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ADDITIVE SCHWARZ DOMAIN DECOMPOSITION METHODS FOR
ELLIPTIC PROBLEMS ON UNSTRUCTURED MESHES *

TONY F. CHAN ! AND JUN ZOU !}

Abstract. We give several additive Schwarz domain decomposition methods for solving finite
element problems which arise from the discretizations of elliptic problems on general unstructured
meshes in two and three dimensions. Our theory requires no assumption {for the main results) on the
substructures which constitute the whole domain, so each substructure can be of arbitrary shape and of
different size. The global coarse mesh is allowed to be non-nested to the fine grid on which the discrete
problem is to be solved and both the coarse meshes and the fine meshes need not be quasi-uniform.
In this general setting, our algorithms have the same optimal convergence rate of the usual domain
decomposition methods on structured meshes. The condition numbers of the preconditoned systems
depend only on the (possibly small) overlap of the substructures and the size of the coarse grid, but is
independent of the sizes of the subdomains.

Key Words. Unstructured meshes, non-nested coarse meshes, additive Schwarz algorithm, optimal
convergence rate.

AMS(MOS) subject classification. 65N30, 656F10

1. Introduction. Unstructured meshes have become quite popular recently in
large scale scientific computing [1] [17}. One of the main advantages over structured
meshes is the extra flexibility in adapting efficiently to complicated geometries and to
regions with large variations in the solution. However, this flexibility may come with
a price. Traditional solvers which exploit the regularity of the mesh may become less
efficient on an unstructured mesh. Moreover, efficient vectorization and parallelization
may require extra care. Thus, there is a need to adapt and develope current solution
techniques for structured meshes so that they can run as efficiently on unstructured
meshes.

In this paper, we will present some domain decomposition methods, in particular
additive Schwarz methods defined for overlapping subdomains, for solving elliptic prob-
lems on unstructured meshes in two and three space dimensions. These are extensions
of existing domain decomposition methods, constructed in such a way so that, first, they
can be applied to unstructured meshes, and second, they retain their optimal efficiency
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as for structured meshes. These methods are designed to possess inherent coarse grain
parallelism in the sense that the subdomain problems can be solved independently on
different processors.

The theory and methodology of domain decomposition methods for elliptic prob-
lems on structured meshes are quite well developed [7] [14] [12]. It is known, for example,
that to achieve an optimal rate of convergence, a coarse grid solver must be employed
in addition to individual subdomain solves. On a structured mesh, most of the existing
theories and algorithms exploit the fact that the space of functions on the coarse mesh
is a subspace of that on the fine mesh. Unfortunately, this property may no longer hold
on an unstructured mesh. Both the theory and the algorithms need to be developed to
accomodate this fact.

A natural approach is to introduce an appropriate mapping of the coarse space so
that the image space is a proper subspace of the fine space. In this paper, we consider
several possibilities, including interpolation, projection and localized projection. The
use of interpolation is most natural and has been used by Cai and Saad [5], Cai [4]
and Chan and Smith [8]. We believe the use of the other two projection operators in
this context is new. The key step in the theory is in establishing a basic decomposition
lemma corresponding to the stability of a representation of finite element functions on
the fine mesh as a combination of functions defined on the newly constructed coarse
space and the subspaces corresponding to the subdomains. After a brief formulation of
the problem in Section 2, the new coarse spaces and the corresponding decomposition
lemmas are established in Sections 3-5. The additive Schwarz algorithms and the es-
tablishment of their optimal convergence rate are then given in Section 6. Finally, in
Section 7, we apply the local projection coarse subspace method to structured meshes,
thereby improving the algorithm by allowing the amount of overlap of a subdomain
with its neighbors to vary proportionally to its size, while still retaining the optimal
convergence rate. This feature may improve the efficiency of the algorithm in cases
where the subdomains can have large variations in size.

2. The formulation of the problem. In this paper, we consider the following
self-adjoint elliptic problem:

1) =y ey bu=g, o
i,5=1 6‘3:, i B L
. d :
(2) Z ”8 n +au=g, on dfl

where Q C R?(d = 2,3) is a polygon or polyhedron, (a;; (z)) is symmetric, uniformly
elliptic, and is allowed to be discontinuous, b(z) > 0 on Q, oz z) > 0 on 0, and
n = (N, Ny, -, My) is the unit outer normal of the boundary 69

By Green’s formula, it is immediate to derive the variational problem corresponding

to (1) and (2): Find u € H(f2) such that

3) a(u,v) = f(v), Y v € HI(S)
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with

d ' ‘
a(u,v) = fﬂ(%;; aijé%g; -+ buv)d:r: +/anauvds,

flv) = fﬂfvd:q»{—/mgv'ds.

We will solve the above variational problem: (3) by finite element methods. Suppose we
are given a family of triangulations {7%} on {. Let-h = max,czh by, hy = diam 7,
h = min, ¢ kg, p, = the radius of the ball inscribed in 7. Then we say 7% is shape
regular if it satisfies

4 sup max — < o
( ) hp e 0

and we say T* is quasi-uniform if it is shape regular and satisfies
(5) ' E < v ha

with o and v fixed positive constants, see Ciarlet [10], Xu [20]. Let V% be the piece-
wise linear subspace of H(£)) defined on 7* with its basis denoted by {¢}}7.,, and
0O; =supp ¢?. Later on we will use the following simple facts: if 7% is shape regular,
there exist a positive constant C' and an integer v, both depending only on o, appearing
in (4) and independent of A such that for i =1,2,---,n,

(6) diamO,- < Ch,r, VrcC O.;,
(7) card {r € Th; rCc O;} < v

Our finite element problem is: Find u* € V* such that
(8) . a{uh,vh) = F(vh), V vh e Vh,

Because of the ill-conditioning of the stiffness matrix A induced by the bilinear form
a(-, ) in (8), our goal is to construct a good preconditioner M for A by domain decom-
position methods to be used with the preconditioned conjugate gradient method.

As usual, we decompose the domain {} into p nonoverlapping subdomains Q; such
that © = U_,Y;, then extend each subdomain {}; to a larger one Q¢ such that the
distance between A%); and 8% is bounded from below by §; > 0. We denote the
minimum of all §; by §. We assume that 6, does not cut through any element 7 € Th,
For the subdomains meeting the boundary we cut off the part of {2/ which is outside
of (1. No other assumptions will be made on {{;} in this paper except that any point
z € () belongs only to a finite number of subdomains {€}. This means that we allow
each Q; to be of quite different size and of quite different shape from other subdomains.
Throughout the paper, we define the subspaces of V} corresponding to the subdomains

{‘Q:}a t= 1,2,"',}3 by

(9) Vi ={v, € V¥ v, =0o0n N Q}.
S



It is well-known that we have to add some global coarse problems in order to get
an optimal or almost optimal preconditioner, see Widlund [19]. Therefore, we also
introduce a coarse grid T7H which form a shape regular triangulation of 1. For the
simplicity of our exposition, though our algerithms and theory are applicable for more
general cases, cf. Chan, Smith and Zou [6], we assume here that the boundary 8QH of
QH = U nerurH coincides with the boundary 9§2* of QF = U, nernth, but otherwise
has nothing to do with 7%, i.e., none of the interior nodes of TH need to be nodes of
Tk, Thus, TH is in general non-nested to 7%. Let H be the maximum diameter of the
elements of 7H, and VH be a subspace of H'({}) consisting of piecewise polynomials
defined on TH. We note that VH is not necessarily piecewise linear as V*; for example,
it may be bilinear { 2-D) and trilinear (3-D) elements or higher order elements. Thus
we do not necessarily have the usual condition: VH# C V.,

To overcome the difficulty that VH ¢ V', we introduce an operator I, : VH — V&
so that I,V¥ is a subspace of VA We will use I, to define the global coarse space.
Certainly, for the coarse space to be effective, I), must possess the properties of H!-
stability and L? optimal approximation, see Mandel [16] and Lemma 4.1 and Lemma 5.1
below. For this purpose we will introduce three such options which are all effective in
both two and three dimensions. The simplest and most natural one among them is
I, =TI, the piecewise linear interpolation operator related to V!, as in Cai and Saad
[5], Cai [4], Chan and Smith [8]. We will discuss this algorithm in Section 3. The second
option is [, = @4, the L? projection onto V*#, see Bramble and Xu [2]. It meets all
the requirements mentioned above, but requires the triangulation 7" be quasi-uniform.
Another disadvantage of @, is its global nature, but this can be overcome by using
its numerical counterpart, i.e., the so-called L? quasi-projection, see Xu [20]. We will
discuss this second option in Section 4.

In order to consider general unstructured meshes, we would like to relax as many
as possible the restrictions on the coarse subspaces, on the fine subspaces, and in par-
ticular, on the substructures {Q;}. In Section 5, we try to achieve these aims by intro-
ducing a special locally defined projection operator Ry, which meets all our requirments
mentioned previously and makes the forming of the new coarse subspace quite paral-
lellizable. Although this operator R, is slightly more complicated to calculate than
TI,, it may be more stable and behavior better than II,, in practical computations since
R, is a kind of averaging. Another reason for us to introduce this local operator R,
is that its coarse subspace form Ry can be used to remove the requirement of the
quasi-uniformity on the coarse triangulation 7H. This is very important for the devel-
opment of domain decomosition methods on unstructured meshes because they often
are highly non-quasi-uniform, especially for modelling complex geometries and solution
behaviour. Our theory is quite similar to that developed independently by Cai [4]. A
major difference is that, by making use of the coarse space local projection operator
Ry, our results cover the case of non-quasi-uniform meshes.

Throughout the paper, we use ||+ ||,, and |-|,, to denote the norm and semi-norm of
the usual Sobolev space H™(§) for any integer i > 0. We denote the scalar product in
L2(Q) by (-,+). C will denote the generic constant independent of all mesh parameters.

‘9
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3. GQlobal coarse subspace based on interpolation. In this section we discuss
briefly the interpolated coarse subspace used by Cai [4], Chan and Smith [8]. We use
the following decomposition for the finite element space Vi

(10) Vh=VE+ V4 -+ V)

where V*, i =1,2,--+,p are defined by (9), but the global coarse subspace Vi is defined
as the range of the interpolation operator I, on the non-nested coarse subspace VH,
that is,

(11) Vh =T, V¥ ={ve V" Iwe V¥ such thatv= Iw}.

Then we have the following decomposition lemma

LEMMA 3.1. Suppose O C Ri(d =2,3), T* is shape regular, and the triangulation
TH related to VH is quasi-uniform. Then for any v € V', there exist elements v; € Vh,
i=1,2,+--,p, vg € VH such that

(12) v:Hth+U1+-..+UP
and
, s Hv2
(13) | HHhUHH%'{';“Ui”? SC'(I-I-?) oll2, ¥V ve Vi

Proof. For any v € VA, choose vy = Quv € VH, vy = Il vy € Vo and v; =
(00 — 6;v5) € V*, where Qp is the L? projection onto VH and {6;} the partition
of unity for 0 related to the covering {§/}. Then Lemma 3.1 can be proved in the
standard way by using the Hi-stability of I, and its L? optimal approximation on the
coarse space V¥, see Section 5 below for the more general case. 0

With the decomposition defined in (10) it is straightforward to derive that the
corregponding additive Schwarz algorithm has a condition number of the order (1+
H/6). '

Lemma 3.1 was first established for the 2D case by Cai [4]. The key point in the
proof of Lemma 3.1 is that the interpolation operator II, has the H1i-stability and L2
optimal approximation in both two and three dimensions:

(14) Hu — Myufl, < CA=2july, YueVH,s=0,1

One way to prove (14) is to use the standard finite element interpolation results and
the inverse inequality as well as the fact that VE C H'+8(Q) for some § € [0,1/ 2)(see
Xu [20]) and H1+#(Q) is imbedded in C'(R2) continuously in two dimensions. However,
this last imbedding relation is not true in three dimensions and therefore we cannot
use this approach to prove (14) in that case. Moreover, the non-nestedness of the
coarse mesh TH to the fine mesh 7% and the non-quasi-uniformity of 7* make it not so
straightforward to prove (14). The 3D result of (14) was recently proved independently
by Cai in his revision of [4] in 1994 and by us in Chan, Smith and Zou [6].
' 3



One limitation of Lemima 3.1 is the necessity to assume the quasi-uniformity of the
coarse finite element space V¥ due to the use of Qg in the proof which requires the
quasi-uniformity of 7H for its H!-stability and L? optimal approximation. It would be
desirable to remove this restriction because one of the main advantages of unstructured
meshes is that it can be highly non-quasi-uniform. Actually, one can find many ways to
remove this limitation by using another local operator Rg with the appropriate stability
and approximation properties to replace ¢}z in the proof. In the later section, we will
introduce one of such operators.

4. Global coarse subspace based on the L? quasi-projection. In this and the
next sections, we construct the global coarse space Vj* by using some special projection

operators. First, we define the subspaces V4, i = 1,2,---,p as in (9), but the coarse
grid subspace is now defined by:
(15) Vi = Q¥

where (), is the L? quasi-projection onto V# defined by (see also Xu [20}):

(16) (Qhwa qﬁ)h = (w: ¢)a Vwe LZ(Q)’@!’ € Vh
with (-,-), defined as follows

L
d+1

Z 7] E (uv)(g:)-

TeTh gGENKOT

(17) (uav)h =

Here {N,} is the set of nodal points of 7%,
REMARK 4.1. The forming of the coarse subspace VJ* defined by (15) is simple,

since VI =span{@h¢>ff} with {¢H} being the basis functions of VH, Each {@hqﬁ?} can
be calculated directly, as the corresponding coefficient matriz for Q,, is diagonal,

For the L? quasi-projection operator Q,, we have the following H'-stability and L?
optimal approximation properties, see Lemma 3.6 in Xu [20] for H}(£)) whose proof is
also applicable to the present case.

LEMMA 4.1. Suppose T is quasi-uniform, then for any v € H(Q) and s € [0,1]

(18) o D@wll <ol
(19) o= Qull, < CE ol

Now We have the following partition of V* from the next lemma:
(20) ,Vh':]/ohwi_vlh-_*__“f%h.

LEMMA 4.2. Suppose ) C Ri(d=2,3), T" is quasi-uniform, and the triangulation
TH pelated to VH is shape reqular. Then for any v € V*, there exist elements v; € Vh,
i=1,2,--+,p, vy € V! such that

(21) v=0gt vt Y,
6 .



and

L H
(22) looll2+ - llodli2 < € (14 ) loll2, Vo € VA,
=1 .

Proof. For any v € V%, choose vy = Ryv € VH, vy = Quvy € VP and v; =
I, (0;v — 6v9) € V, where Ry is a locally defined projection operator onto V# that
will be introduced in next section and {#;} is the partition of unity for Q) related to the
covering {Q.}. Then Lemma 4.2 can be proved in the standard way by using Lemma 4.1,
see Dryja and Widlund [14] or Section 5 below for more general case. 0

With the decomposition defined in (20), it is immediate to derive that the corre-
sponding additive Schwarz method has a condition number of the order (1 + H/6))?,
see Section 6 for more details.

5. Global coarse subspace based on locally defined projection operator.
Now we introduce a special locally defined Clément projection operator R, [11] which,
to our knowledge, was first used in the domain decomposition context by Chen and Zou
[9]. This operator R, can be used not only in the algorithms, but more importantly, its
coarse space form Ry can also be used in the convergence proof of the algorithms to re-
move the requirement of the quasi-uniformity on the coarse triangulation 7H. Although
the removement seems quite straightforward by replacing the usual L? projection op-
erator Qp in the convergence proof of the additive Schwarz methods, we think the
recognition of this point is a very important step in the development of domain decom-
position methods on unstructured meshes. Of course, one can find many other local
operators which have the same properties as Ry, or Ry,

Let {gt}r, and {gf'}1, be the nodal points of the triangulations 7% and TH,
respectively; and {¢#}r, and {#F} 7 be the sets of nodal basis functions of V* and
VH  respectively. Denote OF =supp ¢#, 1 <¢ < n and OF =supp¢f,1 <1 <m.

DEFINITION 5.1. The mapping Ry, : L¥Q) — V* is defined by

N
(23) Rpu= z Qiulg;) ¢, Vue L2(Q),

i=1

where Q;u € P,(0;) satisfies
(%) [, Qupds= [ upds, ¥ p€Pi(O)

where P1(0;) is the space of linear functions defined on O;.

Analogously, we define Ry : L2(1) — VH the same as R, by replacing V* by VH,
and the nodal points and basis functions of V* by the corresponding ones of VH,

By using Poincaré’s inequality, the definitions of Ry, and R, the relations (6) and
(7), we can show the following results, see also Clément [11].

LEMMA 5.1. Assume that the iriangulations T* and TH are shape regular, then
the operator Ry, and Ry defined above have the properties

(25) IRwull, < Cliwlly,  N1Raully < Cllully, ¥ ue H(Q),r =01,

(26) lu — Ryulle < C hluly, |lu— Ryullo < C Hluly, YV u e HI(Q).
i



REMARK 5.1. In Lemma 5.1, we assume only that the triangulations are shape
regular, not necessarily quasi-uniform, unlike the usual L* projection. The main differ-
ence belween Ry and @H of the last section is thal the former is defined locally, but the
latter globally.

In the remainder of this section we construct a special coarse subspace which plays
an important role in our unstructured domain decomposition theory.

We define, the same as in (9), the subspaces Vb, i = 1,2,---,p, but the global
coarse subspace is defined by

(27) ' %h = RhVH.
Now we have the following lemma for the decomposition of the fine subspace V*:
(29 VE Vi Y

LEMMA 5.2. Let @ C Ri(d = 2,3). We assume that both triangulations T*
corresponding to the fine space VF and TH corresponding to the coarse space VH gre
shape regular, but not necessarily quasi-uniform. Then for any v € V*, there exist
u; € VP, i=0,1,---,p such that

(29) w=ugHu 4o Fu,

and
» H )

(30) Il 2 < C(1+ ), ¥ u e VA
ard

Proof. It is well-known, see Dryja and Widlund [13], Bramble et al. [3] that
there exists a partition {8;}7_; of unity for Q related to the subdomains {2} such that
7, fi(z)=1on Randfori=1,2,---,p,

31 supp 9;_ C QU BQ, 0 S Bi S 1 and VG, oo {0, _<_ C(Sf’l.
i () i

Now for any u € V%, let ug = RyRyu € V* and v; = I1,(0;u — 8;up) with I, being
the standard interpolation of V*. Obviously, u; € V}* and

(32) == g+ g+t

Now we prove (30). By Lemma 5.1 we see that

(33) lluolly = [[RaRgulls < C|[Ryull: < Cjully,
and

e~ uolle < [lw = Ryullo + [[Raw — RuRyullo
(34) < C’H|u[1 + ChIRHUh < CH|“|1a
(35) lu —uly < |uy+ |RyRyuly £ C lul;.

8



Then (30) follows in the standard way, see Dryja and Widlund [13] and Smith [18]. But
we still give a complete proof here so that one can see clearly that no quasi-uniformity
assumption on 7% and the subdomains {{;} are required in the present case. Let 7 be
any clement belonging to @, with A, being its diameter and f, the average of #) on
clement 7. Then from (31) and the fact that u —u, € V%, we get:

Iuklif < QID—kﬂh(u — 'U'«O) ?,‘r + 2|Hh(8k — gk)(u — uO)E,‘r

< 21“ - uo!f,,, + 2’Hh(9k - Ek)(’“‘ - uo) 2

1,7

By using the local inverse inequality which requires only the shape regularity of 7% (
see Proposition 3.2 in Xu {20]), we obtain:

lugl2 . < 2u- uol}, +C h- 2|, (0 — 0p)(u — uo)l[3 .
2

h
< fu=ulf, + € h G =l

IA

1
2|u — Uo|ff,,, +C 6_§HU — [ -
By taking the sum over 7 € ¥ we have
1
(36) sl 0y < 2l = a2 g + € el — ol 2.
k

Noticing the assumption made previously that any point z € {} belongs only to a finite
number of subdomains {{{}, it follows from (33)-(36) that

Ld 1
(37) Solualig < Cllu—muolf + gllu— wllg)
k=1
, H\2
(38) < o1+ -5~—) Jul2.
Analogously, we derive that
P : 72
kZ: luallge, <€ (1 + “5'2')”“'“3:
=1

which completes the proof of (30). O

Note that the bound H2/§? appearing in Lemma 5.2 is not sharp compared to
the results in the structured case, see Dryja and Widlund [15]. In fact, we can also
improve this bound to make it as optimal as in the structured case by simply using
one estimation by Dryja and Widlund [15]. To reach this aim, we suppose that §; = 6,
i=1,2,--,p, for simplicity, and let I's; C ©; be the set of points which are within a
distance § of 01);, H; be the diameter of {};.

LEMMA 5.3. [15] Suppose that the substructures {§};} is shape regular, let H; be
the diameter of ;. Then for any u € H'(§Y;), we have

H, 1
(49) ullr,, < C 8L+l g, + g5l

9



LEMMA 5.4. In addition to the assumptions of Lemma 5.2, we assume that the
subdomains {Q;}2.; are quasi-uniform. Then for any u € V*, there emist u; € Vi,
i=0,1,---,p such that

(40) u=u0+u1+---+up
and
P H,., H?
S o h
(41) >l < O (14 =5+ Il VeV

Here H,,, is the mazimum diameter of all subdomains.

Proof. We choose u; € VP and {f;} exactly the same as in the proof of Lemma
5.2, but in addition, for {f;}, we make them satisfy (31) and §; = 1 in the inferior
part of Q; which does not belong to I';;. Then (41) follows by using Lemma 5.3, and
the techniques used in the proofs of Lemma 5.2 above and of Theorem 3 in Dryja and
Widlund [15]. O

REMARK 5.2. We see VI =span {R, ¢}, with {¢7} being the basis functions of
VH. To get Ry¢¥ one needs to solve a 3 X 3 algebraic system of equations in two
dimensions and a 4 x 4 algebraic system of equations in three dimensions at each node
of T* which belongs to the closure of the support of the basis function ¢H. One can
easily find that there are many repeated calculations for getting {Ry,¢H } which may be
utilized to save a lot of the calculations. In particular, it can be shown that if VH isa
piecewise linear space defined on TH, then for all nodes the support sets of whose basis
functions are in the interior part of one element of TH, the values of Ryu,u € VI al
these nodes are the same as that of u.

REMARK 5.3. We can remove the need for solving the local 3 x 3 or 4 X 4 lLinear
systems mentioned in the above remark. To do this, we replace Py (0;) in the defintion
of Ry, in (23) and (24) by V#(O;), the restriction of V* on O, and replace the lefi-hand
side integral by its numerical counterpart like that used in (17). Then Lemma 5.1 still
holds for this modified Ry, and the coefficient matrices of all these corresponding small
algebraic systems are diagonal ones, see Remark 4.1.

6. Additive Schwarz algorithms. Based on the decomposition of the finite el-
ement space V* given in Sections 3-5, now we derive the condition numbers of the
corresponding additive Schwarz algorithms. Because of the similarity, we only consider
the most general case from Section 5. The main theorem below states that the additive
Schwarz algorithm corresponding to the decomposition of the finite element space V"
given in Section 5 has a condition number which is bounded by (14 Hyp+ H?/(6Hyp))
for quasi-uniform substructures and by (1 + H/ 6)2 for the arbitrary substructures.

From (28) we see thai
(42) Vh:‘/{)h+1/1h_|__,_+vh

P

10



where V* = R, VH, and V}, 1 =1,2,---,p, are defined by (9). Now we define the H1-
projection operators P; : V* — Vi =0,1,--,p such that for any u € Vh, Pu e VI
satisfies

(43) a(Pau, v;) = alu, v;), ¥V v; € V2

Then it is easy to check that the solution u® of (8) is also the unique solution of the
operator equation

_ P P
(44) Pus> Pu=g, =) gt
10 i=0

where gk, 7 =0,1,---,p satisfy
(45) a(gh, v) = (f, v:), Y v € V.

The additive Schwarz algorithm is to use the conjugate gradient method to solve
the operator equation (44).

Notice that for the above algorithm we have to form the stiffness matrix for the
newly constructed coarse space VF = R,VH. However, if we would like to use the
stiffness matrix corresponding to the original coarse space VH, we can define the coarse
operator Py in (43) in another way: First we define a projection operator Py on the
original coarse space VH by

(46) a( Pgu,v) = a(u, Ryv), Yu e Vi, wve Vi

and then define Py = R, Py: VP — V. Now it is the same as above to check that the
solution of uP of (27) is also the unique solution of the operator equation

(47) PuE(ﬁ0+P1+---+Pp)u:§h

where §, = gt + gt + -+ g* with gh,i=1,2,---,p defined by (45) but Gt = Rygu
and gy is defined as follows:

(48) a(gHav) = (f) Rh”): VuveVHE

For the condition numbers of the operator P and P, we have the following bounds
THEOREM 6.1. Under the same assumptions as in Lemma 5.2, one has

(49) K(P), H(P)< O +5 Y,

if the subdomains {4}, are neither quasi-uniform nor shape regular; and

2

et Hsub
(50) (P), K(P) < O+ 4 20,

if the subdomains {Q;}_, are quasi-uniform.
1



Proof. The estimate of the condition number £(P) is quite routine by using the
estimates of (30) and (41) for the decomposition of the finite element space V*, and
the equivalence between the norm || - || and |-l = (a(-, )N'?; see Dryja and Widlund
113}, [15] and Xu {21].

Next we estimate the condition number of x(P), our proof is similar to that used
in Cai [4]. We prove only (49). It suffices to show that there exist two constants o
and C, independent of H, 6,k such that for any u* € Vi,

. H\? .
(51) Cy G(Puh,uh) < a.(’u,h’uh) <y (1 -+ —S"*) a(Pu,u).

First, from (46) we see that

(52) a(PHuh')PHuh) = G‘(RhPHuh:uh)a

thus by Cauchy-Schwarz’s inequality and Lemma 5.1,
(53) || P2 < [Jubll, 1R Prrule < C llutlle [1Prut]le

ie., [|Pyub|l, € C||u”||,, which leads to the following
(54) a( Byuh, uh) = a(Pyut, Pyut) < C alub,u?),

But the standard arguments gives that
P

(55) > a(Put ut) < C a(ub,ut),

=1

therefore we have proved the first inequality in (51). For the second inequality, it follows
from (52) that

. P
a(Pukb,ub) = a(R,Pyub,ut)+ > a(Puh, uP)

i=1
P
(56) = |[Pyub]2 4+ > [|Putil?.
i=1

Using Lemma 5.2 for the partition of u* = Y27  u with uh € VP and ut = Ry Ryut,
and the Cauchy-Schwarz’s inequality and (56), we have:

P P
aluh,ut) = a(uh,d ul)= a(uﬁ,RhRHuh) + 3" a(uh, ul)

1=0 =1

P
= a(PHuh, RH'U:h) -+ Z a(R-u", Uf')

i=1

(i‘“’i“"”i +1|Pnuhlli)m (iuuﬂ|§+ ||RHuhHg)”‘"

i=1 =1

EA

H -
< 0 (14T Bt ey e,
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which completes the proof of the second inequality in (51).
O

In the rest of this section, we shall give the matrix representations of the precondi-
tioners induced by the two additive Schwarz algorithms defined above.

Let {¢t}n, be the standard nodal basis functions of Vh, and {¢h 7L, C {¢F}E, be
the nodal basm functions of V}, i =1,2,---,p. For each ¢, we define a matrix extension
~ operator RY as follows: For any ul € ‘V"L we denote by u; the coefficient vector of u’
in the basis {qb" }iiy, and we deﬁne that RTu; to be the coefficient vector of ult in the

basis {(,15"}1“1
It is immediate to check that

where A and A;, 1 = 1,2,-++,p are the stiffness matrices corresponding to the fine
subspace V* and the subspaces V4, i = 1,2,---,p. And from (43) it follows that for
any uh € V*, the coefficient vector of Pu® in the basis {¢F}r, is

(58) RTAT'RAu

where u denotes the coefficient vector of u® in the basis {$k}7 .

Now let {¢¥}1, be the basis functions of VH then {R,¢H} 1, are the basis func-
tions of Vj* = ’R,hVH We define a matrix extension operator R] as follows: For any
ul € Vb, we denote by v, the coefficient vector of u} in the basis {thé }r,, and we
deﬁne RTuO to be the coefficient vector of ul in the basns {ph}n

It is stra,lghtforward to derive that

(59) Ao = RyART

where A, is the stiffness matrix corresponding to the subspace Vi And it follows from
(43) (with 7 = 0) that the coefficient vector of Fou® in the basis {qSh}

(60) RTA-1RyAu.

Thus from (58) and (60) we deduce that the preconditioner M for the stiffness matrix
A induced by the sum operator P =37 F;is

' »
(61) M = RJA7'Ry+ ) RTA'R,
=1
Next we derive the precondltioner M for the stiffness matrix A induced by the sum
operator P=PB+P+ -+ P,. We first note that the coefficient vector of a function

v € VH in the basis {¢# }m is exactly the same as the one for the function R,v in the
basis {Ry¢H}™,. So from (46) we find that the coeflicient vector of Pyu” in the basis

{# ), is

(62) A RoAu
13



where Ay is the stiffness matrix corresponding to the original coarse space VH, Now
using the previously given fact we know the coefficient vector of Pyut = R, Pyuh € Vit in
the basis {R, ¢} 7, is also Az RoAw, therefore, by the definition of B[, R/ AF' RoAu
is the coeflicient vector of Pyu® in the basis {¢}}2 .

From above we see the preconditioner M for the stiffness matrix A induced by the
sum operator P=P4+P+-+ P, is

. p
(63) M = RTA7'Ry+ Y RTA'R;.
=1

REMARK 6.1. From the matriz representations (61) and (68) for the precondition-
ers M and M, we sec the major difference between algorithms (44) and (47) is in the
global coarse problem solver. The former coarse problem. (with Ag 1) is conducted on
the newly constructed coarse subspace V!, but the latter (with Az') is conducted on the
original coarse subspace VH, Since V¥ is not necessarily nested to V', Ay may not be
expressed in terms of the stiffness mairiz A as Ay in (59).

7. An improved result for structured mesh with shape regular subdo-
mains. We add this section to show an improved result for structured mesh, by using
the locally defined projection operator Ry introduced in Section 5, for the additive
Schwarz algorithms with the global coarse subspace constructed directly by the shape
regular subdomains. We assume now V# is also a piecewise linear finite element space
corresponding to the triangulation TH = {{;}7_; and that T* is refined from TH =,
thus VH C Vh. Let H, be the diameter of ;, ¢ =1,2,---,p. The notations {Q}, 6, &
and the operators Ry and the subspaces V* (i =0,1,---,p) are defined as in Section 5.
Here V! = VH. We note the best results for additive Schwarz methods in this case are
that the condition numbers are bounded by O(1 + H/$), see Dryja and Widlund[15].
Here H is the maximum diameter of all Q;, 7 =1,2, .-+, p and § is the minimum overlap
of all overlaps 6;,% = 1,2,---,p. In this section, we will show a more refined result which
indicates that the condition numbers of the additive Schwarz methods can be bounded
by O(14max, ¢;<, H;/6;). That means the larger subdomains may have a larger overlap
with its neighbors, and the smaller subdomains may have a smaller overlap. Certainly
this property is very useful in practical applications. QOur main result is stated in the
following theorem:

THEOREM 7.1. Suppose T% and TH are shape regular, then for any u € V*, there
exist elements u; € V*, 1 =0,1,---,p such that

(64) | u= gt u e+,
and

Vd Hi
(65) ;Huilli <01+ max 6_,-)“u“?'

Thus the corresponding additive Schwarz algorithm (see Section 6) has a condition num-
ber bounded by O(1 + max;<;c, H;[6;)-
14



Proof. For any u € V, let uy = Ryu € VH C V*, where Ry 1s defined in Section
5. Let u; = IT,(8; u — 0;up) with {0;} the same as in the proof of Lemma 5.2. Thus it
is easy to check that (64) holds true. To prove (65), we give an estimate for the error
4 — Ry u: there exists a constant C, independent of h, H, i=1,2,---,psuch that

(66) [lu— Ry ““0,9; < C Hiluly s,
(67) lu—Rygulya<C ]y 5,

Here S; = U o cq,SUpp d;f and {cf)f } are the basis of VH related to the vertices {qfr |3
1 +

The estimates (66) and (67) can be proved by using Poincaré’s inequality, the regularity
of TH, the relations (6) and (7), and in particular, the local definition of Ry. Now (65)
follows by combining (66) and (67) with the procedures used in proving Lemma 5.2 and
Lemma 5.4, with only a small modification arising from (66) and (67). 0O

8. Concluding remarks. In this paper, we proposed three additive Schwarz meth-
ods for elliptic problems in two and three dimensions on unstructured meshes. Our main
results are: (1) to introduce a locally defined operator Ry to construct a new special
global coarse problem by using it to transform the original coarse space and (2) to show
that the same optimal condition numbers for structured meshes can be obtained for un-
structured meshes as well. For our main results, we assume only that the fine mesh 7+
and the coarse mesh TH are both shape regular, but not necessarily quasi-uniform and
TH is allowed to be non-nested to 7*. The subdomains may be quite arbitrarily shaped.
The global coarse problems of the corresponding additive Schwarz algorithms involve
only solving the original coarse problems, although the newly constructed global coarse
spaces are changed. The same principle can be applied for obtaining similar results for
multiplicative Schwarz methods and also for non-selfadjoint elliptic problems.

Acknowledgement. The authors wish to thank Barry Smith for many valuable com-
ments on the paper.
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