UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Recursive Partitioning Methods and Greedy Partitioning Methods:

A Comparison on Finite Element Graphs

P. Ciarlet, Jr.

F., Lamour

April 1994
(Revised May 1994)
CAM Report 94-9

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555

Recursive partitioning methods and greedy partitioning methods: a
comparison on finite element graphs.*

P. Ciarlet, Jr t ¥. Lamour }

May 16, 1994

Abstract

The partitioning problem of a graph G = (V, E) consists of dividing the node set V' into p subsets
in order to minimize the number of intersubset edges in the case of an edge-partitioning or the number
of interface nodes in the case of a verlex-partitioning. In either cases the partitioning problem is NP-
complete. Consequently, many studies have been devoted to design heuristic methods to approximate
the problem for general graphs or even for particular graphs. In this report, we survey different
heuristics which address the edge-partitioning problem for finite element graphs. The existing heuristics
for these particular graphs can be organized into two main classes: the recursive methods and the
greedy methods. We also present a comparison study between various software packages performed on
well-known finite element graphs.

1 Introduction

Many problems can be represented by graphs where nodes stand for a distinct amount of work
and edges between nodes schematize the information exchanges. The graph partitioning problem is
invoked every time one needs to decompose the original problem into smaller subproblems in order to
solve them simultaneously or even sequentially, but in both cases to solve them faster than the original
larger problem could be solved.

There are different formulations and many variants of the graph partitioning problem, depending
on whether one looks at it from the vertex point of view or from the edge point of view. According
to the edge point of view, on which we focus in this report, the common definition is formally the one
that follows. Let G = (V, E) be a graph where V is the set of nodes and E is the set of edges. The
edge-partition of G is a partition of V into two disjoint sets Vi and V5 such that:

*this report is submitted to the International Journal of High Speed Computing.

'Department of Mathematics, Univ. of Calif. at Los Angeles, CA 90024 and Commissariat & PEnergie Atomique, CEL-V,
D.MA, MCN, 94195 Villeneuve-St-Georges Cedex, I'rance. E-mail: ciarlet@math.ucla.edu, ciarlet@etca.fr. The work of this
author was partially supported by the DGA/DRET under contract $3-1192.

!Department of Mathematics, Univ. of Calif. at Los Angeles, CA 90024, I-mail: lamour@math.ucla.edu. The work of
this author was partially supported by the National Science Foundation under contract ASC §2-01266, the Army Research
Office under contract DAAL03-91-G-0150, and ONR under contract ONR-N00014-92-J-1800,

. V:WUV%
e max({Vi [V2 [} Sa| V|,

o | E; |=| {(v1,v2) € E and vy € Vi, vy € Va} |, called the number of edge euts or intersubset
edges, is as small as possible.

Here, the value of the constant o, (% < a < 1), characterizes the balancing of the partition.
Instead of partitioning the set of nodes into two subsels according to the edge-partitioning problem,
one can partition the set of nodes into an arbitrary number of subsets. This is known as the p edge-
partitioning problem, where p is the required number of subsets of the partition. One property that
has not been mentioned yet concerns the connectivity of the subsets. Besides the requirements of
the p edge-partitioning problem it could be necessary to impose that each resulting subset has to be
connected.

For all the formulations and the variants of the graph partitioning, the general problem is a NP-hard
problem. Many heuristics have been developed while few optimal results have been proved. As it s a
difficult problem, researchers have focused on relaxed versions of the problem or on particular graphs
of well known structure.

Our concern is to approximate the p edge-partitioning problem for graphs which come from meshes
and finite element graphs. For this type of graphs, the heuristic methods proposed in the literature
can be roughly arranged in two categories: the greedy methods and the recursive methods.

In this report, we present some representative algorithms for the two types of methods. We also
propose an empirical study of these algorithms applied to a catalogue of finite element graphs.

Section 2 recalls some graph definitions and introduces the notations. Section 3 describes the
principles and theoretical results of eigenvalue-based methods as well as some resulting algorithms.
The next Section presents the greedy methods. Local optimization methods for both partitioning
heuristic methods are explained in Section 5. We present the experimental environment, the different
parameters which characterize the quality of a given partition, as well as the selected finite element
graph examples in Section 6. Section 7 lists the results of an exhaustive comparison between both
types of methods. Finally we summarize the main results that ensue from the comparison and briefty
outline some directions of our work in this field.

2 Notations and problem definition

First, let us recall some definitions about graphs and fix some notations that will be used through
this report, Let G = (V, E) be a graph where V is the set of nodes and E is the set of edges. Let
N =| V | and M =| E | be the number of nodes and edges respectively. The degree of a node v, denoted
d(v), is the number of edges that have one endpoint in v, i.e. the number of neighbors of v. Moreover,
let I'(v) denote the set of the neighbors of the node v. Finally, we use d to denocte the average degree
of a node in G.

The Laplacian matrix of a graph G, denoted L(G) = ({ij)i j=1..~, is defined by:

-1 if (vi,v;) EFE
I = dlw;) ifi=j

0 ol herwise

As we restrict our study to the graphs that come from physical meshes, usually two- or three-
dimensional, we shall talk about the boundary of the graph.

Among these graphs, there is an important class of graphs which are the finite element graphs.
There are two ways of looking at finite element graphs. One way is to consider that the node set
is the set of vertices of each element and that there exists an edge between two nodes if and only if
they belong to the same element (P1 or @1 finite elements). The other way is to define the node set
by assigning a node to each element and to associate an edge between two nodes if and only if their
corresponding elements are neighbors, by sharing an edge in 2 dimensions or a face in 3 dimensions.
This last characterization is known as the dual graph. In this paper all algorithms are used on the first
characterization.

The partitioning problemn considered here is the p edge-partitioning problem where p is the number
of subsets of the partition. Besides, we want the partition to be balanced, i.e. all subsets must
have approximately the same number of nodes. So, formally the problem is stated as follows. Given
a graph G = (V, E), let us determine p disjoint subsets V3, Vz, ..., V} such that according to the
edge-partitioning problem:

. Uf:l m = V) .
o [Vil Vjfor1<i,j<pandi#j,
o | {(vi,v;) € Eandv; € Vi, v; € V; with i # j} | is as small as possible.

The connectivity of the different subsets is not ensured in all algorithms presented in the next
sections, but we will specify those which insure this property.

3 Recursive methods

3.1 Spectral bisection

Spectral partitioning methods are based on a particular eigenvalue, and on its associated eigenvec-
tor, of the Laplacian matrix of the graph to be partitioned.

In order to understand the intuitive justifications of these methods we must summarize some known
properties of the eigenvalues of the Laplacian matrix of a graph and display their links with the graph
bisection, or 2 edge-partitioning, problem.

Let L(G) be the Laplacian matrix of G and N > 2. Let A; < A2 < Ay < ... < Ay be the eigenvalues
of L{G).

To begin with, Ay is always equal to zero. Ag, the second smallest eigenvalue, is also known as the
algebraic connectivity of G, denoted a(G). Let us recall that a{(G} = 0 if and only if G is a disconnected
graph. By another way, the number of eigenvalues equal to zero gives exactly the number of connected
components of the graph. Let us assume, without loss of generality, that A, is the first non zero
eigenvalue,

The 2 edge-partitioning problem can be reformulated in the following terms. Let us consider a
vector q € Q = {{g;) € RY, ¢; = &1, Y ¢ = 0} and the induced balanced partition for which a node
i is assigned to subset V if ¢; = 41 or to subset Vo if ¢ = —1.

According to g the number of intersubset edges (or edge cuts) is equal to

LY -0 = 1 L),

(ijye E

So the 2 edge-partitioning problem amounts to finding a vector ¢ € @ which minimizes this quantity.

By relaxing this discrete minimization problem to a continuous problem, that is to the search of a
vector = such that || ||3= N and 3 z; = 0, one finds that the minimum of (&, L{G)z) is obtained for
& = x9, where z3 is the eigenvector associated with Ay, named the Fiedler vector.

Knowing this, the idea’is to compute a vector ¢ € @ by using z3 in the following way. Let z; be
the median value of the components of 2. Then ¢; is defined as:

+1 if (22)i >
gi =< =1 if (z2)i <z
+1 if (x2); = 27 (fo make sure the partition is balanced)

The partition induced by such a vector g is known as the median cut partition. Of course this is
not an optimal partition. Although we cannot say how close to the optimal the median cut is, there
are still some interesting properties about it.

First, there is a noticeable result about the connectivity of a median cut partition which has been
stated by Fiedler [7). Briefly, it also comes from that paper that if there are exactly ~N2- strictly
positive components and % strictly negative components then both balanced subsets of the partition
are connected. If it is not the case, the connectivily of one of the subsets is however guaranteed.

Secondly, it have been proved by Chan et al. in [2] that for all p € @, | 2 — p |[> || 22 — ¢ [|. This
result, which does not allow us to conclude about the optimality of ¢, can nevertheless reassures the

promoters of the median cut method by assuming that it is a close enough choice.

3.2 Recursive spectral algorithms

The median cut partitioning method is the source of many partitioning algorithms. First, it has
been used as a step in a divide and conquer process which allows one to partition a given graph into
any number of subsets that is a power of two, like in the Recursive Spectral Bisection algorithm (RSH)
due to Simon [16]. There the median cut algorithm is recursively applied to each subgraph induced by
the bisection previously computed until the required number of subsets is obtained. Moreover, as the
computation of the Fiedler vector is time consuming, many studies have been devoted to speeding up
the calculation of this particular vector.

Barnard and Simon have accelerated the RSB algorithm by approximating the Fiedler vector (see
[1]). For this, they contract some edges in the graph in order to obtain a smaller graph and repeat this
operation a certain mumber of times until the contracted graph is small enough. Then, they compute
the Fiedler vector of the smallest graph. From the smallest graph, an approximation of the Fiedler
vector of the previous graph is deduced by an interpolation technique. This approximated vector is
then used as a starting point in an iterative method that computes the Fiedler vector. Once the refined
Fiedler vector is obtained the process goes back to the larger graph and recomputes a Fiedler vector for
this graph using the same strategy (interpolation and refinement}, and so on. The algorithm is given
below and it will be referred to as “SP 17,

Algorithm SP 1

i. Compute the Fiedler vector for the graph by:

(a) Constructing a series of smaller graphs (G')i=1,... . obtained by some contraction operations
applied to the original graph, (contraction step).

(b} Computing the Fielder vector for the smallest graph GFE.
(¢} Constructing a series of Fiedler vectors corresponding to the series of graphs by:
i, interpolating the previcusly found Fiedler vector to the next larger graph in a way that
provides a good approximation to next Fielder vector (interpolation step),

ii. computing from the given approximated Fielder vector, a more accurate vector (refine-
ment step).

2. Sort vertices accordinig to size of entries in Fielder vector.
3. Assign half of the vertices to each subdomain.

4. Repeat recursively (divide and conquer).

Analysis and complexity of SP 1

The algorithm follows the same stages as the RSB algorithm. However, the computation of the
Fiedler vector is decomposed into 3 steps. The first one, called the contraction step, computes a series
of smaller graphs deduced fron one another by a contraction operation. Here, the contraction technique
is based on a mazimal independent set of the graph. An independent set V' C V is a subset of nodes
such that for all v € ¥/, no neighbor of v is in V/. A contracted graph &' = (V', E'} is computed by
traveling through G, from each node in V', in a breadth search manner (accumulating in a first pass
neighbors, then in a second pass neighbors of neighbors, etc.} and by adding an edge to £’ each time
the paths intersect (redundant edges are avoided). This contraction process is repeated until the size
of the resulting graph is reasonably small.

The second step computes the Fiedier vector £ of the smallest graph GL using an iterative method.

The third step constructs substep by substep the Fiedler vector of the graph G. First, an approxi-
matlon of the Fiedler vector, #L71, of the larger graph GL~! is deduced by expanding the components
of ¥ in the following way. The components corresponding to the same nodes in both graphs are exactly
the same. The other components are comptited by averaging the components of the neighboring nodes.
Note that, since V' is a maximal independent set with respect to V, the components of the neighboring
nodes are already defined.: Secondly, the Fiedler vector 3,2 L of the graph G’L 1 is calculated by an
iterative method (for example the Rayleigh Quotient Ieration, RQI) using mz ~1 as an initial guess.
Finally, a series of Fiedler vectors for the graphs G¥~2, ..., G are computed by repeating the same
process.

The complexity of computing a maximal independent set of a graph G is O{M) (we recall that M is
the total number of edges). By constructing a contracted graph based on a maximal independent set,
the number of edges of this new graph will be necessarily lower than M. Moreover as we can bound a
priori the number of contraction steps, the complexity of the whole contraction step can be estimated
to be in the order of O{M). The complexity of the determination of the Fiedler vector for G can be
estimated to be bounded by a constant number of iterations of the RQI method (times the cost of one

iteration), i.e. M. So for partitioning & into p subsets the complexity of the whole process can be
estimated to O{M log, p).

Hendrickson and Leland [10] have modified the RSB algorithm by replacing the bisection steps with
either quadrisection or octosection steps, i.e. splitting into four or eight parts during each step. They
call the resulting algorithms Recursive Spectral Quadrisection (RS(Q)) and Recursive Speciral Octaseclion
(RS50). Moreover, they have defined a new cut function? to be minimized, called the hop weight, which
takes into account a target architecture, namely a hypercube. Its dimension depends on the algorithin:
it is a square for quadrisection (hypercube of dimension 2) and a cube for the octasection, When
the partition is done, then each subset is assigned to a processor. Thus, the cost of a communication
between two subsets is equal to 1 if they are neighbors (on the hypercube) and more generally I, where
[is the length of the shortest path on the hypercube.

In the following, a thorough description of one step of the RSQ algorithm is given. The generalization
to the octasection is briefly addressed afterwards. However, we consider here only unweighted graphs,
whereas Hendvickson and Leland’s original paper includes weighted graphs.

Let us define precisely what the hop weight is, according to the quadrisection. If (v, w) belongs
to I, then the cost of assigning them to different subsets is either 1 or 2, depending on the length of
the shortest path on the square. In order to compute the shortest path automatically, let us write the
subset numbers in bits. Hére, —1 corresponds to 0 and +1 to 1. Subset #0 is (—1,—1), subset #1 is
(=1,+1), subset #2 is {(+1,—1) and subset #3 is (+1,-+1). In short, a subset I is characterized by
(q“q[), qt € {+1 —1}. Then the shortest path between subset (¢},q7) and subset (qJ,qJ) is equal
to 1{(a} — ¢})* + (g7 — ¢3)?}. For a partition into four subsets, we can define E:wo vectms qt and q
belonging to {-1,~1}" such that a node i is assigned to subset I if and only if gt = q} and ¢f = q7.
Finally, the hop weight to be minimized is equal to

2N -)+ -) = T UG + (@ KO,

(a,g}eL

There remains to address the constraints the balancing irnposes. As proved in [10], there are three

of them:
Zq, =0, th = 0 and S_thqrt =

which are not equivalent to (g7, ¢%) € Q2, but to (¢',¢%) € Q@ = Q2N {3 ¢} ¢} =0}

Relaxmg the discrete minimization to a continuous prob]em leads to the following problem: find
a pair of vectors (2!, 2?) minimizing (2", L(G)2') + (2%, L(G)2?) subject to {iz¥||Z = N, k = 1,2,
St =0, Yoa? =0 and (z*,2%) = 0. Ciealiy, the solutlons to this problem correspond exactly to
the pairs of orthogonal vectors of norm VN spanning {z2,z3}, where 3 and 3 are respectively the
second and third eigenvectors of L(G). The next step is to choose one solution (2}, 2%) among all the
candidate pairs, which minimizes 32, 30[1 - (z5)?)%

Then the last step is to find a pair (¢',¢*) close enough to (2 S,a:%) The solution p] ovided by
Hendrickson and Leland is-to find a pair which belongs to @ and minimizes 3, ||z — ¢"{I3.

The algorithm is given below and it will be referred to as “SP 27,

it is a generalization of the usual edge cut function that is minimized when a bisection algorithm is used.

Algorithm SP 2

1. Compute the second and third eigenvectors (xy, za) of L{G) by:
(a) Constructing a series of smaller graphs (G')i=1,..., . obtained by some contraction operations
applied to the original graph, (contraction step).
(b) Computing (2§, z&) for the smallest graph GF.
{¢) Constructing a series of pairs of eigenvectors corresponding to the series of graphs by:

i. interpolating the previously found pair of eigenvectors to the next larger graph in a way
that provides a good approximation to next pair (interpolation step},

ii. computing {from the given approximated pair, a more accurate pair of eigenvectors (re-
finement step).

Find a pair of vectors (z}, z%) of norm VN spanning {z,, za} which minimizes 3, 7{1~ (z¥)?]%.
Find a pair (¢!, ¢2) of Q) which minimizes 3, ||z% — ¢*||2.

Assign the vertices to the subsets according to the components of (¢*, ¢%).

o e N

Repeat recursively (divide and conguer).

Analysis and complexity of SP 2

This algorithm is a generalization of the RSB algorithm. Moreover, they compute the eigenvectors
x5 and z3 by using an idea very similar to that of Barnard and Simon. The only difference is when they
contract the graph. Instead of using a contraction based on the maximal independent set, they prefer
a mazimal malching technique. First, they find a maximal set of edges such that no two of them share
an endpoint. Then two vertices joined by such an edge are merged. The process is repeated until a
simall enough graph is obtained. Now, if z* = cos 0y +sin §z3 and z* = —sin 02 + cos iz, then step 2
amounts to solving a quartic equation and sines and cosines of . The next step amounts to solving an
assignment problem. Assigning vertices to subsets according to the values of (¢*, ¢%) is straightforward.
Finally, the algorithm is applied recursively to each of the subsets previously constructed.

Before estimating the overall complexity of the algorithm, let us consider only steps 1 through 4. As
for SP 1, the cost of computing the eigenvectors z; and z3 with the Lanczos algorithm is proportional
to O(M), if we bound @ priori the number of contraction steps. The cost of step 2 is O(N). Next,
the complexity of step 3 is proportional to O(N log, N). And finally, step 4 requires O(N') operations.
Therefore, the complexity of steps 1 through 4 is in the order of max{O(N log, N),O(M)}. Now, the
cost of these four steps applied to the first four subsets is max[2O(N logy N), O(M)]. Then, as log,p
recursions are performed, the overall cost is proportional to max[O(N log, N}, O(M log, p)]-

Let us discuss briefly the octasection algorithm RSO. 16 can be derived easily from the RSQ algo-
rithm. First, three vectors (¢*) are now required to construct the assignment. The hop weight is equal
to %zgzl(qk, L{(G)¢*). The balancing constraints are Y ¢f = 0, S =0,k #£1and 3 qleiel =0,
defining a subset Q®) of Q3. Then by relaxing the discreteness, the problem to be solved is now to
minimize zizl(mk,L(G):ck) subject to ||z¥||2 = N,k =1,2,3, Y af =0 and (z*,2") = 0, k # L. For
practical reasons, Hendrickson and Leland chose to remove the cubic constraint. Again, the solutions
to this problem are orthogonal triplets (2!, 2%, %) of norm /N spanning {zs, z3,z4}. To determine

(zk,2%,2%), 3, Z{ -~ (= '”)] is minimized over the set of solutions, sub;ect to the cubic constraint.
Finally, a triplet (¢!, 4% ¢) of Q) is obtained by minimizing Y, ||z% — ¢*||2.

The structure of RSO is very similar to RSQ and is omitted here.

Concerning the overall complexity, as the cost of computing the first three eigenvectors of L(G) is
still O(M), then it remains proportional to max[O(N logy N), O(M logg p)].

3.3 A multilevel technique

On the other hand, Hendrickson and Leland in [13] used a multilevel technique to partition a
graph. They first reduce the size of the graph, and derive a series of smaller graphs by contracting
the edges of the original graph until the size of the last graph is small enough. They partition the
smallest graph using bisection according to the second eigenvector. Then, they reflect the partition
when uncontracting the series of graphs. Moreover, to improve the quality of the partition {in term
of balancing and of number of intersubset edges) they perform a local optimization method which
exchanges nodes between the subsets of the partition. Finally they repeat the previous sequence of
steps on each subset until the total number of subsets is obtained. The algorithm below is called “ML”.

Algorithm ML

1. Construct a series of smaller graphs obtained by contraction operations applied to the original
graph.

2. Partition the smallest graph based on the second eigenvector,
3. Propagate the partition by:
(a) Uncontracting the smallest graph.
(b) Reflecting back the partition to the uncontracted graph.
{¢) Refining locally the partition using a local optimization method.
(d) Repeating steps (a), (b}, (¢), until the original graph.

4. Repeat recursively (divide and conguer).

Remark: We can notice that the foundations of this method are in the use of a multilevel technique
to speed up the computation of the partition and not in the type of the partitioning algorithm used in
the bottom level.

Analysis and complexity of ML

The contraction step {step 1) is done as in SP 2. The contraction step is repeated from the
contracted graph uniil the size of the graph is small enough.

From the partition of the smallest graph, the partition of the larger graph is deduced by assigning
to the same subset the corresponding nodes at the origin of a merged node in the smaller graph (step
3.(b)). The induced partition is not necessarily as good as the one of the smaller graph. So step 3.(c)
of the algorithm tries to rectify the induced partition by moving some nodes from one set to another,
The local optimization method used to perform these moves is described in more details in Section 5.
Step 3.(d) simply iterates the reflection of the partition until the original graph is reached.

As for step 1 in SP 2, the complexity of the contraction step can be estimated to be in the order of
O(M). The partitioning of the smallest graph (step 2} is expected to be at most O(M). The complexity
of step 3 is dominated by the optimization process (step (c)) which is estimated by Hendrickson and
Leland {13} to be O(M). Therefore, the overall complexity can be estimated as O{(M log, P}

4 Greedy algorithms

4.1 Principles

Greedy algorithms are a natural and naive way to look at some graph problems. According to
the p edge-partitioning problem a greedy algorithm can be described as an algorithm that computes
each subset V; by simply accumulating nodes when traveling through the graph. The problematical
questions are only: how to start and how to stop?

The way of accumulating nodes in each subset is obvious from the graph structure of the problem.
A starting node v, is chosen and marked. The accretion process is done by selecting and marking the
unmarked neighbors of v, then the unmarked neighbors of the neighbors of », and so on as long as
the expected total number of nodes is not reached. This can be viewed as successively building fronts.

The way of choosing a starting node v, will clearly affect the shape of the final partition. It will
also influence the communication scheme, i.e. the number of existing edges between different subsets
of the partition.

In the same way, the manner that one chooses the prescribed number of nodes among all the
candidate nodes of the last front contributes to the quality of the final partition.

Thus a greedy heuristic for solving the p edge-partitioning problem can be defined roughly by
iterating the following 3 steps:

1. Choose a “good” starting node v,,
2. Accumulate enough descendants of v,

3. Stop according to some tie-break strategy in case of multiple choices and mark all the chosen
nodes,

At present, there are no theoretical results on the “goodness” of one starting node. Neither are
there results on how good a tie-break strategy is. For those two points only intuitive guesses help to
design p partitioning problem heuristics. However, an obvious justification of using greedy heuristics
for solving the p partitioning problemn is that they are inexpensive. We have shown in [3], that for the
general case the overall complexity of such algorithm is O(N max(p, d, iogz(%r-)))‘

4.2 An algorithm

For finite element graphs, the use of an efficient greedy partitioning heuristic was revived by C.
Farhat (see [4]). In his article he addresses the p veriex-partitioning problem: V' is partitioned into p
subsets Vi and an interface 7. The aim is here to obtain well balanced subsets V; while minimizing |/].
For results about a comparison between some vertex-partitioning methods we refer the reader to [5].

Algorithm GP

The next algorithm, presented in detail in [3], implements the principles of a greedy method as well
as some other original features. First, this algorithm builds connected subsets. On the other hand, it
does not always provide well baianced subsets. In the second place, the subsets are constructed in a
concentric way around the boundary of the graph. Finally, for each subset, in case of multiple choices
between the nodes of the last front, the tie-break strategy chooses those which are linked to as few
unmarked nodes as possible.

More precisely, in the partitioning process, the starting node of each iteration 7 is chosen in order to
belong simultaneousty to the boundary of G, to be an unmarked neighbor of a node of Vi_; and to have
a minimal positive current degree. Here, the current degree of a node is the number of nodes connected
to it which have not yet been selected, i.e. marked, during the accumulation step. The current degree
of a node decreases to zero as the algorithm goes along.

As for the tie-break strategy, it is achieved by keeping the nodes which have a minimal current
degree. In fact, the algorithm does not simply build the subsets as mentioned but also check the
connectivity of each of them. Whenever a subset is found to be multiconnected, the algorithm corrects
the feature by reassigning small components to other subsets and by keeping the largest component.

The algorithm “GP” is described next.

. Ifi<yp

E; J-

(a) Compute n; = —=F5y—
(b} Choose an unmarked node v, such that:
i. v, belongs to the current boundary,
ii. if the current boundary is not new, v, is a neighbor of a node belonging to Vi (if
possible?),
iil., v, has a minimal current degree.
Mark v, and initialise V; with v;.
(¢) If there are unmarked neighbors of nodes of V;, let k be their number.
i. If | V; | +k < n; then mark those nodes, add them to V; and update the current degree
of their neighbors, and then return to 1.(c).
ii. Mark (n;— | V; |) minimal current degree nodes and add them to V;.
Update the current and virtual boundaries.
Do i=1i+ 1 and return to 1.
(d) If there are no more unmarked neighbors of nodes of V; and if | ¥; |< n; then unmark the
nodes in V; and assign them to neighboring subsets. Return to 1.

2. Mark all the remaining nodes and add them into V. If V, is multiconnected then keep the largest
component and unmark the nodes of the other components and assign these nodes to neighboring
subsets.

2Tt may not be possible to find a node neighboring the previously built subset if the boundary is multiconnected.

10

Analysis and complexity of GP

The two conditions {b) i, ii required for the starting node force it to belong either to the boundary
of the graph or to its current boundary. The current boundary is defined, at each iteration, as the set
of nodes that belong to the boundary of the graph and that have not yet been marked. The definition
of the current boundary can be extended even when there remains no unmarked node. In that case,
the new current boundary is the set of unmarked nodes that are the neighbors of marked nodes. This
new current boundary is computed by the intermediate of what we call a virtual boundary, which is
simply the set of nodes that are neighbors of marked nodes excluding current boundary nodes. Hence,
the subsets have a tendency to be more easily connected. Anyway the subsets are compelled to be
connected owing to step 1(d) and 2 for the last subset. Step 1(a) is a consequence of the reassignment
steps which requires us to update the number of prescribed nodes by subset (n;}. Lastly, step 1(b)iii
and 1(c)ii try to minimize the number of intersubset edges. The complexity of GP is O(M).

5 Local optimization methods

Whatever partitioning methods may be used, one can couple them with a local optimization
method in order to improve the load balancing or the intersubset structure, One of the most famous
optimization methods for improving a given partition is due to Kernighan and Lin {15].

Fundamentally the method is based on a given 2 edge-partition (Vi, Va) of the node set V' of a graph
and tries to improve it by exchanging a subset of V; with one of Va. The selection criterion of the subsets
is determined from a gain function which is defined as follows. First, for v € Vi, g, = dy,(v) — dv,(v)
(da(v) is the number of neighbors of v which belong to A) and for w € V3, gu = dv,(w) — dv,{w).
Then the gain obtained by exchanging a node v € V1 with a node w € V; is equal to:

Jvw = Jv + fuw — 25(”: w)

where §(v,w) is defined by:
1 if(v,w)EE
by, w) = { 0 otherwise

So, after computing for each node v € V; and w € V; the values of g, and gy, the algorithm chooses
a pair of nodes (v;,w;) which maximizes the gain gy,,w,. Then, for all neighbors u of vy or w; the
values of gy are updated. The optimizing process is iterated until g, w,_, is computed. Finally, the
algorithm chooses among all pairs of subsets {v1, vz, ..., v}, {w1, w2, ywpt for ke {1,..,n— 1} the
one which maximizes the sum of the gains.

This process can be repeated several times until no better improvement, regarding to the number
of intersubset edges, is obtained. One iteration of the algorithm, called “KL”, is described next.

Algorithm x1

1. Compute g,, g for each v € Vi and w € V3.
2. Qv, = 8, Qv, = 8.

11

3. Fori=1lion—1do

(a) Choose v; € Vi — Qv, and w; € V3 — Qy, such that g,, », is maximal over all choices of v;
and w;.

(b) Set QV]. = QVJ U{vi}a QVa = QV: U{wi}
(c) For each v in Vi — Qv, and v in T(w;) Y T(w;) do go = gu + 26(v, v;) — 28(v, w;).
(d) For each w in Vs — Qv, and w in P(v;) | JT{(w;) do gy = guw + 28(w, wi) — 26(w, v;).

4, Choose k € {1,...,n— 1} to maximize Ef=1 [

5. Interchange the subscts {v;, vz, ..., vx} and {wy,ws, ..., wg}.

Analysis and complexity of kL

Step 1 calculates the corresponding gain of each node, The sets of candidates for moving {rom one
subset to another are first initialized to empty set in step 2. Step 3 {a) chooses a good pair of nodes
(vi, w;) whose gain g,, w; is maximal. Steps 3.(b), (¢}, (d) respectively update the sets of candidates
Qv, and Qy,, then the gains of the nodes which have not been already elected as candidates for moving
from V; to Vo and from V4 to V. The subsets which maximize the sum of the gains are determined in
step 4 and the interchange is proceeded in the last step. The complexity of the algorithmn is dominated
by the complexity of step 3 (a) which can be in the order of O(N?log N).

The effectiveness of KL is, of course, dependent on a good starting partition. It has also been
displayed that the effectiveness of KL is strongly related to the structure of the graph. Jones in {14] has
listed the conclusions of several anthors which have experimented with the KL algorithim. It turns out
that KL gives better results on graphs which have a high average degree. Thereby, the KL algorithm is
usually run conjointly with another heuristic called compaction which aggregates the nodes of a given
graph in order to increase the average degree of the compacted graph. It has been shown that using
both heuristics together greatly improves the resulting partition.

5.1 xr-like methods

The KL algorithm has inspired many local optimization methods. One of them differs by a slight
modification in the way of choosing good candidates for the subset exchange and is due to Fiduccia
and Mattheyses [6]. Another one generalizes the algorithm described in [6] in the case of a partition
into an arbitrary number of subsets (see [10}, [12]).

Fiduccia and Mattheyses’s method

Fiduccia and Mattheyses in [6] reduce the complexity of the KL algorithm by moving one node
after another instead of directly exchanging a pair of nodes. So, after computing the gains g, and gy
for each v € V; and w € V, and initializing Qv, and Qv, where Qv, (resp. Qv,) is the set of nodes of
Vi (resp. Vi) that have been selected to move to Va (resp. V3), (step 1 and step 2), they first choose a
node v; € Vi — Qv, which has the maximum gain value, then they update the gain values of all the
neighbors of v;. In the next step, they perforin the same operations with a node from V3. These two

12

steps replace the step 3 of the KL algorithm while steps 4 and 5 are identical. The overall complexity
of the FM algorithm is thus reduced to O(M), by using a special sorting technique which accelerates
the sclection step of a node of highest gain.

Hendrickson and Leland’s method

Hendrickson and Leland, [12] and [13], generalize the previous method to an arbitrary number of
subsets. Instead of a single gain function there are (p — 1) gain functions associated with each node.
Fach of these functions computes the gain obtained by moving the given node to a specific subset.
Moreover their method integrates others features. First, their gain function takes into consideration
an intersubset cost metric which can be either the classical cut function or the hop weight function.
Second as their starting partition is not necessary balanced, they give the precedence to the moves
from large subsets to small ones. The overall complexity is estimated to O((p — 1)M) using the same
sorting technique than the one used in {6].

5.2 A retrofitting method

This method, called CL, has been suggested by the experiments conducted on GP. 1t consists of
three steps. Steps | and 3 are identical and are reshaping steps while step 2 is a balancing step.

The reshaping step tries to redesign the outlines of subsets by deleting the excrescences. Generally
these excrescences occur during the accurnulation step of the partitioning process when some of the
chosen nodes encounter prematurely another subset. Then some nodes are attached to the subset to
which they belong by a single edge. By reassigning those nodes to neighboring subsets and by iterating
the process until no more excrescences remain, the shape of the subsets is improved. Note that these
boundary nodes are transfered to the subset which holds the highest number of its neighbors. It Is not
always possible to eliminate all the excrescences, so the reshaping step has to stop when the overall
shape of the partition, i.e. the number of excrescences, does not seem to be improved over the iterations
(more precisely five iterations). Here, one iteration consists of spanning the whole set of nodes V and
reassigning the excrescences.

Because of the reassignment of nodes to neighboring subsets in order to preserve the connectivity
of the subsets, the resulting partition provided by GP is not balanced in most of the cases. Thus the
second step of the retrofitting method looks for rebalancing the subsets by moving nodes from large
subsets to small ones. One iteration of this consists of three parts. First, the largest and smailest
subsets are determined. Then a node of the largest subset is reassigned to its smallest neighbor. Last,
a node is reassigned to the smallest subset, coming from its largest neighbor.

If we call V; the subset from which a node v is taken and V; the subset to which it is reassigned,
then # is chosen among the nodes of ¥; bordering V;. It is the one which leads to the best partition
in terms of edge cuts. In other words, it is a node v of V; such that dy,(v) # 0 which maximizes
{dv, (v}~ dy,(v)}. Moreover, before moving a node v from subset ¥; one has to make sure that V; — {v}
remains connected. To verify it , we choose a neighbor of v in V; and then construct fronts (in Vi)
from this starting node. If all the nodes of V; can be reached, then V; — {v} is connected. A way of
accelerating this verification is to use the following sufficient condition: if we call Ty,(v) the neighbors
of v belonging to V;, then V; — {v} is connected if all the nodes of T'y,(v} can be reached. If Vi — {v}
does not remain connected then another boundary node of V; is chosen. If no node of V; bordering Vj
satisfies this connexity requirement, then another subset has to be chosen.

13

The process is iterated until the standard deviation (i.e. o = \/ 3 2r=1(ni — n)?) approches the

optimal standard deviation o,py which is equal to \/%[((q + p— N)(g —2)* + (N —gp){{q + 1) —~ z)?

where 2 = % and g = L—T—;—J:*, or does not decrease anymore (after five iterations).

The complexity of one iteration of the reshaping step is O(M). The complexity of one iteration of
the balancing step is O(p) for the first part and O(nd) for the two other parts. The cost of checking
the connectivity is also O(nd).

Note that when the retrofitting method is performed, neither the number of iterations for the
reshaping steps nor for the balancing step are bounded g priori.

6 The experimental environment

All the partitioning methods described in the previous sections are tested through a common tool:
the Portable Extensible Tools for Scientific Compulation (PETSc) developed by Gropp and Smith 18],
[9]. PETSc is a software library for paralle] and serial scientific computations. It provides a variety of
packages that go from interfacing message passing systems to the definition of data structures and code
for the manipulation of latge sparse matrices, as well as data-structure-neutral linear and non-linear
solvers. In addition to these existing packages, PETSc makes it easy to include any software written
either in C or Fortran. Because of this flexibility, we have used PETSc as a common interface between
the partitioning softwares implementing the different heuristics.

6.1 The partitioning softwares

The softwares described in the following have been given by their authors and have been used in
PETCs as is. We have written inter{aces for transfering inputs and parameters as well as for interpreting
the results. The SP 1 code, written by Barnard and Simon, is a software and can be obtained by a
request to their authors?, The SP 2 and ML code is copyrighted but can be obtained via a request to
Hendrickson or Leland®. The GP code has been written by the authors of this report.

6.1.1 The SP 1 code

The corresponding code for the SP 1 algorithm represents 4,500 Fortran lines. Actually, the user’s
inputs are simply the graph which must be in a sparspak format and the number of subsets which is
no longer required to be a power of two. Another input that can be specified by the user is the size
(number of nodes) of the smallest graph of the contraction step. The value of this number must be
a compromise between the swiltness of the execution of the partitioning process and its quality. For
our experiments we have fixed this parameter to 200. The SP 1 algorithm can be coupled with a local
optimization method. Here the KL algorithm can be invoked, in order to improve the partition, between
the two sets obtained after each bisection. The authors choose to perform this optimization step only
when the size of the concerned subsets does not make this step too expensive in regards to the whole

31.1 stands for the lower integer part of a number.

4

send e-miail to simon@nas.nasa.gov or to barnard@nas.nasa.gov.

Ssend e-mail to bahendr@cs.sandia.gov or rwlelan@cs.sandia.gov.

14

process. So, the maximal mumber of nodes of the subsets on which the KL algorithm is performed is a
parameter of the method. For our experiments we choose to fix its value to 300.

6.1.2 The SP 2 and ML code

The SP 2 and ML algorithms have been both coded in C and are put together in a tool called Chaco
(version 1.0} which represents about 15,000 lines (see [11]). In addition to these two algorithms Chaco
offers some other partitioning methods like the Random algorithm or the Inertial algorithm which are
not addressed in this paper. Some comparison results on recursive spectral methods and the inertial
algorithm can be found in [10], [12] and [13]. The number of input parameters is relatively important
and the flexibility that they provide is to the detriment of the facility of the interfacing. Among the
inevitable parameters, the number of subsets is required to be, necessarily, a power of two. Moreover,
the authors have chosen not to perform automatically the optimization step in either SP 2 and ML
but to invoke it from time to time during the uncontraction process. So the parameters inherent in
these multilevel methods are three in number. They correspond respectively to the maximal number
of nodes of the smallest graph, the respective frequencies of using the optimization technique in 5P 2
or in ML. For running the examples described latter we have fixed these parameters respectively to
9200, 2, 3. For SP 2, this means that for every other uncoarsening step 1{c), only the interpolation (i)
is carried out. The optimization technique used in ML (step 3{c)) is the HL algorithm.

The HL algorithm can also be performed in SP 2, following the user’s desire, as an optimization
step after each quadrisection. As it greatly improves the behavior of SP 2, it has been automatically
included when running this algorithm. This optimization is subject to various parameters, but we will
not discuss them here in order to remain concise. Nevertheless, we have set these parameters to the
default values advocated by the authors, except for the HL metric parameter. The HL metric parameter
defines the intersubset cost metric which guides the moves of nodes from one set to another. The value
of the HL metric parameter can be either 1 if the classical cut function is used or 2 if the hop weight
function is required. For our experiments the value of this parameter is 1 although the quadrisection
is designed to be more efficient in minimizing the number of hops than the number of cuts.

6.1.3 The GP code

The code of the greedy algorithim is written in Fortran and represents about 1,800 lines. Moreover,
all computations are performed in integers and therefore all computations terminate (no round-off
errors), which certainly helps to guarantee the robustness of the algorithm. Like for SP 1 code, few
inputs and parameters need to be specified. In addition to the graph and the number of subsets {which
can be arbitrary), the user has the choice to run the code with or without the optimization step which
invokes the retrofitting algorithm CL described in paragraph 5.2.

6.2 Comparison parameters

We perform the comparison study according to several paramaters. The more obvious ones are,
of course, those that come directly from the problem definition as the average number of nodes by
subset or the percentage of intersubset edges. In the same way, the time parameter reflects directly
the complexity of the different algorithms. However, we have chosen to add some other parameters in
order to emphasize the intrinsic qualities (or weaknesses) of each partitioning heuristic. As the greedy

15

method does not necessarily insure the balancing of the subsets, we introduce the average standard
devialion parameter of the subsets which gives a realistic idea of the difference of the load between
large subsets and small ones according to the average size of the subsets: o/n (%). Moreover as some
algorithis do not provide connected subsets when other do, we define a connectivity parameter which
determines the number of multiconnected subsets.

The notations that summarize the different parameters attached to a given partition are listed
below.

p is the number of subsets,

n is the average number of nodes by subset,

o/n (%) is the average standard deviation of the number of nodes by subset,
m/M is the percentage of intersubset edges,

d is the average degree of the graph,

e 18 the number of multiconnected subsets,

t is the elapsed time in second.

6.3 Graph tests

We have chosen to run the codes on six representative types of finite element graphs: Annulus, a
mesh between two concentric circles build by B. Smith (Figure 1), Airfoil, a mesh around an airfoil
provided with the latest version of the Matlab package (Figure 2), Eppstein built by D. Eppstein
(Figure 3), Cube and Square, respectively a cubic and a square mesh built by the authors, Spheres a
mesh between two concentric spheres designed using Modulef by L. Crouzet. Half of ther are meshes
made of triangles or tetrahedra for a P1 finite element discretization (Airfoil, Eppstein, Spheres) and
the other hall are meshes made of rectangles or parallelepipeds for a Q1 finite element diseretization
(Annulus, Cube and Square). Therewith, four of these graphs are two-dimension meshes (Annulus,
Airfoil, Eppstein, Square) and the other two are three-dimension meshes (Cube and Spheres). A third
category can be drawn according to whether a mesh is regular or irregular. Annulus and Spheres
are irregular graphs because they have one hole (the boundary is multiconnected) while Eppstein is
irregular because it is a non uniform mesh. Airfoil is irregular because it has three holes and the mesh
is non uniform. Cube and Square are regular meshes.

In order to make comparisons on large graphs, we have run the heuristics on refined versions of
some of these graphs. Here, one level of refinement is carried out {(in PETSc) by dividing 2D elements
into four parts and 3D elements into eight parts. Clearly, several levels of refinement can be performed
to obtain larger and larger graphs.

7 Results and comments

The different codes have been run with the values of parameters described in the corresponding
sections of each code in paragraph 6. Let us recall how the different heuristics are coupled with an
optimization method. SP 1 invokes automatically KL when the size of the subsets is less than 300
nodes. SP 2 is always coupled with the HL optimization step, which is then automatically invoked

16

Figure 1: Unrefined Annulus

after each quadrisection. The ML algorithm is run, by definition, jointly with HL. As for the GP
algorithm, it is always coupled with the retrofitting method CL. We compare all four methods on
a “Viking” SuperSparc processor and the resulis are summarized for the above-mentioned (possibly
refined) graphs in 24 tables and 3 figures. In the Appendix, we provide examples of the resulting
partitions on the Eppstein grid.

Annulus (refined twice)

N = 8448
M = 33024
d=17.82

Tables 1.1-1.4 show the characteristics of the partition into 4, 16, 64 and 256 subsets of Annulus
(an unrefined Annulus is presented Figure 1) for all four methods. GP shows a slight unbalance while
the recursive methods provide, by definition, well balanced subsets. The number of intersubset edges
is lower for SP 2, but all three recursive heuristics give close percentage of intersubset edges. GP gives
the worst result in terms of intersubset edges but has the smallest execution time.

p |SP1|SP2|ML]|GP p 'SP1|SP2| ML GP
4 0 0 0 0.3 4 154 | 117 | 117 | 2.63
16 0 0 0 0 16 | 4.82 § 4.61 | 4650 | 5.83
64 0 0 0 | 44 84 | 11.29] 1087 ; 11.38 | 11.72
250 0 0 0 2.9 256 | 24.12 | 23.47 | 24.51 | 24.75
Table 1.1: o/n (%). Table 1.2: m/M (%).

17

NSO

I,
)
uv»'wﬂm?- Tk
h’:‘ '1(“v“"&’&
&Y

AV
i Ol

St At

Favits!

\
pFh ;]
ORI
AN

AR

NS >
AV AVQ"M'Q&

<Y/ Y
AR

Figure 2: Unrefined Airfoil

p |SP1{SP2|ML|GP p |SP1i{SP2|ML|GP
4 0 2] 0 4 2.8 11 23 | 0.5
16 0 0 0 0 16 | 5.1 23 6 103
64 0 0 0 0 64 | 5.6 30 11 107
256 0] 0 0 266 | 10 38 19 | 0.5

Table 1.3: ng,. Table 1.4: ¢ (s).

For a partition into 64 or 256 subsets the margin between different number of intersubset edges is
less important than for the 4-partition. The partitioning time, which is not very dependent on the
number of partitions for the GP code, increases for recursive codes. Finally, let us notice that the SP
2 method gives two multiconnected subsets for a partition in 4 subsets.

Airfoil (refined three times)

N = 258990
M = 773168
d =507

Figure 2 shows the unrefined Airfoil. Tables 2.1-2.4 illustrate respectively the characteristics of the
partitions intc 4, 16, 64, 256 and 1024 subsets of a refined Airfoil. The larger the number of subsets
is, the smaller the margin between the values of o/n and the values of m/M is for all four codes.
Nevertheless, ML provides lower bounds in terms of number of intersubset edges for partitions into
4, 16 and 64 while SP 2 gives best results for 256 and 1024 subsets. For the partitioning time the
results are very in favor of GP when the number of subsets is greater than 64. We notice also that

SP 2 always produce multiconnected subsets and that ML produces multiconnected subsets for large
number of subsets.

18

p |SP1|SP2|ML| GP p |SP1|SP2i ML | GP
4 0 0 0 | 185 4 0.26 ; 0.41 10.17 | 0.40
16 0 0 0 0 16 § 0.66 { 0.77 | 0.568 | 1.00
64 0 0 0 | 67 64 | 176 | 1.87 | 1.66 | 1.88
256 0 0 0 | 43 2566 | 3.94 | 3.90 | 3.93 | 4.08
1024 0 0 0 3.0 1024 | 8.29 | 8.21 | 8.46 | 8.35
Table 2.1: a/n (%). Table 2.2: m/M (%).
v SPL1|SP2{|ML!|GP P SP1|Sp2| ML |GP
4 0 4 0 0 4 48 | 417 | 69 | 58
16 0 11 0 0 16 | 107 | 810 | 125 | 300
64 0 18 0 0 64 | 178 | 1126 | 178 | 46
256 0 17 6 0 256 | 251 | 1821] 320 | 18
10241 0O 30 | 22] 0 1024 § 375 | 1801 | 761 | 16
Table 2.3: 7ne.. Table 2.4: ¢ {s).
Square
N = 4096
M = 16002
d=1"7281

GP is the incontestable winner for the next example (Tables 3.1-3.4). Actually, even if SP 2 and
ML reach the same value of m/M as GP for a 4-partition and if SP 2 reaches also the same value of
m/M as GP for a 16-partition or 256-partition, the latter is much faster.

p | SP1|{SP2|ML]jGP p |SP1|SP2| ML | GP
4 0 0 0 0 4 | 282 | 2.36 | 2.36 | 2.36
16 0 0 0 0 16 ¢ 746 | 7.01 | 7.06 | 7.01
64 0 0 0 0 64 | 17.15} 16.32 | 16.14 | 16.01
256 1 0 0 0 0 256 | 34.79 | 32.81 | 33.00 | 32.81
Table 3.1: o/n (%). Table 3.2: m/M (%).
p 1SP1]SP2|ML|GP p» 1SP1|SP2 | ML | GP
4 0 0 0 0 4 1.1 | 42 | 1.5 | 0.1
16 0 0 0 0 16 | 21 | 96 | 3.6 | 0.1
64 0 2 0 0 64 | 28 | 106 | 5.2 | 0.1
256 | 0 0 0 0 256 | 4.8 16 | 88 0.1
Table 3.3: ne.. Table 3.4: t (s).

19

Spheres

N = 9020
M = 50418
d=13.17
P SP1|SP2 | ML | GP P SP1 ¢t SP2 ML GP
4 0 0 0 0 4 7.21 6.13 6.05 8.03
16 0 0 0 0 16 | 15.83 | 14.45 ; 14.39 | 18.30
64 0.2 0.2 02108 64 | 2653 | 2542 |1 25,74 | 29.81
256 1.2 1.2 12118 256 | 43.08 | 41.83 | 42.38 | 47.51
Table 4.1: o/n (%). Table 4.2: m/M (%).
P SP1|(SP2 | ML |GP P SP1iSP2 | ML |GP
4 0 0 0 0 4 2.5 24 41 | 0.3
16 0 0 0 0 16 17 39 8.0 103
64 0 0 0 0 64 25 54 13 1 0.8
266 0 0 I 0 256 30 56 20 | 04

Table 4.3: ng,. ‘Table 4.4: ¢ ().

For Spheres partitioned into 4, 16, 64 or 256 subsets (Tables 4.1-4.4) the best result in terms of
intersubset edges is achieved by ML for the first 2 partitions and by SP 2 for the remainder. Both of
them even makes a gap with SP 1. One of the reasons why SP 2 and ML really perform well in that
case is because of the high degree of the graph. Actually, as it has been pointed out by C. Jones ([14]),
the performance of the KL heuristic (which is the HL heuristic in that case and which is antomatically
included after each quadrisection in SP 2 and between the uncoarsening steps in ML) is improved when
it is performed on graphs with high degree. SP 1 does not take advantage of this interesting feature
in KL becanse the method is only invoked when the size of the subsets is small, that is almost at the
end of the recursive process. GP is very fast because discomnected subsets occur less often when the
average degree increases. Therefore, subsets are better balanced and the retrofitting step CL is not
very costly.

Cube
N = 15625
M = 186696
d=23.90

For this example (Tables 5.1-5.4), the results are similar to the ones obtained on Spheres. Note
that, for the partitions into 16, 64 and 256, SP 1 produces multiconnected subsets. Here, GP gives
relatively well balanced subsets because of the high average degree of the nodes.

20

Figure 3: Unrefined Eppstein

p |SP1|5P2]ML;GP
4 0 0 0 0
16 1 0.1 | 0.1 | 0.1] 0.1
64 | 0.1 0.1 | 0.1] 0.2
256 | 0.3 | 0.3 | 03105
Table 5.1: ¢/n (%).
p |SP1|SP2|ML:iGP
4 0 0 0 0
16 2 0 0 0
64 2 0 0 0
256 1 3 0 0 0

Table 5.3: n..

21

p |SP1|SP2| ML | GP
4 | 6.95 | 571 | 570 | 743
16 | 15.32 | 13.60 | 13.69 | 16.35
64 | 26.40 | 24.59 | 24.28 | 27.22
256 | 42.65 | 41.41 | 42.20 | 46.06
Table 5.2: m/M (%).
» [SP1|SP2|MLGP
4 7.4 58 i1 107
16 24 100 19 | 2.8
64 § 72 132 1 29 | 0.8
256 1 90 164 | 45 | 1.0

Table 5.4: ¢ {g).

Eppstein (refined four times)

N = 131137
M = 392256
d=>598

Tables 6.1-6.4 summarize some results for the Eppstein grid refined four times (see Figure 3 for an
unrefined version). The partitioning time for GP decreases as the number of subsets increases, because
for larger subsets checking the connectivity every time a node is reassigned can be very expensive. The
behavior of the partitioning times is exactly the opposite for recursive methods. Note that for this
example SP 2 always produces multiconnected subsets.

P SPi1|SP2|ML|GP 4 SP1 | SP2 | ML GP
4 0 0 0 0 4 (.43 | 043 | 0.32 | 0.56
16 0 0 0] 16 1.19 | 124 | 1.12 | 1.35
64 0 0 0 3.5 64 279 | 295 | 2.63 | 2.96
256 0.1 0.1 |01 |11 256 | 5.92 | 5.71 | 5.68 | 6.01
1024 | 0.2 02 [0.2 | 14 1024 | 11.97 § 11.63 | 11.70 | 12.03
Table 6.1: o/n (%). Table 6.2: m/M (%).

P Sp1|sP2 | ML |GP P SP1|SP2|ML;GP

4 0 1 0 0 4 22 193 33 | 25

16 0 3 0 0 16 50 36t | 70 | 7.0

64 0 3 0 0 64 88 478 | 90 | 6.2

256 0 5 0 0 256 126 | 740 | 132] 3.9

1024 0 9 0 0 1024 | 164 | 752 ;220 | 4.9

Table 6.3: n... Table 6.4: t (s).

Based on these experiments and many others which have been omitted here, we can derive many
comments according to the different parameters: the load balancing, the number of intersubset edges,
the connectivity of the subsets and finally the partitioning time,

First, concerning the load balancing, all spectral methods realize this criteria by definition while the
greedy method does not always give an optimal answer. However, the average (over the six examples)
unbalancing of the subsets built by GP, is for the six previous graph tests less than 3% (Figure 4y,
Moreover this unbalancing tends to decrease as the number of subsets increases.

As we can see in Figure 5, ML produces in average less intersubset edges than the other methods.

While GP is designed to build connected subsets, spectral methods do not guarantee the connectiv-
ity. Nevertheless we have verified that SP 1 very rarely produces multiconnected subsets on 2D graphs
but happens to produce some multiconnected subsets on 3D graphs. On the contrary, according to that
criteria ML performs very well on 3D graphs but gives sometimes multiconnected subsets on 2D graphs,
especially when the number of subsets increases. As for SP 2, it has a tendency to often construct
multiconnected subsets (12 times for 26 experiments}).

With regard to the overall execution times of the different codes (Figure 6) for the six examples,
GP is by far the fastest. The overall partitioning times of SP 1 and ML are similar, while SP 2 is
beyond any doubt the slowest, although it is structurally very close to SP 1.

22

Average ofn (%)

] sm ML

sP2 ap
30 o T IO
2.0 -
10 | —
0.0

P is 64 256

Figure 4: Average unbalancing

Average m/M (%)

O s B amL
250 sz I op
20,0
15.0
10.0
5.0
0.0

Figure 5: Average cuts

23

1(s)

0 s B mo
sp2 WR cp

5000

1000
500

100
50

10

Figure 6: Overall times

8 Conclusion

We have observed that the performance of each heuristic depends on the size of the graphs or/and
on the number of subsets of the partition. It appears that recursive methods are competitive for graphs
with small number of nodes and edges. These methods are all the more interesting when the required
number of subsets is small (< 16). On the contrary, the greedy method performs very well for large
graphs or for large number of subsets, as the ratio of partitioning times increases dramatically and the
ratio of intersubset edges goes to 1,

All methods are geometry independent with possibly the exception of the notion of boundary nodes
for GP. In particular, holes in the meshes do not affect the partitioning processes. Moreover, the
methods do not depend much on the dimension of the meshes or on the type of element.

Finally, from the user point of view we have found that GP like SP 1 are of very simple use because
of the small number of input parameters on which they depend. The SP 2 and ML codes, on the other
hand, are more sensitive to the input parameters which make these codes not so easy to use. Among
the restrictions we were faced with, not being able to divide info non power of two subsets for SP 2
and ML was a severe limitation.

Future work

One of the shortcomings of our greedy heuristic is that it does not work so well for partitions into
small numbers of subsets. To fix this weakness, the next step is to develop a multilevel version of GP.
As it is working well for large numbers of subsets, or equivalently small subsets, the idea is to first
partition the graph into very small subsets, then partition again the induced graph and so on until the
desired partition is obtained.

On the other hand, it might be interesting to use these partitioning heuristics for parallel applica-
tions, such as parallel sparse matrix vector products or parallel iterative solvers, and to compare their
respective efficiencies.

24

Acknowledgements

We thank Horst Simon for providing the code of SP 1, Bruce Hendrickson and Robert Leland
for allowing us to use the Chaco package delivered to Barry Smith. We also want to thank them for
their useful remarks and comments on the first draft of this paper. Many thanks to Barry Smith for
introducing us to PETSc and for his help during the writing of the interfaces.

25

References

[1] S.T. Barnard and H.D. Simon. A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems. Technical report, NASA Ames Research Center, RNR-092-
033, 1992.

[2] T.F. Chan, P. Ciazlet, Jr, and W.K. Szeto. On the optimality of the median cut spectral bisection
graph partitioning method. Technical report, UCLA, CAM-93-14, 1993.

[3] P. Ciarlet, Jr and F. Lamour. An efficient low cost greedy graph partitioning heuristic. Technical
report, UCLA, CAM-84-1, 1994,

[4] C. Farhat. A simple and efficient automatic FEM domain decomposer. Compulers and structures,
vol 28, n® 5, pp 579-602, 1988.

[5] C. Farhat and H.D. Simon. TOP/DOMDEC- a software tool for mesh partitioninig and parallel
processing. Technical report, NASA Ames Research Center, RNR-93-011, 1993.

[6] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network partitions.
Proceedings of the 19th IEEE Design Aulomation conference, IEEE, pp 175-181, 1982.

[7] M. Fiedler. Algebraic connectivity of graphs. Crechoslovak Mathematical Journal, 23, (98), pp
298-305, 1973,

[8] W. Gropp and B. Smith. Portable, Extensible Toolkit for Scientific Computation (PETSc). Avail-
able via anonymous flp al info.mes.anl.gov in the direclory pub/pdetools.

[9] W. Gropp and B. Smith. Scalable, extensible, and portable numerical libraries. Proceedings of the
Scalable Parallel Libraries Conference, IEEE, pp 87-93, 1993.

[10] B. Hendrickson and R. Leland. An improved spectral graph algorithm for mapping paratlel com-
putations. Technical report, SAND 92-1460, 1992,

{11] B. Hendrickson and R. Leland. The Chaco User’s Guide (version 1.0). Technical report, SAND
93-2339, 1993,

[12] B. Hendrickson and R. Leland. Multidimensional spectral load balancing. Technical report, SAND
93-0074, 1993.

[13] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. Technical report,
SAND 93-1301, 1993.

[14] C.A. Jones. Vertez and Edges Partitions of Graphs. PhD thesis, Computer Science Department,
Pennsylvania State University, August 1992,

115] B.W. Kernighan and S. Lin. An efficient heuristic for partitioning graphs. The Bell System
Technical Journal, Vol. 49, N°¢ 2, pp 291-307, 1970.

[16] H.D. Simon. Partitioning of unstructured problems for parallel processing. Compuiing Systems
in Engineering, vol 2, n® 2/3, pp 135-148, 1991.

26

Appendix

Here we reproduce partitions into 16 subsets obtained from the four methods. The grid is Eppstein
refined once. The corresponding data are:

N =2113
M = 6192
d=5.86

<
Fa¥AVAVLy

Figure 7: SP1: =9.27%,t=0.8s

Figure 8: SP2: a/n = 0.2%, m/M = 8.62%,t = 4.5s

27

Figure 9: ML: o/n = 0.2%, m/M = 8.70%,t = 1.8s

Figure 10: GP: o/n = 0.3%, m/M = 10.63%,1 = 0.1s

28

