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Abstract. We consider two level overlapping Schwarz domain decomposition methods for solving
the finite element problems that arise from discretizations of elliptic problems on general unstructured
meshes in two and three dimensions. Standard finite element interpolation from the coarse to the fine
grid may be used. Our theory requires no assumption on the substructures which constitute the whole
domain, so each substructure can be of arbitrary shape and of different size. The global coarse mesh
is allowed to be non-nested to the fine grid on which the discrete problem is to be solved and both
the coarse meshes and the fine meshes need not be quasi-uniform. In addition, the domains defined by
the fine and coarse grid need not be identical. The one important constraint is that the closure of the
coarse grid must cover any portion of the fine grid boundary for which Neumann boundary conditions
are given. In this general setting, our algorithms have the same optimal convergence rate of the usual
two level overlapping domain decomposition methods on structured meshes. The condition number of
the preconditioned system depends only on the (possibly small) overlap of the substructures and the
size of the coarse grid, but is independent of the sizes of the subdomains,

Key Words. Unstructured meshes, non-nested coarse meshes, Schwarz methods, optimal conver-
gence rate.

AMS(MOS) subject classification. 65N30, 65F10

1. Introduction. Unstructured grids are very popular, and extra flexible to allow
for complicated geometries and the resolution of fine scale structure in the solution
[1], [18]. However, this flexibility may come with a price. Traditional solvers which
exploit the regularity of the mesh may become less efficient on an unstructured mesh.
Moreover, efficient vectorization and parallelization may require extra care. Thus, there
is a need to adapt and develope current solution techniques for structured meshes so
that they can run as efficiently on unstructured meshes.

In this paper, we will present Schwarz methods defined for overlapping subdomains,
for solving elliptic problems on unstructured meshes in two and three space dimensions.
These are extensions of existing domain decomposition methods, constructed in such
a way so that, first, they can be applied to unstructured meshes, and second, they
retain their optimal efficiency as for structured meshes. These methods are designed to
possess inherent coarse grain parallelism in the sense that the subdomain problems can
be solved independently on different processors.
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The theory and methodology of domain decomposition methods for elliptic prob-
lems on structured meshes are quite well developed, cf. [2], [3], [10], [12], etc. On a
structured mesh, most of the existing theories and algorithms exploit the fact that the
space of functions on the coarse mesh is a subspace of that on the fine mesh. Unfor-
tunately, this property may no longer hold on an unstructured mesh. Both the theory
and the algorithms need to be developed to accomodate this fact.

In this paper, we continue to develop the theory of overlapping Schwarz methods
for elliptic problems in two and three dimensions on unstructured meshes begun by Cai
[4] and Chan and Zou [6]. Our main new results are: (1) to prove convergence even
when the domains defined by the fine grid, Q*, and coarse grid Q¥ are not identical,
for instance the coarse grid only covers a (large) portion of the fine grid, and (2) to
provide a simple proof of convergence when standard finite element interpolation from
the coarse to fine grid is used that also holds for non-quasi-uniform triangulations. An
important observation will be made that to obtain these strong results, in general, any
Neumann boundary must be covered by the coarse grid. As in the earlier work, the
subdomains are allowed to be of arbitrary shapes.

2. The finite element problem. We consider the following self-adjoint elliptic
problem:

ou
(1) - Z a;; —{—buwf, in
i,5= 1 a
with Dirichlet boundary condition
(2) vu=0, onl

and with mixed Neulma,nn boundary condition
ou
(3) Za”a n;+au=0 ondQ\T
: r.;"“'”l

where  C Ri(d = 2,3), (a;(z)) is symmetric, uniformly positive definite, and is
allowed to be discontinuous but varies slowly on the domain, b(z) > 0 in 2, a(z) > 0
on 09, and n = (n,,ny, - ,ny) is the unit outer normal of the boundary 0.

By Green’s formula, it is immediate to derive the variational problem corresponding

to (1)-(3): Find v € HL() = {v € H'(Q);v = 0 on I'} such that
(4) a(u,v) = f(v), Vv € Hy(§)
with

J .
a(u,v) = _/(Z a”gu gv +buv)d:t:—i— auvds,

_ 8O\l
flv)y = jﬂfvda:.



We will solve the above variational problem (4) by the finite element method.
Suppose we are given a family of triangulations {7%} on , consisting of simplices.
We will not discuss the effects of approximating §} but always assume in the paper
that the triangulations {7%} of £ are exact. So we have @ = Q% = U, 7. Let
h = h = max,cqn by, b, = diam 7, b = min,¢qn k., p, = the radius of the largest ball
inscribed in 7. Then we say T" is shape regular if it satisfies

5 sup max — < o
( ) L reTh Py [V

and we say T" is quasi-uniform if it is shape regular and satisfies
(6) h<vh,

with o4 and v fixed positive constants, see Ciarlet [8]. In the paper, we will only assume
that the elements are shape regular, but not necessarily quasi-uniform.

Let V* be a piecewise linear finite element subspace of H1(f2) defined on 7* with
its basis denoted by {¢#}72_ , and O; =supp ¢?. Later on we will use the following simple
facts: if 7% is shape regular, there exist a positive constant C and an integer v, both
depending only on o, appearing in {5) and independent of A, so that, for: = 1,2,---,n,

(7) diam 0, < Ch,, V1 C O
(8) card{r € T 7 C O;} <.

Qur finite element problem is: Find u? € V* such that
(9) a(uh,vt) = f(vh), ¥V ok € VH

The corresponding linear system is
(10) Au=7f
with a = (a(¢h, ¢"))r,_, being the corresponding stiffness matrix.

Because of the ill-conditioning of the stiffness matrix A, our goal is to construct a
good preconditioner M for A by domain decomposition methods to be used with the
preconditioned conjugate gradient method.

As usual, we decompose the domain {2 into p nonoverlapping subdomains {2; such
that @ = UPL,€);, then extend each subdomain {; to a larger one ) such that the
distance between 8(; and 9 is bounded from below by é; > 0. We denote the
minimum of all §; by 6. We assume that 0{} does not cut through any element r € 7.
For the subdomains meeting the boundary we cut off the part of )\ which is outside
of 2. No other assumptions will be made on {{2;} in this paper except that any point
z € (1 belongs only to a finite number of subdomains {§}{}. This means that we allow

each (2, to be of quite different size and of quite different shape from other subdomains.
We define the subspaces of V* corresponding to the subdomains {2/}, ¢ = 1,2,---,p by

(11) Vb= {v;, € V”';vh =0 on (Q\ Q) U (0Q\ (00 NQ,))}
3



For interior subdomains, and those adjacent to only a Dirichlet boundary,
(12) VA= Vi HHQ).

To develop a two level method, we also introduce a coarse grid TH which forms a
shape regular triangulation of {2, but has nothing to do with T*, i.e., none of the nodes
of TH need to be nodes of 7%, In general, 27 # (1. Let H be the maximum diameter of
the elements of 7H, and QF = U, geru7H, and more, let T'¥ denote the portion of the
boundary OQF to which we will apply Dirichlet boundary conditions. (If the original
problem is not pure Neumann we require that the measure of I'? be at least the order
of one coarse element size.)

By VH we denote a subspace of Hlx(Q) consisting of piecewise polynomials de-
fined on 7H, by {1p#}  we denote iis basis functions related to the nodes {gf}™,.
Let OF = supp 4. We note that V¥ need not necessarily be piecewise linear; for
example, it may be bilinear (2-D) and trilinear (3-D) elements or higher order elements.
Thus we do not necessarily have the usual condition: VH# ¢ Vk We need to impose
one important constraint on the coarse grid:

(A1): AQ\T c OH,
That is, the coarse grid covers all of the Neumann boundary, See Fig. 1.
a4\ Q
R AL AR
—— T . \“",_)
— OQ\T ’
_____ OH

_________

________

Fiac. 1.

For technical reasons, we make two less restrictive assumptions further on the coarse
grid:
(A2): HNO#£0 forall TH € TH,
that is, no coarse grid element lies completely outside the fine grid. For the complement
set {1\ 07, let S be the set of all vertices ¢¥ of 27 which belongs to @\ O, and B, (r)
be a ball at the point p with radius r. We assume that

(A3): O\ O C Upires Byn(diam O},

that is, the coarse grid must cover a significant part of the fine grid.
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To overcome the difficulty that VH ¢ V5 in both the theory and the algorithms,
we need a way of mapping values from V# to V%, For the coarse space to be effective,
this mapping must possess the properties of H1-stability and L? optimal approximation,
see Chan and Zou [6], Mandel [17]. In this paper we shall mainly consider two such
mappings. The first is the standard finite element interpolation 1I, defined by the fine
grid basis functions {¢?}*_ . The second is the local, L%-like projection, R} used in
Chan and Zou {6].

Throughout the paper, we use ||-]|,, g and ||, o to denote the norm and semi-norm
of the usual Sobolev space H™(f) for any integer m > 0. In addition, || - ||, .o and
| + lmrq will denote the norm and semi-norm of the spaces W™r({}) for any integer
m > 0 and real number r > 1.

3. Two level overlapping Schwarz algorithms. Based on the finite element
spaces V* and VH given in the last section, we derive the two level overlapping Schwarz
methods for nonnested grids. Schwarz methods are preconditioning for the linear system
Au = f that are built using local and coarse grid solves. We first define these solves.
From these we may write down the preconditioners using matrix notations.

The local solves are defined as in Dryja and Widlund {11}, and Bramble, Pasciak,
Wang, and Xu [3]. Define the H'-projection operators P;: V* — Vb i =1,... psuch
that for any u € V*, Pu € VP satisfies

(13) a( P, v;) = a(u, v;), Vo, e Vi

The coarse grid projection-like operator must be defined slightly differently than in
Dryja and Widlund [11], due to the non-nestedness of the coarse grid space. Let 7, be
any linear operator which maps V¥ into a subspace Z,VH of V*, so 7, may be chosen
as the modified standard finite element interpolation operator I1, or the locally defined
operator Ry, see Section 5 for more details.

In Method 1 we define B, by first defining Pyu € VH on the original coarse grid
space by

(14) a{ Pu,v) = a(u, Iyv), ueVh YoeVH

and then define P, = 7, Py: VF — Vh. The subspace V}* € V* is defined by Z, V.
In Method 2 we define F; by calculating the projection directly onto the subspace
Vh

o
(15) a( Pyu, v) = alu,v), ueVk VveVh

where Pyu € Vi

REMARK 3.1. We note here that for the left-hand side in (14), aluy,vy) for any
wr, vy € VH, is not an integral over original domain Q, but the one over the coarse
domain M1, e

; B d du v RS g
(16} a(uH,UH)_/ﬂH(iEIGUEE;ﬁ_%+ uv) T + mH\rHauv 5.
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Thus in the sequel we always assume that the coefficient functions a;;, b, are contin-
uously extended onto M, And later on, we will use || ||, and || - ||, qu to denote the
energy norms a(-,-) over & and QH | respectively.

We now derive the matrix representation of the operators P; and P,. Using these
both the additive and multiplicative Schwarz preconditioners may be written down. For
the rest of this section only, we will use u* to denote finite element functions and u to
denote the vector of coefficients of that finite element function, that is ub = 3 ugd;.

Let {qﬂf‘lj. i, C {#t}n, be the set of nodal basis functions of VA, i =1,2,---,p.
For each i, we define a matrix extension operator RI as follows: For any u? € Vk, we
denote by u; the coefficient vector of u? in the basis {cﬁ:"} iy, and we define that R u;
to be the coefficient vector of u? in the basis {¢?}7_,.

H is immediate to check that
(17) A= R A R;T

where A and A;, ¢ = 1,2,.-,p are the stiffness matrices corresponding to the fine
subspace V* and the subspaces V%, i = 1,2,---,p. And from (13) it follows that for
any uh € V*, the coefficient vector of Pu® in the basis {¢#}7  is

(18) RFAZ'R; Au

where u denotes the coefficient vector of u* in the basis {gh}" .

Since {1pf }  is the set of basis functions of V#, then {Z,%/}m  is the set of basis
functions of V*. We define a matrix extension operator R] as follows: For any u} € V!,
we denote by u; the coefficient vector of u? in the basis {Z,9F 7, define RIu, to be
the coefficient vector of u? in the basis {¢#}7_,. Then Ry = Z,1H(g;) where ¢; is the
nodal vertex of qﬁj?. When 7, =TI, then Ry, is simply given by ¢ (q;).

We first note that the coefficient vector of a function v € V¥ in the basis {¢pH}7,
is exactly the same as the one for the function Z,v in the basis {Z,¥#}7 . So from
(14) we find that the coeflicient vector of Pyu® in the basis {pH}m_ is

where A is the stiffness matrix corresponding to the original coarse space VH, that is
Ay, = a(@bf ,H). Now using the previously given fact we know the coefficient vector

of Pyut = I, Pyut € Vi in the basis {Z,pf}m is also A3 RyAu, therefore, by the
definition of RT, RT Ay' RyA u is the coefficient vector of Pyut in the basis {¢#}7 .
For Method 2 it is straightforward to derive that

where A, is the stiffness matrix corresponding to the subspace Vj*. It follows from (15)
that the coefficient vector of Pyut in the basis {¢#}7  is

(21) RTA= RoAu.
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From above, the additive Schwarz preconditioner may be written as
2 My = KIAG Ry + 3 RIATR,
i=1
for Method 1 and
) My = B A7 Ry + Y REATIR,
i=1

for Method 2. These may be thought of as an overlapping block Jacobi method with the
addition of a coarse grid correction. The multiplicative Schwarz method is the Gauss-

Seidel version of the additive algorithm. We write down the symmetrized version, using
Method 1 as,

M = (I-(I-BTAPRA)...(I - REATR,A)(I — RT Ay Ry A)

]

(24) (I - RTAZ'R,A)... (] — RTATTR A)) AL,

In practice the application of the multiplicative Schwarz preconditioner is done directly,
not as given in (24).

REMARK 3.2. From the above matriz representations M, and M, for Method 1
and Method 2, we see that the only difference between them s in the global coarse prob-
lem solver. The latter coarse problem (with Ag') is conducted on the newly constructed
coarse subspace VI, but the former (with A%') is conducted on the original coarse sub-
space VH, Since VH is not necessarily nested to V*, Ay may not be expressed in terms
of the stiffness matriz A as Ay in (20).

We give the convergence results for the additive algorithm, similar results may
be obtained for the multiplicative algorithm using the techniques in Xu [25] or Dryja,
Smith, and Widlund [10].

It is easy to check that

[ P
(25) (M A) = w(Bo+ S P), K(MyA) = 5(3 Py,
=1 =0
For these condition numbers, we have the following bounds:
THEOREM 3.1. Suppose that both triangulations T* and TH are shape regular (not
necessarily quasi-uniform), and satisfy Assumptions (A1) - (A3). Then we have

(26) KMy ), K(M,A) < O (1 + 57

Theorem (3.1) will be proved at the end of Section 5.

4. Boundedness properties of the operator 7,. Let W' and WH be any two
finite element subspaces related to the triangulations 7% and 7, respectively. Since
WH ¢ W for our interest, the convergence proof for the overlapping two level Schwarz
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methods requires the operator Z, : WH — Wh to possess the following H? stability and
I? optimal approximation properties:

(27) [Zhuly g < Clul; gn, Vue WH,
and
(28) | Zpu ~ u”o,a < Chlul, on, Yu e WH,

There exist many options for the operator I, for example, L? and quasi-L? pro-
jection operators Q, and @), or Clément’s local L? projection operator R;. For these
discussions, we refer to Chan and Zou [6]. In this paper, we are mainly interested in
the most natural option for 7, i.e., the standard finite element interpolation operator
I1,, and the Clément’s local L? projection operator R,,.

Generally, for Z, = II,, in three dimensions (27) and (28) are not true for all
u € H(£). Fortunately, they are true in the general finite element spaces. We state
this fact in the following lemma. Several alternative proofs for this result exist, see, for
instance, Cai [4], Zhang [26] and Widlund [23].

LEMMA 4.1. Assume that Th and TH arc both shape regular, not necessarily quasi-
uniform, and Wh and WH are any two corresponding finite element spaces consisting
of continuous piecewise polynomials defined on Q0 and QF | respectively. Furthermore,
we assume that @ C Q. Then (27) and (28) hold in both two and three dimensions
for I, = 1,.

Proof. Let 7 € T*", then (see, for example, Ciarlet [8], Theorem 3.1.5), for r > 3
and s = 0,1, we know for any u € WH

(29) g~ nhu‘i,h < C’hz(l—s)hid(l,’zul,"r)|ug,r,7h,

this implies

(30) Z Iu - Hh”ETh < h2(1—s) Z hid(l/z—ljr)luﬁwh_
rhord£p ’ rhArH£) "

Now apply the Cauchy inequality

Z a;b; < (3 af)I/Q(Z W)/

1

to the right hand side with p=r/2 > 1 and ;7 + % =1, we get

(31) Z lu__nhup < Ch?(l—s)( Z hid(l/?ml/r)q)l/q( E |“|2p )1/;;

s, 1,70
ThnrH£y ThnrHz) ThirHZQ
(32) < RO RSl )
ThnTHED ThnrHZp
(33) < ORI Yl
THATH £
(34) < O R -2 (Hf@/f'l) ) luli,,m)-
FHATH L)
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The last line follows from (7) and (8), and a standard local inverse inequality, see,
for instance, Ciarlet [8], Theorem 3.2.6. Note that since the sum is only over those
elements that are neighbors to 7 we do not need the quasi-uniform assumption, called
the inverse assumption by Ciarlet [8], only the shape regular assumption.

Taking the sum over 79, we obtain

(35) o > lu— Tl < CRu? o,

TH phnrHp
which implies (27) and (28). O

For our later use, we introduce a special, locally defined projection operator R,
which was used in the domain decomposition context in [7] and {6]. Operators with
similar properties to R, can be also found in Scott and Zhang [20].

We denote the set of basis functions of V* by {¢#}7 | corresponding to the vertices
{gt}n .. Let O; =supp¢t,i=1,2,---,n.

DEFINITION 4.1. The mapping R : L2(Q2) — V* is defined by
(36) Rou =) Q;u(gh) ¢t, ¥V u € L*(Q),
=1
where Q;u € Py(0;) satisfies

(37) [ Qupda= [ upds, VpeP(0)

where P1(0;) is the space of linear functions defined on O,.

By using Poincaré inequality, the definitions of R and the relations (7) and (8),
we can show the following properties of RY, see also Clément [9].

LEMMA 4.2. The operator RY defined by (36) and (37) has the properties

(58) 1Rull,0 < C llull,g, ¥ u € HL(Q),r =0,1,
(39) llu— ROulloq < C hlulyg, ¥ u € HX(Q)

where the constant C is independent of h.

REMARK 4.1. In Lemma 4.2, we assume only that T" is shape regular, not neces-
sarily quasi-uniform, unlike the usual L? projection.

REMARK 4.2. The definition RO can be generalized to more general finite element
spaces V*, not restricted to the subspaces of V*, e.g., to bilinear element (2-D), trilinear
element (9-D), and higher order elements. In these cases, one needs only to replace
P(0;) in the relations (36) and (37) by P(O;) which are determined by the types of
elements used in V*, and Lemma 4.2 will still hold.

5. Partition lemma. In this section, we give a partition lemma for the finite
element space V* which is very essential to the convergence proof of Theorem 3.1.
As denoted previously, let {1/H},cy, be the set of basis functions of VH with Ny =
{1,2,---,m}, and let {¢7},cn,, be the corresponding nodes and O; = supp i,
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We introduce an auxiliary subspace VH of VH:
(40} VH = span {W,D:H,z e N3}

with N% = {i € Ny; ¥ = 0 on I'}. We only need VH for the proof of our main

theorem, we do not require its explicit computation for our algorithms. It is easy to
check that VH|, ¢ HL(Q).
By Q¥ and U we denote

(41) OH = Useno supp pH, Qo = QH U (O OH).

Let Ry be defined for VH similarly to R; defined for V* in (36) and (37), with nat-
ural modifications, see Remark 4.2. Now we define a modified operator Ry : L2(QH) —
VH as follows

(42) Ryw = Z Qiu(qlﬂ) f{} Vue Lz(ﬁH),
iENY

where Q; u € P(0;) satisfies

(43) ]O.- Q;updwzf(jiupda:, Y pe P(O).

Here P(0;) is determined by the type of elements used in VH. If V¥ consists of piecewise
polynomials of degree < g, then P(0;) = P,(0;). We note that R;u is well-defined on
Q by extending by 0.

For the operator Ry, we have

LEMMA 5.1. The operator Ry defined by ({2) and ({3) has the properties

(44) Il — Rygullnaz < Cllull,ap, ¥ u € HHOE),r=0,1,
(45) lu— Ryulloez < C Hlulygu, ¥ u € HL(QY)

where the constant C' is independent of h and H.
Proof. Analogous to Lemma 4.2, we can prove that

(46) |l — Ryull, on < Cllull,qr YV u € HY Q) r =0,1,
(47) lu — Ryullogr < C Hlulgx, ¥V ue HH(OQH).

Let 8Ny = {i;i € Ny \ N%}. We see that for any u € HL(Y)
(48) u—Ryu=u—Ryu+ Z Q,u(qf)@bf{
t€ONy

Using (46) and (47), we need only to estimate the final term of (48).
For any 1 € ANy, we have by a local finite element inverse inequality, Poincaré
inequality, (cf. Ladyzhenskaya et al. [15]), and the previous assumption (A3) on

10



Q\ QH, that

Qu(a® )2, < 30 IBHIR,ul1Qutl Eregym

THCO;
(49) <0 Y HE(HAAQul2 W) < ClQuIE,, < CllulZ,
THCO;
(50) < Ol 4, < C(diam O0,)*ul? 5 < CH? |uf? 5,

where O, = the union of O; with the part of Q which is outside O;, cf. Fig. 1.

Now (44) with r = 0 and (45) follow {rom (46)-(50). (44) with r =1 can be proved
analogously to the case of r = 0 above. O

Now we choose

(51) Vh=T,VH,

where 7, can be any linear operator which maps V¥ onto the subspace I, VH of V* and
keeps the H1 stability and L2?- optimal approximation in eny subspace (not necessarily
in the whole VH) of VH of functions that vanish on I'. This essential observation will
become very clear when going through the following proof of Lemma 5.2. Therefore,
7, may be chosen as the standard finite element interpolation operator, or local L2
projection operator R, after simple and natural modifications for meeting the Dirichlet
boundary condition on T'. For example, Z, may be chosen as R} defined in Definition
4.1, or as II9 which is defined as follows

n

(52) Mu = Zu(q:‘)gbf‘

=1

From (51), we note that we require that the coarse grid covers the fine grid Neumann
boundary, cf. (A1). If not so, Z, makes no sense for the part O\ Q9. But the coarse
grid does not need to cover the fine grid Dirichlet boundary, since we impose also
homogeneous Dirichlet boundary conditions on the corresponding coarse grid boundary,
so 7, still makes sense by naturally extending coarse grid functions by 0 for the part
2\ Q. Our numerical experiments will show that this is important for practical
computations.
Then we have the following partition lemma for the fine space VH:

(53) Vh= VE4 VA4 4 VA

LEMMA 5.2. Let Q C R?(d = 2,3). We assume that both triangulations T" and TH
are shape reqular, but not necessarily quasi-uniform. Then for any u € V*, there exists
a constant C independent of h,p, H,8, and w; € V*, i =1,---,p and vy = Tyuy € Vf
with uy € VH such that

(54) u=ugtu +--+u,

11



and

(55) >l o < O 1+ 5 IR
(56) H”o“z,n <C HUHI.Qa HuHHI,QH <C H““l,n-

Proof. Let §) be an open domain in R? large enough such that Q C QF cc (). Then

A

we know, cf. Stein [22], that there exists a linear extension operator £ : H1(§2) — H(f2)
such that Fulg = v and

(57) 1Eully g < Cllull,o-

We note that we do not require Eu for u € V* be a finite element function. For any

u € Vh, we choose ug = Zpuy with uy = Ryt and 4 = EuIQH. Then from Lemma 5.1
and Lemma 4.1 we obtain :

”uonl,n - “IhféHﬁ”l,ﬂ <C ||7~3Hﬁ”1,nff = C|tﬁHﬁ|[1,n§
(58) < Cllallen < Cllall g < Cllullig

which implies (56), and

lu—uollog < Ilu—Ryiillog + Ryt — T Ruyiillog
(59) < |l - Rudilloqg + C k| Ryl on
< CHlily g + C hlifyon < CHil|, g < C Hulyg.
It is well-known, see Dryja and Widlund [11}, Bramble et al. [3] that there exists a

partition {8;}]_, of unity for  related to the subdomains {2/} such that 3-7_ 0;(x) = 1
on landfori=1,2,---,p,

(60) ) supp 9,; C Q: U 09, 0 S 91' S 1 and HVHtHLm(Q‘) S C(Si—l.

Now for any u € V4, let uy = 7, Ry @ € V* be chosen as above, and u; = I1,8;(u — uo)
with II, being the standard interpolation of V%. Obviously, u; € V}* and

(61) U=+ uy + o+ u,

Then (55) follows in the standard way, see Dryja and Widlund [11] and Smith [21]. But
we still give a complete proof here so that one can see clearly that no quasi-uniformity
assumption on 7% and the subdomains {{);} are required in the present case. Let 7 be
any element belonging to Q) with k. being its diameter and 0, the average of 6, on
element 7. Then from (60) and the fact that u — u, € V*, we get:

luelf, < 200, 0, (u — ug) 2 | + 2{T1, (6 — 8,)(u — ug)[? |
< 2u—ugl? -+ 2L (0 — B (u — ug)|2 .
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By using the local inverse inequality which requires only the shape regularity of 7+
(see Proposition 3.2 in Xu [24]), we obtain:

i, < 2= uol? -+ C A0, ~ T - wo)l,
< ou—ul, + cw’ﬁnu i,
< 2u—ufl +C “_“” — ugllj ,
By taking the sum over 7 € (¥, we have

(62) il g < 2w —wolf o +C’52H — uol[§ g -

Noticing the assumption made previously that any point z € 2 belongs only to a finite
number of subdomains {2}, it follows from (58), (59) and (62) that

d 1
(63) > Tullg, < Oflu—uoli + mllu—uollf)
k=1
H\2
(64) < o1+ “g“) |uf2.

Analogously, we derive that

>l < € (1+ 55)Il

which completes the proof of (55). O

In the rest of this section, we prove Theorem 3.1. To do so, we first state a general
abstract lemma which is a natural extension of that due to Lions {16], Nepomnyaschikh
[19], Dryja and Widlund [11}, Zhang [27], and Griebel and Oswald [14]. The proof of it
is straightforward, similar to the one of Theorem A in [14].

Given a Hilbert space V and a symmetric, positive definite bilinear form a(-,-)
and a set of auxiliary spaces V; for which the bilinear form is also defined, but which

are not necessarily the subspaces of V. Suppose there exist “interpolation” operators
L:V,— V and define T; : V — V, by

(65) a(Tiu,v) = a(u, I), Vv e,
Then T" = 377 LT; satisfies
LEMMA 5.3.
P
(66) a(Tlu,u) = ‘13161‘1/1 Za(u,—,ui).
u_z‘ 0

i3



Proof of Theorem 3.1. The estimate of x{ M, A) is quite routine by using Lemma 5.2
and (25). To get the bound of k(M, A), it suffices to show that there exist two constants
C, and (] independent of H, 4§,k such that for any u* € V*,

- H\* .
(67) Co a( Pub,ut) < a(uh,uh) < C) (1 -+ ?) a( Pu,u).

We first estimate the upper bound. First, from (14) we see that
(68) a( Pyu®, Pyu?) = a(Z, Pyut, ut),
thus by Cauchy-Schwarz’s inequality and stability of Z,,

(69) Prut|l2 g < et 1 Zh Prutils < CHlub]ls || Pautlleon,
i.e., ||Pgubtll, or < C'llut||,, which leads to the following
(70) a(Pyuh,ub) = a(Pyut, Pyut) < Ca(ub, uh).

But the standard coloring arguments and the fact that the norm of a projection operator
equals one gives that, cf. Zhang [27]

() S (P uh) < C a(ub,ub),

i=1

therefore we have proved the first inequality in (67). For the second inequality, we
choose I, = I, I, for ¢ > 0 to be the identity operator, and Vy = VH_ then applying
Lemma 5.3 and Lemma 5.2 gives our results.

REMARK 5.1. We can improve the bound of Theorem 3.1 by replacing (1 + H/6)?
by (14 H,,, /8) if the subdomains {;}._, forms a quasi-uniform triangulation of } and
H < BH,,; for some fized constant 5. Here H,,, is the mazimum of all diameters of
subdomains. This can be done by using a result by Dryja and Widlund [13], ¢f. Chan
and Zou [6].

6. Numerical Experiments. In this section, we give two numerical experiments
for the case Z, = II,. In our first numerical experiment, we demonstrate that the as-
sumption (A1) is necessary in practice, i.e., it is very important to cover the Neumann
boundary. When the coarse grid does not completely cover the fine grid Neumann
boundary, one obtains rather poor convergence.

We consider the Possion problem on the unit square with either pure homogeneous
Dirichlet or mixed boundary conditions. In the case of mixed boundary conditions,
we prescribe homogeneous Dirichlet boundary condition for z < 0.2 and homogenecous
Neumann boundary condition for z > 0.2. A uniform triangulation using linear finite
elements is used. The coarse grid is defined on the square [0,1+4 §] x [0,1]. If 3 is less
than zero we are not covering the right edge of the fine grid, see Fig. 2. Note that only
when 8 = 0 do we have a nested coarse grid space.

14



g <0

Fiag. 2.

We ran with four size grids, a 20 by 20, a 40 by 40, an 80 by 80 and a 160 by
160 grid. With each refinement the number of subdomains was increased by a factor of
four from 16 to 64 to 256 to 1024. A constant overlap of one element was used. The
coarse grid was refined from 5 by 5 to 10 by 10 to 20 by 20, to 40 by 40. The value of
the “missing” overlap, |3, was changed from 0.1 to 0.05 to 0.025 to 0.0125. Note that
we keep |B| < H. For all our calculations, we always choose the initial iterative guess
of zero and stop iterations when a relative decrease in the discrete norm of residual of
10~% is obtained.

As one can see in Tables 1 and 2, the number of iterations was essentially unaffected
by the “missing” overlap for the Dirichlet boundary conditions. However for the case
of Neumann boundary conditions the number of iterations required to achieve the same
tolerance increased greatly. This agrees very well with our theory.

TABLE 1
Convergence for Multiplicative Schwarz

Boundary Conditions | Fine Mesh
20x20 40x40 80x80 160x160
Dirichlet 0 10 10 9 g

+1 10 10 11 12

- 9 10 10 10

Mixed 0 10 10 10 10

+ 1| 10 10 10 10

- 15 22 30 43
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FaBLE 2
Convergence for Additive Schwarz

Boundary Conditions | Fine Mesh
20x20 40x40 80x80 160x160

Dirichlet 0 30 28 26 25

+1 29 30 28 30

- 27 28 28 29

Mixed 0 23 28 29 29

+1 23 28 29 28

- 33 50 7 110

TABLE 3

Multiplicative DD ilerations for the Airfoil mesh. 32 Subdomains

Overlap
(no. elements) coarse grid
0 None 55
0 a, 30
0 G, 20
1 None 31
1 G, 17
1 G, 1
2 None 24
2 G, 13
2 G, 9

In our second experiment, we solve a mildly varying coeflicient problem:

discretized by standard piecewise linear finite element method on the unstructured
airfoil grid shown in Fig. 3. The airfoil is imbedded in the unit square. We use
nonhomogeneous Dirichlet boundary conditions for z < 0.2 and homogenous Neurnann
boundary conditions for z > 0.2. The right hand side f is chosen to be z?sin(3y). Note
that since the present software we use for the calculations can only generate coarse
grids which are interior to the fine grid, we do violate Assumption (A1) here. The
subdomains are shown in Fig. 3 and two sets of coarse grids are given in Fig. 4. Since
the theoretical convergence behavior of additive and multiplicative overlapping Schwarz
is very similar, we have chosen to only include the results for the multiplicative case.
Other numerical studies may be found in Chan and Smith [5]
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