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ABSTRACT OF THE DISSERTATION

Domain Decomposition Algorithms

by

Jian-Ping Shao
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1993

Professor Tony F. Chan, Chair

Domain decomposition {DD) has been widely used to design parallel efficient
algorithms for solving elliptic problems. In this thesis, we focus on improving the
efficiency of DD methods and applying them to more general problems. Specifi-
cally, we propose efficient variants of the vertex space DD method and minimize the
complexity of general DD methods. In addition, we apply DD algorithms to cou-
pled elliptic systems, singular Neumann boundary problems and linear algebraic
systems.

‘We successfully improve the vertex space DD method of Smith by replacing the
exact edge, vertex dense matrices by approximate sparse matrices. It is extremely
expensive to calculate, invert and store the exact vertex and edge Schur comple-

ment dense sub-matrices in the vertex space DD algorithm. We propose several
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approximations for these dense matrices, by using Fourier epprozimation and an
algebraic probing technique. Our numerical and theoretical results show that these
variants retain the fast convergence rate and greatly reduce the computational cost.

We develop a simple way to reduce the overall complexity of domain decompo-
sition methods through choosing the coarse grid size. For sub-domain solvers with
different complexities, we derive the optimal coarse grid size H,,,, which asymptot-
ically minimizes the total computational cost of DD methods under the sequential
and parallel environments, The overall complexity of DD methods is significantly
reduced by using this optimal coarse grid size.

We apply the additive and multiplicative Schwarz algorithms to solving cou-
pled elliptic systems. Using the Dryja-Widlund framework, we prove that their
convergence rates are independent of both the mesh and the coupling parameters.
We also construct several approximate interface sparse matrices by using Sobolev
inequalities, Fourier analysis and probe technique.

We further discuss the application of DD to the singular Neumann boundary
value problems. We extend the general framework to these problems and show how
to deal with the null space in practice. Numerical and theoretical results show that
these modified DD methods still have optimal convergence rate.

By using the DD methodology, we propose algebraic additive and multiplicative
Schwarz methods to solve general sparse linear algebraic systems. We analyze the
eigenvalue distribution of the iterative matrix of each each algebraic DD method

to study the convergence behavior.
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CHAPTER 1

Introduction

The rapid development of advanced-architecture computers (concurrent multi-
processors) has had a very significant impact on all aspects of scientific computa-
tion. “Divide and Conquer” is a basic strategy used in practice to design parallel
numerical methods which can be most effectively implemented on parallel ma-
chines. Domain decomposition is a natural way for distributing programs across
processors and data across memory. Domain decomposition methods often pro-
vide suitable techniques in designing efficient parallel algorithms for solving large
linear systems of equations arised from discretizing partial differential problems.
Moreover, these methods can be advantageous for the efficient and local treatment
of irregular geometries, discontinuous coeflicients, local grid refinement, boundary
layers and coupling between equations of different type, see [38, 14, 15, 16, 44].

Domain decomposition methods are the generalization of the alternative meth-
ods of Schwarz [62] proposed more than 120 years ago. In recent years, research
on these methods has become very active; see [38, 14, 15, 16, 44] and references
therein. The earlier work by P. L. Lions [48, 49, 50] has made an important
impetus on the development of space decomposition. Later a general abstract

framework on additive Schwarz methods was developed by Dryja and Widlund



[32, 33, 34, 35, 73], Matsokin and Nepomnyaschikh [53], Nepomnyaschikh [55] and
others. Recently, an abstract theory for multiplicative Schwarz methods has been
obtained by Bramble, Pasciak, Wang and Xu [11] and Xu [75]. The extension of
uniform theories to certain nonsymmetric elliptic equations was given by Cai and
Widlund [12, 13]. Iterative sub-structuring methods, which decompose the given
domain into non-overlapping sub-domains, have been studied by Bramble, Pasciak
and Schatz [8, 10], Glowinski, Le Tallec, de Roeck et al. [6, 60], Mandel [52, 51]
Dryja and Widlund [35] and Smith [65].

Domain decomposition (DD} methods refer to a class of techniques for solv-
ing elliptic boundary value problems in which the solution is obtained by itera-
tively solving smaller versions of the original problem on smaller (overlapping or
non-overlapping) sub-domains. In most domain decomposition methods, a coarse
problem is introduced to provide global data exchange in order to produce an
optimal method. Domain decomposition methods, as preconditioned iterative
methods, were classified into additive Schwarz method and multiplicative Schwarz
method according to the ordering of solving subproblems. It has been proved
that the convergence rate of most additive Schwarz methods and multiplicative
Schwarz methods is independent of the coarse grid size and the fine grid size
[32, 33, 34, 35, 73, 11, 75}. Domain decomposition methods can also be classified
into overlapping domain decomposition and non-overlapping domain decomposi-
tion. Generally, overlapping DD converges faster than nonoverlapping DD. Al-

though the convergence rate of the iterative sub-structuring (non-overlapping DD)



algorithms depends slightly on the mesh parameters, it is insensitive to the jump
(discontinuity) of the coeflicients across subdomains.

In this dissertation, we start with the derivations of several eflicient variants
of vertex space domain decomposition method. These methods include variants of
the vertex space algorithm (VS) proposed by Smith [66] and Nepomnyaschikh [54],
and an algorithm of Bramble, Pasciak and Schatz (BPS) [8]. All of these methods
are based on non-overlapping sub-regions, in which the reduced Schur complement
system on the interface is solved using a generalized block Jacobi type precondi-
tioner with the blocks corresponding to the vertex space, edges and a coarse grid.
Constructing these dense sub-block matrices and their inverses is extremely ex-
pensive. Therefore, we replace these exact dense matrices by approximate sparse
matrices. We consider two kinds of approximations for the edge and vertex space
sub-blocks, one is based on Fourier approzimation, the other is based on an al-
gebraic probing technique in which sparse approximations to these sub-blocks are
computed. Our motivation is to improve efficiency of the algorithms without sac-
rificing the optimal convergence rate. Our numerical and theoretical results on
the performance of these algorithms, show that these variants greatly reduce the
computation in each iteration and converge with optimal rate.

Secondly, we develop a simple way to reduce the overall complexity of domain
decomposition methods. We analyze the complexity of domain decomposition
on serial and parallel machines. It has been observed empirically [42, 64] that

the total cost of a method can depend sensitively on the choice of the coarse



grid size, H, in addition to the obvious dependence on the efficiency of the sub-
domain solver. A small H generally improves the convergence rate at the cost
of a more costly coarse grid solve, whercas a large H has the opposite effect.
Therefore, an optimal value often exists. For sub-domain solvers with different
complexities, we derive the optimal values H,,, which asymptotically minimize
the total computational cost of DD methods by considering the number of floating
point operations in the sequential case and the execution time in the parallel case.
The overall complexity of domain decomposition methods is substantially reduced
by just using the optimal coarse grid size I ;.

Thirdly, we will study the applications of domain decomposition methods to
coupled elliptic systems arising from many practical problems in such as semicon-
ductor model and elasticity. By choosing a fine enough coarse grid, we show that
the convergence rates of additive and multiplicative Schwarz methods are indepen-
dent of both the mesh parameters and the coupling parameters. We also discuss
the approximate sparse interface sub-matrices for iterative substructuring domain
decomposition for the coupled system. In these DD methods, the reduced Schur
complement system on the interface is solved by using a generalized block Jacobi
type preconditioner, with the blocks corresponding to the vertex space, edges and
a coarse grid. These edge and vertex matrices are expensive to form explicitly.
Therefore, we propose several approximate sparse interface matrices. These ap-
proximate matrices are constructed through using a Fourier approximation and a

probing technique. We show that the exact interface Schur complement matrix is



spectrally equivalent to the approximate matrix by using Sobolev inequalities and
Fourier analysis. The numerical results show that these Fourier approximations
are successful.

Fourthly, we consider the applications of vertex space DD methods to singular
Neumann boundary condition. We carefully present héw to deal with the null space
in practice. We show that the modified DD methods for these singular problems
still have the same optimal convergence rate. We also prove that the convergence
rate of the modified BPS method is insensitive to highly discontinuous coeflicient
across the substructures. Numerical experiments have been conducted for the
Neumann boundary value problems with various coefficients. These numerical
results verify our theoretical results.

Finally, we apply the domain decomposition methodology to design algorithms
for the general linear algebraic systems. We propose two kinds of methods: one is
algebraic additive Schwarz (AAS) method and the other is algebraic multiplicative
Schwarz (AMS) method. We analyze the eigenvalue distribution of the iterative
matrices in order to know the convergence factor of these algebraic domain decom-
position methods.

For the rest of Chapter 1, we will review some basic Sobolev spaces and dis-
cuss the general framework of the domain decomposition for elliptic problems. In
Chapter 2 , we will discuss the development of efficient variants of vertex space
domain decomposition. In Chapter 3, we will analyze the serial and parallel com-

plexity of domain decomposition. In Chapter 4, we will apply the DD method



to coupled elliptic systems. In Chapter 5, we will apply the vertex space domain
decomposition to the singular Neumann boundary value problems. In Chapter 6,

we present the algebraic domain decomposition method.

1.1 Sobolev Spaces and the Finite Element Method for Elliptic Prob-

lems

Assume that @ € R? is a bounded Lipschitz domain. Let C' and c be generic
constants. We introduce a Hilbert space V, which is one of the following Hilbert

spaces

H™(Q) = {v|D*v € [2(Q), if |a| <m}

where the multi-index o = (e, @, -+ ,qy) is an integer vector and |af = a; +

-+++ . The inner product space L2(Q2) is defined by

(u,v)mfnuvd:c,

and the corresponding L? norm is

”uniz(g) = (u, ”)

Analogously, we can, respectively, define the semi-norm and norm of H™ () by
[0y = . ”2_ D*uDudsz,

and

”v“%}m(g) :_/Q E D“uD"udm.

lej<m



Let Hg be the diameter of domain 2. The following inequalities establish the

equivalences of certain norms in the Hilbert space H1(f2).

Lemma 1.1 (Friedrichs’ inequality) There ezists a constant C(Q) > 0, which
depends only on the Lipschitz constant of the boundary of (), such that, for all

v € H1(f),

(1.1) ol z2y < C(Q)Hylv|giny-

Lemma 1.2 (Poincaré’s inequality) There exists a constant C(Q2) > 0, which
depends only on the Lipschitz constant of the boundary of Q, such that, for all
v e H1(S),
1
ol < COO(H3Ivln + 7 [ vdey).
The proofs of these inequalities may be found in [57, 58].

Many elliptic problems can be mathematically represented by the following

variational problems: Find u € V such that
(1.2) a(u,v) = f(v) for all v € V,

where a(-,-) : V x V — R is a continuous bilinear form, and f : V — R is a
continuous linear form. Let ||« |}y denote the norm of the Hilbert space V.

We usually assume that the bilinear form «a(-,-) is symmetric

a(u,v) = alv, u) for all u,v €V,



continuous

a(uw,)] < Cllullyllelly  for all wv € V,
and strongly elliptic {coercive)
a{v,v) > c||v|3 forallve V.

From these properties of a(+,+), we can define an equivalent norm in space V as
[lolla = /a(v,v)

The finite element formulation is obtained by replacing the infinite dimensional
space V with a finite dimensional space V4. Then the discrete approximate problem

can be formed by using the Galerkin method. Find u; € V* such that
(1.3) a(up, vy) = flvs) for all v, € V.

Let the domain £ be partitioned into non-overlapping regions called elements.
Generally, these elements are triangles or rectangles with the approximate diameter
k. Let V% be the space of piecewise polynomials on the triangulation. Let {¢;}7,
be the chosen basis of V#, and u, = E?i , Z:%;- Then, (1.3) leads to a system of
linear algebraic equations:
Ax =1

where b, = f(4;). Generally, the condition number & of this stiffness matrix A
tends to infinity when h tends to zero. We usually have x(A) = O(h~*) with
s > 0. Therefore, solving this linear system, especially when its size is very large,
can be very expensive. Many preconditioners have been designed for A in order to

obtain more efficient methods for solving this problem.



1.2 Space Decomposition
Let {V}}Z  be subspaces of V. Assume that
- h
(1.4) Vh=Vh Ve + V]

Suppose T, i=0,1,---,J, are operators, T;:Vh — Vh

In domain decomposition, the functions in the subspace V}* are defined only on the
subdomain §;, and the operators T; are usually chosen to be projector from Vi
into subspace V2. Concrete V* and T; will be given later. Now we briefly describe
the additive Schwarz methods and multiplicative Schwarz methods. The detail
description of these two kinds of methods can be found in Dryja and Widlund’s
papers [32, 33], and Bramble, Pasciak, Wang and Xu’s papers [11, 75].

Additive Schwarz (AS) Method {32, 33, 53, 55]

To solve equation (1.8) efficiently, we introduce an auailiary problem:

J
(1.5) Tu, =3 Tus=9g

i=0
which has the same solution as equation (1.3). The additive Schwarz method of
solving this auziliary problem (1.5) is to apply Conjugate gradient (CG) method
[40] to this problem.
Generally, one of the most important goals in designing an algorithm is to

make the condition number of operator T' as small as possible so that the algorithmn



converges fast. In domain decomposition methods, T;u;, corresponds to solving the
subproblem restricted on subdomain §2;. Therefore, the new function g = ELO Tiuy,
can be generally calculated without knowing the solution uy in practice.
Multiplicative Schwarz (MS) Method {11, 75]

Let ud € VE be given. Assume that uf € V' is obtained. Then u*tl is defined by
GPHEVIOFI) IR L g g i)

fori=0,---,J.

The error propagation operator E; for one complete iteration is given by
(1.6) Ey=(-Ty)--(I-T){I-Tp)

It is expected that

HEJHa S ) < ]-5

when the MS Method converges to the solution of equation (1.3). Note that in
practice, we do not need to calculate A™ f while computing the action T,A™ f.
The following assumption allows us to estimate the condition number of oper-
ator T and the norm of the error propagation operator E;. We follow the abstract
theories developed by Dryja and Widlund [32, 33], Bramble, Pasick, Wang and Xu

{11, 75] to give a simple proof on the bound of condition number and the norm.

Assumption 1.1 Let T, be symmetric positive definite. There exists a positive

10



constant 0 < w < 2 such that
(1.7) a(Tivp,vp) > wta(Ty, Toy) Yo €V i=0,---,J
From Assumption 1.1, we can easily show that

(1.8) Tl <0 and =Tl <1.

Definition 1.1 Let & = {¢; ;}/._, be the matriz of strengthened Couchy-Schwarz
Wil g=1

coefficients, namely:
(1.9) la(vrg vai)l < eigllvnsllallvaglle Yons €V, Vo ;€ VI
Define p(E) to be the spectral radius of the matriz €.

Note that ;; = 1 and that 0 < ¢;; < 1 by Cauchy-Schwarz inequalities. By
Gershgorin’s theorem, the spectral radius p(£) of the matrix £ is bounded by J,
ie. p(€) < J

It is not difficult to show that

J J
(110) [T <wp(€), and 3 a(Ton, Tiog) < wp(€)2a(oy,v3)
i=1

=1
from Definition 1.1.

The inequalities (1.8) and (1.10) imply that

(1.11) ”Z;Tiua <w(p(&) +1).

11



This inequality gives an upper bound for | E;.Izo T:l|. which is required in analyzing

the additive Schwarz method.

Assumption 1.2 There exists a constant Cy > 0, such that
J
(1.12) Z (Tivp,vy) = Cy2a(vy, vs) Yu, € VR

The inequalities (1.11) and (1.12) imply the following theorem.

Theorem 1.1 (Dryja and Widlund [32, 33]) Under Assumption 1.1 and 1.2,

we have
(1.13) () < CRo(p(€) + 1),
where (T} is the condition number of operator T.

Now we briefly estimate the norm of error propagation operator E;. We intro-

duce operator sequence:
Ej:(f“n)"'(I—To)a E,=1
Then, we have
Ej—l - Eg = TjEj—l
which leads to

NE;_1val2 = [|E;op]2 = [|T5E;_1vpli2 + 2a(T5Ejoyon, (I — T5) By yvs)

> (2—w)a(T;E;_yvp, Ej_q1vp).

12



Thus,

J
thlli - HEJvhlli > (2~ W)Z (T E;_qvop, Ej_ —1V4),
J=0
J-1 j-1
and I — Ej—l = Z _TI,;Ei_I = TG + Z T;'Ef,,l.
=0 i=1

In order to get bound on the norm of E;, we need to estimate the righthandside
term by v, as follows. Let d; = a(T}v;,v,)"/? and ¢; = a(T;E;_1v;, B;_q0p)1/2.

From the above equations and inequality (1.7), we can deduce that, for j > 0,

a(Tyop,v,) = a(Tjvp, Ejyvp) + a(Tyvh, Tovy) + a(Tivp, SIS T E;_qvy)

d? < quJ—i-wdqo-i—wz &;;d;q

(DL, )72 < (5L, ¢V +wv g+ wp(E) (L, )/

=1 "3
(Sl @2 < 2max{l +wp(€),1+wVIHTL, 7).

Thus, we arrive at the following estimation on the norm of E;.

Theorem 1.2 (Bramble, Pasciak, Wang and Xu [11, 74]) Assume that As-

sumption 1.1 and 1.2 are valid. Then, we have

2—w
1.14 Eslla € .01 - .
(1.14) =l \j 4max{1-§«wp(‘£),1+w\/j}2(]§
1.3 Additive and Multiplicative DD

In this section, the operator T is constructed by using domain decomposition
methods which will satisfy Assumption 1.1 and 1.2. The discussion mainly follows

Dryja and Widlund’s general framework [32, 33].

13



Let {Q;}N, be a shape regular, coarse finite element triangulation of £ with
H as the maximum diameter of ;. The domain { is further divided into elements
with diameters of order h. The finite element spaces of continuous, piecewise linear
function on these triangulation are denoted by VH and V*, respectively. Thus,
VH c Vit C V. For simplicity, we let V = H}(Q). Each sub-region {}; is extended
to a larger region Qeot. We also assume that the boundary A=t does not cut
through any h-level elements.

The sub-regions %! are colored by using colors 1,---,.J in such a way that no
neighboring sub-regions have the same color. The number of colors J, used here
should be chosen as small as possible. For example, J = 4 suffices, when } C R’
Then we merge all sub-regions of the same color and denote the resulting sets by
Qe

Now we introduce subspaces V;.h = V"N H} (Qg) for j = 1,---,J, and denote
Vg‘ = VH. Then the discrete space V* can be written as a sum of the J + 1

gubspace;

VE=VE4 Vit 4V

Let b;(, ) be a symmetric, positive definite bilinear form on th X V;.h. Here, we
use b; as preconditioner of ¢ on the subspace th. Assume that the bilinear form

b,(+,) satisfies;

1. For any u, € V*, there exists a representation u, = Ej:{, Up sy Up; € th,

14



with

J

(1.15) Eb () S Cga(uh,uh)

3=0

2. Let w, be the minimum constant such that
(1.16) a(’uh, 'Uh) S wbbj(vh,vh) V’Uh = 1/‘?.”’, J = 0, 1, e ,J
After introducing the preconditioner b,(-,-), approximating the a(:,-) on sub-
space th, we define projections T; : VA — V;.h by
(117) bj(Tjuh)vh) = a(uhvvh) Yoy, € 1/;? i=1 0
Thus Tju,, can be directly computed by solving subproblems
bj(Tjuhavh):(f,vh) VUhEV:, J=1-,J
By using equation {1.17) and inequality (1.16), we can easily verify Assumption1.1:
1
a(uh,Tjuh) = bJ(Tjuh,TJuh) 2 ;;G(Tjuh,Tjuh),

The verification of Assumption 1.2 follows directly from equation (1.17) and in-
equality (1.15) :
alup,u) = E;:o a(up, up ;) = EJJ o b (T, up ;)
< (2 b(Tyuns Tyun) )2 (5, bilun un i)'
< (T b Ty, Tyun) ) 2(CRaluy, ) )12,
alup,up) < C2Y 0 O3 (Lyun, T uy) = 022 o @(up, Tiuy).

This shows the following important Lions’ Lemma [49].

15



Lemma 1.3 (Lions [49]) Assume that inequalities (1.15) are true. Then

J

a(uy, uy) < Zb (Tyup, Tyup) = C2 Y auy, Tiug).

i=0 3=0
We now use an example to show how inequalities (1.15) and (1.16) can be sat-
isfied by choosing the proper preconditioning bilinear form b;(-,-). Let the bilinear
forms b;(uy, vs) = a{ug, v5) = (Vuy, Vvh). Then, inequality (1.16) follows directly.
The verification of inequality {1.15), shown by Dryja and Widlund [32, 33], is pre-
sented in Lemma 1.4. Therefore, the condition number of the additive Schwarz
operator T is bounded and the norm of the propagation matrix E; is less than 1

according to the above abstract theory on space decomposition.

Lemma 1.4 (Dryja and Widlund [32, 33]) For all u, € V4, there exist uy, ; €

VH with u, = E‘I _o Un,; such that

hyj
Z [lup 3112 < CElluallZ,
where constant C is independent of u,, h and H.

Proof From Strang [67], there exists o linear map Iy : VP = VH such that
Huh - juh”%,,(g) < CH2!uh|§p(g)a

and luy, — Iuh@[l(g) < Cluhlin(n)-

We then define w;, = u;, — lu, and u) = Tu,. and up; = I,(0;wy,). Here I, is
the interpolation operator into the space V* and 0; define a partition of unity with

0; € CS"(Q;),{} <6, <1 and Ejﬂ 8; = 1. Because of the generous overlap between

16



sub-regions, these functions can be chosen so that |VO,;|2,, < CH?. By using the
linearity of I,, we can easily show that u), = Z:ﬂ Uy, ;. dn order to estimate the
semi-norm of uy, ;, we work on one element K at a time. Let éj be the average of
8; over I . Then, ||8; — (J)_J.;Hiw(m < C(h/H)?. By using this inequality and an

inverse inequality , we obtained

s l%ll(K) < 2lgjwh|§f1(1{) + 2}1,(0; — gj)whlii‘l(f{)
< 2wy gy + CR 20, — ) willFaiy
< 20wallp g + CH 7 lwillZa ey

After summing over all elements K in Q;., we arrived at the inequality
luh.jﬁp(g;) < 2[“’}11?11(9;) + C’H‘zliwhllizm;)-
By using Lemma 1.1 and summing over j, we obtain that
J
2; I“h,j |§II(Q) < C(|wh|§{1(g) + H*Hwhlliz(g))-
=

Thus, from the bound of w;, and I, inequality (1.15) follows directly
J

2} luh,jﬁ‘-{!(g) < Ogluhiiji(g)-
J:
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CHAPTER 2

Efficient Variants of Vertex Space DD Algorithm

In this chapter, we primarily focus on the development of efficient versions of di-
vide and conquer type domain decomposition algorithms based on non-overlapping
sub-regions for solving self adjoint elliptic problems in two dimensions. The algo-
rithms we are going to describe are variants of the vertex space algorithm (VS)
proposed by Smith [66] and Nepomnyaschikh [54], and an algorithm of Bramble,
Pasciak and Schatz (BPS) [8]. In both cases, a block Jacobi type preconditioner is
used to solve the reduced Schur complement system on the interface. The blocks
in the BPS algorithm correspond to the nodes on the edges separating the sub-
domains and to the collection of vertices of the sub-regions. While in the vertex
space algorithm with additional overlapping blocks, centered about each vertex
consisting of nodes on the interface close to the vertex, are included to account for
coupling amongst the non-overlapping blocks.

In order to implement the original version of the VS preconditioner {66], the sub-
blocks of the Schur complement, which are dense matrices, need to be computed
and inverted using direct methods. It can, however, be easily shown that if these
sub-blocks are replaced by spectrally equivalent approximations, then the rate of

convergence of these algorithms remains asymptotically the same. In order to
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reduce overhead cost, we therefore focus on constructing approximations which
are inexpensive to construct, and which are inexpensive to invert.

Two kinds of approximations will be considered, one based on Fourier approx-
imations of the interface operators, and another based on sparse algebraic ap-
proximation of the interface operators by a probing technique. The Fourier based
approximations can be shown to be spectrally equivalent with respect to mesh size
variations. However, their performance can be sensitive to the coefficients. On the
other hand, the probing based algorithms adapt well to the coefficients, but can
be sensitive to mesh size variations.

In 2.1, we construct the Schur complement on the interfaces. In 2.2, we describe
the original versions of the BPS and VS preconditioners for the Schur complement
on the interface. In 2.3, we describe the two variants, one based on Fourier ap-
proximations, and the other based on the probing technique. In 2.4, we present
numerical results comparing the rates of convergence of the various precondition-

€rs.

2.1 An Elliptic Problem and Its Many Sub-domain Decomposition

Here we describe the block structure obtained when a self-adjoint elliptic prob-
lem is discretized on a domain Q partitioned into many non-overlapping sub-
domains §; with an interface B separating the sub-domains. A reduced Schur

complement system is derived for the unknowns on the interface. Some properties
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of this Schur complement system and an iterative procedure for solving the elliptic

problem are described.

2.1.1 Block Partition of Elliptic Problem

‘We consider the following 2nd order self adjoint elliptic problem on a polygonal

domain §} € R2:

21) -V - (a(z,y)Vu) = f inQ

v = 0 ondQ,
where a{z,y) € R?*? is a symmetric, uniformly positive definite matrix function
having Lo°(1) entries, and f € L?(9).

We assume that the domain € is partitioned into N non-overlapping sub-
domains .-+, 0y of diameter H, which form the elements of a quasi-uniform
coarse grid triangulation 7, see Fig. 2.1. We also assume that the sub-domains
(), are refined to produce a fine grid quasi-uniform triangulation 7% having elements
of diameter h. Corresponding to the coarse grid and fine grid triangulations, we

discretize (2.1) either by using finite elements, see [27], or by using finite difference

methods, see [68], resulting in a symmetric positive definite linear system

(2.2) Apur = fi,

on the fine grid and

(2-3) Apug = fu,
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on the coarse grid.
Let I denote the union of the interiors of the sub-domains, and let B denote

the interface separating the sub-domains:
I= Uinia B= (U,-(?Qi) — 0.

Then, grouping the unknowns in the interior of the sub-domains in the vector uy
and the unknowns on the interface B in the vector ug, we obtain a reordering of

the fine grid problem:

A Ags Uy fr
(2.4) =
A}’B App Up Is

Here Aj; corresponds to the coupling between nodes in the interior of the sub-
domains. For most discretizations, including five point discretizations, the interior
nodes in §); are coupled only to the nodes on the interface B, and not to adjacent
sub-domains. In such cases, A;; = blockdiag(Ay1,- -+, Ann) is a block diagonal
matrix.

Eliminating interior unknowns u;, we obtain u; in terms of ug:

(2.5) uy = A7} (f1 - Argug),
and substituting this in the 2nd block row of (2.4) yields an equation for ug:

(26) SUB = fB - A?BA}“;fIv

where S = Agp — A}‘BAFII Ajp is referred to as the Schur complement or interface
matrix. Some properties of the Schur complement will be discussed in 2.1.3. First,

we will outline a procedure for solving (2.4).
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2.1.2 Iterative Solution of the Block Partitioned System

System (2.4) can be solved as follows. First problem (2.6) is solved for up
and then (2.5) is solved for uy. If direct methods are used to solve (2.6) then S
needs to be computed explicitly, and this can be expensive in general (though this
is standard practise in the substructuring methods used to solve linear elasticity
problems), since it involves computing the action of A7} on the all columns of Ajg.
This can be implemented more efficiently through subassembly, see [66], requiring
only as many solves on each §; as there are unknowns on 9Q; N B. Even if the
matrix S has been assembled, it is often preferable to solve (2.6) by an iterative
method, since direct methods to solve (2.6) require significant memory storage and
computational complexity.

Due to the expense of computing S and solving (2.6) by direct methods, we
consider solving (2.6) by a preconditioned iterative method such as the conjugate
gradient method, see [40], without the explicit construction of S. In this case only
matrix vector products with S are required, and each such matrix vector product
requires the solution of one problem on each sub-domain ©;. The Schur comple-
ment, however, is ill-conditioned with &(S) =~ O(h~1), sec [5, 8], and therefore
requires a preconditioner M; the construction of efficient preconditioners M for S
will be the main focus of this paper.

First, we note that the procedure to solve the linear system (2.4) by solving the
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reduced Schur complement system (2.6) corresponds to a block LU factorization

based solution:

[ 11 i
A 0 I A Ag
(2.7 A=LU = 3
AT, I 0 S
for § = Agg — A}PBA}”}AIB. Thus
At = I —~A7fApS— A 0 ,
0 S wA}FBA}} I

and backsolving requires solving two systems with coefficient matrices A;; and
one system with coefficient matrix S, which will be done using a preconditioned
conjugate gradient method. We note that, it is possible to construct a global
preconditioner A for A by replacing A;; by preconditioner Ayr, and by replacing
S by preconditioner M. In this case the inverse of the global preconditioner A has
the form:

) I —AflAppM- A 0

Al =

0 M- —A?BA}f I

Approximations to the sub-matrices A;; can be obtained for instance by replacing

it either with a scaled version of the Laplacian, or by other preconditioners, such

as TLU, see [18].

2.1.3 Some Properties of the Schur Complement 5

The Schur complement matrix § is a discrete approximation to a Steklov-

Poincare operator, see [1], which enforces transmission boundary conditions on the
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interface B. In the continuous problem, these transmission boundary conditions
correspond to the requirement that the solution u be continuos across the interface
and that the flux @ - (a(z,y)Vu) also be continuous across the interface. In the
discrete case, the action of the Schur complement on a grid function ug on B is the
same as the action of the discrete operator Ay on the discrete harmonic extension of
ug into the sub-domains; More specifically, let Efup denote the discrete harmonic

extension on B to the interior of the sub-domains:

(28) EhUB = [WA;}AIBUB,HB] s

then
A Ags —Ajf Argug 0
A%‘B ABB Up SuB

Thus, if Ry denotes the pointwise restriction of nodal values of a grid function

onto the nodes on B, then Sug = RgA, EPug. In addition,
(2.9) m%Sm‘B = (ESEB)TAh(EIL'B).

This property shows the positive definiteness of the Schur complement. In addition
to S being positive definite, it is an M-matrix when A, is an M-matrix, i.e., 5;; <0
for i # j and (S-1);; > 0 for all £, 7, see [68, 22].

Remark. For finite element discretizations, let A(} denote the stiffness
matrix obtained by integrating the bilinear form on (;, i.e., the discretization of
the Neumann problem on ;. For finite difference methods, let A() correspond to

the discretization with discontinuous coefficients which is a(z,y) in §2; and zero
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outside £);. Then, the energy 7 Az can be partitioned as
N ¥
(2.10) T Apr =Y aT AWz,

and correspondingly, the Schur complement S can be partitioned:

N
(2.11) zLSzg =) «L5Wzp,
i=1
where
(2.12) S0 = Rg AGIER,

Fach S is a map of the Dirichlet values ug to the normal derivatives on
00, N B of the discrete harmonic extension E*ug, and this is not a local operator,
i.e., the matrix S is dense on 3Q; N B, sec [5]. In the two sub-domain case,
S = S(1) 4+ 8(2) is thus a map of the Dirichlet value ug to the jump in the normal
derivatives on B of the discrete harmonic extension Eug, which corresponds to
the discrete approximations of the transmission Boundary condition. In the two
dimensional case, the entries of S decay as |Sy;| = O(h.—_lj—l;), see Golub-Mayer [39],
and preconditioners for S have been studied extensively, see [5, 17, 9, 29, 19]. The
important properties of the two sub-domain Schur complement is that its entries
decay away from its main diagonal, and that it is uniformly spectrally equivalent to
the square root of the Laplace operator on B, as the mesh size goes to zero. Due to
this connection, it can be shown that its condition number grows as £(S) = O(3}),

see [5]. Applications of both these properties will be discussed in 2.3.1 and 2.3.2.
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2.2 The BPS and VS Preconditioners for S

We will describe two preconditioners for S in this Section, one introduced by
Bramble, Pasciak and Schatz (BPS) [8], and another, the vertex space precondi-
tioner (VS) introduced by Smith [66] and Nepomnyaschikh {54]. Both these can
be interpreted as generalized block Jacobi type preconditioners for (2.6) with over-
lapping blocks and involving residual correction on a coarse grid. Variants of these

preconditioners will be discussed in 2.3.

2.2.1 Notations for a Partition of the Interface B

In the case of many sub-domains, the interface B can be partitioned as a union

of edges E;; and cross-points V, see Fig. 2.1.
B = UUE‘J U V,

where E;; denotes the edge separating sub-domains §); and {};, and V denotes
the collection of cross-points (vertices (2, yf) of the sub-domains).Note that the

edges E,; are assumed not to include its endpoints.
For each edge E;; we define R, as the pointwise restriction of nodal values

to K, i.e., if gg is a grid function defined on B, and if Ej; contains n;; interior
nodes, then its restriction Rg, gp is a vector with n,; components defined on E;
by

RE;ng = gp on Eeg
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Figure 2.1: The vertex space partitioning of the interface.

------

9,
a crss point H
(w{:f, yf) 1
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|-

Vi

a vertex subregion Iy

Q

Its transpose Rg.-,- extends grid functions in E;; by zero to the rest of B:

gE.'_,' on Eij
Rg"ngfj =
0 on B — Ef.?
Similarly, we define Ry as the pointwise restriction map onto the cross-points; if

gp 1s a grid function on B, and if there are ny cross-points on B, then Rygp is a

vector with ny components defined by
Rygg =gpon V.

Its transpose RT, is thus extension by zero of nodal values in V to B:

BT gy onV
viv =

0 on B~V
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2.2.2 The BPS Preconditioner

In order to motivate the construction of the BPS preconditioner, we first de-
fine a block Jacobi preconditioner M consisting of diagonal blocks of the Schur
complement S in the following block partitioning of the interface B. Let us sup-
pose there are n edges E;; with some ordering FE;,- -, E,. If the unknowns on

each edge E; is grouped together in ug,, and if the unknowns on the cross-points

are grouped in uy, then S has the following block partitioning corresponding to

(uEl'.«' b :uEn:uV)"
Sg, ' SmE, SBv
S =
T
SElEn Sg,  Smwv
T T
i Sev SEﬂV Sy ]

Here, Spm; = Rp,S jo denotes the coupling in S between nodes on E; and E;,
and Sp,y = Rp,SRY, denotes the coupling in § between nodes on E; and V. Note
that edges E; and E; will be coupled in S only if they are part of the boundary
of a common sub-domain §2;,. This can be secen by using the relation between
Schur complement and discrete harmonic extensions; since, for instance, discrete
harmonic extensions of grid functions on edge E; is non-zero only in the sub-
domains that for which E; is part of its boundary. S is thus a block sparse matrix
and corresponding to each edge F;;, the sub-matrix S i is identical to the two sub-

domain Schur complement on interface Ej; separating 2, and ;. The sub-matrix
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Sy which corresponds to coupling in § between cross-points is almost a diagonal
matrix since the cross-points are weakly coupled in S. In the case of five point
discretizations on rectangular sub-domains, Sy is diagonal since the corner nodes
{cross-points) of rectangular domains do not influence the solution in the interior.

For this block partition of S, we define the action of the inverse of the block

Jacobi preconditioner M:

(213) M;lgB = Z Rg;jSE}jREU‘fB -+ RI‘;S;IRV‘}PB.
edges ij

This block Jacobi preconditioned system can be shown to have a a condition num-
ber satisfying:

ATl’!vl'-'l'n'il"'(ﬂJJ_l S)

al™ =5 5T

< 6 H3(1 +log*(H/h)),

where ¢, and ¢, are independent of H and h, see [8, 70]. This indicates that
as H — 0, i.e., as the number of sub-domains increases, the rate of convergence
deteriorates. This can be attributed to the absence of global communication of
information amongst all the edges in the preconditioning step.

The original version of the BPS algorithm [8] involves two changes to this block
Jacobi preconditioner. One is that the sub-matrices Sg,; are replaced by Fourier
based approximations § ;; which will be described in 2.3. The second change is
to incorporate global coupling in order to obtain a rate of convergence which does
not deteriorate as the number of sub-domains is increased. In order to do this,
the cross-points correction term RgS;lRV in (2.13) is replaced by a coarse grid

correction term RﬁAEIRH as in two level multigrid methods (involving weighted
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restriction and interpolation maps Ry and RE respectively). These are defined
below. Let ¢y denote the kth coarse grid piecewise linear finite element basis

funcfion

1 ifl=k
¢k,H($fIay;H) = 3
0 ifl#k

where (zf,yf) is the Ith cross-point. Then,

(RHfB (wk:yk)“ Z QSkH J 7yH)fB( H,yH)

(=i095)

Its transpose RE thus denotes linear interpolation of the nodal values on the end-

points of edges E;;:

(Rf;gv) (z,y) = Xk:gV :Bk s Yy )?ka( ,¥), (=,y) € B.

With these changes, the BPS preconditioner can be defined:

Mgtsfs = 32 RE,J L\ Ry, f5 + Ry Ay Ry fa.
edges i

These changes improve the condition number over that of the block Jacobi version.

Theorem 2.1 The BPS preconditioner satisfies

)\mam (Mgll:’SS)

= < ¢y(1 + log*(H/R)),
Amin(MBlljSS) 2( g ( / ))

where ¢, is independent of H and h.

Proof See [8] and [70].
Remark. It can be easily verified that for five point discretizations of the

Laplacian, the coarse grid Schur complement matrix Sy = Ry S, RE is equal to
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the coarse grid discretization Ay = RL A, Ry, since piecewise linear interpolation
results in grid functions which are discrete harmonic on the sub-domains. In case of
more general coefficients, it can be shown that Ay and Sy are spectrally equivalent

with respect to coarse grid size H.

2.2.3 The Vertex Space Algorithm of Smith and Nepomnyaschikh

The logarithmic growth in the condition number of the BPS preconditioner
can be attributed to the neglect of coupling between adjacent edges of B. The VS
preconditioner of Smith [66] and Nepomnyaschikh [54] incorporates some coupling
between adjacent edges through the use of certain overlapping blocks of S corre-
sponding to nodes on certain vertez regions V,, which will be defined, and it leads
to a condition number independent of mesh parameters.

Let Vj, denote the portion of B within a distance of 8H from (2, y¥) for some
positive fraction 0 < 8 < 1, see Fig. 2.1. We refer to each V}, as a vertex region or

vertex space. We define the corresponding pointwise restriction map Ry, to be

Ry, 95 = gp on V.
Its transpose Ra is thus extension by zero outside V;:

gy, onV
T —
RngVk -
0 on B — V..

Corresponding to each vertex region Vj, the sub-matrix Sy, is defined by Sy, =
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Ry S R%;k. The action of the inverse of the vertex space preconditioner M, , involves
the inversion of these new overlapping blocks in addition to the blocks used in the

BPS preconditioner:
(2.14)

M-y = RLA Ry fs + 2 RE (S,.) 7 Ruyfa + D0 By (Sw,) ™ Ry, /5.
~ =

L5

The following result is proved in [66, 54].

Theorem 2.2 Suppose the overlap of the vertex regions Vy is BH, then:

Amaz(My§S)

M 41735) = A0

where C(B) is independent of H and h.

Remark. Other bounds are available for the condition number of the vertex
space preconditioned system:
M;LS) a(l+¢(1/8)),

<
cs(1 +log*(H/R)),

where ¢;, ¢, are independent of H and k, but may possibly depend on the coefli-

/\mam(
Amin (M T;g' i )

cients a(z,y), while ¢; is independent of H, k and the coefficients a(z, y) provided

the coeflicients are constant in each sub-domain §2;, see [66, 33].

2.3 Two Variants of the Vertex Space Method

An important consideration in the implementation of the algorithms is the

expense of computing the edge and vertex matrices Sg,; and Sy, respectively, and
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the cost of solving the subproblems using direct methods. If there are n; nodes
on each 8Q; N B, then computing all the sub-matrices Sg;; and Sy, would require
solving n; problems on each {);, and this increases as the mesh size h is reduced.
If n;; is the number of nodes on Ej;, the cost of using direct methods to solve
edge problems is O(n?j) once the Cholesky factorizations have been determined,
see [66, 65], since the edge sub-matrices Sg,; are dense. n;; increases as the mesh
size h is reduced.

This expense can be significantly reduced if the exact edge and vertex matrices
are replaced by approximations which can be computed at signiﬁcantly less cost,
and which can be inverted at less cost. If these approximations are spectrally
equivalent to the exact sub-matrices, then the overall preconditioner would remain
spectrally equivalent to the exact VS preconditioner, and the number of iterations
required to solve (2.6) would remain independent of h, see Theorem 2.4.

In this Section, we describe two variants of the vertex space and BPS algorithms
in which the exact edge and vertex matrices are replaced by approximations. One
variant is based on Fourier approximations of both the edge and vertex matri-
ces, while the other variant is based on sparse algebraic approximation of both
these matrices using a probing technique. Combinations of Fourier and probe ap-
proximations are also possible, but will not be considered here for simplicity, e.g.,

see [21].
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2.3.1 Fourier Approximations

Fourier based approximations of the edge and vertex matrices are constructed
based on the property that, restricted to sirnple curves (curves which do not in-
tersect themselves), the Schur complement is spectrally equivalent to the square
root of the Laplace operator on it, and this has been studied extensively, see

[5, 39, 17, 9, 29, 19].

2.3.1.1 Fourier Edge Approximations

First, we consider Fourier approximations of the edge matrices Sg,,. Let edge
E;; separate Q; and {2;. Since, the sub-matrix Sz, is identical to the two sub-
domain Schur complement on E;;, standard preconditioners for the two sub-domain
cage can be applied, see [5, 39, 17, 9, 29, 19].

Let J denote the discrete Laplacian on a uniform grid containing n;; interior

nodes with mesh size h = 1/(n;; + 1) :

2
2

!

|
&
e
Il

B,

2

\ -1 2

Then, J%/2 is uniformly spectrally equivalent to Sg,; as the mesh size h is varied, see

[5]. Since the discrete Laplacian is diagonalized by the sine transform, J = WAW,
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where
W, = V2h sin(zjmh),
and A = diag();) with ); = 4sin®(ik), it follows that J1/2 = WA/2W. By using
Fast Sine Transforms, it is possible to compute the action of the inverse of J1/2in
O(n;; log(n;)) flops.
The Fourier based preconditioners M considered here are all based on the sine

transform W, but vary with the choice of eigenvalues:
M = Wdiag(p,)W.

The eigenvalues p1;, are chosen to better approximate the eigenvalues of the exact
Schur complement Sg,.. In the model case of Laplace equation on ; U}, with
rectangular sub-domains Q; = [0,1] x [0,4] and ©; = [0,1] x [-1;,0], where m;
and m; are positive integers with I; = (m; + 1)k and l; = (m; + 1)h, the eigen-
decomposition of the Schur complement is known exactly. These exact eigenvalues

are given below in Mgy, along with the eigenvalues of three other preconditioners:

(2.15)

Dryja [31] preconditioner Mp: P = )\i‘/ ?

Golub-Mayers [39] preconditioner M, 1 pp = /Ay + A2

BPS [8] preconditioner M __: e = (1 = 28)

Chan [17} preconditioner M_, : Ly = (1_7:. . + 1_7:;#1) A+ 22
Chan' k 1+1;;"‘+1 14 ms+1 k 4k

We have the following result.
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Lemma 2.1 Let M denote either the Dryja, Golub-Mayer, BPS or Chan precon-

ditioners for Sg,.. Then
A'rr:.:'..:f:(ju-ml SE.'j)
Amin(M_ISE.'J‘)

<0y

where Cy is independent of h. For Sy, corresponding to Laplace equation on
the model domain §}; U Q; with rectangular sub-domains Q; = [0,1] x [0,;] and
Q= [0,1] x [-1;,0], the condition number of the Dryja, Golub-Mayer and BPS

preconditioners satisfy:

/\mam(M_ISE") 1 1
CLAD N o X g il
)\min(Mu]'SEl.j) — 2( + l + l))

* 7

where C, is independent of h, I; and l;, while the condition number of the Chan

preconditioner satisfies:

Amuw(
A

MC_';anSE.'j) <
— - M2
Mcl SE,‘,’)

min( han

Proof See Bjorstad and Widlund [5], Chan [17].

The Fourier preconditioners described so far do not depend on the coefficients
a(z,y) of the elliptic problem, and thus the rate of convergence can be sensitive to
the coefficients, see [22]. In order to incorporate some information about the co-
efficients, we scale the Fourier preconditioners by a scaling matrix. In the original
BPS algorithm [8], a scalar coefficient «;; representing the average of the eigenval-
ues of a{z,y) at a point in {); and a point in §; was used as scaling on each edge
E;;. Here, we use a diagonal matrix I);; as scaling, where D;; denotes the diagonal

of A, restricted to Ej;, and define the diagonally scaled Fourier preconditioners by

(2.16) gIF?‘sj = D;}Jdeiag(Uk)WDyz‘
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For most applications to isotropic coefficients, these diagonally scaled Fourier pre-

conditioners perform well.

2.3.1,2 Fourier Vertex Space Approximation

Next, we describe approximations of the vertex space matrices Sy, based on
Fourier techniques. For the case of the discrete Laplacian, it is possible to express
the eigen-decomposition of Sy, for cross shaped vertex regions in terms of sine
transforms, thereby enabling the use of fast transforms to invert Sy, , see [54].
However, it is not easily generalized to the case of varying coefficients, and instead
we construct approximations to the vertex matrices by using a direct sum of smaller
matrices that will be described in the following.

We will describe the procedure for the model geometry of Fig. 2.3, Let uy, be a
grid function on B which is zero outside the vertex region V4, i.e., zero on B — V.

Then, by the property of the Schur complement (2.11), we obtain that

4
(217) ungVkqu — Z u%}ks(‘)uvk,

i=1
where S0 is the component of the Schur complement originating from ), as de-
scribed in (2.12). Fori = 1,2,3,4, let L* denote the L-shaped segment V,Nd(Y;, and
further let Rpe denote the pointwise restriction onto L*. Then, as in the case for
the edges, (RquB)TS(i)(RL?uB), is spectrally equivalent to (RquB)TMik(RLE‘uB)

where M¥ is any of the unscaled Fourier approximations to the square root of the
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Laplacian on L¥, see (2.15). Let D¥ denote the diagonal of A() restricted to L¥.
Then, by including the effects of coefficients, we define the following scaled Fourier

based preconditioner for Sy, :

4
(2.18) S8 = RL(DF)/2ME(DE)/?Ryy.

i=1
For most applications we considered, it was sufficient to choose the number of
nodes on the vertex regions V, to be small, say 5 or 9, and so the matrices S'{;;
can be computed at little expense, and can be inverted inexpensively by direct

methods.

Theorem 2.3 The matrices ,g'{;k are spectrally equivalent to to Sy,, i.c., there

exists constant ¢y, ¢, independent of h such that

- Amaz ((?ﬁ)‘lSvk) <
B Amin ((S‘Ff;)_l‘gﬂ) B

CO 01 .

Proof The proof follows trivially by application of the standard resulf, see [5, 9],
that on a simple edge such as L¥, the square root of the Laplacian on it is spectrally
equivalent to the energy of the local Schur complement, i.e., there exists constants
c{(f), cgi) independent of h such that:

T cli)

0 < TN )

(1] — T Mk i 1 -
ka £ J:Vk

Similar bounds hold when MF is replaced by (D¥)/2MF(D¥)1/2, with suitably mod-

ified constants c((f), c,(f}, since the entries of DF can be bounded in terms of the upper
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and lower bounds for a(z,y) in the neighborhood of L¥, independent of h. From

this the result follows immediately, since:

. . 24_ xL S‘(;).’EV :
min{c{)} < == Z’“ < max{c{"},
: Lim Ty My, :

for the suitably modified coefficients cg) and cgi).

2.3.1.3 Fourier Based Preconditioner

Based on the approximations SE and 5’{}“}0, we define the Fourier vertex space
iy

preconditioner (FVS) by
(219)  Mgls = RLAG Ry + 3 Ry, (S )7 Rp, + ijﬂﬁk(ég )~!Ry,,
ij
and the Fourier BPS preconditioner (FBPS) by, see [8]:
(220) MEEPS - R}‘“}AI_'II RH + E Rg;j(sgfj)_lREij'
ij

Note that the Fourier edge approximations S‘g‘j can be inverted in O(n;; log(n,;))
flops, using the Fast Sine Transform. Direct methods can be used to solve the
Fourier vertex problems 5’{1 . The coarse grid matrix problem Ay can be solved
using either direct or iterative methods.

Remark. In the original BPS precondifioner [8], the edge approximations

were chosen to be

S'E.-;- = a;;Wdiag (L)W,
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where a; is the average of the eigenvalues of a(z,y) at a point from ; and a point
from Q;, and gy = 1/Ae(1 — A;/6), and this differs from the version described

in (2.20) because of the scaling matrix D¥.

Theorem 2.4 The Fourier preconditioner Mpyg satisfies:

< AmanM . S)
© = X1, 8) =

where cy, ¢, are independent of H, k, but may depend on the overlap ratio 5.

Proof Bounds for the extreme eigenvalues of MpygS is obtained from bounds for

the Rayleigh quotient:

ﬂ?gS.ﬂB ) (‘rngst

< Apag(MzLS).
ngVSCEB ngFVS'TB) ( Fvs )

The fraction eLSzp/efMysag has uniform upper and lower bounds, see [66].
It therefore suffices to obtain uniform upper and lower bounds for the fraction
eLMygtp/tEMpy gty or equivalently for

Tas—1
.TBMVS{UB

Amin(MpysMy§) < < Aoz (Mpy s M%)

ma.w(

w"QME‘lzsmB
By spectral equivalence of the edge Fourier approzimations, Lemma 2.1, there exists
constants ¢;; and Cy; independent of H and b such that:

t3

T o—1

Ci; < ———21— < ()
ij mg(sﬁj)_lmB ij?
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and similarly for the vertex spaces, by Theorem 2.5, there exists constants ¢, and
C,, independent of H and h such that:

T g3
TSy, T

c i
© 7 2T(SE ey T

Letting C = max{Cj;,C,} and ¢ = min{c;;, ¢}, we oblain that

=1 T ¢~1 -1
T P50, + Ly TSy, T + sLRL Ay Ryzrg

< = = <C,
i mg(SE‘j)*mB + 5 mg(Sgk)’lmB -+ w%RﬁAE}RHmB

and hence our result follows.

2.3.2 Probe Approximations

Next, we describe another variant of the VS and BPS preconditioners in which
the edge and vertex matrices are approximated by sparse matrices obtained using
an extension of the probing technique of Chan and Resasco [25], Keyes and Gropp
[45, 46], and Eisenstat [36]. Unlike Fourier based approximations, the construction
of the probe approximations require solving six problems on each sub-domain, and
thus has a greater overhead cost than the Fourier approximations, but still con-
siderably less than the exact sub-matrices. An advantage of these approximations
is that they often adapt well to coefficient variations and aspect ratios. However
a disadvantage is that they do not adapt optimally to mesh size variations.

We will describe construction of these probe approximations for the model
rectangular geometry of Fig. 2.1. The techniques are easily extended to more

general geometries.
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2.3.2.1 Edge Probe Approximations

We first describe how sparse approximations to the edge matrices can be con-
structed [25]. In its basic form, the probing technique consists of approximating
each Sg,; by a tridiagonal maftrix S ;; Which is chosen on the assumption that each
node on an edge is strongly coupled in S only to nodes adjacent to it and weakly
coupled to the other nodes. A heuristic motivation for this is that the entries of

each Sg,, are known to decay rapidly away from the main diagonals:

(el = 0 (=)

see Golub and Mayer [39].
To obtain a tridiagonal approximation S w;; to Sg,;, we equate the matrix vector

products S, p; to 5 B:; i for the following three probe vectors p;:
1= [150303170?03' "]T! P = [0:1103051507" ']T) Ps = [0701\11010)17' ' ']T'

These matrix vector products [S B Pty S B, P25 S ;D3] results in:

(gEIJ )11 ( ~E|J )12 1 0 0 ( ﬁE‘J )11 (S’Eij)lz 0
(S n (85)m (55,)2 01 0] | Geln Gan Gais
(gE‘-j )32 (S’Ea’j )33 T 0 0 1 (gE"J' )34 (gE;j )32 (gEij )33

42



and equating this with [Sg, p;, Sz, P2, SE,; ps] gives:

(‘gE,-j)ll (SVE'.J-)12 0
(gg--)2l (~E--)22 (~ ..)23

(221) ~ 7 . Y ~EU = [SE.'jplv SE,‘_,'?ZS SE{jPS]'J
(SE'J )34 ( By )32 ( By; )33

from which the non-zero entries of S &; can be easily read off. In general, 5 ;; will
not preserve the symmetry of Sg,, and so we symmetrize it to obtain S’g{j using a
minimum-modulus procedure described below:

(SE;j)ji if l(SEij)ji’ < [(SEij)'ijI

37
(SE:‘j)t'j if !(SEij)‘ijl S !(SE.'J')jil'

J.);'j =

We will denote the construction of gg from Sg,.p1, Sg,;P2+ SE;;Ps by the notation:
(2.22) ST = PROBE(Sg,p1, Sp;;P2> SuisPs)-

The resulting approximations can be shown to preserve row-wise diagonal domi-
nance, see [22]. This idea is motivated by Curtis, Powell, and Reid {28]. In an
analogous way, using a symmetrised variant of [28], see Powell and Toint [59], it is
possible to obtain a symmetric tridiagonal approximation directly using just two
probe vectors, see [45, 46].

Computing the three matrix vector products Sg, p; requires three solves on
each sub-domain €); and ;. Thus, in order to compute edge approximations gﬁu
on the edges of all the sub-domains, twelve solves on each sub-domain would be

required, since the boundary of rectangular sub-domains consists of four edges.
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Figure 2.2: Simultaneous probe vectors

pi’ i — 1,2, 3- p3+1, i = 1,2,3.
0 0 0 P; Di P;

P; Pi Pi P 0 0 0 0
4 0 0 p; p; p;

P b By Py i 0 0 0
0 0 y p; p; p;

Pi Pi b P 0 Q 0 0
0 0 0 Di P D

We now describe a procedure for computing all the edge approximations using
only six solves on each sub-domain, by simultaneously prescribing boundary con-
ditions on other edges, an idea first used in Keyes and Gropp [45, 46]. To minimize
the approximation errors arising from the coupling between vertical and horizontal
edges, we will specify probe vectors p; either on all horizontal edges simultaneously,

or on all vertical edges simultaneously. For i = 1,2,3, see Fig. 2.2, define:

p; on all horizontal edges

i

Pi
0 on all vertical edges ,

0 on all horizontal edges

Psyi =
p; on all vertical edges.

On the horizontal edges, the probe vectors p; can be ordered from left to right, and
on vertical edges from bottom to top. For these six probe vectors, we compute the

discrete harmonic extensions E*p,; = (— A7} A;zP;, P;), and this involves six solves
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Figure 2.3: Numbering of Edges.

E, E,
Erg 0, B, Q, By
L || A

E; Ey
on each sub-domain. If E;; is an horizontal edge, we define:
§gﬁ = PROBE(Ry,, A, E*py, R, A, E"py, Ry, A E*ps).
If E;; is a vertical edge, then we define:
S*g{j = PROBE(Rg,, A E"py, Ri, AL E"ps, Rp,; AnEPpe)-

We have the following result on the non-singularity and diagonal dominance of

the resulting probe approximations.

Theorem 2.5 If the coefficient matriz A, for the model rectangular geometry of

Fig. 2.1 satisfies the discrete strong mazimum principle (as is the case for standard

five point discretizations), then the probe approzimations S’g obtained above are
i

strictly diagonally dominant.
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Proof We will prove the diagonal dominance of approrimation Sﬁl on edge By
in the model geometry of Fig. 2.3; the proof for the other edge approximations are

analogous. By construction,
gIEDI = PROBE(RE1 AhEhpla RE1 AhEhpz, RElAhEhp3).

Due to the effects of the boundary conditions on the adjacent edges, it is easily

verified that (see § 3.2 for notation):

Rp, Ay Erp, = Sg pi + Sg,g0i + Sk g, Pi» fori=1,2,3,
and from this we obtain:

(S'f;;)l)i,i = Tomod(i-i3)=0(5E, + Seg, T SEB)iis
(2.23) (SE)iict = Trmodi=iy=1 (g, + Smiks + Smimy )iy

(ggl)i,i»{-l = Yodi-i3)=—1 (S, + SeEs T Seim )i
For discretizations A, satisfying the discrete strong mazimum principle, S is a
diagonally dominant M-malriz, see [22], and so ils off diagonal entries are non-
positive, and its row sums are non-negative. Using this in (2.23) we obtain that

(S’gl),-j < 0 for j # 1 and the row sum:

(Sﬁl)z‘,g—l + (5'51 )i (§§1),—,1-+1 = Z(SEi + Sgs + Smymr)i > 0

2

which shows that diagonal dominance is preserved. Finally, the min-mod procedure

preserves diagonal dominance by definition.
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2.3.2.2 Probe Vertex Approximations

Next, we describe how sparse algebraic approximations to the vertex sub-
matrices Sy, can be constructed. Unlike the tridiagonal edge approximations gg,-j
which enabled the use of fast direct solvers, the sparse approximations of the vertex
matrices are usually small in general and will be solved by direct methods that do
not make use of the sparsity of the matrices. The procedure we will describe re-
sults from a slight modification of a technique described in [21]. This new variant
can be proved to result in non-singular approximations which preserve diagonal
dominance.

For simplicity, we will describe this procedure for the vertex region Vj in the
center of the sub-domains Q,,---, 8, of Fig. 2.3. We partition V}, into five disjoint

regions:
(2-24) Vi = (Vk N El) n (Vk N Ez) N (V’c N Ea) N (Vk n E4) N (mkH; yf)a

and we obtain a corresponding 5 x 5 block partition of the vertex matrix Sy, :

Sll 0 313 Sl4 515
0 S22 S23 824 S25
Sv,=| 8%, ST Su 0 Sy |

S‘il:i Sg; 0 544 545

St SL SL SL Sy
where each §;; corresponds to the coupling between nodes in block i and block

4. The sub-matrices S, and S3, and their {ransposes are zero, since there is no
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Figure 2.4: Ordering of unknowns within each vertex sub-region Vj

Block partitioning of nodes Numbering of nodes

@ E,

<l k 8

K 7

®y SN E1 2 1 ﬂ% % Eg

i) =D 4

K )

X6
6) By

Vi Vi with N,, =2

coupling in S between nodes in E; and E,, and between nodes in E; and E;. We
will construct a vertex matrix approximation 5’{,1 having the same block structure
as Sy, , with sub-blocks 3,-3- which will be chosen to be sparse.

To facilitate description of the sparsity pattern, we will use the following or-
dering of nodes within V;; for each of the four edge segments E; NV}, the nodes
will be numbered to increase away from the cross-point (x4, ¥}, which is ordered
last. This ordering is shown in Fig. 2.4 when each segment E; NV, contain just
two nodes.

Our choice of the sparsity pattern for the sub-blocks 5',-3. is based on the as-
sumption that the elements of Sy, decay with increasing distance between nodes.

Definition and computation of the edge blocks S for i = 1,2,3,4.
Within each edge segment F; NV, we assume the coupling in Sy, is strong only

between adjacent nodes. Based on this assumption, S; will be approximated by
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tridiagonal matrices S;; which are chosen to be the sub-matrices of the tridiagonal
edge maftrices S’E_ for ¢ = 1,2, 3,4, which were computed in 2.3.2.

Definition and computation of the blocks Sy for ¢ = 1, -+ ,5. We assume
the cross-point (zf1,y7) is coupled strongly in Sy, ouly to the nodes adjacent it.
Based on this assumption, we choose the vectors S;s to have zero entries except in

the first entry:
(Sish

S5 = 0 , fori=1,---,5.

For five point discretizations on the rectangular geometry of Fig. 2.1, it can easily
be shown that the last row and column of Sy, is exactly equal to the last row and

column of Ry, A, RT | the matrix A, restricted to Vj. Therefore, we define
k

Sis=Ap =585, i=1,---,5

S =Ag =S5 i=1,-+-,5.
To see that A;; = S5, first note that S5 is equal to the restriction of Sug to
the ith edge of V,, where ug corresponds to boundary data which is 1 on the kth
vertex, and zero elsewhere. Now, recall that Sug = RpA,E"up. For five point
discretizations on rectangular sub-domains, the boundary conditions on the corner
nodes do not influence the solution in the interior. Consequently, the discrete
harmonic extension Ehug is zero in the interior of sub-domains, and A,Etug
simply gives the column of A, corresponding to the kth vertex. Thus Sj; = A;s.

Definition and computation of 5}3- for: =1,2 and j = 3,4, We assume
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the couplings in Sy, between edge segments E; NV, and E; NV}, is strong only
between the nodes which are closest (adjacent) to the cross-point (¢}, y[T). Based
on this assumption, we choose the sub-matrices Sy, 514, Sys and S,, and their

transposes to have all zero entries except for the (1,1)-th entry.

(gij)ll 0
Sy = 0 6 ... |, fore=1,2; 5=3,4.

So there are only eight non-zero entries to define.

Consider for example the entry (514)11, Which we would like to be an approxima-
tion to (S4)11, the coupling in S between node (zf —h, yf!) and node (zff,yf +h).
Note that (S14)11 = (S8) (2l — h,y¥) (i.e. the component of 56, corresponding to
the point (2ff — h,yf?) ) where § is the boundary data whichis 1 on (zf,yH + h)
and zero elsewhere, and therefore computing (.514); requires one sub-domain solve.
In order to reduce this overhead, we would like to extract an approximation from
the sub-domain solves we already used for the probe edge approximations. For
example, one could define (S14)yy = (Spy) (=¥ — b, y1). However, it turns out that
this definition can lead to a non-diagonally dominant (and possibly singular) gvk.

This can be seen by noting that

(Spri)(ﬂ:f - h) ka) = (SElEy'pl + SE1E10P1 + SE1E3P1 + SElE;lgpl)(wf - h? y[if .

The last two terms on the right corresponds to extra influence from (3, on the

coupling between nodes (zf — h,yf} and (zf,yf + k) (which should only in-
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volve couplings within ;). These extra couplings could cause loss of diagonal
dominance, since, in case the coefficients are large in £y, the last two terms will
dominate the sum on the right. In order to eliminate the influence from §2,, we

now define

~

(S1a)11 = (Seygp1 + SElEmPl)(mf - hayf) (5 (REiA(l)EhPei)l) )

where we recall that A1) is the local stiffness matrix on ;. The last equality
comes from the definition of the local Schur complement, and can be extracted
from the sub-domain solves used to construct the edge approximations.

Analogously, we define the seven remaining non-zero entries by:

(S = (Rp, AW EMp,),
(S2ahy = (BpAPVEp,),
(523)11 = (RgAPErp,),
(2.25) (S = (Rg, AWERp)),
(5'32)11 = (Rg,ABE*p )

(Su)n = (RE4A(1)E"P1)1
(§42)11 = (REiA(z)Ehpl)l'

Symmetrization of S'Vk. Finally, in order to obtain a symmetric vertex

approximation S{;k we use the minimum-modulus procedure:

(ng)ij if |(‘§Vk)ijl < |(§Vk)ji|

(Sv)se 1S )il < 10wl

(2.26) (82,
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Theorem 2.6 The vertex matriz approzimations g{;’k are non-singular, diagonally

dominant M -matrices.

Proof First, we note that since the fifth block row of ST};:;’ is identical to the
fifth block row of Sy, , it has zero row sum. For any other row of g{;k centered
about nodes not adjacent to the cross-point, the non-zero entries are the non-zero
entries of the diagonal blocks Sy, fori = 1,2,3,4. These diagonal blocks were
chosen as sub-matrices of S’gl, S’gz, gga, and 51154 , respectively, which were shown
to be diagonally dominant M-matrices in Theorem 2.5, and therefore these rows
are more diagonally dominant than the corresponding rows of S.

We now prove the diagonal dominance of the rows centered about nodes adjacent
to the cross-point (z¥,yH). Consider, for instance, the row sum corresponding to
node (28 — h,yH) to the left of the cross-point (z8,yff). The non-zero entries of

this row are (81111, (S11)izy (S1a)11, (S1a)11, end (S15)11. By construction:

(S = Tmed(i-1,3=0(5m + Sp,5. + SEm )1 > 0,

(Siiz = Tmoedj—23=0(S5, + SgE T+ SE1 B <0,

(S = Emod(j-——l,S):O(SElEa + Sp B, <0,
(§14)11 = Zmod(j—1,3)=0(8E1E4 + SE B )1y <0,
(S = (Smmn <40.

52



By summing all these non-zero entries, we obtain

TS = Tmedi-1,3)=0(S8 + S B, + 5By 15T
Yomod(i—2.3)=0(5E, + 5B, B, T Spim )1t
Yomod(-1,3)=0{E By T SE )15 T
Y mod(j-1,3)=0{ 8 B, T SE B3 )1,

(SE1E5 )11'

Since the right hand side is a subset of the corresponding row of S, which is strictly
diagonally dominant, this shows that this row of gfv’k is diagonally dominant. The
proof of the diagonal dominance of the other rows centered about the nodes adjacent
to (x,yH) is analogous. Thus .5~'{;k is strictly diagonally dominant in all rows except
the one corresponding to the cross-point. This last property, together with the fact
that 5’{2‘ has positive diagonal elements and non-positive off-diagonal elements,

implies that ST is a non-singular M-matriz.
Vi

2.3.2.3 Probe Based Preconditioner

We now define the Probe vertex space preconditioner (PVS) by
(2'27) M};I%'S = RgAf}lRH + Z Rgij(sgij)_lREij + zk: ng(sa)mlRVk?
ij
and the Probe BPS preconditioner (PBPS) by:

(2.28) Mphps = RLAR Ry + 3 R (S5 )" R,
3
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2.4 Numerical Results

We now present results of numerical tests on the rate of convergence of the
Fourier and Probe variants of the BPS and VS algorithms. The tests were con-
ducted for the following elliptic problem:

—V - (a(z,y)Vu} = f inQ=[0,1]?
v = 0 ondf)

for five choices of coefficients a(z,y), various sub-domain sizes H, and fine grid

sizes h. The five coefficients used were:

1. a(z,y) = I, the Laplacian, see table 2.1.
2. a{z,y) = I + 10(z? + y2)!, slowly varying smooth coeflicients, see table 2.2.
3. a(z,y) = €1%¥] highly varying smooth coefficients, see table 2.3.

4. a(z,y) = diag(l, €), anisotropic coeflicients, see table 2.4.

o

. Highly discontinuous coefficients of Fig. 2.5, see table 2.5.

The elliptic problem was discretized using the standard five-point difference stencil,
see [68], on an (n 4+ 1) x (n + 1) uniform fine grid with mesh size & = 1/n. The
stub-domains were chosen to be the sub-rectangles of an (n,+1) x (n,+1) uniform
coarse grid with mesh size H = 1/n,. Each sub-domain, therefore consisted of
(n/n, — 1) x (n/n, — 1) interior nodes. The coarse grid matrix Ay was chosen
to be the five-point difference approximation of the elliptic problem on the coarse

grid.
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Figure 2.5: Discontinuous coefficients a(z,y)

a=300 Ja=10-4@=31400] a=5

a=0.05 a=2~6 a=0.07 la=2700

a=108 | a=10.1 | a = 200 a=29

a=1 a = 6000 a=4 k= 140000

The entries of the exact solution were chosen randomly from the uniform distri-
bution on [—1,1] and the initial guess in the conjugate gradient method was chosen
to be zero. The estimated condition number, &, of the preconditioned system, and
the number of iterations, ¥, required to reduce the initial residual by a factor of
10-5 (ie., [|rella/lirollz < 1075 ) are listed in the tables. During each iteration,
the coarse grid problem and the sub-domain problems were solved to high pre-
cision using a diagonally scaled preconditioned conjugate gradient method. The
eigenvalues py in the edge approximations ggﬁ of (2.16) were chosen to be the'
Bramble, Pasciak and Schatz eigenvalues listed in (2.15), while the eigenvalues of
the sub-matrices M¥ of (2.18) were chosen to be the Dryja eigenvalues in (2.15).

The Fourier and Probe BPS versions are denoted by FBPS and PBPS respectively,
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while the Fourier and Probe versions of the VS algorithms are denoted FVS and
PVS, respectively. Unless otherwise stated, the number of nodes of overlap, N,;,
in the vertex regions is 1, i.e., there is one node on each vertex segment Vj M £;;.
The overlap ratio 8 = h/H is listed as Ovlp.

Discussion. Tables 2.1 through 2.5 compares the performance of the various
methods for the five sets of coefficients listed above. Table 2.1 corresponds to the
Laplacian. In this case, the exact version of the VS algorithm, denoted by EVS,
was also tested, because the eigenvalues of edge matrices Sy, can be computed
inexpensively using analytical formulas, see Mgpa, in (2.15). In agreement with the
theory, these results indicate that the Fourier variant FVS, has an observed rate
of convergence independent of the mesh parameters H, h for fixed overlap ratio
Ovlp. Moreover, the actual iteration numbers are quite insensitive to the choice
of parameters H, h and Ovlp. For the range of sub-domain and fine grid sizes
tested, the performance of PVS is very similar to EVS. However, as the number of
nodes per edge increases significantly, it is expected that the PVS version would
deteriorate, based on properties of the probe preconditioner for two sub-domains
in [22]. The condition numbers for the variants of the BPS algorithms grow mildly
with H/h, in agreement with theory. In most cases, due to clustering of eigenvalues
of the preconditioned system, the number of iterations, R, was often better than
that predicted by the condition numbers.

Tables 2.2 and 2.3 correspond to smoothly varying coeflicients. Here again,

the results are similar to those for the Laplacian, and are in agreement with the
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Table 2.1: Laplace’s equation: a{z,y) =1

k=1 | Ovlp | FBPS PBPS EVS FVS PVS
_HY | R/H| & | R} & [ R| &R} & |R| & |R
322 | 1/16 | 143 11| 99 | 9 |34 7 | 57 |11| 32 | 8
324 | 1/8 |10.0 |14 74 |11 26| 8 | 45 |11| 2.5 | 8
328 | 1/4 | 64 12|54 (111258 |35 |10} 24 | 8
642 | 1/32 | 193 (12 |17.1 (11|43 |7 | 7.2 |11} 40 | 9
644 | 1/16 | 1451141131234} 9 | 59 |13} 32 | 9
64_8 1/8 10314 | 80 |12 (28} 9 | 46 |12 27 | 9
64.16 1/4 1 65 {13 56 {11 (26| 8 { 3.6 [10| 2.5 | 8
12822 | 1/64 1250 {13 |31.2|13 558 | 90 |11 ] 65 |11
128 4 | 1/32 |19.8 |16 | 184 |15 44|10} 74 |13 | 41 |10
128 8 | 1/16 | 14.7 |16 121 (13|35 9 | 5.9 (13| 3.4 | 9
12816 | 1/8 |10.4 |14 83 [13[28| 9 | 46 |11 27 {9
128321 1/4 | 65 [13] 56 |11 /26| 8 | 3.6 {10} 2.5 | 8
2562 | 1/128 | 31.5 |13 (559 (17 6.8} 9 |11.0 {13 | 11.6 | 13
2564 | 1/64 | 25416 (33.0}19 (5510 91 (13| 7.2 |13
2568 | 1/32 [19.716 | 185154510 7.3 |13 | 43 |10
256_16 | 1/16 [14.7 116|124 113|351 9 | 59 |13} 33 | 9
25632 | 1/8 [104 ;14| 84 {13 |28 9 {46 (11} 2.7 | 9
25664 | 1/4 | 65 |13 | 57 |11 (26| 8 | 3.6 |10 2.4 | 8
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theory. Moreover, the rate of convergence of most variants are quite insensitive to
the variations in the coefficients a¢(z,y). In order to see the importance of scalings,
in table 2.3 we also tested a variant nsFVS of the FVS preconditioner, in which
the edge approximations were not diagonally scaled, but were instead scaled by a

scalar o;; on each edge £y, i.e.
5‘5,.1. = a;Wdiag(pp)W,
where

a(z;,y;) + alz;, y;)
iy 2 )

R
I

for some point (z;,y;) € Q; and (z,,y;) € ;. As the results indicate, this variant
was sensitive to the variations in the coefficients.

Table 2.4 concerns the case of anisotropic coefficients. Here, the results are
qualitatively different from the preceding cases. Note that the rate of convergence
of all variants of the VS and BPS algorithms deteriorate to a fixed rate as ¢ — 0.
The limiting condition numbers seem to depend on the coarse mesh size, as 1/,
A possible explanation for this deterioration is the following. For ¢ = 0, the un-
knowns are essentially coupled only along the z axis and adjacent vertical edges
are coupled strongly in the Schur complement. This coupling is not represented in
the VS preconditioner, and may cause the deterioration in the convergence rate.
The results in table 2.4 also indicate that the probe versions perform slightly bet-
ter than the Fourier versions. This can be explained as follows. For e = 0, the

edge matrices Sp,, on the horizontal edges become a discrete approximation of
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Table 2.2: Mildly varying coefficients: a(z,y) = (1 + 10(z? + y?*))} I

h-1 Ovlp | FBPS PBPS FV§ PVS

_HY | R/H| & |[N] & | R| & || & | R

322 | 1/16 | 15211106} 9 | 6.0 {11 | 3.4 | 8

324 1/8 (102114} 76 {11 46 |11 ]| 26 | 8

328 1/4 164 ]12] 54 {11} 3.6 10| 24 | 8

642 | 1/32 {204 (12178 |11} 756 {11 | 42 | 9

644 | 1/16 | 14914 |116 12| 58 |12} 3.2 | 9

648 1/8 (103|141} 81 |12 46 11| 27 | 9

64.16 | 1/4 { 6.5 |13} 56 |11 | 3.6 (10| 24 | 8

128.2 | 1/64 {263 |13 321 (13| 94 |11} 6.7 |11

1284 | 1/32 (20016184 15| 73 |13 | 42 |10

1288 | 1/16 |14.7}16 1122113 | 59 |13 | 34 | 9

128,16 | 1/8 [ 104114 84 | 13| 46 |11 | 2.7 | 8

12832 | 1/4 | 65 |13 | 56 (11| 3.6 |10 | 24 | 8

2562 | 1/128 | 32.9 |13 | 57.0 | 16 { 11.5 | 13 | 11.7 | 13

2564 | 1/64 |25.8 |17 33.2 19| 93 13| 7.2 |13

2568 | 1/32 | 199 |16 186 |15| 7.3 |13 | 4.3 {10

256.16 | 1/16 [14.7 |16 {123 |13} 5.9 |13 | 3.4 | 9

256321 1/8 1104 |14 84 | 13| 46 [ 11| 2.7 | 9

256 64 | 1/4 1 65 |13 5.7 [11] 3.6 [ 10| 2.4 | 8
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Table 2.3: Highly varying coefficients: a(z,y) = e'%v]

k-1 | Ovlp | FBPS PBPS | nsFVS FVS PVS
_HY | R/H| & |[R| & |R] & |[RN] & |[R} & | R
32.2 1/16 | 2251111184 | 9 [16.1 (18| 7.5 |11} 44 | 9
324 1/8 |13.4|15{11.0 |13 | 72 |13 | 51 |11 {32} 9
328 1/4 {70 |12] 6.2 |11 { 40 {10} 3.9 |10 25 | 8
642 1/32 | 28912259111 |245 (23| 95 {11| 58 |9
644 | 1/16 |17.6 |16 | 155 |15 11.3 |16 6.5 |12 | 4.0 | 9
648 1/8 |11.0 12| 9.1 |12 | 56 |12| 49 |11} 2.8 | 8
6416 | 1/4 | 66 |12} 5.8 |11} 3.7 |10| 3.7 {10} 25 | 8
128.2 | 1/64 363113 ]450 |14 (358 [28|11.8|12| 86 |11
128.4 | 1/32 | 24416 233 [15}|16.1 [19] 84 [ 13} 5.1 |10
1288 | 1/16 {15.7 |14 [13.2 |13 | 7.7 {14 | 6.0 } 12| 3.6 | 10
12816 | 1/8 1104 |14 | 84 [11 | 47 12| 46 {11 | 2.8 | 9
12832 1/4 | 65 |12| 57 |11 | 3.6 [10] 3.6 |10} 24 | 8
256.2 | 1/128 | 44.2 | 14 | 77.2 |17 | 32.0 | 24 | 144 | 13 | 15.1 | 14
2564 | 1/64 |29.3 |17 ]|41.422}16.2|1910.1|13| 85 |13
2568 | 1/32 | 20816 {202 |15 8.0 |14 %.7 13| 44 |10
256.16 | 1/16 |15.0 {15 {12.4 |13} 50 [11| 6.1 [13 | 3.3 | 9
256321 1/8 [ 103 |14 | 82 [12] 3.8 {10 4.7 {12 2.7 | 8
25664 | 1/4 | 65 |12 56 |11 29 | 9|36 |10 24 | 8
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—d?/dz?, while on vertical edges Sg,, becomes a nearly diagonal matrix, similar
to the identity. The FVS edge matrices S'gij approximate the square root of the
Laplacian, and are therefore invalid in this case. By construction, the tridiagonal
probing technique approximates diagonal and tridiagonal matrices well, and conse-
quently, they perform better than the Fourier versions we tested. The algorithms
for anisotropic problems need further study.

Table 2.5 refers to the case of the highly discontinuous coefficients of Fig. 2.5.
The performance is similar to the case of smooth coeflicients, and the results
indicate that the rate of convergence of all variants is quite insensitive to the
jumps in the coefficients.

In tables 2.6 and 2.7, we compare various preconditioners for different choices
of eigenvalues g, in the Fourier approximations (2.16). Here, CFBPS denotes that
the eigenvalues of the Fourier edge approximations in the FBPS preconditioner
were those of Mgy, in (2.15), while CFVS denotes that the same eigenvalues were
used in the FVS preconditioner. In agreement With theory, the Fourier versions
were spectrally equivalent with respect to variations in H and A, for fixed overlap
Ovlp. Amongst the various eigenvalues tested, the exact eigenvalues of the Schur
complement of the Laplacian used in CFBPS and CFVS gave the best results.
Corresponding rates for the probe version are also listed for comparison.

Finally, in tables 2.8, 2.9, 2.10, and 2.11, we present a comparison of the I'VS
and PVS preconditioners, as the amount of overlap Ny 5 in the vertex regions is

increased. Here, Nyg = 0 indicates that only the vertex node was used, i.e., the
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Table 2.4: Anisotropic problem: %:;'% + 63272‘ = f

h=1/64,H =1/2

h=1/64,H =1/4

h=1/64,H=1/16

PVS

FVS

PVS

FVS

PVS

FVS

0.1

74 | 10

14.5 | 17

59 |12

12.0 | 18

9.0 |16

129 | 19

0.08

8.0 | 10

16.1 |17

6.4 |12

13.5 | 20

10.8 | 17

15.5 | 20

0.06

8.9 |10

184 | 19

7.5 |13

15.2 | 21

13.6 | 18

19.7 | 23

0.04

10.3 ¢ 10

224 | 21

9.7 |14

209 |24

19.2 | 22

279 | 26

0.02

13.0 | 10

31.4 | 24

13.0 | 16

29.4 | 28

34.4 | 27

50.1 | 33

0.01

16.3 | 10

43.6 |27

20,7 |18

41.7 | 31

58.4 34

84.8 | 41

10-3

293 | 8

1156 | 38

60.3 |25

151.5 | 47

215.8 | 59

351.8 | 73

10-4

3941 7

179.8 | 46

81.7 | 25

250.7 | 57

352.5 | 69

591.4 | 92

16-3

418 6

193.8 | 48

105.1 | 27

253.6 | 39

396.6 | 73

583.6 | 87

10-86

420 6

195.3 | 49

105.0 | 26

267.7 | 59

355.8 |71

647.5 | 93

10-7

42,1 6

195.4 | 48

102.1 | 25

273.1 1 89

405.6 | 73

654.0 | 92

10-8

42,11 6

195.2 | 48

106.2 | 23

254.9 | 87

395.6 | 72

661.7 ; 93
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Table 2.5: Discontinuous coefficients: See a{z,y) of Fig. 5.

A=t | Ovlp | FBPS PBPS FVS PVS

JHUV R/H o [N ok [ R £ [ R s PR

324 (1/8 102113 | 7.5 |11 ] 6.1 {12} 81 |11

3298 | 1/4 |66 |12] 52|10 85 |13] 3.7 |9

644 |1/16 {147 1151111111} 93 |14 |10.1 |11

648 | 1/8 [10.1 |14 | 81 (12| 84 | 14| 52 |10

64.16 | 1/4 | 65 |13 | 56 |11 | 69 |12| 41 | 9

1284 | 1/32 {196 | 17181 |16 123 |14 | 6.8 |11

1288 | 1/16 | 14.4 |16 |12.1 |14 {11.5 15| 5.9 |11

128.16 | 1/8 102114 | 83 |13 | 64 |13 | 34 | 9

128321 1/4 {66 {13 5.7 |11} 68 |12} 41 | 9

2564 | 1/64 | 25.4 |19 (33.0 |17 |149 15| 7.8 ;13

2568 | 1/32 | 193 |17 [18.7 16| 88 |15} 49 |11

25616 | 1/16 | 14.8 |16 {123 |13 | 124 |16 | 6.9 |11

25632 | 1/8 |103 (14| 84 |13 | 86 {14 ] 6.0 | 10

256.64 | 1/4 | 6.5 |13 | 57 (11| 6.0 |12 | 41 | 9
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Table 2.6: Different Edge Fourier Preconditioners for Laplace Equation

h-1 | Ovlp | FBPS | CFBPS FVS CFVS PVS

__H-1| h/H K N K N K N}l & | N K N

322 | 1/16 | 14311} 95 | 7 | 57 [11|46] 8 | 3.2 | 8

324 1/8 [100|14] 73 |11 | 45 |11{36| 9 | 25 | 8

328 1/4 | 64 |12] 53 [11]35 1029|924 | 8

642 | 1/32 |1903 112|134 | 7 | 72 [11 581 8 | 40 {9

644 | 1/16 | 145 |14 |10.7 |11 | 59 13 [47 |10 3.2 | 9

648 | 1/8 1103 |14 | 81 |12| 46 [12}3.7(10| 27 | 9

6416 { 1/4 | 65 (13| 55 |11 36 [ 1029 | 9 | 25 | 8

1282 | 1/64 | 25.0 1131178 8 | 9.0 |11|7.3| 8 | 6.5 |11

1284 | 1/32 | 198 |16 |14.6 |12 ] 74 |13 |58 10| 41 |10

128 8 | 1/16 | 14.7 |16 |11.5 |14 | 59 |13 4710} 34 | 9

12816 | 1/8 |104 |14 | 83 |13 | 4.6 |11 |3.7|10) 2.7 | 9

12832 | 1/4 | 65 |13 55 |11 | 3.6 |10 (29| 9 | 2.5 | 8

2562 | 1/128 {315 |13 (230} 7 |11.0 1289} 9 |11.6 |13

2564 | 1/64 (254116 (19.2]13 | 9.0 |14 |73 |10 | 7.2 |13

256.8 | 1/32 [19.7 1161156 (13| 7.2 |13 |59 |11 | 4.3 |10

256.16 | 1/16 | 14.7 |16 {11.7 | 14| 59 |13 4710 3.3 | 9

25632 | 1/8 | 104 14| 84 13| 46 {1138 |10 2.7 | 9

25664 | 1/4 | 65 |13 | 55 [11]| 3.6 [10|29] 9 | 25 | 8
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Table 2.7: Different Edge Fourier Preconditioners for a{z,y) = e10=]

h=' | Ovlp | FBPS | CFBPS FVS CFVS PVS
_HY L R/H | 0k [ R}k R & [ R & [ R} £ R
322 | 1/16 [225 |11 |181 |8 | 75 |11} 62 { 9 {4419
324 1/8 [ 134151107113 | 51 |11} 45 |10 3.2 | O
32.8 1/4 {70 {12} 58 [11| 39 |10 33 | 9 | 25 | 8
64.2 1/32 | 28911212309 |95 (11| 779|389
644 | 1/16 | 176 |16 |14.7 12| 65 [ 12| 54 | 9 | 40 | 9
64.8 1/8 (11012 | 88 |11 | 49 |11 ] 40 | 10| 2.8 | 8
64.16 | 1/4 | 6.6 { 12| 5.6 |11 3.7 [10} 3.0 | 9 | 2.5 | 8
12822 | 1/64 | 363113285 9 (118|121 96 | 9 | 8.6 |11
128 4 | 1/32 (244 |16 | 194 |13 84 [13] 7.0 { 9 | 5.1 |10
1288 | 1/16 15714125 |11 | 6.0 |12 | 5.1 |10} 3.6 |10
12816 | 1/8 | 104 |14} 85 |12 | 46 [11| 3.8 | 9 | 28 | &
128321 1/4 [ 65 |12 55 [11| 36 [10| 3.0 | 9 | 24 | 8
2562 [ 1/128 144.2 |14 1347} 9 | 14413 116 9 | 151 |14
2564 | 1/64 1293 |17 (23314101113 | 83 [10] 85 |13
256.8 | 1/32 |20.8 |16 |16.5 (13| 7.7 |13 | 6.2 [ 10| 44 |10
25616 | 1/16 | 15.0 [15|11.9 |12} 6.1 (13| 48 [ 10| 3.3 | 9
25632 1/8 |103114 | 83 12| 47 |12} 3.8 |10 | 2.7 | 8
25664 | 1/4 | 65 |12 54 |11 136 (10} 29 | 9 | 24 | 8
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Table 2.8: Variation of vertex sizes for H = 1/2, h = 1/128, and a(z,y) = 1.

kpyg | T.45 | 8.97 | 8.07 | 7.66 | 6.85 | 6.98 | 6.71 | 6.53

N 10 11 12 12 | 12 13 12 12

Table 2.9: Variation of vertex sizes for H = 1/2, h = 1/128, and a(z,y) = el0v[.

Kpys | 9.85 | 11.80 | 10.25 | 10.00 | 9.41 | 9.01 | 8.63 | 8.40

tt 11 12 12 13 12 12 12 13

Table 2.10: Variation of vertex sizes for H = 1/2, h = 1/128, a(z,y) = I.

kpys | 8.3 66|56 [5.0]48[32|46 |45

N Imjp1m|1mj1mjirtt g 111

Table 2.11: Variation of vertex sizes for H = 1/2, h = 1/128 and a(z,y) = e10=¥[.

kpysg | 10.8 19.117.3|6.6 |66 |6.6|68]6.9

N 12 |11 | 16 | 10 | 10 | 11 | 11 | 11
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vertex matrices were 1 x 1. We note that the improvement in condition number of
the VS algorithms as the overlap Qulp is increased is mild, as also noted in [66].
In particular, the performance is quite satisfactory even when the vertex region
consists of just one point, see Widlund [72].

Conclusions: Both the Fourier and Probe variants of the vertex space algo-
rithm are designed to be efficient alternatives to the original VS algorithm. Our
experiments for a wide range of coefficients and grid sizes show that the efficiency
does not come at a price of deteriorated performance. We hope that these variants
will provide flexible and efficient methods for solving second order elliptic problems

using the domain decomposition approach.
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CHAPTER 3

Complexity of DD Algorithms

In most domain decomposition {(DD) methods, a coarse grid solve is employed to
provide the global coupling required to produce an optimal method. The total cost
of a method can depend sensitively on the choice of the coarse grid size H. In this
chapter, we give a simple analysis of this phenomenon for a model elliptic problem
and a variant of Smith’s vertex space domain decomposition method [66, 23}. We
derive the optimal value H,, which asymptotically minimizes the total cost of
method (number of floating point operations in the sequential case and execution

time in the parallel case), for subdomain solvers with different complexities. Using

the value of H

opt» We derive the overall complexity of the DI} method, which can

be significantly lower than that of the subdomain solver.

3.1 Introduction

The focus of our chapter is on the choice of the size H of the coarse grid. It
is intuitively obvious that the total cost of a DD method can depend sensitively
on this choice, in addition to the obvious dependence on the efficiency of the

subdomain solver. A small H generally improves the convergence rate (because
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the coarse grid problem is a better approximation to the original fine grid problem)
at the cost of a more costly coarse grid solve, whereas a large H has the opposite
effect. Therefore, an optimal value H,,, often exists and indeed has been observed
empirically [42, 64]. Surprisingly, there has been almost no systematic study in the
literature on this issue. Qur approach is to take a simple model elliptic problem and
a particular DD method; this allows a simple but complete and easily understood
analysis which we think give insights for more general situations.

For concreteness, we focus our analysis on a variant of Smith’s vertex space
method [66] developed by us earlier [23]. We consider subdomain solvers with
different complexity, including banded Gaussian elimination, nested dissection,
modified incomplete Cholesky factorization (MIC) and multigrid solvers. For sim-
plicity, we assume the same solver is used for the subdomains and the coarse grid
problem, and that these are solved exactly. By expressing the computational com-
plexity as a function of the coarse grid size H and the fine grid size h, we derive
the optimal value H,,; which asymptotically (as h tends to 0) minimizes the total
cost of method. Using the value of H,,;, we can derive the overall complexity of
the DD method as a function of A alone, which can be significantly lower than that
of the subdomain solver. That is, through the use of DD, a given solver can be
made more efficient for solving the original problem, by using it to solve smaller
(but more) sub-problems. This is a simple consequence of the divide-and-conquer
principle. The assumption of the asymptotic limit is not necessary but does allow

a close form expression for H,,, from which one can see more clearly the general
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trend.

3.2 Optimal Computational Complexity: Sequential Case

We now make the assumption that the cost of the FVS method is dominated
by that of solving the subdomain problems (in inverting A;; in computing the
matrix-vector product Su in PCG) and the coarse grid problem (in inverting Ay
in the preconditioner). This is a reasonable assumption if 4 is small enough and H
is neither too small or too large, so that the subdomains have a reasonably large
“area-to-perimeter” ratio and the coarse grid is not too small.

Let the complexity of the solver used for both the sub-domain problems and
the coarse problem be O(m?) for the preprocessing phase (e.g. factorization) and
O(ms#) for the solution phase on an m x m grid. For example, for banded Gaussian
elimination, MIC and multigrid, p = 4,2,2 and s = 3,2.5,2 respectively. For
nested dissection, p = 3 and the solution phase has complexity O(m?logm). We
assume that the iteration number R is bounded and independent of the fine and
coarse grid sizes, which is supported by the theoretical and numerical results in
[66, 23]. For example, numerical experiments in [23} indicate that N is between 9
and 15 for a tolerance of 10-5 for a wide range of values for » and H and for widely

different coefficients of the elliptic problem. It is then easy to see that the leading
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order terms of the operation count for the FVS/PCG method are given by:

(5.) fops(H) % o5y + 24 R (2 + 53,

where C' is a generic constant that depends on the particular solver. The first two
terms are the preprocessing cost (e.g. factorization of A;r and Ag) and the last
two terms are the cost during the PCG iteration. The leading order terms have

the form:

(32) fops(H) ~ () + 4
where @ = max{p, s} and the generic constant C' may depend on ® but is inde-
pendent of H and k. In other words, the dominant cost consists of solving 1/H?
sub-domain problems and one coarse grid problem.

The optimal coarse grid size H,,, is obtained by setting the first derivative of

function in (3.2} (with respect to H) to zero, giving:
1 . _._ﬂ_2
(3.3) Hype(a) = ( a2 p e for o > 2.

Using this value of H,,, we obtain for the asymptotic complexity:

a?

)2;2‘2}}1,2:‘_“2_

: & | o-2
(3.4) min flops(H) = flops(H,,.) = C{(a — 2)20,_2 + (a —5

When « = 2, i.e. an optimal solver such as a multigrid method,

¢ C

(3.5) flops(H) = 7 + o

which indicates that H should be chosen as large as possible (O(1) in our model

problem.)
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Table 3.1: The sequential complexity of solvers on an n X n grid; coarse grid size

Ny
Basic Solver Complexity | Optimal ny | Complexity of DD Solver
using optimal ng

Multigrid O(n?) 1 O(n?)

MIC O(n25) 0.58n5/6 O(n208)

Nested Dissection 0(n?) 0.76n3/4 O(n225)

Band-Cholesky O(n*) 0.89n2/3 O(n267)
O(ne),a — o0 n1/? O(ne/?)

Note that H,, is independent of the constant C' (i.e. the solver), Clearly,
H,,; depends non-monotonically on the complexity exponent o. For a = 2.5, 3,4,
H,,, = 51/3h5/8, 31/1p3/4, 21/6h2/3 respectively. As o — oo, H,py — hi/2,

The complexity of the FVS algorithm, using H,,,, is given by:
1 (
ﬂopS(Hom) ~ O((E)’Y a})a

where v(a) = zg‘iz. For o = 2,2.5,3,4, v = 2,2.08,2.25,2.67 respectively. As

a — 00, v(a) = @/2. Thus, using a domain decomposition approach results in a
substantial reduction in the asymptotic complexity of the solver. The reduction is
greater the higher the complexity of the solver is.

‘We summarize these complexity results in Table 1, where we present the results

in terms of an n x n fine grid (n = 1/k) and an ny x ny coarse grid (ng = 1/H).
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3.3 Optimal Computational Complexity: Parallel Case

In the parallel case, the operation count model has to be replaced by a true
timing model, taking into account both the arithmetic cost and the communication
cost. However, in the spirit of the asymptotic analysis used in the last section, we
can make some simplifying assumptions which allow us to extract useful informa-
tion from our model. The most important assumption we shall make is that the
communication cost is not dominant over the arithmetic cost, which is valid if the
number of unknowns in the interior of a subdomain is not too small compared to
those on the boundary (i.e. a small perimeter-to-area ratio) and is consistent with
our assumption in Sec. 3. The full treatment with communication cost can be
found in {26].

We shall also assume that there are enough processors so that the subdomain
problems are solved completely in parallel. A crucial issue is how to solve the
coarse grid problem in a parallel environment. According to Gropp [41], one of
the best methods is to collect the necessary data on one processor, solve it there
and then broadcast the result. Finally, we can do the coarse grid solve either (a)
sequentially, after the subdomain solves, or (b) in parallel to the subdomain solves.

Making these assumptions, it is easy to see that the leading order terms of the
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parallel time of the FVS method is:

. C(H/h)>+ C(1/H) case (a)
time(H ) ~
max{C(H/R)*,C(1/H*)} case (b),

where C is a generic constant modeling the time per arithmetic operation. In both

cases, the optimal value of H can be easily seen to be:
H opt = \ﬁ;v

independent of o (i.e. the solver). We note that this optimal choice of H,,, implies
that the size of each subdomain problem is equal to the size of the coarse problem.
It also implies that the optimal number of processors is n (= (1/ VR)2).

The parallel time of the FVS method using H,,, is:
time( H,pe) = O(n*/?),
and the speed-up is:
Speed-up = O(n®)/0(n*/?) = O(n*/?).

Note that the speed up is greater than O(n) (the number of processors) if o > 2.
This “superlinear” speed-up is possible because we are not parallelizing a “fixed”
algorithm — the FVS algorithm with the optimal coarse grid has different sequen-

tial complexity for different n.
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Table 3.2: The sequential complexity of solvers on an n X n X n grid; coarse grid

size ny.
Basic Solver Complexity | Optimal ny | Complexity of DD Solver
using optimal ng

Multigrid O(n3) 1 O(n?)

MIC O(n38) 0.61n7/8 O(n3-06)

Nested Dissection O(ns) 0.93n2/3 O(n4)

Band-Cholesky O(n7) 0.95n7/11 O(n445)
O(n®),a — oo n1/2 O(ne/?)

3.4 Higher Dimensional Problems

A similar analysis can also be extended to a d-dimensional problem. For a

solver of complexity O(m®) on an m? grid, the results in the sequential case are:

2

4 o RO+ el
R ﬂops(Hopt) = O(h **77).

[0

o—d

Hopi - (

The d = 3 case is summarized in Table 2. The results in Sec. 4 for the parallel

case are independent of d, except that the optimal number of processors is nd/2.

3.5 Concluding Remarks

The results obtained above should also apply to other optimal domain decom-

position methods, such as other substructuring methods and overlapping Schwarz
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methods. The optimal coarse grid size is obtained as a simple balance between
the cost of the subdomain solves and the cost of the coarse grid solve. Therefore,
the conclusions are valid for any DD method, as long as these costs dominate the

overall cost and the convergence rate is independent of H and h.
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CHAPTER 4

DD Methods for Coupled Elliptic Systems

In this chapter, we discuss the application of domain decomposition method
to certain coupled elliptic systems, arising frequently in the modeling of phystcs
processes. For example, the steady-state drift-diffusion equations in semiconduc-
tor modeling have coupling in the lower order derivative terms. We are interested
in analysis the relation between the convergence rate of DD method and the cou-
pling parameters. Qur purpose, here, is to test whether DD methods are robust
as the coupling parameter varying. We prove that the convergence rates of ad-
ditive and multiplicative Schwarz methods are independent of not only the mesh
parameters but also the coupling coefficients when the size H of coarse grid is small
enough. Furthermore, we propose several sparse approximations of interface Schur
complement dense matrices. Many domain decomposition methods, such as vertex
space domain decomposition method and substructuring, require solving the Schur
complement systems on the interfaces. It is extremely expensive when calculating
the exact Schur complement matrix and its inverse because the matrix is dense.
In order to reduce overhead cost, we therefore focus on constructing a,pproxima—
tions which are inexpensive to construct and invert. Several approximations of

these dense matrices are constructed by using Fourier approximations and probing
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technique.

A general framework of domain decomposition method for symmetric and posi-
tive definite problems has recently been developed by Bramble, Pasciak, Wang and
Xu [11, 74], and Dryja and Widlund [32, 33, 34, 35, 73]. Later, this general frame-
work has been extended to certain non-symmetric and indefinite problems, see Cai
and Widlund’s paper [12, 13], which prove that the convergence rates of additive
and multiplicative Schwarz methods are independent of mesh parameters. For the
symmetric positive case, the Fourier and probe approximations of Schur comple-
ment has been studied extensively in [5, 39, 17, 9, 29, 19] and [25, 45, 46, 36, 21]
respectively.

In 4.1, we describe the nonsymmetric and indefinite problems and define two
kinds of operators T;. Then we show the convergence by using the Cai and Widlund
framework [12, 13], described in 4.2, In 4.3, we study several approximations of
Schur complement on the interface by using a Fourier approximation and a probing

technique.

4.1 Coupled Elliptic Systems and Two-Level Schwarz Methods

In this section, we,first, describe general coupled elliptic system. Then, we

discuss the applications of two-level Schwarz domain decomposition methods.
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4.1.1 Coupled Elliptic Systems

Consider the Dirichlet problem

(4.1) Lu=f inl] u=0 ondQ,
where
i 9 d 0
Lu= 30 o—Aile)— u() ZBi(m)———-——;im) +C(a)u,

i,5=1 i J =1 f]

with k x k square block matrices A; ;(xz), B;(z) and C(z), and vector [unction u.
We call B;(z) and C(z) as the lower order coupling coefficients. We notice that
the steady-state drift-diffusion equations don’t have higher order coupling terms.

Let’s define the bilinear forms:

BVT
a(u,v) z / ’“’6

1,7=1

and

s(u,v) = E/ u?B;(z) Bv( ) Bui(;‘i,:(m)v,

i=1

which correspond to the seconder-order terms and the skew-symmetric part of
equation (4.1), respectively. We denote Hy(2) = (H1(f2)}*. Then, the weak form
of equation (4.1} is: Find u € Hé(ﬂ) such that
(4.2) b(u,v) = (f,v)  ¥veH(Q),
where

b(u,v) = a(u,v)+ s(u,v) + /ﬂ C(z)uvdz.

Here, C(z) = C — YL, 35,/

We make the following basic boundedness assumptions.
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i) There exist constants ¢, > 0 and ¢, > 0 such that

<av,V) S elvifn W e HAQ)

2
allv
Mgy < 2(2)
ii) Bilinear s(u,Vv) is continuous.

|S(11,V)i < CSHuHH;(Q)”V”Lz(Q) VU,V € Hé(ﬂ')
< C3HUHL2(Q}HVHH;(Q)

iii) There exists a constant ¢, such that
| [ Clayuvdal < eillulipzqIVllgzq, v € H(®).

Note the constants ¢; and ¢, depend on the lower order coupling parameters.
We will focus on the analysis of relation between the convergence rate and these
coupling parameters. As an easy consequence of these assumptions, the following

bounds and regularity for the bilinear form b(-,-} can be established.

1) b(u,v) is continuous. There is a constant ¢ = ¢; + |2](cs + ¢4) :
1
b0, )| < clullgp o Mgy v € FA(O)
2) Garding’s inequality holds
2 — — 2 1
a1 > g, = eallulbp g ol — il Y € HA)

3) The solution w of the dual equation

b(v,w) = (g, V), vv € H ()
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satisfies the regularity,
1
HWHHH“(Q) < CngIILz(Q) o€ [§a1]-

Let’s introduce two triangulations on ) with elements §2; and 7; ;. Then we

have two level meshes Qg and §,. Two level discrete spaces can be defined by
VH = {vylvg € C°(Q), vglg, linear, vy = 0 on 80}
V= {v,|v, € C%Q), V4, linear, v, = 0 on 9}.

The corresponding discrete problem is: Find u, € V* such that

(43) b(uh,vh) = (f, Vh) VVh € Vh.

4.1.2 Two-Level Schwarz Methods

We extend each substructure {}; into a larger region 05, whose boundary
Ozt does not cut through any h-level elements. These sub-regions are colored
by using minimum colors 1,2,---,J in such a way that no neighbour sub-regions
have the same color. Then, all sub-regions of the same color are merged together
and denoted as Q/, -, (. Let V? = H(IJ(Q;) NV*, and Vg = V¥, Then the space

V* can be written as the sum of these subspaces:

Vh= Vi VE4 . 4V
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Now we construct operator T : V? — V*, A natural selection is the projection

operators P; defined as
(4.4) Find Pju, € V4, b(Puy, vi) = b(ug,vi) Vv, € v

It is often more economical to use approximate projectors rather than exact solvers
of the problem on subspaces. We introduce approximate and continuous bilinear
forms b,(,-) defined on V? X V;?' . We assume that there exists a constant w, > 0

such that
(4.5) a(uy,u) < wpdj(uy,uy)  Yuy, v, €V

For example, we can choose af-,-) as the bilinear b;(-,-). Then this b;(-,-) satis-
fies above assumptions with w, = 1. Then, an operator T} : VA V;‘, which

approximates F;, is defined by
(4.6) bj(j}'uh, Vh) = b(uh,vh) Vvh = V?.

For the theoretical result, we usually take Ty = Pp. We note that P;u, and Tju,
can be calculated, without explicit knowledge of solution uy, by solving a problem

in the subspace V? as follows
b(Pyug,vi) = buy, vi) = (£,vy)) Vv, € V]

and

bi(Tyws, vi) = b(wy, vi) = (£} Vv, €V,

82



respectively. Then, we can use additive or multiplicative Schwarz method to solve
equation (4.3). We follow Cai-Widlund framework to give the relation between
convergence rate and the coupling parameters.
Using ii) and Friedrichs’ inequality (1.1), we have
stan Pl € CleollmlllPunllpzg,  Von € V?
< CHllwllal1Ppaglla
< Cles)H(a(uy,uy) + a(Pu,, Puy)) fory=1,---,J.
A direct consequence of these inequalities is

|s(u, — Py, Puy,)| < Cles)H(a(ug,up) + a(Pouy, Piuy)) forj=1,---,J.

From Schatz’s result [61], it follows directly that there exist constants Hy > 0 and

C(Hy) such that

(4.7) [luy, — Pouyllps < C(Ho, ca ) H [Jugl]es
and
(4.8) | Pouglla < C(Ho) U,

when H < H,. We note that the constant H, depends on the coupling coefficient.
However, C(H,) is independent of coupling coefficients. Then, applying Cauchy-

Schwarz inequalities and above inequalities gives
|s(ay, — Pywy, Powy)| < Ofes, ) H (a{uy, u,) + a(Pouy, Fouy))-
From the definition of P; and above three inequalities, it easily follows that

G(Pjuh, uh) = (1 — C(Ca, c4)H)a(Pjuh,Pjuh) - C(CS, (:4)Ha(uh,uh),

83



forg=1,---,J, and
a(Pouy, ;) = (1 — CH?)a(FPouy, Poug) — CHa(uy, uy) Yu, € V*,
These two inequalities show that
a(up, Pyuy) + a(Pyuy, (1 = P)ug) 2 ya(Pug, Pag) — §;a(uy, ur),

with v = 1 — 2C(cs, ¢5)H and §; = 2C(cs,¢5)H. For general operator Tj, the
corresponding results follow from a minor modification of above arguments. Since
we assume that v = 1 — 2C(cs,¢c;)H > 0, v is independent of coupling parame-
ters. So it is obvious that only constant &; = 2C(cs,c5)H ¢ depends on coupling
coefficients and mesh parameters.

By using the triangle inequality, inequalities (4.7) and (4.8}, we obtain
|22 < Cleg)(HP*aluy, up) + || Fougl[7 )

and

(1 = CH)a(w, w,) < (g us) + CllPouslallugl o

From the definition of the operator P; and Lemma 1.4, it follows easily that
J J
b(ug, uy) = Y b(wy, wp ) = 30 b(Fyuy, uy,5).

§=0 §=0

Applying the continuity of (-, ) and the Cauchy-Schwarz inequality results

J
b(uy, u) < CCylesH, ca YO || Pug [12)2]|uy o

§=0
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Thus, from this inequality we obtain:

J
a(ll;” llh) S ch Z (I(lelh, Pjuh),

=G

where C'C? is independent of coupling coefficients when H is small enough.

4.2 Cai and Widlund Framework for Coupled Elliptic Problems

As in Chapter 1, we first represent the discrete space V* as the sum of subspaces
VAY and define operator T; : V* — V. Then the operator of additive Schwarz
3 1i=0 J 7

method can be defined by
T=To+T1+T+ - +Ty,
and the error propagation operator of multiplicative Schwarz can be derived as
E;=(I-T5)(I-T)I-To).

Therefore, we need to analyze the condition number of 7" and the norm of £;. We
assume that the operators T satisfy the following two assumptions, which are the

extension of those for symmetric positive definite problems.

Assumption 4.1 There ezist a constant v > 0 parameters §; > 0, such that
(49) C!.('u,h,Tj'th) + a(Tj"h: (I — Tj)uh) 2 7a(Tjuh,Tjuh) —_ 5ja('u,h, 'u,h),

and ELO b; can be chosen small enough, where w;, € V't is a vector and a(-,-) is a

symmetric positive definite bilinear operator defined in Chapter 1.
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Remarks: We notice that, for the projector P}, the parameters §; = C{cs, c4)
depend on not only the size of coarse grid but also the coupling coefficients. As
in 1.2, we can obtain the inequalities similar to those in the symmetric case. Denote

2 Then, inequality {4.9) can be rewritten as

wzli—'r

a(uy, Tiuy) > wta(Tyuy, Thuy,) — Eja(uh,uh).
It follows easily from this inequality that
6;
@10) <o+ w143

The following upper bounds can be obtained straightforwardly by using the

strengthened Cauchy -Schwarz inequalities:

J J
12 Tille < wp(€) Z—j
=1 j=1 2’

and
J

z a(Tjuh, Tjuh) 1/2 + Z 2p(8 1/2 llh, h)

i=1

From these inequalities and (4.10), it is easy to show the following upper bounds:

J
(4.11) ”ZT“aSwp(S +1) + ZEJ

7=0

and

(412) 3 175wl < (w(p(€) ”2+1)+E (5)1/2+50/2) [ETA I
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Assumption 4.2 There exists a constant Cy > 0, such that
J
(413) Z a(Tj‘uh, Tjuh) > C’O_za(uh, 'Urh).
=0
The lower bound for a(ELD Tyay,uy,) follows directly from Assumption 4.1

and 4.2, and inequalities (4.10}):

J J &,
(4'14) Za‘(Tjuhauh) 2 (00—2 - Z _Ql)a(uh:uh)'
Jj=0 4=0
The upper bound (4.11) and the lower bound (4.14) give the convergence rate of
GMRES with additive Schwarz preconditioner according to the paper [37].
By using definition and Cauchy-Schwarz inequalities, we can easily show that,

there is a constant ¢ > 0 independent of mesh parameters and coupling coefficient,

such that

J

J J
(4.15) ST B w2 > elw?p(E)2 + (326;)* + 1)1 3 |1 Tyualf:.
1=0

i=0 i=0

It follows directly from Assumption 4.1 that
2a(T;E;_yup, Bj_yup) — |15 Byl 2 AT E - qualll — &1 By unl G-

The first term on the right can be bounded from below by inequality (4.15). The
second term is bounded by 4, exp(}:‘jz_g §;). Therefore, we have the following the-

Orenl.

Theorem 4.1 (Cai and Widlund [12, 13]) If

-2
m&Xost‘] ’)’JCO

PPV +(T; )7 + 1
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dominates
J-1
8;exp(D ;)

i=0

by a sufficiently large constant factor, then the multiplicative Schwarz method con-

verges and

cCy?
(4.16) ESlla < dl T+ (D6 L

Remarks: The operators T}, given in 4.1.2, satisfly Assumption 4.1 and 4.2
with 6; = Cl(cz,¢)H, v; = 1 — C(cs,¢4)H and Co® = ¢f(1 — C(ca,¢q)H). After

making these observation, we can easily obtain the following conclusion.

Theorem 4.2 Assume that the operators T; are defined in section 4.1.2. Then, the
convergence rates of additive and multiplicative Schwarz methods are independent

of the lower order coupling parameters when the coarse grid size is fine enough..

Remarks: By choosing coarse grid size fine enough, we can make DI methods
have the fast convergence rates as well as make the DD methods be robust as the

coupling parameter varying.

4.3 Interface Schur Complement Approximations

In this section, we consider applying the non-overlapping domain decomposition
to the coupled elliptic systems which result from linearization of semiconductor

device simulation problems [4, 69, 3, 30]. The main idea is to decompose a domain
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into many smaller regular sub-domains, reduce the problem on the whole domain fo
the Schur complement system on the interface and then solve the interface system.
Since the Schur complement matrix is expensive to evaluate and to calculate its
inverse directly, the reduced Schur complement system is usually solved by iterative
methods, such as GMRES or BiCG conjugate gradient type methods. Generally,
the Schur complement matrix is not well-conditioned so that a direct application of
the iterative method to the system will not be a very efficient algorithm. Therefore,
a good preconditioner is required when constructing an efficient algorithm. Our
main purpose, here, is to derive interface preconditioners for the coupled elliptic
system. We notice that the variation of coupling term may lead the coupled elliptic
problem to become indefinite and unsymmetric. Ience, our main interest is in
finding the preconditioner that slightly depends on or does not depend on the
coupling coefficients. Qur efforts on this are based on two approaches. One is

Fourier approximation. The other is probe technique.

4.3.1 Abstract Fourier Bound Deduced from Sobolev Inequalities

Let ! = Q; U, where (; and (; have common interface '. Assume that the
diameter H of these domains is small enough. The Sobolev space of order one

half on T will be denoted Hééz(f‘). Its corresponding discrete space is written as

VH(T). For any ¢, € V*(T'), the discrete b—harmonic extension on {); is defined
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by operator t : V(T') — VA(£,)
u; == tﬁbh < Vh(ﬂi), u, = ¢h. on f‘ u; = 0 on 89, e f‘
and  b(uy,vy)=0 Vv, € VPR,

where V™0 = HL(Q,)N V*.  Then, we introduce a bilinear operator §(-,-) on

VHI) x V(T), defined by

B(n, ¥r) = b(tdn, ten).

Lemma 4.1 There exists a Hy > 0. such that, if H < H,, then

(4.17) Cf¢h|2ﬂafz . < B(dny ¢r) < Cléy, _2Hi,lz _

oo (L) oo (F)
for any ¢, € V*(). Here, constants ¢ and C are independent of coupling coeffi-

cients.
Proof Let we H\(Q) satisfyw = ¢, on I w=0 on I \T and
b(w, 'U) =0 V'v & Hé(ﬂi)i

i.e. w is the b—harmonic extension of ¢,. We assume that wy, is the discrete

b—harmonic extension of ¢,. Using a well known a priori inequality, we have

a(wa w) S Clqsh]?H-(l)éz(f‘)-

Then, from the triangle inequality it follows easily that

a{wy, w,) < a{w — wy, w— wy) + a(w, w).
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By well-known approzimation properties of finite elements, we have that,

a{w— wy, w— wy) < Ch¥|jw|]3 7y for 0 <o < 1/2,

Now using a well known a priori inequality (cf. [{7]) and an “inverse property”,

we see that

Bl e ) < OB al gt gy < Clenlier

H™ (1 iy}

Hence, by the continuity of b, the definition of w, and above inequalities, we can

obtain that

ﬁ(qsha th) = b(“’m wh) < Oa’(wha wh) < Clqsh!]g—pﬂ(f)

which shows the upper bound of inequalities (4.17).
To show the lower bound, we apply the trace inequality and Poincaré inequality

and oblain that

C|¢hlzﬂ-;éz(f‘) < a{wy, wy,).

Thus, the lower bound can be easily obtained

CI%IZH;gz(f,) < a(wy,, w,) < Cb(wha wy) = CB(ds, ¢’h),

by using Gdrding’s inequality with small enough H.

Lemma 4.2 Let [, be an operator defined by

<lohth >=<ad,¥' > Ve HIXT),
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where < ¢, >= [r ¢pds. There exists a constant Hy > 0. Then, the Schur
complement is spectrally equivalent to the square root of the Laplace operator on

it, when H < H,. That is,
(4.18) ¢< lll)/zqf’ha br >< B, d0) SC < ltl)fzéh,qﬂh > V¢, € Héé?‘(f‘).

Proof In [8], it was already shown that
¢ <1 g1 >< il < C <80 >

A divect consequence of Lemma 4.1 shows inequalities (4.18).

Remark: From Theorem 4.1, 4.2, Lemma 4.1 and 4.2, we can conclude that
vertex space domain decomposition method with Fourier edge and vertex space
approximate matrices has a convergence rate independent of mesh parameters as

well as coupling parameters, when coarse grid size H is small enough.

4.3.2 Model Coupled Problem and Its Capacitance Interface Matrix
For simplicity, we consider the following linear model coupled elliptic system:

—Nutav=f in
(4.19)

bu—~NAv=g in Q)

with boundary condition

u=20 ondf} v=0 on 0%,
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Figure 4.1: Domain Q and Sub-domains {;

Q; interior [

interface T’

1, interior [

domain {2
where @ and b are coupling parameters. We assume that the coupling parameters
@ and b are constant. Since we are only interested in deriving interface precondi-
tioner, we divide the domain £, illustrated in Fig. 4.3.2, into two sub-domains ;
and , with common interface I'. Assume a uniform mesh with size A is used on

) and with n internal grid points in the x-direction, i.e.,

Suppose that there are m; internal grid points in £ in y-direction, for & = 1,2,
i.e.,

ll == (m1 “+" 1)h 12 - (m2 + 1)h.

Denote the mesh point as (z;,y;) and u;; as the approximation to w(z, y;)-
Let’s define (ugk),vgk)) as the set of interior unknowns in §; for & = 1,2 and

(ug,vp) as the set of unknowns on the common interfaces I' = 98} N §2,. Let
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a = h2d and b = h2b. By using five point stencil, we discretize the model coupled

elliptic system and obtain following linear system in a block form:

(4.20)
A« N[ (B
_'_
b AR )| o 0
agy oo (W) (a8
.,i.M
0 AY) P 0
ABB
_l_
b

k
A%

AS)

a

App

Up

Vg

g
= kﬂl,g

g

fe

9B

Applying block Gauss Elimination to system (4.20), we obtain capacitance inter-

face system only for the common interface unknowns (ug,vp)? as follows:

(4.21)
(1)
Up fB A
o _ 3 BI
Vp 9B 0
AG)
0
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where the capacitance matrix C' is defined by

(4.22)
. App «a AD o AW a B AY 0
R o 49 )\ s ap) {0 A9
-1
AG 0 AP AR 0
0o AY b AY o AY

Note that computing the exact capacitance matrix C' needs solving 4n the
coupled elliptic subsystems on sub-domains £, and {2,. Hence, it is very expen-
sive to evaluate and store the exact capacitance matrix C' and its inverse since
it is dense. To solve this Schur complement system efficiently, we prefer to use
preconditioned iterative method, such as Bi-CG method and GMRES,etc., whose

performing procedure only requires the matrix vector product

Up
C
Up
From (4.22), it is easy to see that each evaluation of above matrix vector product

needs to solve two coupled elliptic subproblems on the sub-domains {; and {2,

respectively.
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4.3.3 Fourier Analysis on Model Problem

In order to propose good preconditioners, we first analyze the eigen-structure
of the capacitance matrix C. In a similar way as in {17, 24, 19], we are able fo
derive the eigen-decomposition of C' by using Fourier analysis. Then, according to
the distribution of these eigenvalues, we discuss preconditioners which are similar

to those proposed by Dryja [31], Golub and Mayer [39], and Chan [17].

4.3.3.1 The Exact Eigen-Decomposition of C

We introduce some notations here:

krh
Tk:4sin2%, for k=1,--+,n

N 2+ 1, + Vab— /(2 + 7 + Vab)2 — ¢
L=
2 4 7, + Vab+ /(2 + 7 + Vab)? — 4

247~ Vab— /(2 7 — Vab) — 4

for k=1,---,n,

Bk =
2+Tk~—\/cﬁ+\/(2+'rk~—-\/a_b)2—4
and
2 — vab b—
cosﬂkﬂﬂi——\/{ sin @, = \J\/@—Tkm(—\/%rﬁ)? if ]2+Tk—\/a_b| < 2.

Note if ab > 0, then py, < 1 for k =1,--- ,n. When ab <0, Vab and p, p_, are

complex number.
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Let us define Fourier vectors: for k=1,--+,n,

sinknh
wik) \ wik)
w® =1 : , Fk) — Pk —

k) —p(®)

sin krnh

It is easy to testify that
IF®)l;=1 and [[FER]l;=1.

We denote W = [w), .-+ jw(] and

wow
F=[FPO),... F@) FED ... o) =

w W

Note that vectors F'* and F~* are normal and orthogonal, i.e.
FTF =1.
Then following theorem can be obtained.

Theorem 4.3 Define

I 0

_0\/§I

Then the capacitance matriz C is similar to a diagonal matriz:

D

ﬁ.l_lcﬁ = diag{Alﬂ e 1)\71,) A——l: Tty A~»~-'n,}':
i.e. we obtain the Fourier factorization of C

(4.23) C = Fdiag{), Ay Aoty s Ap} F2
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Here, fork=1,--- ,n, A, are defined by

- \/(2-%'@—1-\/55)2—4
= - |

L™ Lt

T J!'!';cnl-l-l 1— #212'1-1]'

If ab < 0, then A_; are simply defined by: for k=1,---,n,

_ @47 - Vab? -4

Ay = 5

L S s o e i

1—pmtt 1 #”_"i“]'

{

If ab > 0, then A_, are defined by:

L fErnvari

- 2

14 ™t L4t .
I_‘ulmI:-i-l 1m“m’:+l) if 247 — Vabl >2
iy iy

(

1 1
= = 0O(h ) = +/ab
A—k My T 1 o+ - 1 1 O( ) '&f Tk a

1 1
tan{(m, + 1)8;) + tan((rmy + 1)8;)

)\mkzsinﬂk[ if 124 7, — Vab] < 2.
Proof 7o prove this theorem, we need show that

CFE = ), F®) and ~ CFGR = \_ F-H),

Let first consider the term, contributed from the sub-domain {1y,

-1

AL o AY a4 AY o w#)
0o A% b1 AW o A%\ u®

The evaluation of this term requires solving the following discrete coupled difference

system on sub-domain {1,

ugj = Uiy j — Uipr,; — Yiger — Uigpr T AV, =0
(4.24) on {1y,

40, = Vic1,j — Vit1,y ~ Vigor — Viger +bui; =0
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with boundary conditions

U, " u,-,-
( ° \ = F&) on T and " oon o0, /T.
\ U-,O ) Ui,j

Let us consider the solution of coupled difference system (4.24) in the form

u;; = o;V hsin(kwih)

,J‘

V5 = ﬁj\/b/_m/ﬁsin(kwih)

with boundary condition oy = 1,8, = 1 and ay, 41 = 0, 0,1 = 0. After substi-

for0<i<n+1, 0<j<my+1,

tuting these form solution into coupled difference system (4.24), we easily obtain

that

241 — o — o —I—\/tEﬂ:O
( k) b i-1 _?+1 7 forlgjgn.

2+ 785 — Bima — By + Vaba; =0

The corresponding characteristic polynomial is
r2w-(2+7‘k+\/{;3—))r»§—120.

The roots of this quadratic polynomial are

_2+Tk+\/f;5+\/(72+7k+\/(ﬁ)2—4
- 2

T+

_2+Tk+'\/CE"'\/(2+Tk+\/(_ITJ)2—4
= 9 )

r

with following properties

ryr. =1 r++r_z2+1'k-l-\/cg r+—r_=\[(2+fk—i—\/cﬁ)2—4.

Then, we have solutions to the coupled difference system as

1 my+1—j

— Mg
a:ﬂ.?:rj—-—-ﬂ"—lmpzﬂl‘{”l .
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Ao Y[ e | (a0 Y[ we ) [ w \
0 AL \ bl ALY 0 A% )\ /ou® Loy(k) }
where
1— g™
1 Hr
oy’ =T, .
RS P
Analogously, we can derive that
-1
AZ) 0 AP ar AR 0 wk) o] w®
0 AY) b1 AY 0 AY) Bop(k) Bop(k)
where
1— pp?
ag?) ﬂr_l Ml::;-l-i
— M
Finally, Direct calculation can lead following equation:
ABB al w(’“) w(’“)

:(2+Tk-i-\/a_b)

bl App JEw® JEu®

Summarizing all above results, corresponding eigenvalues Ay can be obtlained
CEF® = ) F)

where

L4 pup?t 14t
L—pi ™ 11— #}T’”“]'

)\k=\ﬂ2+7k+\/fﬁ)2‘“4{

The eigenvalues corresponding to eigenvectors A_;, can be calculated in the same

way. So we omit the derivation of eigenveclors A_y.
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It is easy to see that when the coupling parameter @ and b is very small, the
coupled discrete system is positive definite. This conclusion can also be easily
derived through Sobolev space theory.

Note when ab < 0, the eigenvectors and eigenvalues become complex. However,
when ab > 0, all eigenvalues and eigenvectors are real. From above eigenvalues, we
notice that some eigenvalues may tend to infinite or 0 if (m; + 1)f; tends to =/2
or s7. This means that the condition number of the capacitance matrix is very
sensitive to the aspect ratio of the domain shape and coupling parameter.

For more general coupled elliptic system:

Lyu+ v = fi

Lyu+ Lagv = fy
where Lyy, L1z, Lg1, and L, are linear elliptical operators with constant coeflicients,
the eigen-decomposition of its discrete system may be obtained in the analogous
way. Fast Domain Decomposition Fourier Transform can be developed for this
general coupled elliptic system. Interested reader can pursue this analysis to these

more complicated cases.

4.3.3.2 Fourier Based Interface Preconditioners

In this subsection, we will propose several interface preconditioners, similar to
those proposed by Dryja [31], Golub and Mayer [39], and Chan [17]. Then we

compare these preconditioners. Since the eigenvectors and eigenvalues are com-
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plex when ab < 0, we usually use the exact Fourier factorization (4.23) as the
preconditioner M. To use other kind preconditioners when ab < 0, we have to take
the real part of the matrix-vector production M f as the result. Otherwise, the
matrix-vector production M f may become complex number even when the vector
{ is a real vector. Hence, for simplicity, in the rest of this section, we will only
consider the case when ab > 0.

Let the Fourier based preconditioners M, considered here have the form

( \

=
I

K
ST

\ X

for different choices of A} and A? :

o Dryja type preconditioner Mp excluding coupling parameter:
M=vn M= vne
s Dryja type preconditioner Mp¢ including coupling parameter:

APC =/, +Vab PO =4/|r, —~ Vab|

o Golub and Mayer type preconditioner Mgps :

A = \}(—rk 4 b et YR +ﬁ)2
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GM - b)?
/\—.k :JITk—\/&Z‘*‘M“)—I

¢ Approximate Chan type preconditioner Mg, :

b‘z
AEIZJ%+\/@+——-—(T"+XQ_) for k=1,--,n

— Vab)?
Ag}cm\lfkum+w if |24 7 — Vab| > 2

a
4

Ml=h  if 7,=+Vab

1 1
3Ol — nég if |2 —+abl <2
—k [tan((mmwk)+tan((m2+1)9k) sindy 2Vl <

o Chan type preconditioner M, : exact eigen-decomposition (4.23) is used as

preconditioner.

Remark 1: If the coupling parameter @ and b are so small that the coupled
system becomes positive definite, then Sobolev space theory can be easily used
to show that the Dryja type preconditioner Mp is spectrally equivalent to the
capacitance matrix. This equivalence, independent of mesh size h, can be satisfied
even when the domain is not square and the interface is not a straight line. The
proof of this is analogous to that for Poission equation [9, 31]. However, this
equivalence is not true for large coupling parameter.

Remark 2: By comparing exact eigen-decomposition (4.23) with these pre-
conditioners of the coupled elliptic system, we notice that preconditioner Mgy best

approximates exact eigen-decomposition (4.23); preconditioner Mgy, approximates
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to My, and preconditioner Mps approximates to Mgy We have to use the ab-
solute value under the square root in the expressions of preconditioners Mgy and
Mpe to avoid the appearance of complex number when ab > 0. For simplicity and
clarity, we consider the eigenvalue distributions of M A_;GC and M, 5;, which relates
to the convergence speed of corresponding preconditioned iterative method. We
hope that the absolute values of all eigenvalues are bounded from above and below.

This bound should not depend on mesh size k and coupling parameter if possible.

Lemma 4.3 The exact eigenvalues of M;;GO are:

- I+PT1+1 1_|_‘ul212+1
R T

for k=1,--+,n

Lt 1t

AL =
C et -t

if 247 —Vab|>2

1 1
A, = = 0(h : = vab
k m1_§_1+m2+1 (k) if 7, a

1 i

A+ = Fan(ma + 100,) (g + 1)0))

if 1247 — Vabl <2

From the distribution of these eigenvalue, we could explain the general trend of
numerical results presented in this paper. Note g, <1 and p_; <1 or > 1. Then,
1< M <3forall k=1,---,n. So we have following results on the eigenvalues of

-1
MG

e When vab < 7, then p_; < 1 and the corresponding absolute eigenvalues

of Mz3,C are bounded from above and below by 4 and 1.
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o When vab > 4 + 7, then p_; > 1, < 1 and the absolute values of all

eigenvalues are bounded from above and below by 4 and 1 respectively.

e If 1, < Vab < 447, then some eigenvalue will be expressed by tan functions

which are difficult to be bounded.

Lemma 4.4 The exact eigenvalues of MéiC are:

S oy Sl

)\k"lwﬂ}?l-&-l 1“1“km2+1 for k=1, ,n
L g™+t g gmet
)\k— Pk H_} 3f |2+Tk—\/¢Ei>2

I TR e i

Ae=1 i 247 —Vab <2

Now we analyze the properties of these eigenvalues of Mé; C. I h is fixed, then

2 if 7, —vab >0
hﬂl Ak = 2 hm )\—k = .
g, My —0C M g —r00
-2 ika—vab<—4

Therefore, the absolute values of the eigenvalues of M, C' are larger than 1 and
smaller than 3.

Let us show this result by denoting that

5 _ V(2 4 7 + Vab)? — 4

. V(@ + 7 — Vab)z — 4
kT 2—!—7‘,6—\/(%

fork=1,---,n,

for |2+'rk-\/a;|>2.
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Then,

26 26
mitl (1 k_Nifh mitl _ (f —k_\u/k
Hi ( 1+6k) Bk ( 1 +6—k) H
and
28 28
et = (1 — k_\Ifh matt _ (1 _ 7=k \l/h
(- Py = (- )

It can be verified that u, is a decreasing function of k. By using the fact that
h]j%(l + mf(;r;))% = glimz—o f("’)’
we have that

lim #m1+1 I 72 ab lim #mz—{-l — o~2h 724/ ab
h—0 h—0

Since 7, — Vab < —4 does not satisfy as h tends to zero, we can assume that
e — Vab > 0 for k > s. It is easy to show that u_; is a decreasing function of

k> s and

lim ,uml"‘l = e—2h1V (sm)2— —/3b Hm ‘u’m2+1 — e-—?!z‘\/(a‘.ﬂ')z \/_

h—0 A0

Therefore, we have obtained that

14 6m211\/w2+\/"m 1+ o—2lay/ 72 +Vab

].1Hl )\k
b0 1 — 6—211\/'.#2-}-\/— 1 — 6—2!2‘\/ﬂ2+\/£
1 + e—2h (svr)z-—\/&_g 1_}__6—2!2\/ (.ﬂr)2-\/ﬁ

Lim A_; for k >
hl"i% 1 _ 6—211 (sar)z—\/ﬁ_E + 1— e—2l2 (511')2-—\/6_5 orE =8

for k= 1,-

and imy,_,gA_y=1fork=1,---,s.
To apply these Fourier based preconditioners to the coupled elliptic system

with variable coefficients, we will use scaled Fourier approximation with @ and b as
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the mean values of coupling variable on the interface. Let D denote the diagonal
of Agp. Then, preconditioner for the problem with variable coeflicients can be

defined by:

L]
B

. D 0 D0
M = M‘? i

0 D 0 D
with @ = Y7, a(z;, 22 h)/n and b= 37", b(z;, 2 h)/n in the definition of M,
given before. Since M, may be complex, we choose the real part of matrix vector

product M, 'y as its result of preconditioning step. The related numerical results

will be shown in the last section.

4.3.4 Probe Technique Applied to the Coupled Elliptic System

The basic idea of probe technique is to construct approximate interface matrix
through using a few matrix vector products to capture the strongest coupling of the
exact interface matrix. This algebraic technique can easily be applied to any op-
erator having decay properties. In this section, we propose several preconditioners
for coupled interface capacitance matrix C' by using probe technique.

We introduce the notation
M, = PROBE(C, d),

to denote the probe procedure of creating the banded approximation My of ma-

trix C, in which M, is a banded matrix with bandwidth d. In most case, we

107



interest the tridiagonal probe preconditioner. Here, we illustrate the PROBE
procedure for the case d = 1. We use following probe vectors used commonly:
v, = (1,0,0,1,0,0,-- )T, vy = (0,1,0,0,1,0,-+-)7 and vz = (0,0,1,0,0,1,---)7T.

Since M, is tridiagonal, direct calculation of [Myv;, Myv,, Myvs] leads to:

\ \ )

My My 100 my myy O
Mgy Tlgg Mg 010 Mgy oy Mgy
Tiiag Mgz Mgy 0 01 Mygg Mgy THag

The probe algorithm reconstructs the nonzero entries m;; by equating above right
hand side to matrix vector product {Cv;, Cvy, Cvs). From this probe procedure, we
need three matrix vector products to obtain tridiagonal approximate matrix M.

Here, we discuss how to apply probe technique to the interface matrix C of
coupled elliptic system. Since Fourier transform diagonalize the matrix C, Fourier
transform is combined with probe technique to construct preconditioner of the
capacitance matrix C.

We first assume that the capacitance matrix C has the properties that its entries
decay from the diagonal when the coupling parameter is small. We approximate

the capacitance matrix C by
P, = PROBE(C, 1),

which is used as preconditioner in the preconditioned iterative method.

We notice that when the interface capacitance matrix C is written in the form
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of 2 x 2 block square sub-matrices, i.e.

Cn Cn
C =
Cy Cx

entries of each square sub-matrix decay from their diagonals. We can construct

the preconditioner P, as:

P PROBE(C,;,1) PROBE(C);, 1)

o PROBE(C,;,1) PROBE(C,,,1)
It is natural to combine Fourier method with probe method. Since matrix
F10F becomes diagonal for the constant coupling parameter from theorem 3.1,

probe procedure can be used to find tridiagonal approximation to F-1CF, Hence,

we propose following preconditioner:
P, = F x PROBE(F-1CF, 1)  F-1,

is defined as a preconditioner. Note that we substitute \/b/a by (/|b/a] in the
definition of matrix F in order to avoid the appearance of complex numbers.

We can also define a simpler Fourier probe preconditioner by:
P; = FxPROBE(FTCF,1) + FT.

If FTCF is written in the form:

Mll M12
FICF = ,

M21 M22
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we assume that M;; can be approximated by tridiagonal matrix. We use probe

technique to find this approximation:

PROBE(M,;,1) PROBE(M,,,1)
P,=F FT,

PROBE(M,,,1) PROBE(M,,, 1)
Let us write F-1CF in the form:

N . My My,
FICF =
My My
We assume that M,-J- can be well approximated by tridiagonal matrices. So probe

procedure is used to construct these tridiagonal approximations:

| PROBE(My;,1) PROBE(M;,1) | .
P4 S F F_l.

PROBE(M,;,1) PROBE(M,,,1)

4.3.5 Numerical Results

In this section, we will test the convergence behavior of preconditioned BiCG
method with above preconditioners. The test were conducted for the model coupled
elliptic system (4.19) with various choices of coupling parameter a and b and the
mesh size b = 1/(n + 1). The domain £ is a unit square § = [0,1]? partitioned
into an n x n with mesh size b = 1/(n +1). In our test, the stopping criterion was

chosen to be
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The entries of the exact solution were chosen randomly from a uniform distribution.

Since coupled elliptic system (4.19) with constant coupling parameters can be
easily reduced to symmetric (i.e., @ = b) or unsymmetric (i.e., @ = —b), see [30], the
test were performed for the system with these two case. For the variable coupling
parameter @(z,y) and b(z,y) , we will request their mean values should be equal
or have different sign. Then the preconditioner P, is equivalent to Py, and B, is
equivalent to P,. Therefore, we only test the preconditioners Py for k=1,2,3,4
in our numerical experiments.

We first test Fourier based preconditioners and list the results in the following
tables. Since we are interested in the relationship between mesh size, coupling
parameters @ and b and convergence rate, we change the mesh size and these
constant coupling parameters with @ = bora= —b We also try to apply the
scaled Fourier based preconditioners to the coupled elliptic system with variable
coupling parameter.

Remark on the Fourier based preconditioners:

1. The iteration number N does not depend on the mesh size h but strongly

depends on the coupling parameter.

9, The iteration number of preconditioner Mpo increase slower than that of

reconditioner M, as the coupling parameter increasing.
p D piang p

3. After the iteration number reaching the maximum, the iteration numbers

of preconditioner Mpe will quickly decrease as the coupling parameter o
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Table 4.1: Fourier based preconditioner for constant coupling parameters

Preconditioners Mp | Mpe | Mgy | My

Grid Points | @ = b Tteration Number

N N N

i
=

nXn

50 10 7 4 3

(I 100 11 9 5 3
1000 | 13 8 i 2
10000 | 13 4 1 2

50 12 8 4 3

15 x 13 100 12 9 5 3

1000 | 30 20 14 3

10000 | 25 6 1 2

50 12 8 9 3

25 % 25 100 13 9 8 3

1000 | 28 17 12 3

10600 | 39 8 2 2
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Table 4.2: Fourier based preconditioner for constant coupling parameters

Preconditioners Mp | Mpo | Mga | Mes

Grid Points | @ = —b Iteration Number
nXxn a N N N N
3 10 10 7 6
50 10 12 T | 4
Tx7 100 10 | 12 8 4
1000 14 6 6 2
10000 | 14 4 4 2
5 12 | 12 6 6
50 12 | 14 7 4
15 x 15 100 12 9 5 3

1000 18 11 8 2

10000 | 24 4 4 2

5 12 12 6 6

50 14 14 6 4

25 x 25 100 14 14 6 4

1000 22 14 8 2

10000 | 22 14 8 2
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Table 4.3: Fourier based preconditioner for variable coupling parameters

Preconditioners Mp | Mpe | Maar | Moy | Mg,
nxXn a, b N N N N N
Tx7 9 9 7 8 7
15 x 15 a = 100z? 9 9 7 8 7

25 % 25 | b=100(1 — z)? 8 8 7 8 7

7T 12 12 8 8 8

15 x 15 a = 100z? 14 14 8 8 8

25 %25 b=-100(1 —z)* | 14 | 14 8 8 8

TxT 5 5 5 5 5
15x 15| &= e20(z—05) 7 7 6 6 6
25 x 25 b=a 6 6 6 6 5

7TxT 12 | 12 8 8 6

15 x 15 @ = ¢?0z-0.5)y 12 12 8 8 6

95 x 25 b= -—a 14 14 8 8 6

Tx7 12 12 6 8 6

15 x 18 i = e20(z—0.5)y 12 12 8 8 6

25 x 25 | b=—100(0.5—z)? | 12 | 12 6 8 6
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increasing.

4. However, for preconditioner Mp, the iteration number slightly decreases and

remains the same large iteration number.

5. preconditioner Mgy has a convergence rate, independent of the mesh size A,

but dependent on the coupling parameters.

6. Preconditioner Mg, has iteration number, which is independent of mesh size

h and the coupling parameters.

Finally, we test probing based preconditioners and list their results. The con-
stant coupling parameters have been tested and their results are shown in Table 4.4
and Table 4.5. The smoothly varying and highly varying coupling coeflicients are
considered and their results are presented in Table 4.6.

Remark on the probing based preconditioners:

1. From the last column of Table 4.4, Table 4.5 and Table 4.6, we can see
that the iteration number increases as the mesh size & decreases when BiCG
method is used without preconditioner. We also notice that the iteration
number first increases and then decreases as the coupling parameters @ and
b increases. The reason for this phenomenon is that small coupling parame-
ters and Laplace operator make the problem become more ill condition, but
enough large coupling parameters make the discrete Laplace become dor-

mant so that the condition number is improved and the iteration number
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Table 4.4: Probe based preconditioner for constant coupling parameters

Preconditioners PP |P P T

Grid Points | a = b Tteration Number

nXn a N{N|N|N|N
5 514111712
50 11079 11 (12
Tx7 00 |[13;:6 1|1 |13

1000 |15 1 (1} 1 11

10000 |12 1 | 1 {1 |6

30 102411 (1121

15 % 15 100 {11841} 1 |21

1000 [18 118 1 | 1 |27

10000 4 |1 (1118

50 (101341 |1 |26

25 x 25 100 (11121 | 1 {28

1000 {28 19} 1 | 1 |29

10000 {54 ¢ 2 11 |1 |12
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Table 4.5: Probe based preconditioner for constant coupling parameters

Preconditioners Pl P |P| P 1

Grid Points | @ = —b Iteration Number

nxn a N| N |[NIN|N

3 4 11 511113

50 8 | >80 8 |1 14

TxT 100 11{>80)1111 |14

1000 | 13 1 111 |10

10000 (12| 1 81116

9 6 |>8 |3 | 121

50 8 |>80)(6 1|21

15 x 15 100 11i>8018 122

1000 |19 | 23 20} 1 |18

10000 | 3 1 31118

5 (18 |>80|4|1725

50 10| >80} 8 1726

25 x 25 100 11 |>8)9 |1 |27

1000 [ 19(>80(21 |1 {20

10000 | 50 1 3711 |12
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Table 4.6: Probe based preconditioner for variable coupling parameters

Preconditioners P| P |P| P |1
nXxn g, b N| N |N| N |N
Tx7 g8 | >80 8 [>80]14

15 x 15 a = 100z? 8 >80 |7 |>80123

25 %251 b=100(1—z)* |9 |>80| 8 |>80]|26

Tx7 7 1>8 8 |>80]14

15 x 15 a = 100z? 9 | >80 7 |>80|21

25x25 | b=—-100(1—z)? [ 12| >80 | 7 | >80]27

TxT 5 4 4 4 (12

15 x 15 a = e20(z—05)y 7 9 7 7 119

o

25 x 25 =a 6 7 5 5 |22

TxT 6 | >80 5 | >80 |14

15 x 15 i = e20(z—05)y 6 | >80 5 | >80121

25 x 25 b=—a 71>8 |5 |>8025

TxT 6 |>80]| 6 | >80|14

15 x 15 @ = e20{(@—05)y 6 |>8| 6 |>80|21

25 x25 { b=—100(0.5—2)2| 8 | >80 | 5 | > 80|27
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decreases.

2. When the coupling parameters @ and b are constant and @ = b, the probe

based preconditioners P; and P, greatly improve the convergence rate of

BiCG method.

3. When the constant coupling parameters @ = —b, P, accelerates the conver-
gence speed of BiCG method. When @ is small, the convergence has also

been improved when P, or P, is used as the preconditioner in BiCG method.

4. As for the variable coupling parameters, Py and P, speed up the convergence
of BiCG method. Their corresponding iteration numbers are independent

of mesh size h. The preconditioners P, P; and P, make the BiCG method

diverge.
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CHAPTER 5

Domain Decomposition for Singular Neumann Boundary Value

Problems

In this chapter, we consider the problem of solving the very large systems
of symmetric and semi-positive definite algebraic equation, arising from the dis-
cretization of elliptic problems with Neumann boundary conditions by finite dif-
ferences or finite elements. We will apply BPS method and vertex space domain
decomposition (VSDD) method to this kind problem, We will discuss their con-
vergence for these singular Neumann boundary value problems. We also further
improve probe technique in our applications. Only four probe vectors are needed
to form approximate edge and vertex matrix in our calculation.

The aim of this chapter is that by giving and using the generalized framework of
domain decomposition [35], we modify and analyze the additive Schwarz {32], the
vertex space (VS) domain decomposition method [66] and BPS [8], developed by
Dryja and Widlund, Smith and Bramble et al., respectively so that these methods
can be applied to the symmetric semi-positive definite systems of linear algebraic
equations, which result from finite element approximation of elliptic system with
Neumann boundary condition. We also focus on the improvement of probe tech-

nique in the construction of edge and vertex approximations. The difficulty of
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these problems is how we could efficiently modify domain decomposition precondi-
tioner so that the result of preconditioner is orthogonal to the kernel space. These
modified domain decomposition methods still have condition numbers which are
independent of the mesh size. VS method can be viewed as a kind of the additive
Schwarz method {ASM) [35], which forms one of the most important classes of
parallel domain decomposition methods. Comparing additive Schwarz with V5
and BPS methods, we found that additive Schwarz is easier constructed than VS
and BPS methods but VS and BPS methods are more suitable for solving problem
with highly jumping coefficients. Theoretically, we can only show that the BPS
method for this kind singular problems has a condition number C(1 + 1n(H/h))?
independent of certain discontinuous coefficients. A brief general framework is
presented which may be quite useful in designing, extending and analyzing vari-
ants of domain decomposition methods for these symmetric semi-positive definite
systems. As we know, it is very expensive to construct the exact edge and vertex
matrices in the vertex space method [66] and BPS method [8]. In order to keep
the quick convergence of these methods for the problem with highly varying coetli-
cients, we use several variants of edge and vertex approximation matrices [23, 25].
These variants are based on Fourier approximation [31, 39, 8] and probe technigue
[22, 21, 23]. Here, we further improve the probe technique in our applications.
Only four probe vectors instead of six probe vectors have been used to multiply
Schur complement [23] and to form edge and vertex approximations. Each product

of Schur complement with probe vector includes solving all subproblems on sub-
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domains. Hence, we save 3 computational cost while we are constructing the edge
and vertex approximation matrices by using 4 probe vectors in stead of 6 probe
vectors in the probe technique.

One of our motivations in generalizing the framework of additive Schwarz and
modifying vertex space method is to design an optimal parallel algorithm for
Navier-Stokes equation. As we know, one of the most difficult parts of parallel
computation for this nonlinear differential equation is that we have to solve ellip-
tic problems with some boundary conditions in each time step. Generally, there are
two types of finite difference schemes for this nonlinear problem. One is based on
the velocity and stream function. The other is based on the velocity and pressure
formulation. In the second scheme, we will have to solve symmetric semi-positive
system, resulting from Laplace equation with “Neumann like” boundary condi-
tions, in each time step. The application and theory of domain decomposition
technique for positive definite and symmetric system has been widely discussed,
138, 14, 15, 16}, However, not so much concrete work has been done for symmet-
ric semi-positive system [7, 2, 56, 63]. The difficulty of these problems is how to
modify domain decomposition methods so that an approximate solution orthogo-
nal to the kernel space can be efficiently obtained. It is not obvious whether the
preconditioner problem is well defined even when the null space of domain decom-
position preconditioners is the same as that of original problem. In this paper, the
additive Schwarz, the vertex space domain decomposition and BPS methods have

been successfully extended for this kind singular problem so that these methods
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still have quick convergent property. For simplicity and without loss generality, we
restrict ourselves to the scalar elliptic problems or linear elasticity problems with

Neumann boundary condition.

5.1 General Framework for Neumann Boundary Problems

In this section we first give additive Schwarz framework for variational problem
with natural boundary condition. Then we present elasticity problem and elliptic

problem with Neumann boundary condition.

5.1.1 Additive Schwarz Framework

Assume that the connected polygonal domain § in R? is the union of disjoint

regions {};, which are either quadrilaterals or triangles;

We denote the boundary of each sub-domain as 8, and the union of these bound-
aries as T’ = U,9Q,. In the Sobolev space V = (H'(Q)})4, we introduce a bilinear
form a(-,) : V X V — R, which is symmetric, bounded and semi-positive definite.

Let (-,-) be the inner product in (L*(£2))%:

(5.1) (f,v) = ]g f-vde
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and (f,v) : V — R be a continuous linear functional. The kernel space is defined

by
KerA={uueV, a(u,v)=0, Vv eV}

To define a Neumann boundary problem, we shall assume that the compatible

condition is satisfied:
(5.2) (f,v)=20 Vv e KerA.

We consider a general variational problem with a natural boundary condition in

the Hilbert space V = (H}(Q))? : Find u € V, and u L KerA such that
(5.3) a(u,v) = (f,v), YveV,

For problem (5.3), we introduced two levels of triangulations of {1. One is the
coarse triangulation defined by the substructures §; of diameter 0(H). The other
is the fine triangulation defined by further dividing the substructures into elements
of diameter O(k). Assume that these triangulations are shape regular in the sense
common to finite element theory; cf Ciarlet [27)].

Let V*(Q) and V#(Q) be the finite element space of continuous, piecewise
linear functions defined on the fine grid and coarse grid respectively. V) and
VH(Q) are the subspaces of Sobolev space (H1(2))9. In these two subspaces, we

respectively define following two kernel spaces:

KerAh = {vh[vh € Vh, a(vh,uh) s O,Vuh = Vh(ﬂ)}
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and
Ke'r'AH = {VHIVH = Vh, CL(VH, llH) = O,VUH & VH(Q)}

Then, the discrete formula of the problem (5.3) is of the form: Find u; € V* such

that

a(up, vi) = (£, V1) Vv, € VH(Q)
(5.4)

(uh, Vh) = {}, VV}L € I{CTA}L

Let {m;} be the standard finite element basis functions of V* . Representing the

solution as uy = 3 ,m; results in a symmetric semi-positive definite system:
(5.5) Az =1,

where A is the stiffness matrix with entries a(m;, 7;), and z and f are vectors with
elements z), and (f, 7) respectively.

If we denote the subspace Vh(ﬂ) as
V) = {(vilva € VR(Q), (vi,u) =0, Vu, € Kerd,),

there is an equivalent discrete formula of the equation (5.4) defined by: Find

uy € ‘th(Q) such that
(5.6) du,vi) = (£ ve) Vv, e V'(Q).

Since the bilinear form a(-, -} is symmetric positive definite in the space Vh(Q), by

the Lax-Milgram theorem this problem has an unique solution in Vh{Q).
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To define an additive Schwarz (AS) method for problem (5.4), we represent the

discrete space V*(Q) as the sum of N + 1 subspaces.
h h h h h
VHQ) =V +VI+ Vo + Vi

Here VZ are the subspaces of V*(f2). We usually choose the first subspace Vg'
to be the finite element subspace V¥(£), defined on the coarse mesh (i.e. sub-
domains), in order to improve the global communication of algorithms in some
way. The other N subspaces Vt (usually consisting of restriction functions on
sub-domains) can be chosen quite arbitrarily. With each of these subspaces V:,

there is a corresponding projection operator Py, : V*(Q2) — Vz defined by:
(57) a(Pkuh, Vh) = a(uh, Vh) Vvh € Vz.

We note that Pou, =0, VYu, € KerA, and Pyu, can be determined if we can

uniquely solve problems: Find Pou, € Vt such that
(58) a(Pkuh,Vh) = (f, Vh) Vvh = V:.

However, when V} = VH(Q), problem (5.8) has many solutions in Vg‘ CLet V7

be a space defined by:
VH(Q) = {VHIVH € VH(“’)? (VHauH) = 0, VUH € I{GTAH}
ug € VH can be uniquely determined from equation

a{uy, vy) = a(uhaVH) = (f';VH) Vvg € VH,
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which leads to linear system on the coarse grid:

(5.9) Apzy = fu-

Then every element in the set of ugy + KerAy is the solution of problem (5.8},
when & = 0. We have to choose an appropriate solution Pyu, € VH(2) such
that Efzo P,u, is orthogonal to the kernel space KerA,. Since KerA, usually
consists of constant and linear function for most Neumann boundary problems,
we can assume that the Neumann boundary problems, considered here, satisfy
KerA, = KerAy . Because of this assumption , we can find wy € K erAy and
let Pyu;, = uy+wy such that Efzg P,u,, is orthogonal to the kernel space KerA,.
Thus, all P,u, for k= 0,1,---, N have been uniquely defined.

We summarize the process of calculating Pu,, if f is known here but u; is not
known:

Calculating Pu,
1. Calculate P.u, by solving equation (5.7): Find P, € VZ’ such that
a( Pouy, vi) = (f,v;) Vv, € VZ, fork=1,.--,N;
9. Find the unique solution uy € V¥ such that uy L KerAy and
alug,vy) = (f,vy) Vv € VA,

3. Let w, = uy+Pu,+- - -+ Pyu, and find Wy € Ker Ay such that w,+wWg is
orthogonal to KerA, . Thus, we obtain Pu, = (Wy+ug)+Pu,+---+FPyu,

with Pouh = WH + Uy,
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Problem (5.4) can be replaced by a well defined operator equation of the form
(510) Pu:(P0+P1+"‘+PN){1h:g

where the right-hand side is equal to g = EiN: o 8 with g; = Pu,. We note that the
kernel space of operator P is the same as KerA, and g is orthogonal to the kernel
space KerA,. Therefore, problem (5.10) is well defined. It is straightforward
that operator P is always automatically symmetric semi-positive definite in the
discrete space V" with respect to the bilinear form a(-,-} and is positive definite
in the space 4 Hence, we often use iterative method, such as conjugate gradient
method, to calculate the approximate solution of operator equation (5.10) in the
space V" . It is well known that the number of iterations required, to decrease an
appropriate norm of the error of this iteration method by a fixed factor, depends
on the condition number «(P) of operator P in the space V". For the conjugate
gradient (CG) iterative method, the iteration number is proportional to \/rc(—Pi:

cf Golub and Van Loan {40]. We, therefore, need derive inequalities
(5.11) Moa(Vi, Vi) < a(Pvy,vy) < Ma(vi,va), Vv, €V

in order to get estimation of condition number & of operator P by £ < A1/ An
upper bound ), for the eigenvalues of P can be easily given by N +1 since P is the
sum of projections. This upper bound can be improved by using following lemma

which 1s obvious.

Lemma 5.1 Denote N, as the total number of the other different subspaces th
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which satisfies VRN VI £ 0 for j # k. Let p=maxicren N, +1. Then, we have
/\l - )\max S P

A lower bound ), can conveniently be estimated by using the useful lemma, given

by Lions [49]; a proof is also given in Widlund [71].

Lemma 5.2 Let uy, € V" be written as U, = Ei\;o uf, where uf € VZ, be a
partition of an element of V*(§1) = Vf)" + Vi’ + ok V’;‘v If this partilion can be

chosen so that

N ~
Sa(ub, ) SCL Y€ V'(9),

k=0

then Ag = A 2> Co2.

In practice, we usually use the other spectrally equivalent bilinear form bi(,+)in
the space V: in stead of a(-,+). We can describe the AS method in a more abstract
way by introducing new generalized projection operator B vt Q) — Vz , defined

by
(5.12) b(Poug,vy) = a(uy,vy) Vv, €V}

where the bilinear form b, : V: X V: — R. As above discussion, for Neumann

boundary problem, Pkuh for k=1,---,N can be uniquely determined but B,
~ I

should carefully be chosen from a set of solutions when Vg =VH Letug eV

be the unique solution of equation

bk(uH,VH) = G(llh, VH) VVH S Vg.
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Assume Pyu, = uy + wy where wy € Ker Ay makes Ei\]:o P,u, orthogonal to
KerA;. Note that Py, =0, Vu, € KerAy, for all k= 0,1,---,N. Therefore,
we can replace the projection operator Py, by ﬁk and well define a new projection

operator equation:
Pu= (Pt Pyt Pyyu, =&

where g = Zﬁ:ﬂ g, and g, = Pou,. For the same reason as before, we should

estimate
R ~ h
oa(vy,vi) < a(Pvy,vy) < Ma(Vy, Vi), Yv,eV,

in order to get estimation of condition number « of operator P. A lower bound for
the eigenvalues of P can be easily estimated from following useful lemma which is
the extension of Lions’ lemma [49] and is developed by Dryja and Widlund [35].

Since the proof is quite short, it is included.

Lemma 5.3 If there exists a positive constant Cp, > 0 such that for all v, € T/'h(ﬂ),
there exists a decomposition vy, = Ei\i_...g vi where v} € Vif fork=0,1,--- N such
that
N
E bk(”ﬁa ”ﬁ) S Cga(vha 'Uh)‘
k=0
Then Ao > Cy2. and
a(ﬁ’uh, u,) > Crla(uy, Uy ).
Proof For any u;, € V, we have

N N
a’("’hv “‘h) = Z a‘(uha 'U,ﬁ) = Z bk(Pkuh, u}kl)

k=0 k=0
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Therefore, by Cauchy inequality, it follows that

N N
G(’Mm ‘“h) < (E bk(Pkuha Pkuh))lﬂ(z bk(‘“ﬁ, “ﬁ))l/z-
k=0

k=0

By the assumption of the lemma,

N N
a(uy, w,) < C2 3" bi(Pyup, Powy) = C2) - a(Pewy, wy) = Cla(Puy, w,),
k=0 k=0

and the lemma is established.

The following lemma, presented in [35], is satisfied for Neumann boundary

problem. This lemma gives an upper bound of eigenvalue of operator P.

Lemma 5.4 Assume that
1. there exzists a constant w such that for k=0,--+ | N,
aluy, uy) < why(uy, uy) Yu, € V’,:;
2. there exist constants g;;, for 3,5 = 1,--- , N such that
a(wl?, u < e,-j-a(ugf), ujl)‘/za(u,(f),u“}';) 1, yuld e 14 vl e Vf
Then
a(ﬁ’uh, w,) < (p(e) + Dwal(uy, uy), Vuy, € ffh(ﬂ)

where p(w) is the spectral radius of the matriz € = {e;;}N_, . Hence, Amaxl F) <

(ple) + 1) .
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5.1.2 Elliptic and Elasticity problem

As a model problem for the second order elliptic equation with normal deriva-

tive boundary condition, we consider:

(5.13) Lu=f in and 2% =10 on 99
where
J ov
v=—5% (g, —
v 12'; 5‘:51' (au 33:3,)

v Ov -
N Zaij(:n)a—%- cos(7i, €;)

i,
with a;; uniformly positive definite, bounded and piecewise smooth on external
normal direction of boundary of £ and € is the unit direction of the ith axis. In

the Sobolev space H!(f), this equation can be written into the weak variational

form as problem (5.3) with

d du 3
(5.14) a(u,v)::/nlz aﬁ(m)a;ﬁﬁdm’ and (f,v):Lfvdw.

i7=1

The kernel space of this problem is a subspace with only {1} as its basis:
KerA = KerA;, = KerAg = {1}.
Hence, step 2 and 3 in the process of calculating Pyuj, become:
2 Find uy € V# such that

fﬂuﬂdw =0 and a(ugy,vy)=(f,vg), YogeVH
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3 Compute the mean value of w), = uH-l—Zi\;l Pyu;, and let w = —~ﬁ Jo wrde.

We then obtain Pu, = Eg:o P u,, by defining Fyuy, = w +uy .

Now we consider the model elasticity problem with Neumann boundary condi-

tion:

{

—_

uVi+ (A + p)grad(divid) = f in £

(5.15) § Biii = ¥2_, prcos(R, €,)26,, (i) + Acos(7, &)divi =0 on 09

for:=1,2,3

“

where £,,(7) = %(ggi— + %‘f), and A and p are positive constants. In the Sobolev

space V = (H1(Q))3, we form an equivalent variational equation as problem (5.3)
with

a(@,7) = [ (div(@)div(e) + 20 3 ()67}
and ( f ¥) = fof f - 7)dz. The kernel space of this elasticity problem is

KerA={@|l§=a+bx7, with#= (21,257}

where @ and b are constant vectors in R®. The basis functions of this kernel space

are
{l (0 0
=g,  @=|1], & = | g
\ 0 \ ¢ \ !
(5.16) / ( (
0 z -
gl4) = e , a5) = 0 , gi6) = r
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Since these six functions are linear vector functions, it follows that &) € VFAvH#
fori =1,---,6 and KerA = KerA, = KerAy is the subspace with these six
functions {€®)}¢_, as its basis. Hence, the concrete computation of Pi,, is to do

step 1 described in the previous section with following step 2 and step 3:
2 Find uyy € V¥ such that

uy L KerAy and  a(dy,¥y) = (f, Ty) Vo, € VI,

3 Let = (wy,wy,ws)T = iy + Lo, By, and find o; such that @, +
526 @) 1. KerA, . These o; can be determined by solving following

=1

small symmetric positive definite system:

(5.17) od=p

where
IQI 0 0 0 Ja s - fn )
0 IQI 0 — Jazs 0 Jaz1

0= 0 0 IQI Ja 72 — oz 0

0 —fzy [z, f(:c% + m%) — [z, — [ z25
[z 0 - fzy — [ 37, f(mg + -”3%) — [ a2
—Jzy [y 0 — [z123 — [z, f(“”:% + 3’%)

134



is symmetric and positive definite, and

() ( )

251 —Jows
oy —Jaws

. O3 B. _ —Jows
0y — Jolzaws — T3w35)
o — fo(zaw; — zyw;)
g \ — Ja(z1w, — 2w,) )

5.2 The Modified Domain Decomposition Method

In this section, we discuss concrete preconditioners for the elliptic scalar prob-
lem with Neumann boundary condition. We first describe how to construct a
preconditioner from additive Schwarz method. Then, we derive Schur complement
S for the unknowns on the boundaries I' by using block Gauss elimination method
and discuss its properties. For this Schur complement system, we extend the ver-
tex space domain decomposition method. Finally, we give theoretical results which
show that the condition number of the modified VS method is still independent of

grid sizes H and h .

5.2.1 The Modified Additive Schwarz Method

Each substructure , is extended into a larger region (), so that (. has overlap

stripe only with its neighbor substructures. We assume that the overlap stripe has
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a generous width of 6 = 0(H) and af), does not cut through any element. Let
VE=VHO)N (ﬁé(ﬁk))q for k=1,---,N, and V! = V#(§) where
() = {ulu € H(R), and u(z) =0 if = ¢ O},
Then, the discrete space V" is decomposed into the sum of N+1 subspaces:
VE=VEL V4 VR

On each substructure {};, we introduce Ry : V*(Q) — Vz as the pointwise restric-
tion operator which returns only those unknowns which are associated with Qk.

Then, the projection P, from V* into Vz can be defined by
P, = RTAR, A fork=1,---,N

where A; = R, AR]. It is obvious that A, is a symmetric positive definite matrix.
Furthermore, the computation of A;'f corresponds to solving the elliptic problem
restricted on sub-domain §, with Dirichlet boundary condition on Bflk. Let RT to
be denoted linear interpolation from V¥ — V. This definition of RT ensures the

important equation

RI(KerAy) = KerA,

which makes it possible to extend the additive Schwarz method for Neumann

boundary problem. We can define the coarse projection operator by F; : Vi VH
PO = RgAﬁlROA = Rg‘AalROA a-nd Ag = AH

where Ay is the stiffness matrix resulted from discrete variational problem (5.4)

through treating the substructures {{;} as elements in finite element scheme. Like
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the stiffness matrix A defined by equation (5.5), Ap is symmetric and semi-positive
definite. Therefore, we will meet following problems whether the right hand side of
the coarse problem is orthogonal to Ker Ay and which solution in V# is suitable for
our problem. Since in general KerA, = KerAy is satisfied for Neumnann boundary
problem, the coarse grid problem can be well defined through choosing suitable
restriction R, such that Ryf L KerAy if f L KerAy. Assume KerA, = KerAy

and the inverse of each A, is well defined. By writing the operator P as

N
P=M-1A= (Y RTA;'R)A,

k=0
we can easily extract the preconditioner

N
M- =Y RTA'R,

k=0

from this expression for Neumann boundary problem. We summarize the pro-
cess of Preconditioned Conjugate Gradient method by only outlining the steps for
performing the preconditioner M-1f since the standard procedure of Conjugate
Gradient method can be easily found [40]:

Find « such that Mz = [ where f is orthogonal to kerA,.

Additive Schwarz Preconditioner
1. Solve each subproblem on each sub-domain Qk

Agz®) = R, f fork=1,---,N;

2. Find 2(® | KerAy so that :

AHm{O) = Ryf;
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3. Let

N
Wy = Rg.'ﬂ(o) + E Rkiﬂ(k)

k=1

and find w;, € KerA, such that @, + w, is orthogonal to KerA;, . Then

N
M=1f =w, + RTz® + > Rzl

4z=]

is obtained.

Remark: Step 1 and 2 can be performed simultaneously. Since the linear
interpolation RT maps linear function into linear function and KerA, = K erAg
consists of linear functions, R, f is orthogonal to KerAy if f L KerA,;,. Hence, the
coarse grid problem is well defined in the Additive Schwarz Preconditioner. Like
step 3 of computing Pu, process, step 3 in the Additive Schwarz Preconditioner
calculates @, € KerA, and adds @, to w, so that M-1f L KerA,. For elliptic
problem (5.13), —;, is the mean value of w,, on the whole fine grid. For elasticity
problem (5.15), @, = Y0 aéld) € kerA, where o) is the solution of linear
system (5.17).

We give following theorem which shows that the condition number of this mod-
ified additive Schwarz method is still independent of the sizes of coarse grid and

fine grid.

Theorem 5.1 For all w, € Vh(ﬂ), there exists o partition u,, € VZ for all
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0< k<N such that

N N
Uy, = Z Up, and Z |uh,kl%ﬂl(g))q < Cgluhl?m(g))q,
k=0 k=0

where Cy is independent of w;, h and H. Therefore,

1
Amiw, > 'CTg

a,nd /\ma,a: S 5
Hence, £(P) < Appon/ Amin = 5/CE.

Following theorem refines above result.

Theorem 5.2 Suppose the overlap size of each region O, is BLH. Then for all

Uy, € Vh(ﬂ), there exists @ partition ) € Vi‘ for all 0 < k < N such that

N o
w= wy and Y. [ b Err s < C(1+ max E)'uhlfﬁl(ﬂ))qa
k=0 k

where C is independent of u*, h, H and overlap size,

5.2.2 Schur Complement on I'

In this section, we derive the Schur complement on I' and analyze its properties
for the Neumann boundary problem. Let uy and u, be expanded in terms of
the standard nodal basis functions of discrete spaces V¥ () and V" respectively.

Denote the corresponding kernel spaces as KerAp = {zg|Agzy = 0} and kerA =
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{z|Az = 0} where Ay and A are stiff matrices. Then the discrete problem (5.9)

and (5.5) can be rewritten as the following linear systems respectively:

(5.18) Find 2z 1L KerAy  such that Agzy = fo,
and
(5.19) Find z L KerA such that Az = f,

where stiffness matrix A can be written as block matrix according to interior poinis

and edge points:

A As Ty f1
A = r = f g
Apr Apsp Ip /B
and the unknowns z are split into two subgroups. The first subgroup «; is the set of
unknowns corresponding to the interior points in UY_ Q) and the second subgroup
z, corresponds to the variables on the boundaries I' = U 0. [ is orthogenal fo
the space KerA. Let A(¥) be the stiffness matrix of the bilinear ag, (u,v,) which

represents the contribution of the substructure £ to the integral ag(uy, vy,). Then

the entire matrix A can be obtained by using the method of sub-assembly:

A Apg Tr Afr’.cr) Ags) -'Bg'k)
(5.20) =
Apr Apgp Tg k Ag} Ag% mge)
o
k) = T = Zx(k)_
{x) k
g
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Here z(¥) is the subgroup of nodal parameters associated with 0, x(Ik) is the set

of unknowns corresponding to the interior variables of substructure Q; and wgc)

is associated with the nodal points of &Q,. Because each interior variable mgk)

is associated with only one of the substructures, it can be eliminated locally and
simultaneously. The reduced global equation, called Schur complement on I', can

be written in assembly:
(5.21) Szp = (App — ApiAjl Arg)zB = Zs(k)wgc) =4
k

where

59 = Ay — AR A%
corresponds to the contribution from {3, to the boundary 0Q, C I', and

g=g® =35 _ AW AW 50,
k k

comes from the value of f on interior points §); and 9. As we know, the action
of inverse of A}’}) is associated with solving a local problem on ) with Dirichlet
boundary condition and small size. A fast Dirichlet solver can be used to implement

the inverse action of Ay}). Note the reduced Schur complement is still singular i.e.
KerS = {zg|Szg = 0} # {0}.

Hence, we could find an unique solution x5 L KerS of problem (5.21) only if ¢

satisfies compatible condition ¢ 1L KerS. To deal with this difficulty for this Schur

complement system, we rely on the following properties of capacitance matrix 5.
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Lemma 5.5 If element z = (27,25)T € KerA, then zg € KerS. If z5 € KerS,

there exists x; such that ¢ = (2T,2L)7 € KerA.

Lemma 5.6 If f is orthogonal to KerA, then g = fg — AgrAT} fi is orthogonal

to KerS.

The proof of these two lemmas is quite easy [2] so we omit it here. We have

following simple lemmas.

Lemma 5.7 If A is a symmetric semi-positive matriz, then for any zg
T — minzT
zpSeg = ming Az

where x = (2T,2L)T. Hence, the capacitance matriz S is also symmetric semi-

positive definite.

Lemma 5.8 For any zp, let ¢ = (z1,2])7T be discrete harmonic eztension of zg,

ie. (A;p App)z =0. Then z3Szp = 2T Ax.

From these lemmas, we can conclude that the direct restriction of KerA to
the pseudo-boundary T equals KerS. We can roughly think that KerS = KerA.
Therefore, for elliptic problem (5.13), KerS = {c|c is any constant on T'}. For elas-
ticity problem, KerS is the linear space on I' with six basis functions defined in

(5.16).
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5.2.3 Description of the Modified VS Algorithm

To describe the modified VS algorithm for the Schur complement system on
the boundaries ', we need work on the discrete trace subspace V(T') of trace space
HV/%(T") and introduce some notations. Let T' be partitioned into three pieces: the
substructure vertices {v;}, the edges between substructure vertices and the faces
I'Fis of the substructures. Note in two dimensions there are no faces, only vertices
and edges. To obtain overlapping regions, we define T'%ii as the regions consisting
of an edge and an overlap of order H onto adjacent faces and 't as the regions
consisting of a vertex and an overlap of order H onto adjacent faces and edges. We
restrict the overlap so that no portion of I' is covered more than p times, usually
p = 4. We can now introduce the sum representation of discrete trace space V*(I')

as follows :

VAT = ):Vﬁj + ng‘,j +Y VE

where Vi = VA(I) N Hob*(DFs), Vi = VHI) 0 Hof*(IBs) and VA = VH(I) 0
Hééz(F”l). Here Hééz(f") with T' ¢ I, is denoted as the space of functions v €
HY/%(T"} which vanish at all nodal points not on Iy

For each sub-region f‘, we introduce Rp as the pointwise restriction operator

which returns only those unknowns which are associated with . The projection
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operator Pr onto each face, vertex or edge subspace V(1) is defined by
Pp = R%“SI: 1Rf3

where Sp = RfSR%:.

For the coarse space VH, let Ry be the weighted restriction operator from
VA(T') to VH. Then RT is the corresponding linear interpolation operator from
VH to Vi(T"). The criteria of choosing the restriction operator Ry is that for any
function ¢ € V(') i.e. ¢ L KerS, then Rgg is orthogonal to the space KerAy.
For the Neumann boundary problem in two dimension, we choose the restriction
operator Ry as follows: Let Wy, ¥,,... ¥, be the piecewise linear basis functions
of coarse space VH, where M is the number of vertices on I' and W (v;) = &y for
any vertex point v; where &, equals one if [ = k and zero otherwise. Then,

Ryg(v) = Z Uiz, y;)9(2i ;).
(ziyi)€l
A straightforward computation gives that Ryg is orthogonal to the kernel space
KerAy when g is orthogonal to the kernel space KerS, because KerS consists of
linear functions for elliptic problem (5.13) or elasticity problem (5.15). Therefore,
the coarse problem Ayzy = Ryg is well defined and has only one solution 25 L
KerAg. For Schur complement system (5.21), we solve it by using preconditioned
conjugate gradient iterative method with preconditioner M. The action of the

inverse of the preconditioner M involves following block calculations.
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VS Preconditioner (Calculate M~1g)
1. Solve subproblems on faces I'Fis
Spytr; = Rr, i
2. Solve subproblems on edges ' :
SE;%E; = RE;9;
3. Solve subproblems on the vertex space '
Sy = Ru,é;

4. Find zp 1 KerAy so that:

Agzg = Ryg;

5. Let

and find @ € KerS such that @ 4+ w is orthogonal to KerS. Then
M=g =+ Rlzy + E R} zr, + E Rf g, + ZI:Rﬁmw.
i3 17

Remark: Step 1, 2, 3 and 4 can be calculated simultaneously. This precondi-

tioning procedure can be rewritten in a short form:

(5.22) M~'g = RLAFByg+w+

ij

Z R%:",-j S;;-i.RFUg + Z Rgej SEiljRE"J'g + ZI: R:{r SJJIR”‘Q
E¥] .
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where 1 € KerS is determined by making M~1g be orthogonal to the kernel space
KerS.

After obtaining the approximation solution on the boundaries I' through using
PCG iterative method, we can calculate the approximate solution of problem (5.4}
on the whole domain by solving concurrently all the Dirichlet boundary subprob-

lems defined on the substructures {Q,} with boundary value u;, on 0§}, C I':
a(”ﬁ:”f) = (fv U}’i) va € Voh(ﬂ'k)s

where V(D) = {vijv, € V}, wvlr = 0} . However, such extension solution
uy, defined on the whole physical domain ), is not orthogonal to the kernel space
KerA,. Therefore, we have to find w, € KerA, such that the approximation solu-
tion uy, +wy is orthogonal to L KerA,. The following theorem gives an estimation
of condition number % of the modified vertex space method. The proof of this

theorem is similar to that in [66].

Theorem 5.3 Suppose the overlap size of each vertex region I''s is SH, then:

max(M 1 5)

&(P)= (M715) < m‘{s—)

< C(B),
where C(B) is a function of B which is independent of H and h.

A concrete estimation of upper bound C(8) of condition number is given in the

follows.
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Theorem 5.4 Let the overlap size of each vertex region I't is §H, then:

AII’I.&X(iM—_l S)

1
< —
N (M) < C(1 4 Cmax—),

k(P) = k(M~18) < 5

min(

where C is independent of H and h.

5.3 The Variants of the Vertex Space Method

As described before, the application of the modified vertex space method for
scale elliptic problem in two dimensions involves forming exact edge matrices Sp,,
and vertex matrices S,,. The computation of these matrices associated with (Y
can be very expensive since it requires to solve n) subproblems on £ if there
are n, nodes along the 89,. Big memory size is also required for storing all
these dense matrices Sg,; and S,,. This expense on computation and storage can
be significantly reduced if these exact edge and vertex matrices are replaced by
approximations which can be computed or inverted at much less cost. If these ap-
proximations are spectrally equivalent to the exact sub-matrices, then the overall
new preconditioner would remain spectrally equivalent to the exact VS precondi-
tioner. Hence, the condition number of these variants of vertex space method is
still independent of mesh size. In this section, we are looking for the spectrally

equivalent edge matrices S 5, and S’uk such that

T T & T
CmE;J-SEij TEi; S mE;J-SE;‘j$E-'j < CmE,-J-SEsijsp
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and

cmka,,kmvk < mfkgvkmuk < wakSﬂkka
with positive constants ¢ and C independent of A and HI. Then the corresponding

preconditioner M satisfies that

-1
c<)‘—m£':“:‘-(ﬂfr—-§l<0,

= N M18) =

if the exact preconditioner M satisfies
c< M—:I—S) <C .‘
= AinM15)

Based on the Fourier approximation or probe technique, several approximate
edge and vertex matrices have been discussed in [23, 21]. For simplicity, we don’t
consider the combination of these two approximation methods.

In this section, we are going to discuss using 4 probe vectors instead of 6 probe
vectors [23] to construct the vertex and edge matrices which would save much com-
putation work in forming these approximate matrices. The Fourier approximation
described in Chapter 2 can be directly applied here. For vertex space matrices S5,

we discuss the two other approximations: tangential and scale diagonal approxi-

madtions.

5.3.1 The Symmetric Probe Technique

In this section, we describe how to use four probe vectors instead of six probe

vectors [23] in the modified VS method to obtain the approximate edge matrices
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Figure 5.1: The Model Rectangular Geometry With Boundary Value

0 0
Pk
0 0

and vertex matrices in order to save computational work. The probe technique has
been extensively discussed by Chan and Resasco [25], Keyes and Gropp [45, 46],
Chan and Mathew [22, 21], and Eicenstate [36]. In [23], the probe technique was
applied to construct approximate edge and vertex matrices through using six probe
vectors. Here, we only use four probe vectors to form all approximate edge and
vertex matrices. An advantage of these approximations is that they often adapt
well to coefficient variations and aspect ratios. However, a disadvantage is that
the construction of probe approximation matrices costs much higher than that of
Fourier method, but still considerably less than that of exact sub-matrices.

For simplicity, we first describe the procedure of construction of these probe
approximations for the model rectangular geometry as Fig. 5.1 . The techmique
can be easily extended to more general geometries.

On this sub-region with two sub-domain §); and Q;, we construct a symmetric

tridiagonal approximation S E;,; bo the exact Schur complement Sg;; by using matrix
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vector products of Sg;, with two probe vectors. A heuristic motivation for using the
tridiagonal approximations IS &;; to the edge matrices Sk, is that the entries of each
Sg,; decay rapidly away from the diagonal. For model problems and geometries,

it has been shown that

1
(Sgidim = 0((_1'“_””m_)2)
for I, m away from the diagonal ,[39].

To obtain a symmetric tridiagonal approximation g Bi; bo Sg,;, we equate the

matrix vector products Sg, .p; to S £i; Py, for the following two probe vectors p:
p; =[1,0,1,0,---}F and p2=[0’1,0,}’._,]‘1’_

To make the description simple, we assume that the tridiagonal matrix S iy con

be written as

aq bl
by a; b
S By — b, az bs

bs ay

L. d nggXngg
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The matrix vector products § i Py 5 E,;P2 can be written as :

a; by 1 10 ” a, b, —
by ap b, 0 1 bi+b, ay
b, as by 1 0= as b, + by
by ay - 01 by +b, ay

Furthermore, computing the matrix vector product Sg, p; requires solving one
problem on each sub-domain €; and §2;, see fig 5.1. Hence, the tridiagonal approx-

imation gE;J- can be obtained from the equation
[SE;jplﬂ SE,‘jp2] - [SE,‘J'plﬂ SE,'_,‘p2]

through using following algorithm, proposed in [45, 46]:

Symmetric Probe Algorithm

For [=1,---,ny

(Sg,;p i if 1 is odd
a; =
(SE;P2) if 1 is even
bl = (SE;jPZ)l
For =2, ,m;—1
(SE,-J-P1)1 —b_, if [ is even

(SE;jPZ)l — bl—i lf l iS Odd .

Because S, is a symmetric M-matrix and strictly diagonally dominant matrix
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[22] and each off diagonal element of exact Sg,, decays away from the diagonal,

each S z;; of these probe approximations satisfies:

Theorem 5.5 Assume that Sg,; is a diagonal domfnant M-matriz and
1(Se )l = el 2 - 2 (S dinyl fori=1,2,---,n;
Then S B;; 15 still an M-matriz.
Proof From the assumption, we can obtain
(5.23) [(SEi; el = [(SEi; sl if s < k<t

Without loss generality, we assume n; = 2k + 1. Since Sg,; is strictly diagonal

dominant, we have for 1 <1 <n;; :

(SEU)IJ + (SE.'j)l,S + (SEgj)l,2k-|-1 2 07 ?‘fl is odd

a; =

(SEgj)l,Z + (SE,'j)l,4 SR (SE,'_,')!,%: z 05 Efl is even .

by = (Spihe + (S hat -+ (Sgjdiae <0

follows from. the property of M-matriz Sg,, . Then,
ta'1| - |b1| = (SEa'j)l,l + (SEij)1,2 + (SE;',')LS +oee (SEsj)l.mj 2 0.
The equation

by + by = (Sg,)2n + (Sm)zs + -+ (Seg oo < 0,
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implies
b2 = (SE.'_,')2,1 + (SE;j)2,3 +oe 4 (SE,'J-)2,2P:+1

"" (SE.'J')LZ - (SEij)1,4 - (SEij)l,:Zk < 0,

by using inequality (5.23). Therefore,
lag| — by} = 162 = (S&, )22+ (Smy)za+ -+ (Seij)azk
+ (Spyat+ (Spyiat-+ (Sgi 1,28
+ (Sg;)2a + (Sgy)2at -+ (SEy)22em
~ (Sg; 2 — (Segha— = (Smyi
= (SE(J')2,1 + (SE{j)2,2 + (SEij)2,3 et (SE;'_;‘)2,R,'J' > 0.
By induction, for any 3 <1< ny;, we have
b= (Sedu+ (Seis+ o+ (Sphakn
- (SE,-J-)I-—m - (SE,-J-)I—M et T (SE.-,»)I—I,%

4+ b, for 1 even,

and

b = (Se,hia+ (Sg;)iat -+ (Sgi, 2k
- (SE,‘J‘)I—I,I - (SE.-,-)I—l,a -t (SEij)I—1,2k+1

+ by for 1 odd.

So, we can obtain b, < 0 through using b_; <0 and inequality (5.28). Hence,
o] = 1bica| = 1B = ar+by+ 8
= (Sg,)ii + (Sg;ha + Sdis + -+ (Seimy 2 0.
Thus, the tridiagonael symmetric matrix .§E‘.j is positive definite. Note that above
inequalities can be replaced by strict inequalities, if Sg,, is strictly diagonally dom-

inant,
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Figure 5.2: Probe Vectors in Modified V5 method

pkakzlw?" p‘2~+~k:km132'

0 0 0 P p; D;
P; Dby Py Pi 0 ] 0 0

0 0 0 D; p; p;
Py P Py DPi { 0 0 )

0 0 0 e 2h I
Ps P; Py B 0 0 0 {

0 0 0 i P; 1A

Now, we describe how to use only four probe vectors to form all approximate
edge matrices. To minimize the computational work and the approximation errors
arising from boundary value on other edges in the constructing procedure of all
approximate edge matrices, we will specify the same probe vectors p, either on
all horizontal edges simultaneously or on all vertical edges simultaneously. Let’s

define p,, for k = 1,2:

Dr on all horizontal edges
Py =
0 on all vertical edges
and
0 on all horizontal edges
Pr+2 =
Pi on all vertical edges

which are drawn as fig (5.2).
Analogously, these approximations 5 Bi; resulted from above simultaneous probe

vectors p, preserve strictly diagonally dominant and positive definite. Since the
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edge matrices S B;; are tridiagonal, it is cheap and easy to invert S Eii-

Theorem 5.6 If the Schur complement S on I' is a strictly diagonally dominant
M-mairiz, then edge approrimations S'E.-,- obtained from above are strictly diago-

nally dominant and positive definite.

Proof From the assumption that M-matriz S is strictly diagonally dominant, g Bij
can be proved to be strictly diagonally dominant in the same way as the proof of
theorem 58.5.

The probe approximate vertex matrices S'vk can be easily constructed from the
results of matrix simultaneous probe vector products {Sp}i_,. The detail of this
technique can be found in [23]. The same argument as in [23] can be used to
show that the vertex approximations S'.uk obtained from above probe procedure are

diagonally dominant if Schur complement S is a diagonally dominant M-matrix.

5.3.2 The Other Simple Vertex Space Approximations

It is easy to find spectrally equivalent vertex approximations .§',,,k when vertex
size is small. Numerical experiment [66, 23] has already shown that increasing
vertex size makes little improvement on the convergence speed. Hence, in prac-
tice the vertex size is chosen small in order to save computational work. Here,
we suppose that the vertex size is small. Like forming Fourier vertex approxima-

tions [23], tangential vertex approximations can be constructed as the sum
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of four tangential approximations [20, 42] on the four L-shape segments around
the vertex point. The simplest other vertex approximations are diagonal vertex
approximations which are diagonal matrices with entries consisting of diagonal
entries of original matrix A associated with vertex regions. The advantage of these
tangential or diagonal vertex approximations is that they are very sparse so that
they can be easily inverted. The disadvantage is that these approximation become
deteriorated while increasing the size of vertex space . Numerical tests of the mod-
ified VS method with these simple approximations indicate that the modified V5
method retains the optimal convergence for elliptic scalar problems with Neumann

boundary conditions.

5.4 The Modified BPS Method for Neumann Boundary Value Prob-

lems

In this section, we modify BPS method, a preconditioner developed by J.H.
Bramble et al. and based on the domain decomposition method, so that the
resulted preconditioned conjugate gradient method can be used to solve these sin-
gular discrete systems. The condition numbers of the modified methods have still
been shown to be C(1 + In(H/h))? in R?. We have tested the several approxi-
mate edge matrices, such as probing technique and Fourier approximation, in the
numerical experiment. The numerical results have been reported for Neumann

boundary condition problems with various coefficients, such as highly varying and
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jumping coefficients. The results show that the estimation of condition number is

fully realized in practice. The modified BPS algorithm is highly parallelizable.

5.4.1 The BPS Method and Its Modification

As we know, it is very important to make a ‘good’ choice for preconditioner B
in order to construct an efficient PCG algorithm for problem (5.4). The bilinear
form b(-,+) should have two properties. Firstly, it should be easy to obtain the

solution w;, € V#{(Q) of
(5.24) b(wy,vp) = (g, v1), for all v, € V()

for a given function g. Secondly, the bilinear form &(:,-) should be spectrally
equivalent to the bilinear form a(-,-), i.e. there exist positive constants Ay and A

such that
(5.25) /\Gb(vh,vh) S a(vh, 'Uh) S Alb(vh,vh), for all vy S Vh(ﬂ,)

The first property guarantees that the computational work in each iteration step is
small. The second property implies that the condition number & of corresponding
PCG method is less than A, /Aq . It is well known that the number of steps required
to decrease an appropriate norm of the error of a conjugate gradient iteration by
a fixed factor is proportional to the condition number «; see Golub and Van Loan
[40]. Therefore, if the condition number & is a small positive number and slightly

depends on the size of grid and substructure, then the resulting algorithm is an
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efficient method. We are going to construct a preconditioner B so that above
two properties could be satisfied in some way. We first introduce an approximate
bilinear form &(-, ) by

2 auh 8'Uh

(4h> v3) j E ”‘3:17 Oz, 52, "

kgl

for each k and then define

uha”h Z Um Uh
k

Here a’“ can be chosen as piecewise smooth uniformly positive definite for each (2

so that the inequalities
O()&(uh,uh) < a(uh,uh) S Clﬁ(uh, uh) for all Uy € Vh(ﬂ)

are satisfied for positive constants Cy and C, (independent of h, H, (2, ) and the
problem (5.24) should be easily solvable. From these inequalities, it follows that
KerA = KerA. Thus, the problem of finding a preconditioner for a is the same as
finding one for @.

Denote a subspace
VMO, T) = {uy|uy, € VAH(Q), u{z)=0on I'}
which can be represented as the sum of orthogonal subspaces
VHET) = VAH) + VA0 + -+ VAO)

where

Vgh(ﬂz') = {uslu, € VA(Q), v, =0, = ¢ O}
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To construct a preconditioner b of a, we first decompose the functions wu, in

VHQ) as u, = uf 4+ uf where u] € V*(QQ,T) satisfies
ap(ul,vy) = dx(un, vs) for all v, € V()
for each & , and uf = u;, on I and
a(uB,v,) =0 for all v, € V()

for all k. We refer to such a function uf as ‘discrete ;-harmonic’. It is obvious

that such decomposition of function is orthogonal in the @-inner product
(g, wy) = a(ul +uP,ul +uP) = a(ul, wl) + a(u?, up).

So we will define b(-, ) by replacing the &(uf, uP) term in above equation. We next
further divide the u? as the sum of two functions u? = uf4uy where uff € V(Q)is
the discrete &, -harmonic function with zero values at the vertices and w¥ € VA({2)
is also the discrete &,-harmonic with linear function values along each edge I';; and
with the same values as u; at the vertices. Before defining the preconditioner b,
we denote V(I';;) as the subspace of trace space V}(9{Y;) whose functions have
the supports on the edge I';; and introduce an operator [, defined on each V(L)
by
< atluy,, v, >p, =< aub, v, >, for all v, € VM)

where the prime denotes the differentiation with respect to the arc length s along

I;;, and the inner product < -, > on the edge I';; is defined as

iis

< Up, Uy >y jr upv,ds.
LK)
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By denoting the vertices as v; or v;, we could define the preconditioner B by

(5.26) bup,vp) = @(ul, o)+ oy < a‘lﬁ,/zuf,vf >1y
Iy

+ zZ: ag;(up(vi) — up () (vp(vi) — vi(v;))-
ii
Now we present a detail description of the process used to solve problem (5.24)
for any given function ¢ L KerA (the mean value of function g is zero). In fact,
solving problem (5.24) is equivalent to finding the corresponding decomposition
functions u! and wP. The restriction of function ul on (Y could be uniquely
determined by solving the small size Dirichlet subproblem with zero boundary

condition on (3
(5.27) ap(ul,v,) = (g,v) for all v, € VA(8).

Therefore, u! could be obtained on the whole domain Q by solving subproblems
on each sub-domain. Since all these subproblems are independent of each other,
they can be solved in parallel. With v/ now known, the problem reduces to finding

uP from following equation:

Say <o Pul wf >+ D ag(ug(vn) — ug () wy(v) — wi(v;)
Ty Ly
(5.28) = (g, wy) — &(uf, wy)

= (g,wy) — &(ul,w) for all w, € V*(£2).

Denote

(gawh) = (ga wh) - &(uivwh) for all wy, € Vh(‘Q)'
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Then § is obviously orthogonal to the subspace KerA. Note that the value of
(§,w;) only depends on the value of w, on each T';;. Let wy, be in the subspace
of V*(Q) whose elements vanish in the interior mesh points of every {1 and all
vertices. Then the problem (5.28) decouples into the independent problems of

finding uf € VI;;) such that
(5.29) oy < a_lftl)/zuf,wh >r,= (9, wa) — a(uf, wp) Yy € Vi (Ty;)

on each I';;. All these subproblems have unique solutions and could be solved
concurrently. In practice we use Dryja approximation matrix {31, 25] or probing
edge matrix [21, 22, 23] instead of fé/ ? in above problem. Right now only function
uy is left unknown. To determine the function u? , we introduce a subspace of

VA(Q) consisting of functions which are linear between the endpoints of each edge

T".. and vanish at the interior mesh points of each . It is clear that for each

i
wy, € V}} in this subspace, the corresponding w¥ should be zero. In this subspace,

the problem (5.28) reduces to the problem

(5.30) ?; o (u (v;) — ul(v;)) (wp(v;) — w¥(v;)) = (g,wy) — @(uf, ws)

which only has u? as the unknown function. Choose a basis &, ®,,- -+, Py, in this
subspace where N, is the number of vertices on I' and ®;(v;) is one if ¢ = j and
zero otherwise. Under this basis, problem (5.30) reduces to a difference equation
on the coarse mesh for the elliptic problem with Neumann boundary condition.
Therefore, problem (5.30) has many solutions when the restricted § on the coarse

grid satisfies compatible condition. To find an appropriate solution, we look for the
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unique solution % which has zero mean value. Then the values of 4} at vertices
uniquely determine its values on the edges. Note this extension method should

change constant function on the whole coarse grid to the constant function on the

whole edges I'. Extend the sum ﬁf = iy + uf into substructures ; so that

&k(ﬁf,vh) =0 V'Uh € T/Oh(ﬂk) Vk
By subtracting the mean value ¢ of @i, = 4P + u/ from @, we obtain
uh:ﬁh—ctﬂf-l‘UI—C

which has zero mean value. Hence, for any given function g, the solution u, of
(5.24) is unique and belongs to V. Then a preconditioner for problem (5.4) in vV
has been well defined.

Note that problem (5.29) and problem (5.30) are independent. Hence, these two
kind subproblems can be solved at the same time. Because all the subproblems
have almost the same small size and the computational work for obtaining the
solutions to these problem is almost the same small, we have good balance on the
working load for each processor when this method is used on the multi-processor
computer.

To make the proceed of the inverse of preconditioner b clear, we outline the

steps of calculating u;, € V() such that
b(up,vp) = (g,v4) Yoy, € VH(R).

where g satisfies compatible condition.
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Algorithm:
1. Find u! € VA(Q,T') such that

ax(ul,vy) = (g, va)Voy, € VI(8)VE.
2. Find uf on each T';; by solving one dimensional problem
oy < amlﬁfzufavh >ri= (g,v1) — a’(u,{avh}vvh € Voh(rij)'

3. Solve coarse problem to get @i} with zero mean value such that equation (5.30)

is true under the same coarse base functions, i.e.

3 o (ul (v;) — ud () Hwi(v;) — wi(v;)) = (g, wn) — a(up, ws).
1IN
4. Extend the ¥ to the edges piecewise linearly.

5. Calculate ¥ such that @8l = 4y +uf and

&k(ﬁf,vh) =1 V'Uh & %h(ﬂk)Vk

6. Compute the mean value ¢ of u;’t +ﬁf on { and let u, = ul -}«ﬁf —cE I?h(Q)

5.4.2 Theoretical Results

In this section we estimate the condition number of the modified BPS method
for Neumann boundary value problem through proving the inequalities in (5.25).

We will use the approach, stated in [8] and [34], to prove inequalities (5.25).
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Since there exist positive constant Cy and € such that
CO&(Uh,uh) S a(uh, uh) S Clﬁ(uh, 'U.h) V’U,h & Vh(ﬂ),

it suffices to compare @(u,,u,) with b{uy,u;,). We decompose u;, € VH(§) into

u, = ul + uP as the previous section where uZ = 4P — c¢. Then, we have
h h h p h h »

5 — alul w4 a(uB. uB

aup, up) = a(ul, ul) 4+ @(uf, u?).

From the equality
bluy, up) = &(ui,u,{) + b(uf, uf),

the proof of the inequalities in (5.25) will be obtained if the following nequalities

are true.

®31) (o o) < OB o)

and

(5.32) b(uP,uP) < C(1 +In(H/R)Ya(u?, u?).

In order to prove these inequalities, we further decompose u? into uf + u? with

uy = @Y + ¢ . Hence, if these inequalities

(5.33) @ (uB,uP)<C > ay(< a‘lﬁ/zuf,uf >y +{u (v;) — w¥(v;))?)
15E€ 08k
and

(534) 3 ay(< ot BB > 4+ (ul(v) —ud(v,))?)

yEfy

< (1 +In(H/R))PaR(uf,u?),
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are satisfied on each substructure, then summing these inequalities with respect to
k gives the inequalities in (5.31) and (5.32). On each substructure {2, using the

results in [8] leads

(a8, 88) < C Y oy(< a_l‘%/zuf’ uff >p,; @ (ve) — 5(v;))?)
1 EB

and

S ay(< o g PuB W sp + (i (e) — 63(0;)))
1§E8x

< (1 In(H/)Pa (8, 5f)
For any constant ¢, we can prove that

. w~ 331/2
ap(iP + ¢, 4P +¢) < O Lijep, (< @ 1y ull, uf >r,

(a2 (v;) + e — (@2 (;) + ©))?)
and

3 ay(< ol Pulul sp 4+ (@) + e~ (@3(v)) +))?)
i€ Pk
< (14 In(H/R))? @, (4B + c, 48 + ¢).
Therefore, it is obvious that the inequalities in (5.33) and (5.34) follow from these
inequalities. Summing the inequalities in (5.33) and (5.34) over all sub-domains

gives the inequalities in (5.31) and (5.32). Hence, we have following estimation on

condition number.
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Theorem 5.7 The above preconditioner b satisfies : for all u, € V()

Co

(5.35) (1 + W2(H/ k)

b(up, up) < @(up, up) < Crblup, up)

for positive constants Cy and Cy which are independent of b and H. Thus, the
condition number of corresponding preconditioned conjugate gradient method grows

at most like k < C(1 +1n*(H/h)) as b tends to zero.

5.5 Numerical Results

Now we present the numerical results of tests on the convergence rates of the
modified VS and BPS methods with various edge and vertex approximations. The

tests were performed for the scalar elliptic problem with Neumann boundary con-

dition:

Lu = -V - (afz,y)Vu(z,y)) = f(z,v) in & =[0,1]?
(5.36)

& on Of1.

The following four coefficients have been used in our tests:

1. ofz,y) = 1, the Laplace operator, see Table 5.1.

2. ofz,y) = 1+ 10(z? + y2), slowly varying smooth coefficients, see Table 5.2.

3. a(z,y) = €%, highly varying smooth coefficients, see Table 5.3

4. Highly discontinuous coefficients of Fig. 2.5.
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The square domain [0,1]? was first divided into small square sub-domains with
uniform size H. Then each square sub-domain was triangulated into finite elernent
with uniform mesh size & on the square domain. These problems were discretized
by standard finite element method with five stencil.

u is randomly generated solution of the scalar elliptic problem normalized so
that the mean value of u is zero. The integer XN is defined to be the number of
iterations required to reduce the A-norm of the error e, = u — u, by a factor
10-5 . We will list the iteration number R and estimated condition number & for
these discrete problems with various coarse mesh size H and fine mesh size % in
following tables. The modified VS space method and BPS method with Fourier
approximations on edges and vertex spaces are denoted as FVS and FBPS, re-
spectively. FDVS stands for the modified VS method with Fourier approximations
on the edges and diagonal vertex approximations. PVS and PBPS respectively
represent the modified VS space method and BPS with probe approximations on
edges and vertex spaces.

In our program the problems on coarse grid and on sub-domains are solved
with high precision. The size of vertex space matrix is chosen as 5 x 5 matrices in
our experiment except in Table 5.5 the size of vertex matrices is 1. Since the size
of vertex matrices is small, they can be inexpensively inverted.

To compare six probe method with four probe method, we will list the results
in Table 5.6 for the problem (5.36) with harmonic Dirichlet boundary condition

and various coefficient defined above.
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Table 5.1: Comparison for Laplace equation

h—? Ovlp | FBPS PBPS FDVS FVS PVS
H-t | h/H | & 3 K N K Iy K N K N
64_2 1/32 |21 | 24.49 |19 |17.91 ] 9.81 |14 | 9.12 | 14 | 6.47 | 12
644 1/16 |19 ]17.99 |16 {1234 | 8.02 {14 | 7.33 | 14| 5.12 | 11
64.8 1/8 171236 |14 | 842 | 6.13 |12 | 551 |13 | 3.68 | 10
64_16 1/4 1141 723 {12] 544 | 458 | 11| 443 112} 3.01 | 9
6432 | 1/2 |11| 408 |10} 3.11 | 6.00 |13 ] 5.72 |13 | 5.456 | 13
1282 | 1/64 |24 |32.79 |21 | 33.69 | 11.56 | 15 | 11.50 | 15 | 11.23 | 15
1284 | 1/32 |21 ]24.28 |19 |17.83 11049 | 15| 949 | 15| 6.53 | 12
1288 | 1/16 |19 |17.91 |16 | 11.89 | 8.16 | 13| 7.38 | 14| 4.90 | 11
12816 1/8 116 11.95 14| 849 | 6.05 | 12| 5.54 |13 | 3.66 | 10
12832 | 1/4 |14 | 7.09 |12} 546 | 4.51 | 11| 438 |11 | 2.94 } 9
12864 | 1/2 |11] 4.05 [ 10| 3.12 | 584 |13 | 567 |13 | 5.35 |13
2562 | 1/128 | 24 | 41.09 | 28 | 59.84 | 15.17 | 15 | 13.65 | 16 | 19.80 | 17
2564 | 1/64 |23 |31.64 |22 |31.95|12.70 | 15 | 11.54 | 16 | 11.03 | 15
2568 | 1/32 21{23.94 |18 }17.69 |10.41 |14} 9.58 | 15| 6.24 1 12
25616 | 1/16 |18 | 17.45 |16 | 12.22 | 816 |14 | 7.31 |14 | 4.58 | 11
25632 | 1/8 |16 |11.89 |14 | 8.40 | 6.08 |12 | 555 |13 | 3.60 | 10
265664 | 1/4 | 14| 7.09 |12 | 5.47 | 450 | 11| 437 |12 | 2.86 | 9
256_128 | 1/2 |11 | 4.07 |10] 3.12 | 5.79 |13 | 5.65 |13 | 5.33 |13
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Table 5.2: Comparison for o = 1 + 10(z? + y2)

h1 Ovlp | FBPS PBPS FDVS FVS PVS
_H-Y | h/H | & N & N K R K N K R
64_2 1/32 {25 |34.38 120 | 19.41 | 10.22 | 15} 9.59 |15 6.76 | 12
644 1/16 |20 |17.70 | 16 | 12.03 | 8.29 |14 | 7.78 | 15| 5.27 | 12
64_8 1/8 |17 11215 15| 849 | 6.26 |13 | 5.64 |13 | 3.78 | 10
64_16 1/4 |15 7.33 | 12| 548 | 4.67 |11 | 448 |12 | 3.00 | 9
6432 1/2 |11 | 4.08 [ 10| 3.13 | 6.04 |13} 5.75 |13 5.53 |13
1282 | 1/64 |24 | 35.95 |23 | 32,95} 12.22 | 15 | 11.86 | 16 | 11.51 | 15
1284 | 1/32 |21 |23.86 |19 |17.60 | 10.68 | 15 | 9.91 |16 | 6.48 | 12
1288 | 1/16 |19 |17.45 |17 |12.27 | 8.30 |14 | 742 | 14| 5.05 | 11
128_16 1/8 |16 |11.90 |14 | 835 | 6.05 |12} 5.53 | 13| 3.73 | 10
12832 | 1/4 |14 | 7.09 {12 | 5.51 | 4.57 | 11| 4.44 | 12| 3.00 | 9
128.64 1/2 | 11| 405 [10] 3.12 | 58 |13 | 5.68 |13 | 5.36 |13
2562 | 1/128 | 26 | 50.60 | 28 | 58.48 | 15.78 | 16 | 14.24 | 17 | 20.02 | 18
256.4 | 1/64 |24 |32.05 |22 {3210 |12.77 | 16 | 11.76 | 17 | 11.16 15
2568 | 1/32 |21 |24.30 |17 |17.30 | 10.62 | 15 | 9.70 | 15 | 6.06 | 12
256_16 | 1/16 |18 | 17.51 |16 | 12.16 | 8.17 |14 | 7.38 |14 | 4.61 |11
256_32 1/8 |16 |11.91 |14 | 842 | 6.10 [ 12| 5.55 | 13| 3.66 | 10
25664 | 1/4 | 14| 7.13 |12 | 5.46 | 455 |11 | 437 |11 2.87 | 9
256_128 | 1/2 |11| 4.06 |10} 3.12 | 5.80 |13} 565 |13 | 534 | 13
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Table 5.3: Comparison for a = €19

h-1 Ovlp FBPS PBPS FDVS FVS PVS
_H-Y | h/H | & N K R K N K N K N
642 | 1/32 |22 83.13 |19 | 56.49 |21.84 | 15| 20.85 | 16 | 10.87 | 11
64.4 1/16 |21 | 2472 |17 | 16.61 | 10.97 | 14 | 10.79 | 15 | 7.09 | 12
648 1/8 119 13.30 | 15| 9.11 7.32 | 14| 692 |14 | 4.69 |11
64.16 1/4 |15 | 748 |12 544 | 518 |12} 5.29 | 12| 3.36 | 10
64.32 1/2 |[11] 413 |10| 3.30 | 6.07 |13 | 554 | 13| 5.89 | 13
1282 1/64 |24 |101.22 |24 | 83.61 |27.78 { 16 | 26.40 | 16 | 18.28 | 14
128.4 | 1/32 |22 | 31.72 |17 | 22.36 | 1553 | 16 | 14.76 | 17 | 7.86 | 12
1288 1/16 {20 | 18.78 |15} 12.92 | 8.72 | 14 | 8.06 |14 | 6.02 | 11
128.16 1/8 |16 | 12.07 {15} 8.72 6.70 |13 6.34 |14 | 416 | 10
128_32 1/4 |15 | 740 |12 559 | 491 [12| 478 | 12| 3.31 | 9
128_64 1/2 |11} 408 | 9| 3.09 | 6.00 | 13| 5.65 | 13| 3.59 [13
2562 | 1/128 | 32 | 119.78 | 27 | 141.88 | 34.91 | 17 | 35.19 | 19 | 3247 | 18
2564 | 1/64 |25 | 39.69 |22 | 38.50 | 17.60 | 17 | 16.90 | 19 | 13.33 | 16
256_8 1/32 22| 25.00 |17 | 18.60 |11.65 | 16 | 11.11 | 16 | 7.46 | 12
25616 | 1/16 [ 20| 17.69 [17] 12.28 | 841 |14 | 7.52 | 14| 491 |11
256_32 1/8 117 11.96 |15 | 8.57 6.33 {13 | 5.73 | 13| 3.67 | 10
256_64 1/4 |15} 7.29 |12| 547 | 472 |11 | 450 ;12§ 3.11 | 9
256128 | 1/2 |11] 4.04 [10| 3.12 | 6.03 | 13| 5.69 |13 | 5.36 | 13
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Table 5.4: Comparison for highly jumping coefficient

h—1 Ovlp| FBPS PBPS FDVS FVS PVS
_H-Y | h/H | & N K N I R K N K N
324 1/8 | 1511259 | 14| 8.84 | 23.66 | 16 | 18.85 {16 | 9.90 12
32.8 1/4 |14 | 7.17 {12| 5.60 | 15.60 | 16 | 12.64 | 14 | 6.76 | 11
32,16 | 1/2 [11]3.99 | 9| 3.04 | 990 |16 | 688 | 14| 6.60 | 13
644 | 1/16 | 18 | 18.54 | 16 | 12.80 | 33.31 | 18 | 27.20 | 18 | 13.84 | 13
64_8 1/8 |16 | 11.86 | 14 | 8.84 }23.59 [ 18 1 19.10 [ 16 | 9.75 | 12
6416 1/4 |14} 7.15 |12} 543 | 832 |14 | 11.39 | 14 | 6.29 | 11
6432 | 1/2 |11 | 414 [ 10| 3.13 | 7.63 | 14| 6.37 |13 | 552 |13
1284 {1/32 |21 |24.29 |17 |18.36 | 43.43 | 19 | 35.89 | 20 | 8.50 | 13
128.8 | 1/16 | 18 | 18.24 | 15 | 12.72 | 32.35 | 20 | 26.62 | 19 | 13.31 | 13
12816 | 1/8 |16 ]12.03 |13 | 8.58 |23.28 | 18 { 18.81 | 16 | 9.84 | 12
12832 | 1/4 {14 | 7.20 | 12| 5.46 | 152516 |12.10 )14 | 6.63 | 11
12864 | 1/2 |11 | 4.10 |10} 3.12 | 7.64 |15 | 6.26 |13 | 5.54 | 13
2564 | 1/64 |23 132.50 | 22 | 32.92 | 54.73 | 21 | 45.68 | 21 | 27.38 | 16
256_8 | 1/32 | 21 | 24.57 {17 | 17.98 | 44.17 | 22 | 36.06 | 20 | 18.31 | 15
256_16 { 1/16 | 18 | 17.44 | 14 | 12.05 | 28.89 | 19 | 24.62 | 18 | 13.12 | 13
25632 | 1/8 |16 ]11.80 | 14 | 8.50 | 22.66 | 17 | 18.89 | 16 | 9.56 | 12
256 64 | 1/4 |14 | 7.10 | 12| 5.46 | 6.70 | 13 | 495 [ 12| 5.76 | 10
256128 | 1/2 |11 | 406 | 10| 3.12 | 7.22 | 14| 6.10 |13 | 3.38 | 13
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Table 5.5: Comparison when size of vertex matricesis 1 x 1

Coeflicient Laplace |1+ 10(z? + %) el0ay disc.
h-1 Ovlp | FVS | PVS | FVS PVS FVS | PVS | FVS | PVS
H- | wH| R DR OR R ROl R PR | R
644 1/16 | 14 12 14 12 14 i3 16 14
64_8 1/8 12 11 12 11 12 11 13 12
64_16 1/4 10 9 10 10 10 10 11 9
64.32 1/2 9 9 9 9 9 9 9 9
12844 | 1/32 | 15 14 15 14 16 14 18 16
128.8 §1/16 | 13 12 13 12 13 12 15 14
128.16 | 1/8 12 11 12 10 12 10 14 12
12832 | 1/4 10 9 10 9 10 10 12 11
128 64 | 1/2 9 9 9 9 9 9 9 9
2564 | 1/64 | 16 16 16 16 18 16 19 19
2568 |1/32 ] 14 13 14 13 15 14 17 15
256_16 | 1/16 | 13 12 13 12 14 12 15 14
25632 | 1/8 11 10 12 11 12 11 13 12
256.64 | 1/4 10 9 10 9 10 9 11 10
256128 | 1/2 9 8 9 9 9 9 9 8
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Table 5.6; Comparison 6 with 4 Probe Vectors in Probe Method

Coeflicient Laplace | 1 4+ 10(a? + y?) | el disc.

Probe Vec. | 6 | 4 | 6 4 64|64
h-1 | Ovlp| PVS PVS PVS | PVS
_H-Y | R/H | X | R | R N RN RN
644 |1/1619 |10} 9 10 9 (10|11 {12
648 | 1/8 9|9 |9 9 g |9 |10]10
64.16 | 1/4 | 8| 9 |8 9 8819110
64.32 | 1/2 |13} 13 |13 13 13|13 (13|13
1284 |1/32 |10 10 | 10 10 10|11 |11 | 12
1288 |1/16 |9 |10 | 9 10 9 [10|11 |10
12816 | 1/8 | 9| 9 | 8 9 8191910
12832 | 1/4 | 8| 9 | 8 9 818|910
128.64 | 1/2 |13 ] 13 | 13 13 13|13 |13 | 13
956.4 | 1/64 | 13| 13 |13 13 1311|1313
9256.8 | 1/32 (10| 11 |10 11 101111
25616 | 1/16 | 9 | 10 | 9 10 9 |10 |11 |11
25632 | 1/8 | 9| 9 | 9 9 g8 l9l10]9
25664 | 1/4 | 8] 9 |8 9 818|910
956128 | 1/2 |13 | 13 |13 13 13|13 |13 |13
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Conclusions: The modified BPS method and VSDD method for the singular
Neumann boundary value problems still converge very fast. Both the Fourier and
Probe variants of the vertex space algorithm and BPS method are also efficient.
The numerical results in all tables demonstrate that the condition number of the
vertex space method slightly depends on the size of overlapping, and the BPS
method has a condition number C(1 + In*(H/k)) with 0 < O < 5. We also notice
the convergence rate does not significantly deteriorate even for the highly jumping

and varying coefficient.
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CHAPTER 6

Algebraic Domain Decomposition Methods

In this chapter, by using the domain decomposition methodology, we construct
several algebraic domain decomposition (ADD) methods [43] for certain algebraic
systems with sparse matrix. These methods are highly parallelizable. We show
that these methods are convergent. We also discuss the eigenvalue distributions of
the corresponding iterative matrices in order to analyze the convergence factors of

these methods.

6.1 General Chaotic Relaxation Schwarz Methods

Let’s consider the linear algebraic system:
(6.1) Au = f,

where matrix A is a (2p — 1) x (2p — 1) block square matrix, denoted as

A1,1 te A1,2p-——1 Uy fi

A2p—1,1 AZp—1,2p~1 Ugp—1 f2p—1

u; and f; are vectors. As in the domain decomposition methods, we partition the

unknown vector u into p new subvectors with overlapping. We let @ denoted as a
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vector defined by these p new sub-vectors:

Ty

(62) #i=]: |, witha, =

Tp

mp:

ﬁ’Zp—Z -|

€Ly
Ugp-—1

Ugi 2

Ugi—1 | ?

gy

with 2 < i < p — 1. Note that ii,; are the unknown vectors associated with the

overlapping to the subvector u,; for ¢ = 1,-+,p — 1. In the same way, we can

introduce a new vector f from righthandside vector f. Thus, the matrix A is

divided into p x p corresponding block submatrices with overlapping. Then, a

corresponding new matrix A can be defined by these p x p block submatrices:

Y
Il

(6.3)

-~

All

A

2

i

A

A

-

1,p

P

Here A is a p X p block square matrix defined by:

Azp—z,zp—z

AZp—l \ap—2

0 A1,2i—1 A1,2i

0 Aggis As i

A2p—2,2i-—2 A2p—2,2€-——1

" Ay A
A1,1 = 3
Ay Agg
~ 0 A1,2p-——l ~
Al,p - 3 Al,i =
0 A2,2p—1
o A2p—2,1 0
Apyl == Apl'i =
A2p—1,1 O

A2p— 1,212 AZp—-l 2i—1
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A2p-2,2p—1

A2p—1,2p—1

,for2<:<p—1.

for 2 <i < p—1,



Agi g1 0 0 Agizap1

Ai‘,l = A2‘£—1 1 0 A{,TJ = 0 Azi—-lﬂp-—l ] fOI' 2 S i S p - 1‘7

A2t' 1 0 0 A2i 2p--1

2

Ai:j = 0 A2i—1,2j—1 Az’i—l 2j 3 fOI‘ 2 S ?: < j S p — 1’

Azi—z,zj—z A25u2,25—1 0

id = | Agic1giez Asicizi-r 0 for2<j<i<p-1,

Agizia Ag; g5 0

and

Ay 99ii2 Agiiggii1 Asiooi

h
Il

i Agi1gicz Asicygicn Azio1 for2<i<p-1

A?i,2é—2 Ag;2i1 Ag; 2

From these definition, we obtain a new linear system
(6.4) A= f,

which is associated with system (6.1). The following theorem gives the relation

between equation (6.1) and system (6.4).

Theorem 6.1 Suppose that Ay, are nonsingular for all i =1,---,p—1. Then,
the solution u of system (6.1) can be constructed from the solution @ of the prob-

lem (6.4} and vice versa.
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Proof Let u be the solution of system (6.1). We can construct a new vector @ as
above from u by letting the overlapping subvectors iy, = ug; forz =1,---,p—1.
Then, this @i is the solution of system (6.4).

Suppose that % is the solution of problem (6.4). Because Ay o; are nonsingular
for i =1,---,p—1, we have uy = Uy, ¢ = 1,---,p— 1, from the equation
Ag; gi(uy; — tig;) = 0. A direct consequence is that the vector u = (uf, - yugy )T
is the solution of system (6.1).

Theorem 6.1 implies that if the solution of (6.1) is unique, then problem (6.4)
has only one solution. The following theorem compares the eigenvalues of A with

those of matrix A. Let us denote A{ A} to be the set of eigenvalues of matrix A.

Theorem 6.2
AAY = MAHUIZ M Ay 2:})
Proof We first prove A{A} C AMANUEZI M Ay z:}). From Afi = M, we have
Aginiltig; — fige) = Mugg — ) i=1,--+ ,p—1,

If uy; o fiy; for somet € {1,---,p— 1}, then Ae MAg; 2} Otherwise, if ug; = fiy,;
forall 1 <i<p—1, then A € A{A}.

Now we prove that MAYNUZT MAgai}) © MA). From Au = du, we have
Al = A& by letting iy, = uy; in the definition form (6.2). If Ay a0y = Avy; for
some i € {1,.-+,p}, then we can construct a vector i in the following way such

that Ail = Xil. Let w = —(0,-+,0,05AL | oo ,vE Ay 00)7. If this A ¢ M A},
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then the equation

(A—ANu=w
has only one solution u. By setling

. Ug; if j #1
'U;Qj =
Ug; + Vaj when J =1t
For this i, we can easily show that Aii = M. Hence, )\{A}(Uf;ll)\{Azi,m-}) C MA}

Before giving a definition of the asynchronous Schwarz algorithms for prob-

lem (6.1), we, first, decompose linear system (6.1) into p subproblems: To find x;

such that
(65) -’&i,i}—(i = f; - Zﬁi,jmff for 1 S 2 S D,
K
where 4 = (27, .- ,mg')T is regarded as a known vector and 4 = (x7,-- ,}g{)T as

an unknown vector. Let ¢, denote as an solver for subproblem (6.5). This ¢; is
either direct solver or iterative solver. Now we list several possible choices of ¢; as

the examples,

(a) #; is a director solver for the ith problem, i.e.

and A,

[fwl
Il
;S—
—
=}
P —
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(c} Let 3;be the maximum eigenvalue of 1;1,:,1-, Then {i = ¢;1 is defined by

wim = (3 Auge — tidef)

1<5<p

(d) Let A; = M, — N; where M; is an invertible matrix. Then {i = ¢

g =o+ M- Y Agz)

1<55p

Let’s distribute the computation on the MIMD machine with p processors. Each
processor is assigned to solve one subproblem (6.5). Denote N as the whole positive
integer set. If we let all processor keep on calculating by using the most recent
available data from neighbour processors, then we have following asynchronous
Schwarz methods:

Chaotic Relaxation Schwarz Methods:
Let @) be a given initial guess vector. The vector sequence {@®)} will be defined

by the recursion

(k+1) sy {k) sk
it = g, P, )
' g if i € J(k)
m£k+1) _ $fe(k) +Wi(5E¢(k+1) _ mf‘(k))
(6.6)

Y

zf ) = ¥ ifi ¢ J(k)
~ (k1)
641) = (4, ok
where {J(k)}, .\ is @ sequence of nonemply subsets of {1,--+ ,p}. In fact, J(k) is

the set of subvectors to be updated at step k. Here,

S = {s1(k), -, 5,(k)}

180



is a sequence of elements of N¥ with the following properties:

si{k)<k VkeN Vie{l,.--,p}h

lim s;(k) = 00, Vi€ {l,--,p},

k—o0

¢ occurs infinitely often in the sets J(k).

Such procedure is called chaotic relazation Schwarz (CRS) algorithm and identified

by (¢;, 09, J, 5).

6.2 Algebraic Additive and Multiplicative Schwarz Methods

Now we give several special cases of CRS algorithm by selecting the set J(k)
and set S = {s,(k), -+ ,s,(k)}}.
Algebraic Multiplicative Schwarz (AMS) Algorithm
If s;(k) = k and J(K} =1+ k mod (p), for all k, then the CRS method is called
Algebraic Multiplicative Schwarz (AMS) Algorithm.,

Algebraic Additive Schwarz (AAS) Algorithm

When s;(k) = k and J(K) = {1,---,p} for all k, we call the CRS method as the

algebraic additive Schwarz (ASA) method.
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6.2.1 Direct Subsolver for All Sub-problems

We use direct solver for the subproblems in our CRS method. In order to
analyze the convergence factor, we discuss the eigenvalue distribution of iterative
matrix of AMS and AAS methods. Let us first express A as the sum of block

diagonal matrix D, block lower triangular matrix L and block upper triangular

matrix U ,
A=D+Li+0
Here ) i
Ay
D=
i AP:p
0 0 Ay A,
.| Ay 0 .
L = U puin
0 Ap—-lm
i Apll AP:P_l i i O
Assume for k =1,2,--- ,, we define a new sequence y(*) by
[ m:(lk:-—i)p-l-l ]
xhp
| P J

If p subproblems are all solved by the direct solver ¢; with w; = w, the AMS

method can be described in one simple form

Hy+1) = By 4 wf
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where

H=D+wl and B=((1-w)D-wl),
and the AAS method can be rewritten as
Date+t) = (D — wAYa®) + wf,

Then the iterative matrices of the AMS method and AAS method satisfy the

following theorem.
Theorem 6.3 If A;,. =0, for |{ — 2j| > 2, then
(i) The iterative matriz of the AMS method satisfies
MHAB) €MD 4+ wb) (1 —w)D —wl)}

and

MDD 4 wl) (1 = w)D — wl}\ {1 - w} C A{H1B}.
(it} The iterative matriz of the AAS method satisfies

MDD - wA) € MDD —wA)},

and

MDUD —wA)}\ {1 —w} C MDD - wA)}.

Here the block diagonal matriz D, lower triangular matriz L and upper triangular

matriz U in the sum expression

A=D+L+U
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have the forms:

Ay
b= os
A?p—i.?p—l_
0 0 A1,3 Al,prl
Az 0
L= Ay, Ags 0 U= Agp—sap-s Agpsppr |
0 A2p—3,‘2'p—1

_Azp—m A2p—lﬂp—3 0_ 3 0

where
A1,23'—1 = A1,2j—1 - A1,2A2_,3A2,2j—1 for 1<j5<p,
Ai.’p—-lﬂj—l = Azp—1,2j—1 - A’prl,2;0—2A2—p1_2,gp_zAﬂp—Z,Zj—l fOT 1 <7 <p,
and for 1<t <p, 1<j7<p,
A2£—1,2j—1 = Agi195-1— A2£—1,21:—2/42_51_2,25_2‘42{—2,23'—-1 - Azi—1,21‘A§52iA2i,2j—1-
Proof Suppose that A € MH1B} and i is the corresponding eigenvector, i.e.

H-1Bi = Mi. So Bit = AHii. Let v = (u?,-+

T, ,ufp_l)T be the vector defined by

the subvectors of &t Then, we have
D 4 wh)i = (1 —w)D — wl)s.
Hence, A € AM{(D +wL)"1((1 —w)D — wl)}. Thus,

MA-B) €MD +wl) (1 — w)D — wlh)}.
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Let A € M(D+wl) ({1 —w)D —wl)} and t be the corresponding eigenvector,
i.e.
AMD + wh)i = ((1 - w)D — wl Y.
Now we construct an eigenvector @ of H-1B from this eigenvector i. Let the sub-
vectors of i be defined by the corresponding subvectors of . The other subvectors
of i are uniquely determined by the equation Mt = Bil, if A # 1 —w. It follows

that \{fI-*B}. Thus,

MDD +wl) (1 —w)D —wlD}\ {1 —w} CAMH1B).

Remarks: It is obvious that, the larger the dimension of Ay, ,; is, the smaller
the dimension of A is. Then, the small dimension of A usually implied that the
specttum of the matrix (D + wl)~1((1 — w)D — wU) is small. Hence, we can
conclude that, the larger the overlapping is , the quicker the method converges.
The assumption of Theorem 6.3 implies that the matrix A4 is not too dense.

We rewrite some of the block submatrices of A as follows:

AO,O AO,l A2p—1,2p—1 A2p—1,2p
Al,l = ; Azp-l,zp—l = )
Al,O Ai,l A2p,2p-—1 A2P 2p
A2p—1 0 A?p-—l,l AO 2p-1 AD,2p
AQp—l,l - 3 A1,2p—1 - i
AZP 0 A2p 1 A1,2p—1 A1,2p
AO t — ™ A?p—l,t
Al,i - > Az,l = (Ai,O: A1,1) A2p—~1 % 3
Al,il Azps"
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forl<i<2p—1,andfor 1 <2< 2p—1

~ - g gy
Ai,ap—1 = (Ai,2p—11Ai,2p) Uy = Uop.1 =

Uy U’!Zp

After these rewriting of those sub-matrices along the boundary of matrix A, we
can obtain the following theorem, which requires less zero sub-matrices in its as-
sumption. The proof of this theorem is very similar to that of Theorem 6.3. So

the proof is omitted.

Theorem 6.4 If
Ajg; =0 for s - 27| = 2, Aip=0 for2<:1<2p

and

then
(i) The iterative matriz of the AMS method satisfies
MHAIBY C MDD +wl)=H((1 —w)D — wl)}
and
M(D +wb) (1 —w)D —wil)}\ {1 —w} € MA-B).
(1t) The iterative matriz of the AAS method satisfies

MDD - wA) C MDD —wA)},

and

MDD —wA\ {1 =w} CA{D-Y(D —wA)}.

186



Here the block diagonal matriz D, lower triangular matriz L and upper triangular

mairiz U in the sum ezpression

A=D+IL4+T
have the forms:
Al,l
" Aa,a
b=
| ‘L.i2p—1.2p—1 1
0 0 /‘11,3 Alﬂp—-l
As; 0
L= As,i /is,a 0 U= ‘zii’p—5,2p—3 A2P—5-2P"1 '
0 A2p—3,2p—1
] AZp—l,l Azp—l,zp—a 0 0

where, for1 <i¢ < p,
Al,zi—l = fi1,21‘—1 - AI,GAE})AO,%_—I - Al,zAE,éAZ,?i“l’
fizp—mi—l = ‘;12;)—1,21.'—1 - Azpu,zpfi{pl, 2p/12p,2i—1 - Amo-1,2p—2A5;—2,2p—2A2pw2.2i—1?
and for2 <i<p-—1, m=1or2p—1,
fzim'mi,m = AZi—l,m - Azi—l,2:‘—2142_,{2,2,-_2;124'—2,111 - A‘Z‘iml,%Az_;,lgi}i%,m'

From Theorem 6.3 and 6.4, we established the eigenvalue relation between the

matrix A and A or A. In order to obtain the convergence factors of the AMS
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method and AAS method, we further discuss the relation between A and A, as

well as between A and A in the following lemma.

Lemma 6.1 Suppose that

Ai,Zj = (} and Azj,i =1{ fO'f' |'L - 2_7‘ 2 2,

Then, we have the following resulls:

(i) If A is symmetric, then A is symmetric.

If A is positive definite, then A s positive definite .

(i) Assume, for2 <i<2p, A;o=0, Ap; =0,

and for 1 <1< 2p—2, A;,,=0 Ay ;=0

]

If A is symmetric, then A is symmetric.

If A is positive definite, then A is positive definite .

(iii) If A is an M-matriz, then A is an M-matriz.

(iv) Assume , for2 <i<2p, A;p=0, Ag;=0,
and for | <i<2p—2, Ay =0 Ay;=0.

If A is an M-matriz, then A is an M-matriz.

Proof Since the proof of (ii) and (iv) is similar to that of (i) and (%), we only
prove (i} and (ii) here.

(1) Because A;,; =0 for |t — 25| > 2, it is obvious that A is symmetric.
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bT M - _ p 1
Fromul Au=37F. ul. Agi _1,25—1Ug;_1, we let

. -1 . .
Uy = _A2i,2{(A2i.2£—1u2£—-1 + Azi,21'+1u2i+1):

and construct a vector u by putting these subvectors iy, _; and uy; according Lo the

order of their index. Then, for this new vector u , it is easy to see that

2p—-1
i — T
u Au E u 21—1 23"“1“23 1= Z u; A‘tJ 3
’J =1 ,J"‘"’l

Hence, the positive definite of A implies the positive definite of A.
(iii) For any
b= (bf7bga ' ,bg;, 1)T > 0;

there exists a vector U such that Au = b. Let u be a vector whose subvectors are

defined from the vector of u, and the solutions uy; of

A gitly; = —(Agigi-atiaicy + Agigiprtizisr )
Then this new vector u satisfies

Au = b where b= (bT 0,57,0,--+,0,57 7.

Vg > Yop—1

Since A=l > 0, and b > 0, it follows that u = A-1b > 0. Thus, A~! > 0. Note
that A is positive definite. So the diagonal elements of A must be positive. Now
we prove that the off-diagonal elements offi are negative. Let t be the vector that

only one component of U is one and the other components are zero. Let

Au=b where b= (BT b7, ... |IT T,

129077 Yy
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and

Agigitin; = —(Agi gi1liaicy + Agigipitizip)  for1<i<p-—1.

Because Ag; g;_yUg; 1+ Agigiyiteipr < 0 and A{,}fz,- >0, we have uy; > 0 forl <1 <

p— 1. Then a vector u is defined and Au = b, with b= (E'{,D,bg’, 0, ,O,ég‘p_l)T.
From this equation, we can obtain that the component of b corresponding to the
nonzero components of i must be strictly positive and other components of b are
negative. Hence, the off-diagonal elements of A are negative. Then A is an M-
matriz.

Remarks: By using the Varga’s results [68], we can use the spectrum p of the

block Jacobi iterative matrices of A and A to get the optimal

2

This choice makes the convergence factor A = w — 1 minimum. Since p < 1, we

prefer to choose 1 < w < 2 in AMS and AAS methods in practice.

6.2.2 Iterative Subsolver for All Sub-problems

In this section, we assume that all subproblems are solved by iterative methods.
We write the matrix A as the sum of diagonal matrix D, lower triangular matrix

L and upper triangular matrix U,

A=D+L+U=D+C,
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i L1,1
Dl,l
A2,1 L22
D= L=
D2p—1,2p—1
A2p—1,1 A2p—1,2p—2 sz—1,2p—1
and ) -
U1,1 A1,2 Al,Zp—l
Usps
U=
A2p—2,2p—-1
U2p—l,2p—1 ]

Then, the matrix A has a corresponding decomposition denoted as,

A=D+L+0=D0+¢,

where
[ . L1,1
D1,1 - N
N A A2,1 L2,2
D = L e ;
D pr | - ~ A
Ap,l »p—1 Lp,p i
and i i
Ul,l A1,2 Al,p
. U2,2
U=
Ap—l.p
PP i
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Here we let

A Dl,l I D2p~—2,2p—2
Dl,i = D,,=
D,, Doy 1951
A Ll,l A L2pw2,2p—2
L= Lpy=
Arr Lo Aoy 1252 Lap_1,2p1
. Uip A N Usp—2.2p—2 Asp_22p—1
U, = =
Uz Uzp—1,2p1
Do 29i2
D; = Dy 12i00 ’
D21’,2z
Loi22i-2
Li= A2i———1,2i—2 Lo;_q19i-1 ?
Agigiia  Aginicr Loga
and i )
Usicagi—z Azi—22i-1 Asi2i
7. = for2<:<p-1.
Ui Usic1i-1 Agici i <e<p-1

Usi 2

Suppose that p subproblems are solved by using point Jacobi iterative method

with w; = w for ¢ = 1,--- , p. Then, the AAS algorithm can be written in the form:

D) = (D — wA)a®) 4 wf.
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The AMS method can be represented by

(D + wl)y®+) = (D —w(D + T))y® + wf.

Theorem 6.5 Suppose that D, ; are invertible fori=1,--- ,2p—1. Then we have
MDD = wA)} = MDD — wA) (UL MDDy — wAzi9)).
Proof We first show
MDD — wA)} © MDD — wAYN (UL MDZH (D — Az}
Suppose that A € M{D-1(D —wA)}. and i is the corresponding eigenvector, i.e.
ADi = (D — wA)i.
If ug; # Gy, for some 1 <1 < p—1, then we have
A€ MDDy~ wAgii)}
If ug; = Uy, forallt=1,--- ,p—1, then we have
Ae MDD —~wA)}.
Therefore, we already show that
)\{b_l(b - wA)} € MDD - WAYHUILL M DG (Dyg; — w Az 2i)})-
Now we prove that

MDD - ""’A)}(Ufﬂ/\{Di}l(Dz{ —wAy;2)}) C /\{_D"I (f) — wﬁ)}
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Assume that
A€ MDD —wA UL MDDy — wAsi2:)})-

If A\ € MDD — wA)} and u is the assoctated eigenvector, i.e. —ADu+ (D —
wA)u = 0, then we construct an eigenvector i off)—I(fmefi). from the eigenvector
u through letting ily; = 1y; fori=1,--- ;p—1. If X € (U, M{(D3 (Dg; —wAy; 20},
and A ¢ MD-1(D — wA)}, then an eigenvector i of matriz D-1(D — wA) is

constructed by the following procedure. Assume thatl vy, is the solution of equation
—ADgiv9; + (Do — wAz; 9i)v5: = 0,
i.e. vy is the eigenvector of D3} (Dy; — wAsy; ;). By solving equation

“ADu+ (D —wA)u=w

= (0T..-. . 0T.woT e T AT ;
where w = (07, -+, 07, wvl Ay g 9, =WU25A2p—1,2v we obtain a vector u. Define
flg; = Ug;+Uy;. The other subvectors of it are defined by iy; = uy; forj=1,--+ ,i—

1,24+ 1.--,p— 1. Then, this it salisfies
~ADii+ (D —wA)ii = 0.

Therefore, A € M D1 (Ij — wA}.
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Theorem 6.6 Suppose that A is an M-matriz,

- 1y -1
{ 0 \
A2,1
D+w
i A2p—1,1 A2p—1,2p——2 0 _)

exists and is nonnegative, and matric

A1,1 A1,2p—1

A2p—1,2p—1

s nonnegative. Then
At and (f) + wf,)“l
exist and are nonnegative, and
D—w(D+0)
is nonnegative. So the spectrum of the AMS iterative matriz
(D +wl)y (D -w(D+1))
is less than 1.

The proof of this theorem is similar to that of Lemma 6.1.

Let all subproblems be solved by the SOR method with w; =1, =1, -
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Then, the AAS method can be expressed by

~

Lll

+

D+w w1 = (1 —w)D — w(L + U))u® + wf.

Lp}p N

Hence, the corresponding iterative matrix is

~ -y -1
Ll,l

J=|D+w (1= w)D —w(l +0)).

L

My

The AMS method can also be written in the simple form:
(D + wh)y®) = (1 —w)D — wl)y® +wf,
with the iterative matrix

$ = (D +wl) (1 —w)D - wh).

Theorem 6.7 Assume that A is an M-malriz,

" a9y —1

Lll

1

D+w

L2p—1,2p—1
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exists and is nonnegative, and

0 \
Azq
(1-w)D~w — wlf
i Agp11 Agp1p-2 0 }
is nonnegative. Then
_ oy -1
Lia
A-1 and Diw
L'Pl?

extst and are nonnegative. So the spectrum of the AAS iterative matrix J is strictly

less than 1.

The proof is similar to that of Lemma 6.1.

Denote

M=(D+wl) (1 —w)D —wl),

and

My, g = (Dygjpi + wh 2) 7 (1 ~ w) Dyy gy — wls; o).

Theorem 6.8 Assume that all D;; are nonsingular. Then, we have

MSY = MM} U (U M My 0:))
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Proof We first prove that

MSY € MM} U (Ui MMy 5:)).
Assume that A € M S}, and 1 be the corresponding eigenvector, i.e.

Mi=8% MDD +wl)i = ((1-w)D —wl)i.

If ug; # tigy for some 1 < i < p—1, then A € MMy 5} If uy; = @ty for all
1<:i<p—1, then A € A{M}. Hence,

MSY € MM} U (VI M Myi5)).

Now we show that

MM} U (U A{My;0:}) € M5}

=1
Let X € M{M} and u be the associated eigenvector, i.e.
A= Mu and MDD +wlu=((1-w)D ~wlju.

Define it by letting tig; = uy;. Then, this U is the eigenvector of S and A\t = Si.
Thus,

MM} € A5}
Assume A € M{My; 5;}, A ¢ M{M}. Denote vy; to be the corresponding eigenvector,
L. Avy; = My, 0vs. We solve the following equation and get a solution vector u

from

(AM(D +wl)+wU + (w—1)D)u = w,

198



where w = —dw(07,--- 07, 0T Ag; 1y iy s 0L Ay, 3 0:)T. Since X & MM}, this

problem has only one solution. We define a new vector tildeu by letting

Vg + Ug; for3=1

Usj forj #1

This 1 satisfies At = Si. Hence, i is the eigenvector of §. The result of the theorem
follows.

Remarks: From above theorems and lemmas, we conclude that the conver-
gence factors of the AAS method and AMS method are almost the same as the
block Jacobi method and the SOR method. The reason is the subsolver provides
only local information. So it is crucial to introduce a kind of coarse problem to

provide the global communication, while designing DD methods for these problems.
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