UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Finite Element Error Estimates of Fictitious Domain
Methods for Parabolic Problems

Jun Zou

March 1994
CAM Report 94-6

Department of Mathematics
University of California, L.os Angeles
Los Angeles, CA. 90024-1555



Finite element error estimates of fictitious domain
methods for parabolic problems *

Jun Zou 1

March 4, 1994

Department of Mathematics
University of California at Los Angeles
Los Angeles, CA 90024-1555
and
Computing Center, Chinese Academy of Sciences
Betjing 100080, P. R. China

ABSTRACT
Instead of solving original problems defined on irregular domains, we
solve extended parabolic problems on regular domains which contain
actual ones to get required solutions of original problems. Optimal error
estimates between continuous solutions of original problems and finite
element solutions of extended problems are obtained both in L%-norm
and in energy-norm.

1 Introduction

With the development of domain decomposition methods, fictitious domain meth-
ods for partial differential equations have also attracted much attention in the
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past years, see Glowinski et al. [8], Glowinski and Pan [9] and Young et al.
[16]. The methods of the kind (they are sometimes called domain embedding
methods) have been regarded as a most interesting potential method for solving
complicated problems from practical applications. Although there exist many
different ways for developing and constructing fictitious domain methods, see
Astrakhantsev [2], Borgers and Widlund [3], Buzbee et al. [4], Finogenov and
Kuznetsov [6], Glowinski et al [8], Hoffmann and Tiba [10], Mannikko et al. [12],
Matsokin [13], they have one common property. That is, they all introduce so-
called fictitious domains- quite regular, simply shaped- which contain the actual
irregular or curved domains and then solve newly constructured problems defined
on fictitious domains to get approximate solutions of original problems defined
on actual irregular domains.

Since fictitious domains are very regular, for example, rectangular (2-D) or
cubic domains (3-D), they may have some advantages: (1) approximations of
curved boundaries of original domains are not necessary any more; (2) one may
use some efficient solvers suitable for fairly structured domains; (3) one may
introduce simple or more desirable boundary conditions, on fictitious domains,
for the considered problems. For example, periodical boundary conditions for
using spectral methods for Navier-Stokes equations.

In this paper, we consider the fictitious domain/penalty method for solv-
ing parabolic problems with Neumann boundary conditions defined on domains
with curved boundary. The fictitious domain/penalty method was proposed by
Glowinski et al. [8] for elliptic problems. Our main work is to analyse the con-
vegence and approximation of fictitious domain problems discretized by finite
element methods in space and by Crank-Nicolson scheme in time. And we obtain
the optimal error estimates both in L?-norm and energy norm with respect to time
step ¢ and mesh size h. Section 2 will introduce the parabolic problems which we
solve. Section 3 will be devoted to the formulation of fictitious domain/penalty
solution method and its discretization. Finally, error estimates between finite
element solution of fictitious domain problem and continuous solution of original
parabolic problem will be conducted in Section 4.

Throughout the paper we utilize |- |, g and || - ||, o to denote the semi-norm
and norm of the usual Sobolev space H™({1). Constants C' denote always generic
constants which are independent of mesh size h and time step 7.



2 Parabolic problems with Neumann boundary condi-
itons

In this paper, we take the following parabolic problem with Neumnann boundary
condition as example for the analysis:

du )
+b(z)u=fin O, (2.1)
Bt Ij‘; oz, ( 8
u(m 0) = uo( ), (2.2)
Z aua = g(z,t), (z,1) € 02 x (0,1} (2.3)
1,j=1
with n = (n;,ny,++,ny) being the unit outward normal of the boundary 00,

Q) being a open domain in R? with appropriate smooth boundary, b(z) > 0,
f e L?(0,T; L¥Q)) and (a,;j) is symmetric and satisfies

d
eqln? £ - aymin; < ewlnl?, Y€ RY (2.4)
=1

By Green’s formulae it is immediate to derive the variatinal formulation of

the problem (2.1)-(2.3)
(VP): Find u e L? (0,7; HX{(f))) NH (0,T; (H'(£1))") such that

u(,(}) = Up (2'5)

and for almost every ¢t € (0,T) the following equation holds

(e v)g + ag(u,v) = (f, v)a + (g, v)sa, Vv e HI(Q) (2.6)
where
(u,v)g = _/s;uvdm, (g,v)50 = j gvds, (2.7)
d ou 0
ag(u,v) = /Q (;;1 a;; Ba: 81} + buv) dr. (2.8)

Under appropriate smoothness assumptions on the given data, one can show that
Problem (VP) is equivalent to Problem (2.1)-{2.3).



3 A fictitious domain method and its finite ele-
ment scheme

Now we introduce a fictitious domain method to reduce the solution of Prob-
lem (VP) into a parabolic problem defined on a larger regular domain O which
containg the original domain {1, see Figure 1.

0O

Figure 1. Original domain {2 and its fictitious domain O

Let € > 0 be a arbitrarily given parameter. Consider the following fictitious
domain formulation:

(FDP): Find u® € L*(0,T; H{(O)) N H*(0,T; H-1(0)) such that
u(-,0) = g (3.1)
and for almost every ¢ € (0,7") the following equation holds
(uf,v)q + ag(u, v) + & (uf, v)o + € ap(u®,v) = (f, v)g + (9, v)oa
te(for V)0, YvEHYQ).  (3.2)

where f, is a given function in L2(0,T; L2(O)), ap(:, ) and (-, -)p are defined
similarly as in (2.7) and {2.8). Later on, we will also use norms ||+ ||, o and ||-[],0
to denote norms (ag(-,-)}}/? and (ap(-,-)}/% By Lions’ theorem, see Wang [13],
we know that Problem (FDP) has a unique solution uf € L*(0,T; H}{(O)).

In this paper we take Crank-Nicolson’s scheme to discretize Problem (FDP) in
time. For other discretization scheme for time, we can get the similar results. Let
7 = T/M be time step size with M a positive integer. For any n =1,2,---, M,
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we denote ¢, = nt and I" = ({,_,,t,]. For a given sequence {uv*}M < L*(9),

we define
U un—l

. 1
n_ sn—l _ C(on y an-1 )
J, u” = . , "2 2(u + u™1 (3.3)

For a continuous mapping v : {0,7] — L2()), we define u™ = u(-,n7), 0 <n < M.

In space we will approximate the problem (FDP) by finite element method.
Suppose we are given a family of triangulations {7"} consisting of d-simplices
on O. Let Vk C H}(O) be a given finite element subspace, and II, be the
corresponding finite element interpolation operator. For the sake of simplicity,
we assume that V% is a piecewise linear finite element subspace. But all our
results in the paper can be directly generalized to other finite element subspaces
and non-simplex elements without any difficulty. OQur finite element problem is
then formulated as follows:

FEP): Find u? € V* such that «® = I[,u® and forn=1,2,--- | M,
k h

(0,uz,v)q + ag(@r /%, v) + & (8,up, v)o + c ao(@; 1, 0)

= (712, v)g + (g™ V2, v)an + € 3_1/2, v)p, VveVh (3.4)

where @} '/* = (up +uph)/2.
By Lax-Milgram lemma, see Ciarlet [5], we know that Problem (FEP) has a
unique solution u?, for any n:n =1,2,---, M.

4 Error estimates between (FEP) and (VP)

This section is devoted to the error estimates between the solutions of the finite
element problem (FEP) and of the original variational problem (VP), or (2.1)-
(2.3). For the purpose, we first extend functions defined on  into O. There
exist various extensions, cf. Agmon [1], Gilbarg and Trudinger [7], Stein [14], etc.
Here we cite a result from Stein [14]

Lemma 4.1 Let & C Ri(d > 2) be an open, bounded domain with a piecewise
smooth, uniformly Lipschitz continuous boundary I'. Then there exists a linear
operator E extending functions on Q to functions on O with @ CC O such that
Eue HMO), Eulg =u and

1Bl pmoy < C)fullpm(), ¥ v e H™() (4.1)

i.e., E maps H™(Q) continuously into H™(O), m is a nonnegative integer. C()
depends on d, m and the Lipschitz constant of the region only.
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Qur main results of this paper are stated in the following lemma

Theorem 4.1 Let Q is a bounded open domain in R¢ with a C'1 boundary and
Q cc O with O being a polygonal domain. Then we have

pax [l —urllig S C(h+7+ b2 7704+ V6), (4.2)
max [l - wllog < O (B +77+ Ve). (4-3)

We first cite the well-known standard finite element interpolation results, cf.
Ciarlet [5]:

Lemma 4.2 For any u € H*(O), we have
Hu‘ - HhuHs,O S C h2v31u!2,01 &= 05 L. (44)

Proof of Theorem 4.1. Taking ¢ = t"~1/2 and v € V* in (2.6) gives

(ur ™%, 0)g + ag(ur=V2,0) = (f*%,0)q + (9712, v)o0, (4.5)

which can be rewritten as

(B,umv)q +ag(@/20) = (f*712,0)g+ (g7 v)on
(6 ur — n 1/2 )Q + ag(,&n—-l/Z mun—uz,v)_ (4.6)

Let pp = u — I, Eur with u? and u™ being the solutions of Problem (FEP)
and (4. 6) respectlveiy To prove Theorem 4, we first estimate p? in the following

and then our required results follow from the triangle’s inequality.
From (3.4) and (4.6), we derive for any v € V* that

B,0%v)a + ag(py % 0) + € (B,ul,v)o + e aoliy %, v)

= (8,(Eur — I, Bu),v)q + ag(Bur="/? — E@2,0) + &(f3 7%, v)o
-]—(lf}m?_lf2 — 3, Eu,v)q + ag(Eun=1% — Ean=Y/? v). (4.7)

We rewrite (4.7) into

@,07,0)0 + aq(B % 0) + (8,07, )0 + e aol(mr /%, v)

= (ar(Eu“ - HhEun),U)Q—}-ag(Eun—lﬂ _HhEﬁn—I/Z )+€( n— 1/2’ )O

+(U?_1/2 _ (%un,'u)ﬂ + an(un-—lﬂ _ ﬁn—i/?.’v)
—£ (BTHhEun’ U)O — an(ﬂhE'L—{,”_lﬁ, v). (48)



Substituting v = p;*/* into (4.8) implies that

LRl 0= 2llog B o 15

+“§”!|P2|i§,o = %IIP,;]H +rellap e,

ST [(6 (Bur — L Ewr), pr 7 %)g + aq(Ban—1/2 — 11, Ean1/2, _n—1/2)]
+r [ - Bpum, Y )9+a9(un—1/2_ﬁn~1/z, e

TTE [( 2R e — (8,11, Eur, iy — ao(I, Bar-1/2, 52‘1/2)}
=17l r? 40l (4.9)

Now we estimate r!, 72,73, one by one.
First, using Lemma 4.1 and Lemma 4.2 and the standard arguments, cf. Hoff-
mann and Zou [11], Zou [17], we get

. 1/2
|r(@.(Bur — I Bu), 77 )o| < 721188 llo ( / HEugmHhEutH%,ﬂdf)

tn 1/2
<Ol loa ([ fuliatt)
th—1 !

in
<Cr AR g + Ch4/t [u o dt, (4.10)

n-1

n—1

while by (2.4) and Lemma 4.2 we have

rlag(Bir=1/2 — W Ea=2, 57| < 7 (5l | BanY/ — T Ban— 2|

IA

1
< BT NE g + O Rt o (400)
Thus from (4.10) and (4.11) we derive

in
1?‘1| < —T “..'n 1/2” _+_ C H..n I/2|| 20 + Ch4 (‘L |utlg‘g dt+ T |ﬁn_1/2!§,ﬂ)

n—1

(4.12)
Secondly, we analyse r2. By using dual arguments, Taylor’s formulae and
the equivalence between the norms || - ||, and || - [l g, we obtain by direct
computations that
tn
n—1 u” —n—1 n—
e (7% = 0, 5 < 7-“ 12 ,ﬂ+274/t lteee sy @t (4:13)
n—1



and

_ — 1 —n—1/2 tn
[raq(uir2 —wmtie, g < ool R+ 7 [ gt (419)

n—1

Therefore we deduce from (4.13) and (4.14) that

in
72| < _,. 17 g + 74 ]i (luael 2 o + Meteel Bera gy ) 2 - (4.15)

Finally we turn to the estimation of r3. It follows by Cauchy-Schwarz’s in-
equality and standard arguments that

rel(fa™ B o < Sl o + 5 mnfn-l“nw, (4.16)
el (0B, o] < 5 mn—“‘l“ f [l 2 o dt, (4.17)
n— 1 =T —
relao(ILBan-1/2, /i7" < ore |lan |12 ,o+fe||u“—1f2llin-
(4.18)

where we have also used Lemma 4.1 and the stability of I, in H'(O)-norm.
Thus from (4.16)-(4.18) it follows that

tn
P < er B MR+ ellfs T B e [ Il g dt
n—i
el R o + el o (4.19)

Thus taking the sum from n =1 ton =k < M in (4.9} and using (4.12), (4.15)
and (4.19) comes to

141 +rz:|s““"” o tellohll +TEZ!|“"“’2

n=l [

<7 E ||m_1‘/2 ot TE Z 1% ]/2 otE HfOHC(O,T;Lz(O)) +e ”u”%((),q*;yz(g))
n=1
T
+C W+ e) [ (b + el + iy + llE o) 4
k k
<t Y gilg+7e 2 lIpplE o+ C (B + 74 +e). (4.20)
n=1 n=1

where we have used the estimates of |[p}]g 0-
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Now by Gronwall’s inequality, we obtain that

JE P ne1/2
max ||ppl2 o +e max [lppl2, + 7 z:(n Y2z elld )

1<n<M 1<n<M
< C(h*+ 14 +e) (4.21)
Then (4.2) follows from above and the triangle’s inequality for u® — u} = u™ —
I un - pt.
To prove (4.3), substituting v = 7 d,p? into (4.8) and using Young’s inequality
implies that

1 2 1 €
s (10,7313 + € 10:02112.0)” + 5 (lenlEq =110 12,0) + 5 (1193120 = 1167 112)

< 718, (Bur — W Bur) |2 + e 157212 o + 7 [luf 7% = B,um|2
+7 aﬂ(Eﬁn—lﬁ - HhEURWIN) arph) +7 aﬂ(un 172 un—1f2, arPZ)
+7e }I@THhEu"Hgﬂ +TE HHhEa“—WHg,O. (4.22)

By means of the techniques used in (4.10), {4.13), {(4.11), (4.14) and (4.17)
and (4.18), we get

tn
7110, (Bur — T Eum)|[2 , < O b j " fuladt, (4.23)
~1/2 in
Pl - B2, < Ot /t g2 ot (4.24)
7 B2 - L, Ean-12)2 | < C 7 b~ 122 (4.25)
in
Pl =@ <ot [ gl gdt, (4.26)
re |0, Eunl2 < /-3 |12 o (4.27)
TE Hl'IhEﬁ”‘VZHi o 3 TE |[”n_1/2H%,o' (4.28)

From (4.25) and (4.26) we deduce that
ag(Ew"~V/? — I, Bur='12, 7, p7) < ||[Ear-/? = ILEw 2|, a(llo3lla + 115 lan)
< CT(“P’;”z,Q + HPEM1||§,|Q) + 771 A Huugc(o,T;HS(g)) (4.29)
and
ag(ur=? — a2, 9, pn) < |2 — w2 o(llphl e + (107 o)
in
<7l + g 10+ 72 [ a2 gt (430)

n—%1
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Therefore, taking the sum from n = 1 ton = k < M in (4.22), using {4.23)-(4.30)
and Gronwall’s inequality, we have

M

o, (el + e ol o) + 7 32 (10:0 0 + ¢ 10:41130)
<O (R + 72 +¢+ kA1) (4.31)

Thus we proved (4.3), this completes the proof of Theorem 4.1.
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