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Abstract, We study the Cauchy problem for the multidimensional parabolic equation
a

aiu+V~fﬁV~{QV'n)+g , (=@ eRVx R | Vmar-a,/af.

f={mk,. @= (Q‘.i)f\,l,ji:l and g are smooth functions of (z,f,u), under the assumption of mild degeneracy: ¢ > 0 for all
@, t and » # 0. Such degenerate equations, which arise in the study of several diffusion-advection processes (e.g., the porous
media equation), fail to admit classical sclutions and, therefore, weak solutions are sought. It is known that weak solufions
to the Cauchy problem exist; however, their uniqueness remained in question. We prove that uniqueness by showing that the
corresponding solution operator is Li-stable.

1. Introduction. In a previous paper [4] we studied the nonlinear degenerate parabolic equation

a g &2
(1.1) au—i— 8—a:f($’t’u) = é—gl{(x,i,u)+g(x,t,u) . (g, ) ERxRT,
where
(1.2) Qe t,u) = E%K(w, t,u) >0 V(z,t,u) € R x R x (R\ {0})

and proved the uniqueness of the weak solutions to the corresponding Cauchy problem, by showing that the
solution operator of that equation is Li-stable.

In the present paper we generalize these results to the multidimensional case. We are therefore studying
weak solutions (to be defined later), u = u(z, ), of the equation

(1.3) gt-u+v-f:v(@w)+g , ()= (B eRY xRY | V=V =38/ ;

here, f (the flux) denotes a vector field
f = f(l’.‘,t, u) == (fl((ﬂ, tl 'U.), ey fN(wltJ 'U.)) 3

g = g(x,t,u) is a scalar source term and @ = Q(x,1,u) = (Qi;(z,t, u}};.; (the viscosity coefficient) is a
symmetric matrix function which, in analogous to (1.2), is positive definite for all u # 0,

(1.4) ETQz,t,)E>0 Yz, t,u) e RY x BY x (R\ {0}) and £ e RV\ {0}.
fi 1 €i<N), Qi; (1 <4i,j<N)and g are assumed to be smooth functions of (z,t, u).

It is well known [2] that if equation (1.3) is uniformly parabolic, i.e., @Q(z,¢,u) is uniformly positive
definite for all (z,t,u), then the corresponding Cauchy problem admits a unique classical solution. We,
on the other hand, are interested here in the degenerate case, (1.4), where Q(z,{,u}) may be singular for
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u = 0. Such degenerate equations arise in the study of several diffusion-advection processes and the simnplest
example is the porous media equation,

u=A(u* ) , m>1.

In the degenerate case classical solutions usually do not exist and weak solutions, in the sense of distributions,
are sought:

DeriniTION 1.1. A bounded function u(x,t) is a weak solution of (1.3), subject 1o the Cauchy date
(1.5) u(x,0) = uo(2) € Lo (RY) ,

if QVu exists in the sense of distribulions and
(1.6) f j g+ £ V6= (QVu) - V4 + gdldedt = - / wd( 0z Vo € C(RNHY) .
RNxR RN

It is well known that the Cauchy problem (1.3)-(1.5), denoted (CP) henceforth, has weak sclutions
[6] which are continuous [1]. Furthermore, these solufions satisfy the equation in the classical sense in the
neighborhood of points where u # 0. However, their uniqueness remained so far in question,

Volpert and Hudjaev [5] have studied equation (1.3) where the viscosity coefficient, Q(z,t, ), is assumed
only to satisfy

(1.7) Qe t,u)e >0 Yz t,u)e RN xRt xR and & e RN\ {0}

(as oppose to our stricter assumption, (1.4)). Under this relaxed assumption, weak solutions of (1.3} are
not uniquely determined by the initial data, (1.5). Therefore, Volpert and Hudjaev dealt with a subclass of
weak solutions (which are usually referred to as eniropy selutions in the context of hyperbolic conservation
laws, @ = 0, g = 0) and proved uniqueness in that subclass,

We show here that under the assumption of mild degeneracy, (1.4), Li-weak solutions of (1.3) are
uniquely determined by their initial value. We first prove that weak solutions of {CP} are regular in some
sense (Proposition 2.1) and then we use this regularity in proving that the solution operator of (1.3) is L;-
stable (Theorem 2.2). This L;-stability implies the uniqueness of Li-weak solutions of the Cauchy problem
(CP).

2. Let u be a weak solution of (CP) and let 2 denote the set of points where it vanishes,
Q= {(z, 1) e RY xR : u(z,t) =0} .

Since u is continuous, the complement set, Q°, is open and u satisfies equation (1.3) in the classical sense
there, Clearly, u satisfies the equation in the classical sense also in the interior! of {2, Q°. Hence, u fails to
be smooth only on the interface, 8(). However, it is still regular there in some weak sense:

ProrosrrioN 2.1. Define, for allt > 0,
Aty = 00N (RY x {t}) .
Let n = fifz,t) € RY be a normal vector to 3(t). Then
(2.1) {QVu)(z,8)-n=0  V(z, 1) o),
where { - ) denotes the jump along the normal direction, n:

Wz, ) =v(e+0 - n,t)—v(z~0-n,t) , (&)t .

1 For any domain D, D° denotes its interior.



Therefore, )V may not be continuous (as it is in the one-dimensional case, N = 1, consult [4, Propo-
sition 4.1]) but for any fixed ¢, (V) - n is continuous along normal directions, n, to the interface (t).

Remark. Since u is continuous, 80 consists of an at most countable, nowhere dense, collection of smooth
manifolds in R x R+, with dimensions less than or equal to N. Therefore, for all £ > 0, §2(¢) consists of an
at most countable, nowhere dense, collection of smooth manifolds in BY, with dimensions less than or equal
to N—1. On manifoldsin R" with dimension N —1, the normal vector n = 7i(z) € R" is determined uniquely
modulo scalar multiplications. However, in any point on a manifold in RY with dimension k < N — 1, there
is an infinite {N — 1 — k)-parametered family of normal vectors. In that case, equality (2.1} holds for any
choice of a normal vector.

Proof. Let T be a N-dimensional manifold in 8 and P be a point in the interior of I'. Assume that
there exists a closed ball, B C RN x {t : ¢ > 0}, centered at P, such that BN 8Q = BNT . Therefore, T
splits B into two components, By and Bs, in the interior of which u is smooth.

Let ¢ be a test function in C§°(B°). Then, by {1.6),

2
(2.2) 0= j/B[uqst +1- V- (QVw) - Vé+gdldedt=3 1 ,

=1

where
L= f jB [ube+ £ V6= (QV) - V4 + gdldadt

Since u satisfies equation (1.3) in the strong sense in B}, we get that

23) =[] (@t v (- Quueisat,
where j stands henceforth for j =1, 2.

We introduce the following notations:
e I'g = I'N B is the inner boundary between By and Bs.
o 7; = #{z,t) € RN is the outer unit normal to B; in (z,t) € 8B;.
e n; = ii; € RV and m; € R are, respectively, the spatial and time components of 7;:

(2.4) 7 = ( :;J ) .

Let us now define
. n: (P
Ip(es) = I‘B—Ei( Jg )) :

1%(e;) is therefore a translation of I'p along the normal direction to T'p N (RY x {t}) in P, towards the
interior of B;. I'p is the internal part of OB; (the external part of 8B; is 8B; N §B); by replacing I'p with
Iy(e;), B; shrinks into a new domain, denoted Bj(g;).

‘We now constder the integrals

(2.5) )= [[ (Wt V(7 - QUupidadt
Bjles)
Clearly, since
Bj(g;) B
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we have that

(2.6) Ij(&'j) —)an .

£j—

Applying The Divergence Theorem in (2.5), we get that

= (70 ) 2] o

where 7;7(z,1) € RN+1 is the outer unit normal to B;{¢;) in {(z,1) € 8B;(¢;). Since ¢ vanishes on OB, we
get that

(2.8) B = [ (){[( =0V o 8} enas

or, after the changes of variables ¢ v z — gjn;(P),

(2.9) Iile;) = /1,3{[( f-ovu ) aj} qS}(:r: —¢;ni(P), t)dz .

We now let g; — 0. Since u, f{u) and ¢ are continuous and

ﬁjj(z —gyns(P)t) —>017j(:r:,t) V{z,i)eTp ,
£

we conclude that

(2.10) Jlim Ti(e;) = fFB K Flu(e8)) - (Qtzz?g“)’””o'”f(]))’t) ) -aj(m,t)} $(z, tydz .

Since ¥y = —¥y on I'g, we get, using (2.10), (2.6), (2.2) and (2.4), that
(2.11) ./r {I(QVU)(:E +0-n1(P), 1) — (QVu){(z — 0 n((P), t)] ‘nq(z, t)}qﬁ(m, Ndz=0.

Note that since 7 is a normal vector to A9 in RVN*! ny is a normal vector to 8Qt) in R”. Finally, by
letting supp¢ shrink to P we conclude that (2.1) holds in P.

Next, we handle the more delicate possible cases:

Assume that T C 80 is a manifold of dimension & < N. Let P be a point in T'(f) = I'N @RN % {t})
and 7i € RY be any normal vector to I'(¢) in P. Then, there exists a N-dimensional manifold, I' C RAHL
such that T C I and  is the normal vector to T(t) = T N(RY x {t}) in P. By repeating our arguments, as
before, for T', we conclude that (2.1) holds in this case as well.

If P lies on the boundary of a manifold T' C Q, we may extend T to a manifold T such that P € (T')°,
in order to apply our previous line of proof.

The proof in case that P lies on the intersection of two (or miore) manifolds is slightly modified by
decomposing B into four (or more) components.

Finally, the case of an accumulation point (i.e., each neighborhood of P is intersected by infinitely many
manifolds of 99), is treated similarly by applying a limit process. 0

A consequence of Proposition 2.1 is that the solution operator of (1.3} is stable in L; = Ll(}RN):
THEOREM 2.2. (Ly-Stability). Let u and v be two weak solutions of (1.8)-(1.4). Let ME be such that
(2.12) My <ulz,t)e(e, ) < M VY(z,t) e RY x[0,7],
and assume that

(2.13) ul{-,ty —v(-,t) € Ly vt e 0,77 .
4



Then

(214) “u("t) - 'U(-,t)”,[,l < e'ﬂ”u(':(}) - U(‘lg)“LL Vie [O:Tl )
where
(2.15) v =v(1) := sup gulz,t,u) .

RN %[0, T)x[M5 M}

Before proving Theorem 2.2, we state and prove the following lemma:
LEMMA 2.3. Let D be a bounded domain in RN and w = w(a) be such that
(2.16) w| >0 and wl =0.
D ap
Let @ = Q(z) be a N x N nonnegative definite matriz function. Then if n is the outer unit normal lo 8D,

(2.17) (Q@)Vw)-n| <0.

Proof. Let ©g be a point in 8D. Since Q(zp)} is a nonnegative definite matrix, there exists an orthogonal
matrix P, such that

(2.18) PQzg)PT = A = diag{);,..,An} , M20, 1<i<N.

We make the following change of variables, x +— £ = Pz. Denoting the gradient with respect to the new
variables by V = /0% and the new outer unit normal vector to 4D by #, we have that

(2.19) V=PV and #=Pn.

Using (2.18)-(2.19) we get that

N
- Jw
2.20 Vw) - = (PTAP : = (A -7 =3 Ay .
( ) (Q U.?) nx:a:u ( vw) nx:mu ( V'LU) niﬂP.’nu ; 'Ba”:,;n =Py
However, assumption (2.16) implies that
(2.21) wiso 1<i<n,
az;

in # = Pzg. Hence, since the eigenvalues ); are nonnegative, (2.18), we get by (2.20)-(2.21) that inequality
(2.17) holds in » = 2g. That concludes the proof. O

Proof of Theorem 2.2. For every t > 0, we divide the space RV to sub-domains, RY =LJ; Di(t), so that

(2.22) CNTCORECD) T L
and
(2.23) ul-t) = v(-,t)|apk(t)

Using (2.22) and (2.23) we conclude that

(2.24) S 1) = o, Dl =
5



-2 —1)* ulz,t) — vz = —1)* wy(z,t) — vz r o=
= G0 [t s 0lde = 0 [ )= wmtlde = 30

We show below that all the terms in the last sum in (2.24) are nonpositive. We concentrate on terms Iy
which correspond to bounded sub-domains D (t). Later on we comment about the treatment of unbounded
sub-domains.

First, let us assume that neither u(:,t) nor v{-,t) vanish in Dr(t)°. Therefore, both u and v satisfy
equation (1.3) in the strong sense there and we conclude that

(2.25) I :(“l)k/;, o7 Ulenton) = St lds +

+(~1)F f Vo [Qz,t, u)Vu— Q(z, ¢, v)Voldz + (- 1)F j [o(2,t,u) —g(e,t,v)lde =T, + E+ I .
De(t) D\{(t)

The first term on the right hand side of (2.25) is zero, due to The Divergence Theorem and equality
(2.23):

(2.26) n=/ .60 = oty mds =0

n € RY denotes here and henceforth the outer unit normal to Dy (t).
As for the second term, it equals, by The Divergence Theorem, to

Ii= (—l)k] [Q(s,t, w)Vu — Q(s,t,v)Vv] - nds .
aDk(t)
Since u = v on 9D (1), (2.23), it may be written as follows:
(227) I’? = j {Q(s,t)Vw] . nds ,
aD.{t)

where Q(s,1) = Q(s,t,u = u(s,t)) and w = (—1)*(u — v). Since, by (2.22)~(2.23), w is nonnegative in Dy(t)
and vanishes on 0Dy (¢), and Q(s,¢) > 0, Lemma 2.3 implies that

(2.28) It<o.

Using The Mid-value Theorem, (2.22} and (2.15) for the last term on the right hand side of (2.25), we
get that

(2.29) < 7/ v —v|dz Ve [0,T].
Di(t)
Combining (2.25)-(2.29) we conclude that
(2.30) I < 7/ [u—vldz  VLe[0,T].
Dy(t)
Next, we handle those sub-domains, Dy (t), in the interior of which either u or v vanish. We denote, as

in {2.1), the zero sets of v and v by €, and Q,, respectively.
Assume that Dy (£)° is intersected by one of the manifolds of £,,, T,

(2.31) De(t)° N0y = De(§)° AT £ 0
6



and that
(2.32) Dt NQ, = .

The case where Di(t)° is intersected by more than one manifold of either of the two zero sets, is treated in
a similar manner, as we explain later on.

If the dimension of T is less than N, we imbed it in a N-dimensional manifold, still denoted by T'.
Therefore, S := I' N Dy (t), splits Dy(t) into two components, D} (t) and D2(t), and in view of (2.31)-(2.32)
u and v satisfy equation (1.3) in the strong sense in i (1), j = 1,2. Therefore

2
(233) L= (mi)k] oo [ue(z, 1) — ve(z, t)]de Z{ /Djmv Aflz,t,v) — fle,t, w)lde+

i=1

Hot [ Qv Qe o) vlds+ (1 [ [t u)wg(w,t,v)ldx} -
Di(t) D1
Let n; denote the outer unit normal to [ ?(1). Note that on S, the interface between Di(t) and Dj(t),

ny = —ng, and that on EiDJ (t)\ S, nj coincides with n, the outer unit normal to Dy (2).
Therefore, using The Divergence Theorem and equa,lity {2.23}, the first term on the right hand side of
(2.33) vanishes:

(2.34) Z(—z)k/_ V- [f(o,t,v) - f(a:,t,u)da:—Z( 1) f (s, ) — F(s, 8, u)] - nyds =
i=1

D J=1 aDi(t)

= (~1)} { fs [F(s,t,0) — F(s,t,0)] - (m1 + ma)ds + fa

De(t)

[f(s,t,v) — f(s,1,u)] -nds} =0.

As for the second term, it is nonpositive:

2
(2.35) > (-1 / V@, 8, w) Ve — Qz, t, v)Ve]de =
i = Di(t)

Z=: «/é‘D’ [Qis,t,u)Vu— Q(s,t,v)Vv] n;ds =

“_"j [Q(s,t)Vw]-nds-}—(—l)k/ (Q(s,1,u)Vu)- nlds—(—l)kf(Q(s,t,v)V'u) cnyds
D {1) 5

where, as before, Q(s,1) = Q(s,t,u = u{s, 1)}, w = (—1)* (v — v) and { - )} denotes the jump across S in the
normal direction, ny. The first term on the right hand side of (2.35) is nonpositive, in light of Lemma 2.3,
while the other two terms vanish in view of Propesition 2.1.

Since the last term on the right hand side of (2.33) may be bounded as in (2.29), we conclude, by
(2.33)-(2.35), that inequality (2.30) holds in this case as well.

If Dp(t) is intersected by any number (finite or infinite) of manifolds from either Q, or Q,, it may be
decomposed into Dp{t) =U;er D 1 (1), so that both v and v are smooth in DJ(t)" j € J, and the proof goes
along the same lines as above.

Finally, if Dg(t) is an unbounded sub-domain, we may consider an increasing sequence of bounded
domains, {DJ*(f)}5o_,, such that USS_, DP(t) = Di(t). The boundary of DJ*(t) may be decomposed to

ODP() = ST USy , ST =38DF(t)yndDg(t) , S5 =0DT{)\0D(2t) .
7



In light of (2.23), u = v on ST*. On the other hand, in view of (2.13), {D7 ()}, may be chosen so that
(2.36) nzgnoo §|u — v||L1(55u) =0 s

since ST* is the part of the boundary "near the infinity”. Therefore, when m — oo, the contribution of the

integral on S7* to I} in (2.26) tends to zero while the contribution to I in (2.27) tends to a nonpositive
value.

To surnmarize all of the above, inequality (2.30) holds for all k. Hence, we get from (2.24) that

d
FlC: ) =v( Ol <v-lut ) -0, VEE[0,T],
which implies (2.14). O
An immediate consequence of Theorem 2.2 is uniqueness:

COROLLARY 2.4. (Unigueness). The Cauchy problem for equation (1.3)-(1.4) admils a unique Li(IRY)-
weak solulion.
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