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1. Introduction

Based on a special dependence of the free energy on the temperature and phase
variables, taking dissipation into account, Colli and Hoffmann {4] proposed a highly
nonlinear system which describes the evolution process of materials which can pass
through several phase transitions. Such problems may arise from the irreversible
phase change processes [1,4], supercooling and superheating effects f15], and the
evolution of shape memory alloys [3,5,7,13]. A precise formulation of the related
initial boundary value problem was given there in a quite general framework. In
this paper, we propose a fully discrete scheme for the numerical solution of the
highly nonlinear evolution system. Our main work is to derive the error estimates
for the finite element approximation. We introduce the Green’s operator and its
finite element approximation to overcome the lower smoothness of the unknown
variables of the system.

Now we formulate the nonlinear evolution model developed in [4]. Let the
considered material occupy a bounded domain  C RY(d < 3). The variables
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representing the state of the system are the absolute temperature @ and the internal
variables 1, X2, * - » Xm(m > 1) associated with the phase transitions. For instance,
Y1,X2," -, Xm may stand for the local volumetric proportions of the m different
phases shown by the material, as in the Frémond model for shape memory alloys,
see [3,5,7,13]. Set x = (x1,Xz. " "»Xm). Let V = HY(S) related to the variable
8, suppose Dirichlet boundary condition is assigned here for # and X = (L2 (Q))m
related to the internal variable x. By (-, ) we denote the scalar product in X, and
by (-,-} either the duality pairing between H'(Q) = (H3 (Q))' and H}(Q) or the
scalar product in L2(Q). We use ||-||,, and |- |,,, m = 0,1,2 to denote the norms
and semi-norms of the usual Sobolev spaces H™(Q2) = W™?(Q2),m = 0,1,2, and

1/2
I Ny = Il g1y and Jlullx = (u,u)™"", foru € X.
Next we define some opertaors and introduce some notations used for the formu-

lation of the problem. L : H}(Q) — H~'(Q) is a linear, continuous and symmetric
operator satisfying the coerciveness condition

(Lv, v) > C|p|l?, ¥ v € H{R).

By al:, -) we denote the bilinear form a(u, v) = (Lu, v), Vu,v € Hj (), and define
the norm ||ul|, = /a{u, u),foru € H}(Q). Then we see that there are two positive
constants ¢, and Cy such that

o lull} < el < Ce llulls. (1.1)

By Iy we mean the indicator function of a nonempty closed convex subset K C X,
Le. Ix(x)=0,if x € K, Ix(x) = +oo, if x ¢ K. It is known that Ik is a proper,
convex and lower semicontinuous function and its subdifferential Ik is a maximum
monotone operator in X = (Lz(ﬂ))m. Let f be a given heat source distribution
function satisfying

FeWwh(0,T; HY(Q)). (1.2)

Further, we introduce three nonlinear operators A(t,6,x), D(t,6, x) and B(t,8,x)
mapping [0, T] x H}(Q) x X into H~1(Q), L*(2) and X, respectively. As in [4], we

assume that
A is continuous and D(-, 0, 0) € L*(@7), B(,, 0,0) € L*(0,T; X) (1.3)

with Q¢ = Q x (0,t), 0 <¢ < T and that there exist two positive constants c4, Ca,
two nonnegative time functions

Mp, Mp € LQ(O,T) (1.4)

and three others
Fs€ HY(0,T), Fpand Fg € L'(0,T) (1.5)
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such that for any v,w € H} (), A, € X and for a.e. t,5 € (0,T) one has

(A(t,v,A) — A(t,w, \), v — w) > eallv — w|]§ (1.6a)
[A(t,0,3) — Alt,0, w2 < Callh— il (1.60)
ID(t, 0, %) = D(t,w, m)lly < Mp(t)(Jlv — wilo + 1A = #llx) (1.6¢)
1B(t,v, %) — B(t,w, )l x < Mp(t)(llv —wlly + 1A = pllx) (1.6d)

1At v, 3) = Als,0, Mg < [Fa(t) = Fa()l(olly + IMx +1)  (L.6e)
ID(t,v,A) — D(s,v, Ml < [Fp(t) = Fo(s)|(llvlly + [Mx +1)  (1.65)
IB(t,v,)) — B(s,v, Ml x < |Fa(t) = Fp()I(lvll, +Mx +1)  (1.69)

Finally we assuine

A(0, -, 0): H(92) — L*() is bounded. (1.7)
and

6° EHS(Q)J XO "—"(X?:Xg:"',X?n)eX- (18)

We are now in a position to state our problem

Problem (P): Find 6 € H'(0,T; L3(Q)) N L= (0, T; HA(N)),x € H'(0,T; X),n €
L?(0,T; X) such that 6(0) = 8°,x(0) = x* and for ae. t € (0,T)

L A(8,006),x(8)) + L0) = D&, 0(2),x(0) + () n HH@)  (L90)

%x(t) +n(t) = B(t,6(), x(t)) inX (1.90)
n(t) € BIx(x(t)). (1.9¢)

About the solutions of Problem (P) we have

Lemma 1.1[4]. Under the assumptions (1.1)-(1.8) Problem (P) has a unique so-
lution (8, x,1).

Remark 1.1: Our results of the paper are easily to generalize to the case of
Iy replaced by some other more general proper, convex and lower semicontinuous
function ® as in [4]. But for important practical problems, we often have ® = Ik,
e.g., all three problems described in [4, Section 2}.

Remark 1.2: If the absolute temerature 6 is assumed with the third kind of
boundary conditions, the above space V = H{(f) is then replaced by H 1(Q), it
does not affect our results.

2. Finite element method



In this section we construct a fully discrete approximation of Problem (P). We shall
use backward difference scheme to discretize the problem in time. Let M be a
positive integer and 7 = T/M be the time step size. For any n =1,2,--- , M, we
denote t* = nr and J® = (#*71,4"]. For a given sequence {u}M,, C L*(Q), we

define
1 n—1 1

pun = T anm—/ w(@)dt, n=1,2, -, M.

T T

For a continuous mapping u : [0,T] — L*(Q), we define u™ = u(-,n7), 0 < n < M.
In space we use the piecewise linear finite element approximation to Problem
(P). For convenience we assume the domain {} is polygonal (n < 2) or polyhedral
(n = 3). Suppose now for each parameter & > 0 we are given a family of quasi-
uniform triangulation 7;, = {A;} of 2, see [2]. We define the finite element space

Vi = {v € C(Q);v |a, is linear, for all A; € Th}

and
VP = Vi N HyQ), Kp=(W)"NK.

Before giving our discrete problem, we first define three discrete projection op-
erators. P is a projection from the space X = (L2(Q)) ™ into the finite dimensional
closed convex subset K}, defined by

(th,b,’t)h - Phl,b) Z (1/), Vp — P}ﬂ/)), Vopb € K, veX (2.1)
and Qp, T, are L?-projections from L*Q) into VY and Vj, respectively:

(Qh ip} vh) = (¢7 Uh), v vh € Vi?a iib € LZ(Q): (2.2(].)
(Th ¢? ’Uh) = (QS’ 'l)h), V Up € Vh; 96 € L2(Q) (22b)

The projection operators Qp, P, and T have the properties
Lemma 2.1. For any v € H}(Q), ¢ € X, and ¢ € H'(Q) we have

lv — Qroll, < CA o1, s =-1,0,1, (2.3a)
6 — Tnoll, < Ch*|I8lli—y, s=0,1, (2.3b)
16 — T bl zrrgayy < C R lI8lli_ys s = 0.1, (2.3¢)
| — Pa 'ﬁ”x == %ilel%h |l — ¢hi|x- (2.3d)

Proof. (2.3d) follows immediately from the definition of P, while (2.3a) with s =
0,1 can be found in {14, 16], and the case s = —1 can be proved directly from the
dual argument and the result (2.32) with s = 0. Analogously, we can show (2.3b, c).
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Now we can state our discrete approximation to Problem (P) as follows

Finite element problem (FEP): For n = 1,2,---,M, find 6} € V},
x% € (Va)™ such that

) = Qh901 X?I, - (ThX(IJa v !ThXEn): (2'40‘)
1 _ e
(0. AT, vp) + a(B2, vy) = ;f (D, 0771, x21), vn) dt
Iﬂ
1
+ ;] (F(t), va)dt, Yor € Vy, (2.4b)
ITI
1 - n— : m
O-xt +p = ;/ B(t,07 Loy dt, in (Va)™, (2.4¢)
ITl
m € Ok, (x%) (2.4d)

where A7 = A(t",07,x}), and I, is the indicator function of the closed convex
subset Kp.

Due to the lower smoothness of the solution (8, x) of Problem (P), see the
definition of the problem, we are not able to expect the I L_norm error estimates,
e.g., as in [8,9]. In this paper, we shall give the L?-norm error estimates for the
absolute temperature § and the internal variables x;,¢ = 1,2,--,m. In order to
reach the purpose, we introduce here Green operator G : H —HQ) - H(£2) defined
by

(G, v) = (b, v), Y € HTH(R), v € HI(Q) (2.5)

and its finite element approximation Gy, : H~ () — V2 defined by
a(Gh ¥, up) = a(G ¥, vy), Vi € H! (), vi € V;? (2.6)

We assume in the paper that Green operator G is regular, referring to [2], that
is, for any 1 € L%()) we have Gy € H*(Q) and ||Gipll, < C|¢lls- Under this

assumption we have [2, 12]
Gy — Guipll, < CHHIYIl_,, 0< s <1 (2.7)

where || -], and ||-||_, are the norms of fractional Sobolev spaces H:(Q) =
[H1(Q), LX)} and H™7(Q2) = [L*(Q), H~Y(Q)],, respectively, see [11].
It is easy to check that there exist two constants Cy and C; such that

(G, Gud) < CallblI%y, Collbll”, < (G, G) < CulllZ;. (2.8)

In the following sections, the letter C is always used to denote a positive con-
stant, which may possibly be different at each occurrence, but which depends only
on the given data and is independent of the time step size 7 and the mesh step size

h.



3. Existence, uniqueness of the discrete solutions and
their a priori estimates

Qur purpose of this section is to demonstrate

Theorem 3.1. Under the assumptions (1.1)-(1.8) there exists one and only one
solution (8%, x*) of Problem (FEP), for each 1 <n < M. Moreover, we have the a

priori estimates

M M
s ORI+ s, B+ 7 D 10nxili + 7 200630 < ©, (3
=

nw=1

max 475 < C. (3.2)

Proof. By the definition of subdifferential we know (2.4¢,d) is equivalent to the
variational inequality: Find x} € (Vi)™ satisfying

1 n— N
<3rX}T, Ah—xz>+IKh()‘h)“IKh(Xz) 2 ;/I (B(tigh lvxh I)SAh—X;:)dt:
¥ € (Vi)™ (3.3)

Tt is easily seen that (3.3) has a unique solution x} € K4, by the standard variational
inequality theory, see Glowinski [6]. Thus 5} is also uniquely determined by (2.4¢).
The same argument as in [4, P.286] gives the existence of a unique solution 6} in
(2.4b).

Now we prove (3.1) and (3.2). Letting v, = 6% — 63" in (2.4b), summing up
forn=1,2,--,k < M and using (1.6a), one obtains that

k
" 1 2 1 2
Tea Y 118-63 1l + 516k K. — SHERIL,
n:l 2 2
k
< S O(ATTL 6 G — AR 6T xR ), O-6R)
n=1
k
+ (A, 0 XY — A 6,7 xR, 0-67)
n=1

k k
1 - n— n— n
+Z;f1 (f(t), 63 — 6% l)dt—l—ZfI (D(t, 671, X271, 8,67) dt
n=1 " a=1v1"

=: (D1 + (D2 + (D3 + (Da. (3.4)

By applying (1.5), (1.6e) and Young’s inequality, the term (I); can be estimated as
follows

k
@] < S N0-07 1, 10y + i~ ix + DIFACE™) — Fa™ )]
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1 n dFA
< gcAana 72 + C Z 16215 + N~ llx)li [ (3.5)
but from (1.65) and Young’s inequality, we get the estimation of (I)q
CA k
[(Dz| < —CATZ||3r9hl|o ” Tz 18- xh1I%- (3.6)

By using (1.1), (1.2) and Lemma 2.1, we obtain for the term (I)s that
k
0] <13 7( [ 0o et~ [ o, )
1 . 1
<2y [ o el + 2| [ G, e

k—1
HEY [ e+ - s

k—1 tn-[—i
< c(le"], + uei;:nl)nfum PP i1 N T
n=1
<C+- "2 :
O+ Lokl + 3, max R (37)
The term (I)4 can be treated by using (1.3), (1.4) and (1.6¢),

(D4l < Z 10.631, | [1D.0, 03l + Mo(I8E o + i~ 1))

<C+ CAT Z |\o-0% ”0 + CZ ”MD”Lz(In)(”BnMI”g + HXh—l”x) (3.8)
n=1

Thus it follows from (1.1), (3.4)-(3.8) and Lemma 2.1 that

k

ny2 , 2C4 a2
CATZIIBG 8+ SIehE <O g max IR+ T el

ne1y2 112
+CZ(|l9h R+ g ) (Ml s ey + 1dF At 1) )- (3:9)

n=1

Next we turn to the estimation of 7. In view of the definition of Ik, it is
immediate to deduce from (3.3) that the solution x7 of (2.4c) solves the variational
inequality: x} € K3 satisfying

(O3 X — ] (Bl 00 i), XE — ALY dt, YL € Ko (3.10)
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By substituting A} = X;:_l € K, in (3.10), adding it to the inequality

1 ni2 1 —_1u2 —
Sl = 5 I < O i =X )

and then summing the resultant inequality for n = 1,2,---,k < M and using
(1.3),(1.6d) one comes to

k k k
n 7 2 n n—
S N0exillx + Il — Ixallx < 27 STl + Y 2]} 1B, 6 Xm0 dt
n=1 n=l n=1 "

k k
K3 n— 2 n— 2
<C+2r Y x5k +4 2 IMBILaam 18R llo + lIx3 x)- (3.11)

n=1 n=1

Now we multiply (3.11) by constant %A«, sum it with (3.9) to obtain

k
1 n 3C4
ex :stZua,ahug whn +—TZH6rthI +_HXh”X
2

1

<C+Cr ; k% + 5 2, 1615
k—1
+ 03 an (U671 + Ixl%) (3.12)
n=1

Wlth Gy = “MD”Lz(I") + HMB“Lz(I"’) + Hd “Lﬂ(Iﬂ)’ and therefore

dFAn <c, (3.13)

Z an = |Mpliga,r) + IMalaom 17571 L, 0 <

n=}

that is,
er < C —1- max €n + C('r Ek en + kg_l an+16n)
- 2 15nsk n=1 n=1

where we have used Lemma 2.1, By taking the maximum of e, between 1 <n < k,

we s5€€
k

er < C(l + 7 Z en + Zan+len)

n=1

Thus (3.1) follows from Gronwall’s inequality and (3.13).
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(3.2) is a direct consequence of (3.1), (1.6¢), (1.7) and the following equality
= (A", 67, xp)— A", 07, O+1A(", 67, 0)—A(0, 67, 0)]+A(0, 67, 0). (3.14)
So we have completed the proof of Theorem 3.1.
4. Finite element error estimates

We devote this section to derive the finite element error estimates of the problem
(FEP) defined in Section 2. Let (x, ) and (6}, x}} be the solutions of (1.9a,b,¢)
and (2.4a,b,c,d), respectively. Set ey = A" — A} = A(t™, 8™, x™) — A", 0%, x%),
ey = 0" — 6 and e} = X" — xj-

We first integrate (1.9a) over I™ and take a test function Ge} € H(Q) to get

(8, A", GeR) + Ta(f", GeR) = (", Gel) + f (D, 6(8), x(£)), Gely) db. (4.1)
Iﬂ
Letting vy = TGre™ € V) in (2.4)) gives

(0 A, Grely) + Ta(fy, Grely) = T(f*, GreR) + f (D(t,677",x3™1), Grel) dt.
I'n
(4.2)
Then subtracting (4.1) from (4.2) and summing the resultant equation for n =
1,2,--+,k < M implies that

(1)1 + (I0)2 + (II)s

k k E
=73 (O, Gen) +7 Y (B — 67, Gel) + 7Y a(8h, (G~ Gu)el)
n=1 a=1 n=1
k k 3
= S (8 A7, (Gh — G)eR) + 7 O (7, (G — Gh)e)
n=1 n=1

k
+3° [ (080, x0), 6e3) = (P07 07, Grey)| dt
n=1 "
—: (III); + (III); + (TID)s. (4.3)
Next we estimate (IT);, (IIL);, ¢ = 1,2,3 in (4.3), one by one.

Obviously, from the definition of G and Gy, we know (II); = 0, but for (1T)4
we have from (2.5) that

k
1 n 1, 4 12 1 2 1 2
(= Y Glael? - 516e 17 = FIoehle — 516l 49
n=1
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By using (1.6a) we deduce that

k
(D), =7 (A" — A},6" —6})

n=l
k k
:TZ(AH_A(tna XD 63)+TZ(A“— }:,éﬂ_mgn)
n=1 =1
k
+TZ(A(tn’ maX") — A", 05, X%), €5)
n=1

k k
>71ea  lledlla+1 > (A" — AR, 6" —67)
n=1 n=1
k
+T Y (AR, 67, x™) — AR, 65, xR, €5)
E
= car 3 ez + (D} + (I3, (4.5)
=l
From (3.2),(1.60) and Young’s inequality we get
] < TZ 4" - Ay 6" ~ 87, < 3 > ] ezt < 07 @46)
=1
and

k k
@3 < rVER Y Ieglc el < gear 3 el + A Z gl @)

Hence from (4.3)-(4.7) we have derived

k k 3
1 2 1 n 1 2 Cyu n
SIGehls + Sear Y lledlly < Cr+ 5lGe, + 57 2 lleklly + (D (48)
n=1 n=l =1

Now we analyse (III)1, (III); and (III)3. For (III); we rewrite it as follows

k
(s =3 [ (D06, - D6 3™, Gei)
n=1 ™

k
+2 f (D67, (G - Gu)el) di
=: (TID)3 + (III)3. (4.9)
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By applying (1.6¢), (1.1), Lemma 2.1 and Young’s inequality we have
k
(1) < Z/I 1D(t,8,x) — D(t, 63, x5~ M, Gekll, dt
n=1 "

k
<O N6 [ Moo=l + x = X" )

n=1

k
£ OGN [ Mo (les ™l + Ikl

k1 k k—1
- 2 n |2 1 2
<Ct+Cr E lexlly + € E |1MD|!L2(I")HG€A”a+;CATEIHBSHO’

(4.10)

while from (1.3),(2.8),(2.7),(3.1) and (1.6c) we obtain
k
gz < Y [ 1D G, I - Gaeily d
n=1 ™
k
<CohY el [I [D(t,0, 0o + Mp (B8l + l1xi ™ 0]
n=1
k
< ChVT 3 |IGe], (D(,0,0) a(rmz2cay + 1Mbll o2 )
n=1
k

<Ch+Cr Y ||Gekll. (4.11)

n=1

So we have deduced from (4.9)—(4.11) that

k k—1
|(ID)s] < C(R* +7)+C Y (v +[[Mp 32 my) IGeLlls +C > leml%
n=1 n=1
1 Sy a2
+ 1CAT Z legllo- (4.12)
n=1

The term (III); can be estimated from (2.5), (2.6), (2.7) and (3.2) as follows

k k
(D) =7 > (8- AL, (Gh — G)el) =7 ) a(GO- A}, (Gh — G)el)
n=1

n=1
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k
=73 a((G — Gu)o- AL, (Gh — G)e})

k
<01 Y (G - Gr)o- ARy |(Gr — G)ellly

n=1

k k
< Cr k3|0 ARl lello < O D1
n=1

n=1

< ChE/r. (4.13)

One can estimate (I11); from (1.2), (2.7) and (3.2) that
k
(W < [ IOl 1E = el
n=1 i
k
<CrY el [ 1Ol

k
gchzf IFY_, dt < Ch. (4.14)
n=1 I

Therefore we have obtained from (4.8), (4.12)-(4.14) that

k k
1 2 1 n 1 n
SNGehls + gear D Neslls <5HGehll, + O+ B3 /r) + Cr Ikl
n=1

n=1
k
+C Y (r+ 1 Mblizecmy) IGesll (4.15)
n=1

In the sequel, we turn to the estimation of e}. Firstly we integrate (1.95) over
I, multiply the resultant equation in both sides by 771X — x™) and use (1.9¢) to
obtain

(B x™ A= x") + Ix(N) - “}_ /,rn Irc(x(t)) dt
> %ff (B(t,8(t),x(£)), X — x") dt + % L(n(t), X"~ x(t)) dt, VA € X. (4.16)

By means of the definition of Ik it is easy to check that (4.16) is equivalent to the
following variational inequality: for a.e. t € I, x(t) € K and for each A € K

(B,x™ A= x") = 1 /In(B(t,f’,x), A—x")dt+ %f (n(t), x™ — x(t)) dt. (4.17)

T n
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But from (3.10) we know x? solves the following variational inequality: xj € Ky,
such that for any A} € K,

1 ! 17— n— n n s A 1
<8,-X}:, Af — X}f) > ;ﬁ QB(t,Hh: I:X}; 1), AR — Xh)dt. (&.18)

Letting A = x7 € K C K in (4.17) and adding the resultant inequality to (4.18)
implies that

1
(Brc 1) < (@ Ve =X+ 7 [ (00, ) = x") e

1 _— T - 1] n
’ —/n (B0, x" = xi) + (B 6, xi ™), i —ap)] d,

T

this leads to

1 1 k k
Slek I = S lelli < 730 A =Xy + > [ (), x(t) — x™) dt
2 2 ney JIm

n=1

k
3 / (B(t,6,x) — B, 0271 x2~1), x™ — xi) dt
=1 ™

k
+ 3 [ (Bo T x - ap)
= (IV)1 + (IV)2 + (IV)s + (IV)a. (4.19)

We evaluate now (IV); — (IV)4, one by one. By Schwarz’s inequality and (3.1) we
get

k 1,k 1
V)| < (O rloaii) (O rlx = xilk)”
=1 n=1
k 1
< Orlixellyagam + € (3o 7IR" = M) (4.20)
n=1

It is standard to derive that
k
Vel <3 [ Il Iot) = x"l e
n=1

k L k 1
<o(3 [ ikt (3 [ btk som a2
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From (1.6d), Lemma 2.1 and Young’s inequality we have

k
V)] < S el [ (1 =+l =3 ) Ma)
n—lk
+30 Nel (e + g ) [ Ma(e)ae

k
< 27 Z el 1Ml L2y (10ell L2 grmp2cayy + lxell p2 (1m;x))

n=1

k
+ V7 3 Neqlly 1MBl e gm (les ™ Mg + 16X M x)

n=1

k k k
n n—1p< 1 n— 2
< Cr? 4+ C Y |[Maljamllexily +CT > e+ goAT D les™ e
n=1

n=1 n=1

k-1 k
1 . n
SCr+gear > leglly +C D0 (r + 1Ml ) ekl (4.22)
n=1 n=1
Finally for (IV)s we obtain from (1.3),(1.4),(3.1) and (1.6d) that
k
V)] < DI = Al [ 1B 8l
n=1

k 1
<3 Vri =l [ [ (b + 18, 0, 015 ]

k 1 k 1
<o (Lri-aE)" sor+o(orle - xlk)"- @29
n=1 n=1
Therefore from (4.19)(4.23) we have deduced that
1, .2 1,402 1 b k 3
Lkl < O Sl + gear 3 el + ¢ (30 R - Xil)
. n=1 n=1
+C (7 + [IMalTaemy) ezl (4.24)

n=1

Adding (4.24) to (4.15) comes to

k
1 2 1 2 1 n 1 2 2
Skl + G hlletgear - lebls < UG Rl + lleklly) + Clr + b4 /)

n=1
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M k

(X0

F O (e = Xpx) T +C Y (r + 1Ml HeZlly
n=1 n=1
k
- 2 N . -
+C > (7 + \Mpligegny) G eilla- (4.25)
n==1

which holds for any 1 < k < M and any A} € K.
By applying discrete Gronwall’s inequality for (4.25), using (1.4), (2.8) and
taking A} = Ppx" € Ky we have demonstrated

Theorem 4.1. Let (x, 8) be the solution of Problem (P) and (x7, 6%) be the
solution of Problem (FEP), n = 1,2,---, M. Then we have the error estimates

M
2 2 2
(max X" = xhllx + e JAQ 07, X7) — A" 6 Xl 7 nz—:;, 16" — &l

< C(r+h+h¥/7)+ C A, 6, x°) — A0, 60, X1 + Ol = xhlx
Mo o 1/2
ro (3 - Pil) (4.26)

n=1

Remark 4.1: For practical applications, we know that the convex subset K is
often the following, see [4, 5, 13)

m
K={x¢€ (LZ(Q))m;x,- >0,i=1,---,m, sz' <1 a.e. on Q}.
t=1
Suppose x” and 8° are appropriately smooth (depending on different concrete
problems), and for the solution x = (xi, -+, Xm) of Problem (P), we have x; €
L? (O,T;Hl(ﬂ)), { = 1,2---,m. For concrete applications, e.g., for the three
problems described in [4, Section 2], it is not difficult by using Lemma 2.1 to check
that

I — 3% = O(k), A0, 6°, x°) — A(0, 63, X)IZ, = O(h?),

M

(3l - Pinly) " = o),

n=1I

The last error relation above is derived by using the following Lemma 4.2 which can
be obtained in the same way as in {10, 14]

Lemma 4.2. For each h > 0 there exists a linear operator Sy : HY(Q) — H*(S)
C C(Q)(d < 3) such that

(i) [1Swolly £ Ch7Yfolly, llv = Svlly < Chlvlls,

15



(ii) 0<Spw<lonQif0<v<1ae onll

since ¥" € K, we see (I, Saxy, HrnSuXm) € Kn with here I, the finite element
interpolate related to V},, therefore from the standard finite element interpolation
theory [2], Lemma 2.1 and Lemma 4.2 we get

m
I£" = Pax"llx < C D I%F — MaSaktllo
=1

< ON (IRE ~ Sufillo + 15a%F — MaSa il
=1

1 m
< S (R|Z, + BAISAERL) < C Y RIEE L
=1

t=1
that is,
M m M /
(el - pusrlly) < o (Sorw Yo Ie) <o
n==1 =1 n=1

From above, we see that the right-hand side of (4.26) has the error order of O(7 +
h+ K?/7).
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