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Domain Decomposition and Multigrid Algorithms
for Elliptic Problems on Unstructured Meshes

TONY ¥. CHAN AND BARRY F. SMITH

ABSTRACT. Mulligrid and domain decomposition methods have proven to
be versatile methods for the iterative solulion of Hnear and nonlinear sys-
tems of equations arising from the discretization of PDEs. The efficiency
of these methods derives from the use of a grid hierarchy, In some appli-
cations to problems on unstructured grids, however, no natural multilevel
stracture of the grid is available and thus 1nust be generated as part of the
solution procedure.

In this paper, we consider the problem of generating a multilevel grid
hierarchy when only a fine, unstructured grid is given. We restrict attention
to problems in two dimensions. Our techniques generate a sequence of
coarser grids by first forming a maximal independent set of the graph of
the grid or its dual and then applying a Cavendish type algorithm to form
the coarser triangulation. Iterates on the different levels are combined using
standard interpolation and restriction operators. Numerical tests indicate
thal convergence using this approach can be as fast as standard multigrid
and domain decomposition methods on a structured mesh.

1. Introduction

Recently, unstructured meshes have become quite popular in large scale scien-
tific computing [2], {8]. They have the advantage over structured meshes of the
extra flexibility in adapting efficiently to complicated geometries and to rapid
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changes in the solution. However, this flexibility may come with a price. Tradi-
tional solvers which exploit the regularity of the mesh may become less efficient
on an unstructured mesh. Moreover, vectorization and parallelization may be-
come more problematic. Thus, there is a need to adapt and modify current
solution techniques for structured meshes so that they can run as efficiently on
unstructured meshes.

In this paper, we will present some domain decomposition (DI} and multigrid
(MG) methods for solving elliptic problems on unstructured triangular meshes
in two space dimensions. These are among the most efficient algorithms for
solving elliptic problems. The application of multigrid methods to unstructured
grid problems have received some attention; see for example [B] and references
therein. There has been relatively little work on domain decomposition methods
for unstructured grid problems. Cai and Saad [4] considered overlapping domain
decomposition methods for general sparse matrices which in principle can be
applied to the stiffess matrices arising from discretizations of elliptic problems
on unstructured grids. However, if a coarse grid is to be used (often necessary
for fast converpgence), it cannot be deduced from the algebraic structure of the
sparse matrix alone and geometric information about the coarse grid and the
assoclated interpolation operators must be stupplied.

For multigrid and deomain decomposition algorithms, a hierarchy of grids,
together with the associated interpolation and restriction operators, is needed.
For structured meshes, this grid hierarchy is naturally available and is indeed
exploited in these algorithms. For an unstructured mesh, however, the coarser
grids may not be given. Thus, a procedure is needed that generates this grid
hierarchy, as well as the associated interpolation and restriction operators. One
approach is to generate the coarser meshes independently, using a mesh gener-
ator, possibly the one which generated the fine mesh in the first place. This
approach has been used by Mavriplis [8], who constructed multigrid algerithms
for the Navier-Stokes equations on unstructured meshes in two and three space
dimensions. Another approach is to generate the grid hierarchy automatically
and directly from the given unstructured fine grid. This approach requires less
from the user because only the fine grid, on which the solution is sought, is
needed.

In this paper, we will follow the second approach. Our techniques generate
a sequence of coarser grids by first forming two maximal independent sets, one
for the interior vertices and the other for the boundary vertices, and then ap-
plying Cavendish’s algorithm [5] to form the coarser triangulation. Thus, in this
approach, the coarse mesh vertices form a subset of the fine mesh vertices. We
also consider a variant in which this nested property of the vertices does not
hiold. Hterates on the different levels are combined using standard finite element
interpolation and restriction operators, The mesh can be multiply-connected.
Nurperical tests indicate that convergence using both coarsening approaches can
be as fast as standard multigrid and domain decomposition methods on a struc-
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tured mesh,

2. Domain Decomposition and Multigrid Algorithms

Thus, we are interested in solving the following elliptic problem:
(2.1) ~V-a(e,y)Vu= f(e,y),  ofz,y) >0,

on a 2D (not necessarily simply connected) region £t with appropriate boundary
conditions, We assume that € is triangulated into a fine grid, which can generally
be unstructured and non-quasi-uniform, and a finite element or finite difference
method is applied resulting in the algebraic system Au = b. The DD and MG
algorithms we shall construct are used as preconditioners for A and are used in
conjunction with a preconditioned Krylov subspace method.

We first discuss overiapping domain decomposition algorithms (a recent sur-
vey can be found in [6].) The fine grid Q is decomposed into p overlapping
subdomains {;,i = 1, -, p, either as specified by the user or antomatically de-
termined by a mesh partitioning algorithm (in this paper, we will use exclusively
the recursive speciral bisection (RSB) method of Pothen, Simon and Liou [9]}).
Associated with each €Y are restriction and extension operators R; and R (Riu
extracts the components of u corresponding to €; and RY u; is the zero-extension
of an iterate u; on §; to Q) and the local stiffness matrix A; = R;ART. In order
to achieve a good convergence rate, we will also use a coarse grid 3o, In this
paper, we shall assume that Qg is a proper triangular mesh itself which is not
necessarily nested to 2. We construct the associated interpolation operator R};,
which maps an iterate ug on £y to {2, as follows. If a fine grid node lies within
a triangle of €y, we use linear interpolation to obtain its value, otherwise we
set its value to zero, Once RY, is defined, the restriction operator Ry is defined
to be its transpose. Finally, we compute the coarse grid stiffness matrix Ay by
" applying a piecewise linear finite element method to (2.1} on £2y. Note that in
general Ay # R;;AR% due to the non-nestedness of the grids.

With these operators defined, we can now define the additive Schwarz precon-
ditioner (which corresponds to a generalized block Jacobi method) as follows:

P
M= REAR Ry + > RT A7 R,
i=1
Thus, each application of the preconditioner involves restricting the residual
vector to each subdomain and performing a subdomain solve. In addition, a
weighted restriction of the residual vector is computed on the coarse grid and
inverted by a coarse grid solve. These local and coarse solutions are then mapped
back onto the fine mesh and added together to obtain the desired result. Mul-
tiplicative versions (i.e. Gauss-Seidel) can also be defined analogously given an
ordering of the subdomains.



4 TONY F. CHAN AND BARRY F. SMITH

Multilevel preconditioners (including classical multigrid methods} are closely
related to domain decomposition methods and their implementations can be
treated in the same ramework. A grid hierarchy is needed and the associated
interpolation and restriction operators can be defined in an analogous way. For
example, let the fine grid be level 1 and the coarsest grid level . Let R; denote
the restriction operator from level 1 to level ¢ and the transpose RY the corre-
sponding interpolation operator. Then an additive multilevel preconditioner can
be written in the following form:

!
o =2 RISiRs,
i=1

where S; is a “smoother” on level {. For instance, for multi-level diagonal scaling,
S; is simply the inverse of the diagonal of the stiffness matrix on level ¢, Classical
V-cycle MG methods can be viewed as symmetrized multiplicative versions of
the above preconditioner. Note that in practice the action of R; and R] are
computed via a recursion using mappings between adjacent grid levels.

In our implementation of the domain decomposition algorithms, the coarse
grid £ is obtained by a sequence of recursively applied coarsening steps (sce
next section), and hence the grid hierarchy is naturally defined for performing
the multigrid iteration as well. Of course, this is not the only way to construct
the coarse grid for a DD method. For example, one can use the subdomains to
directly construct a coarse grid without going through a grid hierarchy. We shall
not pursue these other possibilities in this paper.

3. Construction of the Grid Hierarchy

In this section, we will describe our techniques for constructing the coarse
grid hierarchy, as well as the associated interpolation and restriction operators,
directly from the given unstructured fine mesh. It suffices to describe this for
one coarse level because the procedure can be recursively applied to obtain all
the coarse meshes.

We shall need the notion of a mazimal independent sel of the vertices of a
graph. A subset of vertices V of a graph G is said to be independent if no two
vertices of ¥ are connected by an edge. V is said to be mazimally independent
if adding any additional vertex to it makes it dependent. Note that maximal
independent sets of vertices of a graph are generally not unique.

The procedure has four steps:

(1) Form a maximally independent set of the boundary vertices and from
these construct a set of coarse boundary edges,
(i1) Form a maximally independent set of the interior vertices,

(iii) Apply a Cavendish type algorithm [3] to triangulate the resulting col-

lection of coarse boundary edges and coarse interior vertices,
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{iv} Construct the interpolation and restriction operators.

Step (i) is fairly straightforward. For each disjoint boundary segment, the
boundary vertices are ordered say in a clockwise direction, starting with a ran-
dom vertex. Then every other vertex is thrown out and the remaining ones
are connected with new coarse boundary edges. This forms a coarse represen-
tation of the boundary segment. After several coarsenings, one may find that
the boundary is no longer qualitatively similar to the original boundary. This
may be prevented by simply retaining some of the vertices in the coarse grid
boundary that would normally be dropped.

Step (i) uses a greedy wavefront type algorithm. A random interior vertex
is selected for inclusion in the maximally independent set. Then every interior
vertex connected to it is eliminated from consideration for inclusion in the maxi-
mally independent set. Next, one of the interior vertices connected to the newly
eliminated vertices is selected for inclusion and the procedure repeats until all in-
terior vertices have been considered. An algorithm similar to this has been used
by Barnard and Simon [1] in designing graph partitioning algorithms. This pro-
cedure can be implemented in linear time, i.e. proportional to the total number
of interior vertices.

The input to Step (iti) is thus a collection of coarse boundary edges and
coarse interior vertices. A version of Cavendish’s algorithm [5] is then applied to
triangulate this collection. This algorithm is an advancing front technique and
“erows” new triangles {rom those already built by selecting an interior vertex to
be “mated” to an existing edge. In doing so, it tries to optimize the aspect ratio
of the new triangle formed, preferring those that are close to being equilateral.
1t is possible to implement this algorithm in linear time, i.e. proportional to the
number of interior vertices, but cur current implementation is not optimal.

Finally, in Step (iv), the interpolation operator is constructed in the form of
a sparse matrix and stored. To determine the entries of this interpolation ma-
trix, the coarse triangles are taken in sequence and the entries corresponding to
all the fine grid vertices within the coarse triangle are then computed using the
standard piecewise linear interpolation. This procedure can also be implemented
in linear time because the fine grid triangles close to the vertices of the coarse
triangle (which are also fine grid vertices as well} can be found by a local search.
We emphasize that this is not possible if the coarser grids are generated com-
pletely independently. The restriction matrix is then just the transpose of the
interpolation matrix. Clearly higher order finite elements may also be used; then
the interpolation would be piecewise polynomial and could still be calenlated in
a local manner and hence remain a linear time algorithm.

In the alternative variant only Step (ii) is changed. We consider a candi-
date coarse vertex at the center of each element. Those that are adjacent to
the selected boundary nodes are then eliminated. We then construct a maximal
independent set of the remaining candidate vertices using the same approach as
indicated above. This procedure is equivalent to caleulating a maximal indepen-
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TABLE 1. MG iterations for the Eppsiein mesh, 547 nodes

Regular coarsening Dual graph coarsening

MG Levels | Bir. B.C. Mixed B.C. | Dir. B.C. Mixed B.C.
2 4 4 3 4
3 4 5 4 )

dent set of the dual graph of the mesh. It is important to note that the coarse
grid vertices generated in this manner will not lie in the same location as any
fine grid nodes. In our experiments on a few sample grids, the number of coarse
grid nodes generated using this alternative approach is slightly more than that
generated using the first approach cutlined,

4. Numerical Results

All the numerical experiments were performed using the Portable, Extensible
Toolkit for Scientific Computation (PETSc) of Gropp and Smith, [7] running on
a Sun SPARC 10.

We will report numerical results for solving the Poisson equation on three
different unstructured triangular meshes. All meshes are enclosed in the unit
square. Two kinds of boundary conditions are used: {1} homogeneous Dirichlet,
or {2) a mized condition: if z > .2, a homogeneous Neumann boundary condition
is imposed, otherwise homogeneous Dirichlet is imposed. We use piecewise linear
finite elements for the discretization and we solve the resulting systems of linear
equations by either a V-cycle multigrid method (with a pointwise Gauss Seidel
smoother, using 2 pre and 2 post smoothing sweeps per level) or an overlapping
Schwarz domain decomposition method. In all cases, the discrete right hand side
is chosen to be a vector of all 1’s and the initial iterate set to zero. Both the
MG and DD methods are used as preconditioners, with full GMRES [10] as an
outer accelerator. The iteration is stopped when the I norm of the residual has
been reduced by a factor of 107 Qur goal is to compare the performance of
our versions of domain decomposition and multigrid algorithms on unstructured
meshes to that of the same algorithms on similar struciured meshes. For this
purpose, we also use two structured meshes in our experiments {(a uniform mesh
on a square and on an annulus).

Table I shows the number of MG iterations for the Eppsiein mesh, [3], shown
in Figure 1, a relative small quasi-uniform unstructured mesh on the unit square.
Figures 2 and 3 show the coarser meshes using regular and dual graph coarsening.
These results should be compared to those for a uniform square mesh on the unit
square in Table 2, because the two meshes are topologically similar. We see that
although the performance of our MG algorithm on the unstructured mesh is
slightly higher than that on the structured square mesh, its performance is quite
satisfactory, for both types of boundary conditions.
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FIGURE 1. The Eppstein mesh: 547 nodes

FIGURE 2. The Eppstein mesh: level 2. regular coarsening (left)
and dual graph coarsening (right)

FiGURE 3. The Eppsicin mesh: level 3. regular coarsening (left)
and dual graph coarsening (right)
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TABLE 2. MG iterations for the uniform Squere mesh, 4225 nodes

MG Levels | Nodes | Dir. B.C. Mixed B.C.
2 1089 3 3
3 289 3 3
4 81 3 3
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F1GURE 4. The Airforl mesh: 4253 nodes

Next, we look at a more realistic mesh, the Airfoil mesh, (from T. Barth
and D. Jesperson of NASA Ames), shown in Figure 4. The coarse meshes are
shown in Figures 5, 6 and 7. One may note that several poorly shaped triangles
are generated on the coarsest grid. These do not seem to seriously effect the
convergence rate. In theory, these bad elements could be adjusted during a
“cleanup” pass over the mesh, after the Cavendish algorithm was applied. We
see that the performance for the Dirichlet boundary condition cases, given in
Table 3, are quite comparable to that for the Eppsiein mesh but is noticeably
worse for the mixed boundary conditions. Note there is no difference in the
performance for both types of coarsening. We suspect that the deterioration in
performance for the mixed boundary condition case is due to the fact that the
domain is not simply connected. Therefore, we also compare the performance
to that on a guasi-uniform mesh on an annulus region; see Figure 4 and Table
4. We see that the mixed boundary condition also cause the MG algorithm
to perform poorly for the annulus mesh. Overall, the performance of our MG
algorithm on the unstructured Airfoil mesh is comparable or better than on the
Annulus mesh.

In Table 5, we show results for a larger unstructured mesh around an airfoil,



DD AND MG ON UNSTRUCTURED MESHES 9

IR

v‘.ﬂb

Y

F._P‘

N
X

FiGURE 5. The Airfoil mesh: Level 2. Regular (left) and dual
graph coarsening {right).

FIGURE 6. The Airfoil mesh: Level 3. Regular (left) and dual
graph coarsening (right).
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Fiaure 7. The Airfoil mesh: Level 4. Regular (left} and dual
graph coarsening (right).
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TaBLE 3. MG iterations for the Airfoil mesh, 4253 nodes
Regular coarsening Dual graph coarsening
MG Levels | Nodes Dir. B.C. Mixed B.C. | Nodes Dir. B.C. Mixed B.C.
2 1180 4 8 1507 4 8
3 518 4 9 328 4 9
4 89 4 1o 171 5 10

FiGgurE 8. The Annulus mesh: 2176 nodes

TaABLE 4. MG iterations for the Annulus mesh, 2176 nodes

MG Levels | Nodes | Dir. B.C. | Mixed B.C.
2 576 4 18
3 160 b 18
4 48 5 18
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FIGURE 10. The Barth mesh: Level 2, 1614 nodes (left) Level
4, 112 nodes (right)

namely the Barth mesh, (from T. Barth of NASA Ames) shown in Figure 9.
The levels 2 and 4 coarse meshes are shown in Figure 10 (not all the grid points
are shown)., We only include the Dirichlet boundary condition results. We can
observe that the MG performance is quite comparable to the other unstructured
meshes (i.e. Airfoil, Eppsiein) and the structured meshes (i.e. Square, Annulus).
Again, both coarsening strategies work equally well.

Finally, we show in Table 6 the results for the multiplicative version of our do-
main decomposilion algorithin on the Airfoil mesh. The column labeled overlap
refers to the number of fine grid elements that are extended from each subdomain
into the interior of its neighbors. Thus, an overlap of 0 means there is no overlap
at all. The column labeled Level of coarse grid vefers to which level of the grid
hierarchy is used as the coarse grid in the DD algorithm. The 16 subdomains
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TaBLE 5. MQ iterations for the Barth mesh, 6691 nodes

Regular coarsening | Dual graph coarsening
MG Levels | Nodes Dir. B.C. | Nodes Dir. B.C.

2 1614 5 1810 5
3 405 6 574 6
4 112 7 189 6

TasLE 6. Multiplicative DD iterations for the Airfoil mesh. 16 Subdomains

Overlap Level of Regular § Dual graph
{no. clements) | coarse grid | coarsening | coarsening

0 None 66 56

0 4 21 22

0 3 15 12

1 None i6 16

1 4 i0 10

1 3 7 7

2 None 14 14

2 4 8 8

2 3 5 5

computed by the Recursive Spectral Bisection method are shown in Figure 11,
We can make several observations from the results. First, the use of a coarse grid
reduces the number of iterations significantly. Second, the use of some overlap is
very cost effective but the number of iterations levels off quickly as the overlap
increases. These results for overlapping Schwarz are also very similar to those
obtained for structured grids.

5. Summary

In summary, we have constructed domaln decomposition and multigrid algo-
rithms for solving elliptic problems on general unstructured meshes, which in our
limited experience perform nearly as well as these algorithms would perform on
stimilar structured meshes. Only the fine mesh is needed and all auxiliary com-
ponents of the algorithms, such as the coarse grid hierarchy, the interpolation
operators, and the domain partitioning, are computed automatically. The algo-
rithms can in principle be extended to three space dimensions and to indefinite,
non-self-adjoint and higher order problems.

Acknowledgements: We thank Mr. Nip Chun-kit of the Chinese University
of Hong Kong for providing us with a Matlab implementation of the Cavendish
algorithm which helped us in developing the C version in PETSc. We also thank
Horst Sirnon and John Gilbert for providing several of our test meshes. The first



DD AND MG ON UNSTRUCTURED MESHES 13

Figure 11. The Airfoil mesh: 16 subdomains computed by RSB
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