.

6.9.4. Character and Line Drawing Routines. The routine drav_string is
the general string plotting routine. This routine allows the user to put any string of
any size anywhere in the window at any orientation. {Specific routines for drawing
labels and titles is described below). The first two arguments to draw_string are the
x and y values of the point in the viewing window which is used as a reference point
to draw the string. The coordinates of the reference point are expected to be between
0 and 1, with 0 representing the left or bottom edge of the window and 1 representing
the right or top edge. For example the call

graphice::draw_string(0.5,0.6,"My string",0.015,0,0);

would draw My string centered in the window.

The fourth argument is the size in which to draw the string. If size is between 0
and 1, then it specifies the size of the characters as a fraction of the plotting frame. If
size 1s greater than 1 then it specifies the size of the characters in plotter units. Size
can also be negative, in which case the absolute value is the size as a multiple of the
digitized size. Using values between 0 and 1 is usually easiest and gives the user the
most predictable results.

The fifth and sixth arguments define the orientation of the string around the point
specified by the first two arguments, The fifth argument is an angle in degrees from the
positive x axis specifying the direction the string is to be drawn. The last argnment
specifies the justification of the string about the reference point. For example, the
call

graphics: :draw_string(0.5,0.5,"My string",0.015,90,0);

will produce a siring which is rotated 90 degrees about the reference point, the middle
of the window.

A value of -1 for the justification parameter (the sixth argument} causes the left
edge of the string to be placed at the reference point, a value of 1 causes the right
edge to be placed at the reference point, and a value of  causes the string to be
centered about the reference point. When any other value is passed, the position of
the reference point related to the string is obiained by interpolating along the line
defined by the points associated with the values -1 and 1. For example, passing -0.5
canses the string to be printed such that the reference point is half way between the
left edge of the string and the midpoint of the string.

6.9.5. Lables and Titles. The routines title, label x, and label_y are pro-
vided to simpify the construction of titles and labels. These routines are designed to
be easy to use - if they do not do what you desire, then you should use the routine
draw_string described above. The parameters for these routines are given in Table
5.17, “Character Drawing and Labelling Routines”. There is an optional second argu-
ment for the routine label.y. If this argument has the value 1 then the siring will be

41



drawn on the right side of the graph. Passing any other value or not passing anything
causes the siring to be drawn on the left side of the graph. This is useful since the
teft side of the graph is often filled with numerical labels.

6.9.6. Formatting. A variety of routines are provided for the formatiing of
plots. These are described in Table 5.18 “Formatting Routines”.

'The user can choose between linear and logarithmic scales with a call to
set_sgcale(scaletype). One of the constants LIN_LIN, LIN L.0G, LOG.LIN, or LOG_LDG
is passed to set_scale(scale type) as an argument. The first part of the constant
is the scale to use for the x axis, and the second part is the scale for the y axis. For
example, the call

graphics::set_scale(LIN_LIN);
results in plots with a linear scale on both axes, the defaunlt, while the call

graphics::set_scale(LOG_LIK);

results in a logarithmic scale on the x axis and a linear scale on the y axis.

When using a linear scale, the axes are divided into intervals for labeling. These
divisions are controlled with the set_ticks functions (the functions don’t actually set
the number of ticks like the names imply, but the number of intervals). The major
divisions are the number of divisicns of the entire axis and are separated by labeled
tick marks, while the minor divisions are the number of subdivisions of the major
divisions and are separated by unlabeled tick marks. The default for both axes is §
major and 2 minor divisions.

By default, both the axes and labels are drawn when a plot function is called, but
the nser can tell the system to do otherwise. Unfortunately, labels can’t be drawn
without the axes being drawn, so a call to turn_off _axis() also furns off the labels
and a call to tarn_on_labels() also turns on the axes.

When the axes are drawn, each axis is drawn in one of three styles: perimeter,
grid, or floating. Perimeter is the default on both axes and causes the axis to appear
on the edges of the plot. For example, if the x axis is set to perimeter, a horizontal line
with the appropriate tick marks will be drawn on the top and bottom of the graph.
Grid causes lines to be drawn across the picture perpendicular to the axis which is
set to grid. The last style, floating, causes the axis to be plotted within the graph
(if possible) at the position specified by the appropriate intercept stored in internal
variables. For example, if the x axis is set to floating and the y intercept is equal to
two, then the x axis will be the line y = 2.

The intercepts (default = ,0) are set with the function set_intercepts(x,y)
and the axis type is set with the function set_axis_type{type). The argument to
set_axis_type is a constant constructed out of the words PERIMETER, GRID, and
FLOATING in the same way as the constants passed to set_scale. For example,
PERIMETER PERIMETER, PERIMETER.GRID, and GRID FLOATING are all acceptable ar-
guments,

42



6.10. Calling Fortran Routines from C++4. The purpose of this discussion
is to provide information which makes the procedure of calling external Fortran rou-
tines intelligable, and hopefully, assist one in sorting out problems which ocour. We
also describe the procedure for passing the data associated with objects of the matrix
and vector classes to Fortran routines. Several samples of calling Fortran subroutines
and functions are given in the samples section. We recommend that one takes a look
at these samples before reading this section in order to familiarize oneself with the
overall form of the syntax and structure of the code.

In general the use and syntax of inter-language calls is compiler specific. What
we present here works with the SUN CC, GNU g++, and Macintosh MPW C+4
compilers. We expect that with small modifications the procedures discussed here
will be applicable to other compilers - one should consult compiler documentation for
details. We do not discuss issues related to linking - i.e. one must often link with the
appropriate Fortran libraries. If you are using the UCC or Ug++ commands, then
this is automatically done. If you are using your own commands, then you will likely
have to consult the compiler manuals to determine which libraries need to be linked.

In order to call a Fortran function or a subroutine from C+- there are four basic
facts about Fortran and C++ which one should be aware of;

1. Fortran passes arguments by reference.

2. Fortran passes an array of numbers by passing a reference to the first element
of the array.

3. There are equivalences between the standard C++ data types and the stan-
dard Fortran data types.

4. The syntax for declaring and calling a Fortran routine from C4+ is non-
standard.

An implication of the first fact is that in the declaration of a Fortran routine within
a C++ program every argument must be a pointer. For example if the subroutine
fortsub_ which has as arguments two double precision numbers then it will be de-
clared as

extern "C" void fortsub_( double* x, double* y);

(The meaning of extern "C" and the underscore in the name will be discussed later.)
To call this subroutine, one can use either pointer arguments or reference arguments
as the following code demonstrates

double x 0;
0

double ¥y

3]

1.
2.

fortsub_{&x, &y);

or
double x = 1.0;
double y = 2.0;
double* xptr = &x;
double* yptr = &y;

fortsub_{xptr, yptr);

43



The second basic fact dictates how one passes the array of numbers associated
with an object of mafrix or vector class. An external Fortran routine expects a
pointer (an address) to the first element of the array of numbers associated with a
vector or a matrix. To obtain this pointer we use the member function get dataptx
associated with the matrix and vector classes. In the following example we illustrate
the procedure. (We also provide the “equivalent” Fortran code to emphasize the
similarities of the calling procedures.)

C-+ Fortran
long n; integer*4 n
long m; integexr*4 m
matrix a(m,n); dimension a(m,n)
double* aptr = a.get.data ptr();
fortsub_(aptr, &m, &n); call fortsub(a,m,n)

In the C+4++ code, one needs to declare the routine fortsub. before use. In this
instance the declaration would take the form

extern "C" void fortsub_{ double¥ aptr, long* m, long* n};

The implication of the third fact is that one must know the equivalence between
the data types in C++ and Fortran and pass equivalent data types in subroutine
and function calls. The equivalence of data types does not appear to be standardized,
however, we have found the information contained in the following table to be accurate
on the compilers which we have encountered,

Ct+4 Fortran
short INTEGER#*2
int INTEGER*4
long INTEGER#*4
float REAL*4
double REAL*8
char clnl] CHARACTER*n

Unfortunately, there is no simple equivalence between the C4+ data type complex
and the corresponding complex data type in Fortran. One can still pass complex
numbers, vectors, and matrices, but this requires a few more steps. The procedure
for passing objects based on the complex data type is discussed at the end of this
section.

The fourth fact, that the syntax for declaration and calling an external Fortran
routine, is non-standard is very annoying. However, there appears to be a general
similarity between compilers. Consider again the declaration used in the example
above -

extern "C" void fortsub.( double* aptr, long* m, long* n};

Most compilers use this syntatic form for declaration — the statement extern "C"
is used even though we are using an external Fortran routine. {The extern statement

44



tells the compiler that the particular routine will be available at link time.) Also note
the underscore in the name of the external routine. This is another artifact of inter-
language calls. For a Fortran routine named fortsub, it is declared and used in the
C++ code as fortsub_. (This last aspect is definitely non-standard, as some Fortran
compilers allow one the option of specifying that an underscore is not appended to
a routines name in the object code - thus one can nse such routines without adding
underscores to their names.) Since the syntax is compiler specific one should consult
the manuals for a particular compiler for information. We have found that manuals
for Fortran compilers often contain more information about inter-language calls than
manuals for C++ compilers.

The process of calling an external Fortran routine thus consists of several steps.
First the routine must be declared as extern “C" and an underscore should be ap-
pended to its name. In the C4++ program the routine name with the underscore
is used. All arguments passed to the external routine must be pointers. If one
is dealing with objects of type matrix, vector, arraylD or array2D, then the
pointer to the data associated with these objects is obtained with the member fune-
tion get_data ptr().

6.10.1. Use of the Complex Data Type. To pass a variable of complex data
type to a Fortran routine is a bit more cornplicated than that associated with the other
data types. The procedure we employ consists of packing the complex values info a
matrix or vector and then passing this to the Fortran routine using the procedures
described above, This works because a complex value in Fortran is stored as two
consecutive real values - the real part followed by the imaginary part. Thus, we pass
our complex values by constructing an array of real values in which have placed the
real and imaginary parts of our complex values.

The routines to carry out this “packing” of the complex data are fortran pack
and fortran unpack. The following example illustrates their use

sxtern "C" void matvec_(long* m, long* n, double* 4, double* x);

void main()

{

long m = 4; long n = 4;

complex_matrix A(m,n);

complex_vector x(n); complex_vector y{n};

matrix Atmp = complex_matrix::fortran_pack(4); // pack A4 into a double matrix
matrix xtmp = complex_vector::fortran_pack(x); // pack x into a double vector

t

double #Aptr = Atmp.get_data_ptr{); // get the data pointers for the
double *xptr = xtmp.get_data_ptr(); // packed matrices
matvec_(&m, &n, Aptr, xptr); // call the routine

= complex_vector::fortran_unpack(xtmp); // unpack the result xtmp

y
}

45



Note that one uses different packing routines for an object of type complex_matrix
and an object of type complex_vector,

If one has a complex value to pass to a routine, then one creates a vector of length
2 with the first component of the vector being the real part of complex value and the
second component being the imaginary part of the complex value. This vector is then
passed to the routine using the procedures described above. Examples of this are
illustrated in the program samples provided in the section ”Sammples”.

46



7. Samples. In this section we provide samples of code which demonstrate how
to carry out tasks which are associated with scientific programming - i.e. opening and
closing files, using external rouiines, using the graphics capabilities etc. The following
table lists the samples which are provided.

Sample Name Description

FILE.OUPUT_1 Demonstrates output to a file.

FILE DUPUT.2 Demonstrates internal creation of a filename with
subsequent output to that file,

FILE INPUT_1 Demonstrates input from a file,

GRAPHICS.1 Demonstrates the plotting of a user defined function.
GRAPRICS 2 Demonstrates the plotting of one vector vs. another.
GRAPHICS_3 Demeonstrates contour and surface plotting.

GRAPHICS 4 Demonstrates the use of subplot and contour plotting.
SPARSE_1 Demonstrates the use of sparse_matrix for solving a

tri-diagonal system of equations.

FORTRAN CALL_1 | Demonstrates a call to an external Fortran subroutine
which involves vectors.

FORTRAN CALL 2 | Demonstrates a call to an external Fortran function
which returns a value.

FORTRAN_CALL_3 | Demonstrates a call to an external Fortran subroutine
which involves matrices.

FORTRAN CALL 4 | Demonstrates a call to an external Fortran subroutine
which involves complex matrices.

FORTRAN CALL_5 | Demonstrates a call to an external Fortran subroutine
which involves complex vectors and values.

FORTRAN CALL_6 | Demonstrates the creation of a C++ routine which
calls a Fortran LAPACK routine.

47



/% FILE_OUPUT_1
THIS SAMPLE DEMONSTRATES OUTPUT TO A FILE
The output file stream Fout is declared,

The external file named sample.out is associated with
this stream (with error checking).

The format state of the output stream is set.
Values are cutput to the file using the operator <<.
The output file stream is closed
{i.e. dissassociated from the file sample.out).

*/

#include<fstream.h>

#include<stdlib.h>

void main()

{
char str[20] = "Sample_Values";
double x = 3.0; double y = 6.0; long k = 30;
/7
// Open Output File
//
ofstream Fout;
Fout.open("sample.out”,ios::out);
if (!Fout )
{ cerr << " Error in Opening Ouput File "; exit(1); }
/!
// Set Ouput File Formatting - scientific notation with 8 digits past
/7 the decimal point
//
Fout.setf(ios: :scientific, ios::floatfield);
Fout.precision(8};
r
//  Output Values
/
Fout << sty << endl;
Fout << x << " " <<y << endl;
Fout << k << endl;
//
Fout.close();
}

48



/% FILE_OUTPUT_2
A FILENAME IS INTERNALLY CREATED ARD DATA IS OUTPUT TEAT FILE
The user is requested to input a step number

A character string (for a file name) of the form sample.***
is created where *#%#% is the step number.

An output stream is associated with a file of the constructed name,.

4 message is output to the file.
*/
#include<fstream.h>
#include<strstream.h>
#include<stdlib.h>

void main()

{
char fname[30];
long step_number;
//
// Obtain Step Number
//
cout << " Enter Step Number " << endl;
cin >> step_number;
//

// Create Dutput File Name of the form sample.¥**
// where *%* is the step number.

/7
ostrstream{fname,sizeof(fname)) << "sample.” << step_number << ends;
//
// Declare and open the output file stream Fout
//
ofstream Fout;
Fout.open(fname,ios: :out);
if (1Fout )
{ cerr << " Error in Opening Output File "; exit(1); }
//
// Write a message to the file and close
//
Fout << " The name of this file should be sample." << step_number << endl;
Fout.close();
}

49



/* FILE_INPUT_1
THIS SAMPLE DEMONSTRATES INPUT FROM A FILE
The input file stream Fin is declared.

The external file named sample.out created by SAMPLE F.1
is associated with this stream (with error checking).

Values are input from the file using the operator >>.
Values are written to the standard output using <<.
The input file stream is closed.

*/

#include<fstream.h>

#include<stdlid.h>

void main()

{
char str[20];
double x; double y; long k;
//
// Open Input File
/f
ifstream Fin;
Fin.open("sample.out");
if ({Fin )
{ cerr << " Errer in Opening Input File "; exit(1); }
//
// Input information
//
Fin >> str;
Fin >> x  >> y;
Fin >> k;
/7
// Output values to standard output
//
cout.setf(ios::scientific, ios::floatfield);
cout.precision(8);
cout << str << endl;
cout << x << " " << y << endl;
cout << k << endl;
/
Fin.close();
}

50



/* GRAPHICS_t
THIS SAMPLE DEMONSTRATES THE PLOTTING OF 4 USER SPECIFIED FUNCTIOK

*/
#include "UCLA++.h"

double f(double x){ return sin{x*x);};
void main()

{
graphics::open();
graphics::axis(-3.0,3.0,-2.0,2.0);
graphics::plot(f);
graphics::frame();
graphics::close();

}

51



/*

GRAPHICS_2

THIS SAMPLE DEMONSTRATES THE PLOTTING OF ONE VECTOR VS.
*/

#include "UCLA++.h"

double f(double x){ return sin(x+*x)};};
void main()

{

long mn = BbO;
double a = -3.0;
double b = 3.0;
double h = (b - a)/double(n);

vector v(0,n);
vector x(0,n);
for(long i = 0; 1 <= n ; i++)
{
x{(i) = a + i#¥h;
v{i) = f(a + ixh)
}

graphics::open();
graphics::axis(-3.0,3.0,-2.0,2,0};

v.plot{x);
graphics: :frame();

graphics: :set_point_style(’+');
v.plot(x,CURVE_AND_POINTS);
graphics: :frame(};

v.plot{x, '*');

graphics: :frame(};
graphics::close();

52

ANOTHER



/* GRAPHICS_3

THIS SAMPLE DEMONSTRATES CONTOUR AND SURFACE PLOTTING
*/
#include "UCLA++.h"

double f{doubls x, doubls y)
{return cos(4.0%y)*sin(E,0*sqrt{x*x + y*y));};

void main()

{
long i; long j;
long m = 10;
long n = 10;
double hx = .1; double hy = .1;
double x_i; double y_j;
array2D A(-m,m,-n,n);
for(i = -m; i<= m; i++)
for(j = -n; j<= n; j++)
{ x_i = i¥hx;
¥-J = i*hy;
AGi,3) = £(x_i, y_3);
}
graphics: :open(};
graphics: :turn_off_labels(); // Otherwise contour labels lie om top of
// axis labels.
4.contour();
graphics: :frame();
4.contour(.2});
graphics;:frame();
A.surface();
graphics: :frame();
graphics::close();
}

53



/* GRAPHICS_4

THIS SAMPLE DEMONSTRATES SUBPLOTS AND COKTOUR PLOTTING

*/
#include “UCLA++.h"

double f(double x, double y)

{return cos{4.0*y)*sin(5.0%sqrt(x*x + y*y)); };

void main()}

{

long i; long j;
long m = 10;
long n = 10;
double hx = .1; double hy =
double x_i; double y_j;
array2D A(-m,m,-n,n);
for(i = -m; i<= m; i++)
for(j = -n; j<= n; j++)
{ x_1i = i*hx;

y-j = j*hy;

A(L,3) = £(x_1i, y_3);
}
graphics::open();
graphics::turn_off_labels();
graphics::subplot_on(2,2);
graphics::sabplot(i,1};
A.contour();
graphica: :subplot(1,2);
A.contour(.2);
graphics: :subplot(2,1);
4.contour(10);
graphics::subplot(2,2);
4.contour(10,-2.0,2.0);
graphics: :subplot_off();
graphics::frame();
graphics::close();

}

.1;

// Use a 2 by 2 grid of subplots

// Default contour call

// Use contour spacing of .2

// Use 10 contours between max and min

// Use 10 contours between -2 and 2

54



/* SPARSE_1
THIS SAMPLE DEMONSTRATES THE USE OF THE SPARSE MATRIX CLASS
The size of the matrix, n, is input by a user.
A tri-diagonal system of equations of size n is comstructed.

4 system of equations involving this tridiagonal matrix is
solved.

*/
#include “UCLA++.h"
void main()
{
long i;
long npanel;
double h;

cout << “"Enter Number of Panels " << endl;
cin >> npanel;

sparse_matrix A{npanel+l,npanel+l);
vector b(npanel+l);
vector x(npaneli+1};

h = 1.0/double(npanel);

A(1,1) = =2,0/(hxh);

A(1,2) = 1.0/(h*h);

for(i = 2; i <= npanel; i++)

{
A(d,i-1)
A(i,i)
A(i,i+1)

1.0/ (h*h);
~-2.0/(h*h);
1.0/(h*h);

(¢}

}
A{npanel+i,npanel)
A{npanel+i, npanel+1}

1.0/ (h#*h);
-2.0/(h*h);

b{npanel/2) = 1.0;
X = A/b;
cout << (A%*x - b).norm(2)} << endl;

55



/* FORTRAN_CALL.1

THIS SAMPLE DEMONSTRATES AN EXTERNAL FORTRAN CALL INVOLVING VECTORS
The external fortran subroutine addvec is declared.
Two vectors v and w are declared and initialized.
Pointers to the data associated with v, w and r are obtained.
The external fortran subroutine addvec is called.

*/

#include "UCLA++.h"

extern "C" void addvec_{long#n, double* v, double* w, double# r};

void main()}

{
long i;
long n = 5;
vector vi(n); vector w{n); vector r(n);
for{i = 1; i<=n; i++)
{v(i) = i; w(@) = i3}
double *vptr = v.get_data_ptr();
double *wptr = w.get_data_ptr();
double *rptr = r.get_data_ptr();
addvec_(&n, vptr, wptr, rptr);
cout << ¥ ¢y << endl << v << endl;
cout << " w ¥ << endl << w << endl;
cout << " v + ¢ ' << endl << r << endl;
¥
Fortran Code (Compiled Separately)
subroutine addvec(n,v,w,r)
real*8 v(n),w(n),r{n)
[+
c This routine adds the two vectors v and w and returns the
c result in r.
<
do 100 i=1,n
r{i) = v(i) + w(i)
100 continue
return
end

56



/% FORTRAN_CALL.2

AN EXTERNAL FORTRAN CALL RETURNING A VALUE IS DEMONSTRATED

The external fortran function dotvec is declared.

Two vectors v and w are declared and initialized.

Pointers to the data associated with v, w are obtained.

The external fortran function dotvec is called and the result output.s
*/
#include "UCLA++.h"

extern "C" double dotvec_{long*n, double* v, double* w);

void main()

{
long i;
double dotval;
long n = 6;
vector v{n); vector w{n):
for(i = 1; i<=n; i++)
{v(i) = i; w(i) = i3}
double *vptr = v.get_data_ptr();
double *wptr = w.get_data_ptr();
dotval = dotvec_(&n, vptr, wptr);
cout << "y " << endl << v << endl;
cout << " w M << endl << w << endl;
cout << " <v, w> = " << dotval << endl;
}
Fortran Code (Compiled Separately)
real*8 function dotvec(n,v,w)
real*8 v(n),w(n)
real*8 sum
C
¢ This routine computes the dot product of the vectors v and w
C

sum = 0.0d400

do 100 i=1,n

sum = sum +{v(i) * w(i))

100 continue

dotvec = sum

return

end

57



/* FORTRAN_CALL.3
AN EXTERNAL FORTRAN CALL INVOLVING MATRICES IS DEMONSTRATED
The external fortran function addmat is declared.
Two matrices A and B are declared and initialized.
Pointers to the data associated with A, B are obtained.
The external fortran function addmat is called.
*/
#include “UCLA++.h"
extern "C" void addmat_{long* m, long¥ n, double¥ A, double* B, double* C);
void main()
{
long m = 4; long n = 4;

matrix A(m,n); matrix B(m,n); matrix C(m,n);

A = matrix::Id(m);
B = 3.0#matrix::Id(m);

double *Aptr = A.get_data_ptr();
double *Bptr = B.get_data_ptr{);
double *Cptr = C.get_data_ptr();

addmat_(&m, &n, Aptr, Bptr, Cptr);

cout << " A" << endl << A << endl;
cout << "B " << endl << B << endl;
cout << " A + B " << endl << C << endl;

Fortran Code (Compiled Separately)

subroutine addmat(m,n,v,w,r)
real*8 v(m,n),w(m,n),r{m,n)

c This subroutine adds the matrices v and w and returns the result in r.

do 100 j=i,n

do 100 i=i,m

r{i,j) = v(i,j) + w(4,])
100 continue

return

end

58



/* FORTRAN_CALL .4
AN EXTERNAL FORTRAN CALL INVOLVING COMPLEX MATRICES IS DEMONSTRATED
The external fortran subroutine addcmat is declared.
Complex matrices A, B and C are declared and initialized.
Temporary matrices of type double are associated with matrices A,B, and C,
Pointers to the data associated with the temporary matrices are obtained
The external fortran subroutine addcmat is called.
The temporary matrix Ctmp is "unpacked" to obtain the result of the routine.
*/
#include "UCLA++.h"

extern "C" void addcmat_(long* m, long* n, double* A, double* B, double# ¢

void main()

{
long m = 4; long n = &;
complex_matrix A(m,n}; complex_matrix B(m,n);
complex_matrix C(m,n);
A = matrix::Id(m);
B = complex(1.0,1.0)*matrix: :Id(m};
matrix Atmp = complex_matrix::fortran_pack(4);
matrix Btmp = complex_matrix::fortran_pack(B);
matrix Ctmp = complex_matrix::fortran_pack(C);
double *Aptr = Atmp.get_data_ptr{);
double *Bptr = Btmp.get_data_ptr();
double *Cptr = Ctmp.get_data_ptr();
addcmat_(&m, &n, Aptr, Bptr, Cptr);
C = complex_matrix::fortran_unpack{Ctmp);
cont << " 4 " << endl << A4 << endl;
cout << " B " << endl << B << endl;
cout << " A + B " << endl << C << endl;

¥

59



Fortran Code {Compiled Separately)

subroutine addemat(m,n,v,w,r)
complex*16 v(m,n),w(m,n),r{m,n)

c
¢ This subroutine adds the two complex matrices v and w and
¢ returns ths result in r.
c

do 100 j=1,n

do 100 i=1,m

r{i,j) = v(i,j) + w(i,j)

100 continue

return

end

60



/¥ FORTRAN_CALL.S

AN EXTERNAL FORTRAN CALL INVOLVING COMPLEX VECTORS AND COMPLEX VALUES
IS DEMONSTRATED

The external fortran function alphaxy is declared.

Temporary vectors of type double are associated with the complex
vectors X and y and the complex values alpha and beta.

Pointers to the data associated with the temporary vectors is obtained.
The external fortran subroutine alphaxy is called.
The values in the vector btmp are converted to a complex value.

*/

#include “UCLA++.h"

extern "C" void alphaxy_{(double# alpha, double* beta, long* n, double* x, double* y);

void main{){

long n = 3;

complex_vector x(n); complex_vector y(n);

complex alpha; complex beta;

for(long i = 1; i<= n; i++) // initialize x,y and alpha

{x(i) = complex(i,i); y(i) = complex(i,i);}
alpha = complex(0.0,2,0);

vector xtmp = complex_vector::fortran_pack(x);
vector ytmp = complex_vector::fortran_pack(y);

vector atmp(2); vector btmp(2); // create temporary vectors
atmp(1) = real(alpha); atmp(2) = imag(alpha); // put complex value into atmp

double* xtmp_ptr = xtmp.get_data_ptr(); double* ytmp_ptr = ytmp.get_data_ptr();
double* atmp_ptr = atmp.get_data_ptr(); double* btmp_ptr = btmp.get_data_ptr();

I
it

alphaxy_(atmp_ptr, btmp_ptr, &n, xtmp_ptr, ytmp_ptr);

beta = complex{(btmp(1),btmp(2}); // convert btmp to a complex
// value.

cout << " x " << endl << x << endl;

cout << "y " << endl <<y << endl;

cout << "alpha " << endl << alpha << endl;
cout << "alpha < x , y > " << endl << beta ;

61



Fortran Code {Compiled Separately)

subroutine alphaxy(alpha,beta,n,x,y)
complex*16 alpha,beta

complex*16 x(n),y(n)

complex*16 sum

c
¢ This routine computes the guantity
c alpha times the complex inner product of x and y
c

sum = cmplx(0.0,0.0)

do 100 i=1,n

sum = sum + x(i)*conjgly(i))

100 continue

beta = alpha*sum

return

end

62



/% FORTRAN_CALL.6

AN EXTERNAL FORTRAN CALL TO A LAPACK ROUTINE IS DEMONSTRATED

*/

#include "UCLA++.h"

//

// External declaration of the routine dgesvx.
//

extern "C" void dgesvx_(char* fact, char* trans,long* n, long# nrhs,double* a,
long* lda, double* af, long* lda,long*ipiv,char¥ equed, doublex* r, double* c,
double*b, long#* 1db, double* x, long* ldx, double* rcond, double* ferr,
double* berr, double* work, long+* iwork, long* info);

/

// Routine solvesys is a C++ binding routine to the LAPACK routine

// dgesvx.

1/

matrix solvesys(matrix A, matrix B)

{

/7

// Get information about input matrices

/
double* Aelements = A.get_data_ptr();
long Acolumns = A.get_num_columns();
long Arows = A.get_num_rows{);
double* Belements = B.get_data_ptr();
long Beolumns = B.get_num_columns(};
long Brows = B.get_num_rows{();

//

// Create work temporaries

/
long* ipiv = new longlArows];
double* r = new double[Arows];
double* ¢ = new double[Arows];
double* ferr = new double[Bcolumns];
double* berr = new double[Bcolumns];
double* work = new doublel[4*Arows];
long* iwork = new longlArows];

r/

// Create matrices for the Ffactored form of A and the solution X

matrix AF(Arows,Acolumns);
matrix X(Brows, Bcolumns);

double* Xelements=X.get_data_ptr();

long Xcolumns =X.get_num_columns{);
long Xrows =X.get_num_rows();

63



doublex AFelements=AF.get_data_ptr();
long AFcolumns =AF.get_num_columns(};
long 4Frows =AF .get_num_rows();
/7
// Set parameters for the LAPACK solver
//
char fact='E’;
char trans='N’;
char equed=’ ?;
//
long n = Arows;
long nrhs = Becolumns;
long lda = Arows;
long ldaf = Arows;
long 1db = Arows;
long 1dx = Arows;
double rcond = 0
long info = 0;
dgesvx_(4fact,&trans,&n,nrhs,delements,&lda,AFelements,&ldaf,ipiv,
&equed,r,c,Belements,&ldb,Xelements,&ldx, &rcond,ferr,berr,
work,iwork, &info);
/7
// Error Checking
//
if(info != 0)
{ if(info <= A.get_num_rows())
{cerr << " Matrix Singular " << endl;
cerr << " LU Factorization Stopped at Step " << info << endl;
cerr << ¥ ¥o Solution Returned ¥ << endl;}
if(info = (A.get_num_rows() +1))
feerr << " Matrix Singular or Badly Conditiomed " << endl;
cerr << " Computed Sclution May Be Inaccurate " << endl;
cerr << " Condition Number = " << 1.0/rcond << endl;}
}
/
// clean-up !!! REMEMBER TO DO THIS !!1!
/!
delete [] iwork; delete [J work:
delete [1 berr; delete [1 ferr;
delete [] c; delete [] r;
delete [] ipiv;
//
return(X);
}

64



1/

//  Test program for the routine solvesys

//

void main()

{

//

// This program computes the inverse of a 5 by b Hilbert matrix

// by solveing A*X = B where B is the 5 by 5 identity matrix.

// The routine used to compute the solution is solvesys - a routine
// which is bound to the LAPACK routine dgesvx.

/7
long n = 5;
matrix A(n,n); matrix B{(n,n); matrix X(n,n);
for{long i = 1; i <= n; i++)
for(long j = 1; j <= n; j++)
{4(1,3) = 1.0/double(i+j);}
B = matrix::Id(n);
X=solvesys(4,B);
cout << (B - A*X).noxm(1) << endl;
}

65



References

The primary C++ references for this work are
[1] Lippman, Stanley B., C++ Primer 2nd ed., Addison-Wesley, 1991,

[2] Stroustrup, Bjarne, The C++ Programming Language 2nd ed., Addison-Wesley,
1592,

We found the C++ language guides which come with C++ compilers for PC's
very useful (especially their discussion of input/output). Two that were
used most often are

[3] Boriand C++ 3.1 Programmers Guide, Borland International, 1992.
(4] Macintosh Programmers Workshop C++ Reference, ver. 3.2, 030-1953-4,

Developer Technical Publications, Apple Computer, Inc. 1992,

The routines for the sparse matrix computatioms are currently provided by
binding the class library routines to those in the PET C library developed
by Willian Gropp and Barry Smith. 4 reference to this € library {(and others)
is

[6] Gropp, William and Smith, Barry, ‘‘Simplified Linear Equation Solvers
Users Manual’'’, ANL-0318, Argonne National Laboratory, Argonne, Illinois.

66



