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Abstract

In this paper we present a general framework for multiresolution representation
of data which is obtained by discretization of mappings. This framework , which
can be viewed as a generalization of the theory of wavelets, includes discretizations
corresponding to unstructured grids in several space dimensions, and thus is general
enough to enable us to embed most numerical problems in a multiresolution setting.
Furthermore, this framework allows for nonlinear (data-dependent) multiresolution
representation schemes and thus enables us to design adaptive data-compression
algorithims.

In this paper we also study the stability of linear schemes for multiresolution
representation and derive sufficient conditions for existence of a multiresolution

basis.
1. Introduction and Overview

The purpose of this paper is to integrate ideas from three different fields:
(1)Theory of wavelets; (2)numerical solution of PDEs, and (3)subdivision schemes,

in order to formulate a general framework for multiresolution of data.

QOur starting point is high-order Godunov-type schemes for the numerical so-
lution of hyperbolic conservation laws, from which we take the notion of recon-
structible discretization: We consider a discretization D which assigns discrete val-
ues v = {v;} to a function f € F, and is reconstructible in the sense that it has
a right inverse R, i.e. D(Rv) = v, where Rv is an approximation to f for which
v = Df. In the context of Godunov-type schemes we use discretization by cell-
averages and say that Rv is a conservative reconstruction of f (see e.g. [HEOC]).

From multigrid methods (which typically use discretization by pointvalues and



reconstruction by interpolation) we get the idea that if we consider a sequence of
grids with corresponding discretizations {D;} and reconstructions {R}, then the
most natural way to go from the k-th grid to the coarser (k — 1)-th grid is by the
operator Df‘l = Dr_1 R, and similarly to use the operator Pf | = DyRy—1 in
order to go from the (k — 1)-th grid to the finer k-th grid.

Next we consider the notion of nested discretization in a more abstract setting
and observe that the operators Dt'_} and Pf_, can serve respectively as decimation
and prediction in a pyramid scheme of the type that is used in signal processing .
Using ideas from the theory of wavelets we remove the redundancy that is typical to
frames which are obtained by pyramid schemes and get a multiresolution represen-
tation {tight frame). Furthermore, we use knowledge from the theory of wavelets in
order to relate the discrete multiresolution representation to a multiresolution basis
in the space of functions F (see e.g [Me|, {Ma] and [Da}). We show that the con-
struction of wavelets can be formulated in terms of discretization and reconstuction
(corresponding to a nested dyadic sequence of uniform grids), and observe that it
also includes discretizations which are different from the ones that are traditionally

used in the numerical solution of PDEs.

From Finite Element Methods we borrow the notion of hierarchial bases (see
e.g. [Y1] and [Y2]), and show that if the sequence of approximation is hierarchial
then the discrete multiresolution representation (MR) scheme is stable and it cor-
responds to a multiresolution basis of F.

From subdivision schemes we adopt the concept of “hierarchial form”: We show

that if the subdivision sequence {II¥ £} ., where
Iy = (RDL)--- (RiDr)
is convergent, then the reconstruction R4 which is defined by
REDLf = lim T} f
L—oo
is hierarchial.

Our notion of stability is taken from the theory of finite-difference methods
for initial value problems (see e.g. [RM]), and its role is to prevent unbounded
growth of initial perturbations by repeated applications of an operator. We show
that nestedness of the sequence of discretization implies stability of the direct MR
transform with respect to repeated decimation, and that convergence of the subdi-
vision scheme implies stability of the inverse MR transform with respect to repeated

prediction. Extending the analysis of subdivision schemes to our general framework
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we derive a sufficient condition for convergence of a subdivision sequence which also
implies the stability of the corresponding discrete MR scheme and the existence of
a multiresolution basis in the space F.

What is basically new in this paper is the design of MR schemes from a nested
sequence of discretization. Other results which are “new” in one field may be well-
known in others. The usefulness of our general framework is that it enables us to

transfer knowledge from one field to the others.

Its contribution to the theory of wavelets is in its extension to nonuniform grids,
and in the treatment of boundaries which is adopted from the numerical solution of
PDEs. We also show how to design adaptive (data-dependent) MR schemes - this
is borrowed from the numerical solution of hyperbolic conservation laws where this

need arises because of the presence of shock waves in the solution.

Its contribution to the numerical solution of PDEs is in providing capabilities
for regularity analysis and data compression in unstructured meshes, which have
not been fully explored. In [HY] we show that the multilevel matrix multiplication
algorithm of {BL] which is designed from a multigrid point of view can be related
to data-compression of the matrix, and thus can be fitted into the framework which
was suggested in [BCR] from the point of view of wavelets. In [H5] and [H6] we
show how to apply the discrete MR algorithm to hyperbolic systems of conservation
laws in order to reduce the number of numerical flux computations. This approach
is related to adaptive grids and may serve as a more convenient implementation of

the same idea.

Its contribution to subdivision schemes is in providing a more general formula-
tion of the “two scale difference equations” that are studied there, and by suggesting

a sufficient condition for convergence of these more general subdivision sequences.

Many of the results of this paper are obtained by transfer of existing knowledge
from one field to another. Because of the broad nature of this general framework
we cannot do justice to the many works which constitute the infrastructure of this
existing knowledge. What we do is give some references which may serve as a point

of entry for the interested reader.

In the following we present a rather lengthy overview and some examples in
order to motivate the abstract derivation of our framework, and in particular to
show its relation to the theory of wavelets in {Da], [CDF] and {CDV].

This paper is a sequel to [H7], in which many specific examples were described.



1.A. Multiresolution Representation of Sequences

In this subsection we describe multiresolution schemes for representation of

sequences of real numbers. Let ﬁﬁ_l and P,f_l be a pair of operators which satisfy

(1.1a) ﬁﬁ"l . 5% o gkl b,’j“l a linear operator
(1.1b) PF .51 gk
(1.1¢) 15‘,:_115;‘3__1 = Ip_1, Ii_1 = identity operator in S*71,

and observe that (1.1c) implies that DY ™! maps S* onto $*71, i.e.
(1.2) Skt = DTSy

we refer to Df_l as the decimation operator. Also observe that Pf_| is a right-
inverse of Dﬁ_l in %1 and that unlike Dﬁ_l, it is not required to be a linear
operator; we refer to PF_, as the prediction operator.

In the following we describe both the finite-dimensional case and the infinite
one with the same notation. To do so we use the notation agreement that in the
finite-dimensional case

(1.32) §* = {sls = {si} %y, si € R},
while in the infinite case

(1.3b) SF =8 = {s]s = {s:}2_, si € R}, forall k.

Given a sequence s, finite or infinite, which we associate with the L-th level of

resolution for some L > 1, say s = s¥, we generate {s*}}Z}, s* € S*, by successive
decimation
(1.4) st =Dl k=1L, L

For each level of resolution k, we use ﬁﬁml to predict s* from knowledge of s*~! by

(1.5a) g =P P,
and observe that the prediction error e¥,

(1.5b) e* = sF — 5k,
satisfies

DE—Iek - Di—lsk ; Di—-—l Plf—]sk_l — Skmi = Sk—-I =0
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i.e., it is in the null space of D,";_i,

(1.5¢) ek e N(DY¥1) = {s|s € S¥, Di~'s =0}

We define d* = {dj?}, the k-th scale coefficients, to be the coordinates of the

k

prediction error ¢* in some basis of A(DF™), and observe that since s* can be

recovered from knowledge of s¥~! and ¢* , we also have

(1.6a) s& L (k1 gk,
which, when applied repeatedly, implies
(1.6b) st AL M(shy = (0,4, .., db),

We refer to M(s”) as the multiresolution representation of s.

Note that in the finite-dimensional case, (1.2) implies that
(1.7a) dim N (DY) = Ty — Jrer,

therefore the number of components in d* is (Jp — Je—1) and consequently the
number of components in M(s%) is

L
(1.7b) Jo+ Y (Ji = Jem1) = J1.
k=1

In section 2 we shall describe multiresolution representation (MR) schemes
in the more general framework of linear spaces, and discuss the stability of such

schemes.
1.B. Relation to Biorthogonal Wavelets

The framework (1.1)-(1.6) for the design of multiresolution representation (MR)
schemes was developed in [H4] and [H7], and it generalizes the class of subband
coding schemes which correspond to the bases of biorthogonal wavelets in {CDF].
We refer the reader to this paper for historical review of the development of this

subject, as well as for description of recent related works.

To obtain the wavelet schemes of [CDF] from our framework we take in (1.1a)

(1.8) (Df 1k = Z Um—2iSh, = Z @S5t e
¢
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and in (1.1b)

(1'93‘) (plf—lskml)i = Zﬁi—2msﬁ:1a

kir

which can also be written as

(1.9b) (Pfy 8" Daica = Ty Pae-15iZ
) pPro k-1 — k-1
(P 18" Mai = 20, Presi—, -

Here {a,} and {8} are sequences of compact support which satisfy
(110&) Z CYE}BE-i-Zm = 5111,0-.\
£

(1.10b) Z g =1, Zﬁ%—l = Zﬁze =1
7

¢ ¢

Relation (1.10a), which is the biorthogonality condition in {CDF], is obtained from
(1.1c), while (1.10b) are consistency relations which are obtained from the require-
ment that any constant sequence will remain unchanged under decimation and
prediction. In [CDF] additional conditions on {a,} and {f¢} are derived from re-
quirements of regularity of the associated wavelet functions; we shall describe these
conditions in subsections 1.G and 2.E.

1.C. Predictability and Scale-Decomposition

In the present paper, as in the previous ones [H4] and [H7], our main concern
is the “quality” of the prediction P,fMI: The notion of “k-th scale” is related to the
information in s* which cannot be predicted from knowledge of s¥~! (1.4) by any
prediction scheme. When using a particular prediction scheme, the prediction error
e* (1.5b), and consequently the k-th scale coefficients d*, includes, in addition to
the “true” k-th scale, also a component of approximation error which is related to

the “gquality”. or “accuracy”, of the particular prediction scheme.
s 3 1

We recall that the MR scheme applies to any sequence s = s¥ of real numbers.
But these numbers could have been generated by some stochastic process, or by
some iterated function system (IFS), or by a numerical scheme for the solution of
a PDE, or by who knows what? Thus the question of “quality”, when posed in
general, is not meaningful; it can be made meaningful only by limiting our interest

to a subset of data, where we know something about the way it was generated.

1.D. From Prediction to Approximation
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In this paper we consider subsets of data which are obtained from the following

process of discretization: Let F be a linear space of mappings
(1.11a) FCcl{flf:X-Y}

where X and Y are linear spaces, and let Dy be a linear operator which assigns to
any f € F a sequence v* = Dy f, v* = {vF}, vF € Y; this sequence corresponds
to some k-th level discretization of X (see subsection 1.F and section 5). Let V*

denote the range of Dy, and let {n*} denote any basis of this space,
(1.11b) Di(F) = V* = span{nf};

we denote the coordinates of v* € V¥ in this basis by the sequence #F = {8f}, oF €
Sk ie.

(1.11c) v¥ = Zﬁfnf
i
We refer to such Dy as a discretization operator.

Our goal is to design an MR scheme (1.6) that applies to all sequences s € 5%,
but is particularly adequate for those sequences 5% € ST which are obtained by the
discretization process (1.11).

Since Dy maps F onto V* (1.11b), it follows that for any v* in V¥ there is at
least one f in JF such that Dy f = v*. We refer to such an assignment of f € F to

v¥ € V¥ as reconstruction, and denote the reconstruction operator by Ry,
(1.12) Ri:VF — F, DiRy = I,

where I, is the identity operator in V¥, i.e. Ry is a right-inverse of Dy in V*.

Given a sequence of discretization {Dp} and any sequence of corresponding

reconstruction operators {R}, linear or not, we define the operators D',j_i and
P lf~1 by

(1.13a) Dﬁ_l =D, _+Ryp: | —— Vk“i,
(1.13b) Pl =DyRy_y : VF T — VE,

In section 3 we show that if {Di} is nested (Definition 3.1) then
(1.13c) D{T'PE, =1y,
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and that the operators so constructed have the following properties:

(i) For any f € F

(1.14) DY (Dif) = Dia f

(ii) For any p € F for which the reconstruction R_; is exact,
(1.15a) Ri-1(Dr—1p) =p
we have likewise
(1.150) Pf_{(Di-1p) = Dip,

i.e. the prediction P,f,_l is also exact.

Let us consider now any v” € V¥, then there is f € F such that
(1.16a) vl =Dy f,
and it follows from (1.14) that the process of successive decimation in (1.4)
(1.160) Pt = DEIyE ) k=1L, 1
yields for all £

(1.16¢) v =Dy f.

Thus the problem of prediction which is associated with the corresponding MR

scheme, can now be stated as a problem of approzimation:
Knowing D1 f, f € F, find a “good approximation” for Dy f.

The quality of this prediction can be judged by the class of p € F for which it

is exact; by (1.15) this includes the class for which the reconstruction is exact.

The above analysis shows that finding a suitable prediction for our MR scheme
can be formulated as a typical problem in approximation theory, and if we solve it
well then we have also accomplished our stated goal: Let 152—1 and ﬁ,f_l be the
representation of Df " and Pf_, in the bases (1.11b) (see section 2), then (1.1c)
follows from (1.13¢) and the resulting MR scheme is applicable for all sequences

L

st e §L; it is particularly adequate for data of the form s = 3%, where ot is the

representation (1.11c) of v¥ = Dy f with f € F.
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1.E. Muliiresolution Bases.

In section 2 we show that V¥ has a multiresolution basis
5 _0,L kL I
B = ({60} {05 )} )

and that any v2 € V¥ can be written as

L
(117) oF = Y0 1 3 S kg,
i k=1 j

where {d%} are the k-th scale coefficients of the associated multiresolution repre-
sentation (1.6b), and {67} is defined by {1.11c) with k = 0. In section 3 we show
that if {Dt} is a nested sequence of discretization, and {Ri} is any corresponding
sequence of linear reconstruction operators, then taking in (1.17) v¥ = Dy f and
applying Ry, to it we get

L
N R M LR ) o0
1 k=1 §
where
(1.18b) el =Rigit e F o, PPt = Rmﬁf'b € F,
and

Dof=2f?7??-

At this point we assume F to be a Banach space and formulate conditions for

stability of the corresponding MR scheme.

In section 4 we present sufficient conditions which ensure that the himiting
process L — oo in (1.18) yields a multivesolution basis for F. These conditions also
imply the stability of the associated MR scheme.

In [Da] and {CDF| a shimilar limiting process is applied to the discrete MR
scheme (1.17) with (1.8)-(1.10), except that Rpv¥ in (1.18a) is replaced by the
piecewise-constant function

(1.19) Rv” =) ofxa(e), o =loiy,af],

i

where y.(z) is the characteristic function of the set ¢ (1.34). It is shown there

that, under certain conditions on {,} and {f;}, this Hmiting process results in a
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multiresolution basis of wavelets. In this sense we referred in [H4] [H7] to the limit
functions of (1.18b) in the general case as “generalized wavelets”. This involves a
certain degree of poetic freedom, since for unstructured meshes these limit functions

are far from being translates and dilates of a single wavelet function.

We remark that in the case of discretization by pointvalue, the limiting process
of taking I — oo in (1.18b) is closely related to subdivision schemes (see [CD],
[CDM], [DD], [DaLi], [DaL2] and [DGL}]) which are used in Computer-Aided Design
(CAD) to add points to a set of given ones, so that the added points lie on some

relatively smooth surface that interpolates the given set of points.

1.F. Examples.

In this subsection we present some examples in order to demonstrate the various

considerations in choosing discretization and reconstruction.
Example 1.1. Pointvalue discretization

Consider the case
(1.20) Fc{flf : X CR™ — R"},
take any sequence, finite or infinite,
(1.21a) Xk = {zF}, 2F e X,
and define v* = D¢ f by
(1.21b) vF = (Drf)i = f(zF), oF = {oF}, oF ¢ R™.

We refer to (1.21) as discretization by pointvalue. Each element vf in (1.21b) is a
vector in R"™

(1.22a) vf:(vg‘:“...,vﬁn .

We can represent v* = {vF} as a sequence #* in the space of sequences S* by
(1.11c), e.g.

(1.22Dh) oF={-, {vik'-‘l,f}?-_”f7 {Uf,e}?:n {Uz!c«{-l,f}?:h"'}a

which corresponds to a particular choice of basis {nF}.

The sequence of discretization {Dy} in (1.21) is nested if for all k
(1.23a) Xk o XF
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decimation in this case amounts to removing from v* components vF = f(z¥) for

z¥ ¢ X*!. Note that the decimation operator DF™! is defined directly from the
sequence {Dg}, and we do not have to use the formulation (1.13a); in section 3 we
show that this is true for any nested sequence of discretization.

Let I*(z;v*) denote any interpolation of {v¥} at the corresponding nodes {zF},

le.

(1.23b) TF(ek;of) = o} for all z¥ e X*,
and observe that

(1.24a) DeIF(50%) = ¥,

The above relation shows that reconstruction (1.12) in this case amounts to
a selection of an interpolation technique in (1.23b). Given v*~! we use (1.13b) to
approximate v® by ¥, i.e.

(1.24b) 5F = (PF_o%) = I* (2081 for all 2F € X%,

using multigrid terminology this can be expressed by saying that we use injection
of the values corresponding to z¥ which are in X*~!, and interpolation for those
which are not in X*~!. Observe that since the prediction error vanishes at X%,
we define the scale-coefficients d* = {df} by

(1.24c) df =ef =of —'Ef‘;, for all .-z:fj ¢ X* 1,

tj tj

in the finite case j = 1,...,(Jr — Jg-1) and «[:Lf‘J }fi_';Jk‘l =Xk _ XFk-1

In subsection 5.A we describe MR schemes for pointvalue discretization in
a triangulated mesh in R2. In the following we take m = n = 1, X = [0,1]
in (1.20) and restrict the prediction problem to finite sequences of real numbers

which are obtained from scalar functions by pointvalue discretization at grid-points

Xk = {mf}:ll in [0,1]

(1.25a) 0<af <af < <af <L

Example 1.1.1 Piecewise-Polynomial Interpolation

We assume that the data is obtained from sampling of a continuous function
and describe a general plecewise-polynomial interpolation of the pointvalue data.

Let SF denote a stencil of r consecutive points of X* which includes z¥ and 2%,
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and let p¥(z;v*) denote the unique polynomial of degree (r — 1) which interpolates

v* at the points of this stencil . We define the piecewise-polynomial interpolation
I*(z;0%) by

(1.250) IF(z;0%) = pf(z;vF) for 2f <o <af .
Observe that by construction I*{z;v*} is continuous and that

pf(z; Dyp) = p

for any polynomial p of degree less or equal {r — 1). Hence the interpolation is r-th

order accurate, and the set of exactness in (1.15) is the linear span of

(1.26) p(z) =2, 0<v<r—1,

Up to now we have not specified the stencil S¥ of » consecutive points of X*
that we assign to [¢f, 2%, ]. Clearly for [z%,z%] at the left boundary we have no
choice but to assign the one-sided stencil SF = {zf,...,2F} ; for the next interval
[z%, 2¥] we have two choices for S§ : {2f,..., 2}, {2},...,2%5,,} ; away from the

boundaries we have (r — 1} choices for S¥ :

k 3 k k
{mi_r_*_g,...,:E:‘\_i_l}’....‘{mi7...,mi+r_1}.

If we choose S} independently of the data v* then I*(-;0*) in (1.25b) is a linear
functional of v*. In this case the most accurate choice is that of a centered stencil

(away from the boundaries) ji.e. for r = 2s we take
(1.27a) Sk={al 1,2k} for s<i<Ji—s,
and near the boundaries

(1.27a) SF={azk,...,ak} for 1<i<s,
(1.275) SE= {28 41,2l ) for Ji—s<i< T

Example 1.1.2 Essentially Non-Oscillatory (ENO) Interpolation

Let us consider discretized data which is obtained from sampling of piecewise-
continuous data at the gridpoints X* in (1.25a). It is well-known that any datae-
independent interpolation technique which is accurate for polynomials of degree
larger or equal to 2 , has a Gibbs-like phenomenon of generating spurious oscil-
lations near a discontinuity. In [H1] and [HEOC] we presented a data-dependent
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piecewise-polynomial interpolation technique which avoids the Gibbs-phenomenon
by an adaptive selection of stencil S¥ in (1.25b) ; we refer to this technique as
Essentially Non-Oscillatory (ENO) interpolation. The basic idea of ENO interpo-
lation is to assign to [z¥,z¥ ;] which is in the smooth part of the sampled function,
k

a stencil SF = {zf,..

28 41} with 45 = 45(z), which is likewise in the smooth
part of the function (provided that this is possible ji.e. that discontinuities are well
separated and are far enough from the boundaries). This is done by choosing S¥
to be the stencil for which the interpolation polynomial pf(z;v*) in (1.25b) is the
! p i
"smoothest” among all candidate-stencils, i.e. those of r consecutive points of XF*
starting with z¥ ) which contain both z¥ and 2% , ,e.g. by taking i4(2) to be the
g ta t 141 g y g

index for which
dr—i
k

: k
1Inn Ly U
i [T b; ( ? )

is attained among all candidate-stencils.
Example 1.1.3 Cubic-Spline Interpolation

We assume now that the discretized data is generated by sampling of functions
that are at least twice differentiable. In this case it makes sense to use cubic-spline
interpolation {or higher-order ones). Take 25 =0, = s, = 1in (1.25a), and specify
any two values ¢ and ¢!. We define the cubic-spline interpolation I*(z;v¥) = ¢(=)
to be the unique piecewise-polynomial function ¢{z) which is: (i} a cubic polynomial
in each (zF_ |, z¥) (ii) twice differentiable in [0,1] ; (iii) interpolates v¥, and (iv)
satisfies the boundary conditions ¢'(0) = ¢}, ¢'(1) = ¢}.

Example 1.1.4. Trigonometric Interpolation

We assume now that the discretized data is generated by pointvalue sampling
of a smooth periodic signal, with say period 1, at the sampling points (1.25a) with

z} =0, =% < 1. In this case we can take the set of exactness in (1.15a) to be
(1.28a) pu(z) =cosvrz, 0<v<r—1
then the interpolation technique of choice is the Fourier-cosine collocation (trigono-

metric interpolation) which has r = Ji, (see [IK], {GO], [DH] and [H7]), i.e.

Jp—1
(1.28b) IF(a50%) = Z a, (v¥) cos e
v=0
where the coefficients a,(v*) are the solution of the system of linear equations

Jy—1
{(1.28¢) I*(zFofy = Z ay(vF)cosvmek = oF, 1<i < Iy

v=0
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Example 1.2. Cell-average discretization.

Let C* = {c}} be a covering of X by disjoint cells, i.e.

(1.29a) Uik = X, ck ﬂcf =0 for i#7,
and define the discretization
1
(1.29b) (Drf)i = -i—k|f flz)dz, |ck1 —/ dz;
Ci c:.“ c:.“

we refer to (1.29b) as discretization by cell-averages. Next let us consider a refine-

ment sequence {C*}L_, in which C* is formed from C*~! by dividing each cell

¥ ! into, say ¢, disjoint cells {cF}7_,,

(1.30a) Ui ck =it

1%y t

In this case the sequence of discretization {Dy}E_, is nested and it follows from the

additivity of the integral that
(1.30b) (Di-1f)i =T ll Z |ef [(Dx i =2 (D" Dif)s

which directly defines the decimation operator in (1.14). Let Ry denote any recon-
struction from cell-averages, linear or not, and let e* denote the prediction error in

(1.5), then

q
(1.31) DE ek =0= ) Jeklel =0

This relation shows that we can define the scale coefficients d¥ by taking (g — 1)
properly chosen linear combinations of the ¢ prediction errors {eﬁ }i_, in each cell

k-1
c

k=1 These linear combinations should be chosen so that together with (1.31)
they constitute an invertible system of ¢ linear equations for the prediction errors
{eﬁ }i—y in the cell k=1 . (see e.g. [HY] for such combinations in representation of

matrices).
Example 1.2.1. Piecewise-Polynomial Reconstruction.

Using notation similar to that of Example 1.1.1, let us denote by Sk a stencil

of s(r} cells in C* which includes ¢f, i.e.

(1.32a) Sk = {cb yeln) ok e sk

2 i J =12
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here s(r) is the number of coefficients in a polynomial of degree (r — 1) in R™.
Let p¥(x; Dy f) denote the unique polynomial of degree (r — 1) which attains the
averages (Dyf);,, in S¥, i.e. the one which satisfies the following system of s(r)

linear equations for its s(r) coeflicients:

1 3
) o [ D = O, =)

tm

and define
(1.32¢) (R D f)(2) = pi(2; D f) for =z € k.

Clearly (1.32) defines a reconstruction of Dy f which is exact for polynomial func-
tions of degree less or equal (r — 1), and thus is r-th order accurate. In subsection

5.B we describe techniques for selection of a “centered” stencil SF, as well as an

“ENQ stencil”.

Note that for r = 1 in (1.32) we have s(r} = 1 and we get the piecewise-constant

reconstruction

(1.33) (RiDef)(®) = Y (Dif)ixes (),

t

where x.(z) denotes the characteristic function of the set C,

(1.34) xe) = {1 *€C

0 otherwise’

in subsection 5.B we show that this leads to a generalization of the Haar basis for

unstructured grids.
Example 1.2.2. Reconstruction via Primitive Function.

We consider now the one-dimensional case with X = [0, 1] and the grid
Xk = {'Ef}fiu ) 0=$§ <$;€ < e <a:’jk = 1,

We take ¥ = («¥_,,2%) and observe that

k
(O 1 k k
D i = T r = — sy —F L
( kf) |CH /I?_l de leI[F(ta) (3:2 l)]
where F(z) is the primitive function of f(z) , i.e.

Yy
F(ﬂ?)=/0 fy)dy (—J%F:f-
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Given v¥ = Dy f we set FF =0 and evaluate Ff = F(zf) for 1 <i < Ji by

)

(1.35a) FF=Y"|ctlv;.
=1

Let I*(z; FF) denote any interpolation of the pointvalues of the primitive function
at the gridpoints of X* and define

(1.35b) Riv*(z) = —T*(a; F*);

using (1.35a) we get that

(DeRavt); = k‘/ : Lk F}Yde = | kl[I"(:c S I LT I
ar

k k k
I kI(F Fi—l)zvia
which shows that Ry in (1.35bh) is indeed a reconstruction of the cell-average dis-
cretization.

We observe that if the interpolation in (1.35b) is taken to be the piecewise-
polynomial interpolation in Examples 1.1.1 and 1.1.2, then the resulting recon-
struction is likewise piecewise-polynomial, and because of uniqueness it is identical
to the one which is defined in (1.32) for the one-dimensional case. Note however
that the stencil in (1.32a) is of cells, and therefore the corresponding stencil for
the pointvalues of the primitive function, which consists of the endpoints of the
cells, has s(r) + 1 points of X*. The technique of reconstruction of cell-average
discretizaion via pointvalues of the primitive function can be extended to multidi-

mensional cartesian grids (see [HC] and [HEOC]).

We turn now to consider discretization of piecewise-continuous functions. Un-
like pointvalue discretization, where information about the ezact location of a
discontinuity is lost, cell-average discretization does retain this information. In
[H2] we show that the location of a discontinuity in a piecewise-smooth function
can be recovered from its cell-average data to any order of accuracy. Further-
more, we present a piecewise-polynomial reconstruction technique which is exact
for piecewise-polynomial functions of the same polynomial degree as that of the re-
construction { provided that discontinuities in the function are well-separated and
far enough from the boundaries); we refer to this technique as Essentially Nonoscil-

latory (ENOQ) reconstruction with subeell resolution.
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1.G. Biorthogonal Wavelets Revisited.

We return now to the case of biorthogonal wavelets (1.8)-(1.10) of subsection
1.B and show that it can be cast into the framework of discretization and recon-
struction, corresponding to X =Y = R in (1.11a) with F = LI°¢(R). We assume
now that {a,} in (1.8) has its support in [0, N] and consider the dilation equation

for w(z)

N N
(1.36a) w(z) =2 Z apw(2x — f), Zag =1
£ =0

It is shown in [Da] that w(z) has likewise a compact support of size N, and is
determined by (1.36a) up to a multiplicative constant and a shift, which we now fix
by taking its support in [—N/2, N/2| and normalizing it by

(1.360) ] w(z)de = 1.

Furthermore, it is shown in [Da] that w(z), the solution of (1.36a), is at least a
distribution, and that by imposing additional conditions on {ae}, or equivalently
on the Fourier symbol mg(£)

N
(1.36¢) me(§) = > age™,
£=0

(and thus increasing the support N) it can be made regular to any desired degree;

we assume now that {ae} . is so that w(z) is at least square integrable.

Let {X*}{_, be the following nested dyadic sequence of uniform grids in R

(1.37) Xk = {a,f i xf =thy, hgp= 2“’“.’10, hg > 0,
denote
1 z —zF
k = t
(1.38a) wi(z) = e ( " ) ,

and observe that
(1.38b) / wi(z)de = 1.
R
We now define the sequence of discretization operators {D}
(1.3%a) Dy : LYYR) — 8,

17



where S is the space of infinite sequences (1.3b), by

(1.395) vF = (Dp ) :f flywk(x)dz, f e LY(R).
R

Since w(z) is the solution of the dilation equation (1.36a), it follows from (1.38a)
that

N
(1.40a) wi™H(z) = Y awhiyo(x);
=0

in subsection 5.B we show that (1.40a) implies that {D;} in (1.39) is nested. Using
(1.40a) in (1.39h) we get the following relation between v*¥~! = Dy_y f and vk =
Drf, which is the decimation (1.8):

N
(1.400) 'vf_l = Z af”§i+e =: (D;’i‘lv’“)i;
£=0

note that in the scalar case Dt’l = Dt“_

In subsection 2.E we show that for each k > 0 the set {u5} which is defined by

(15 = (1) agj_im

is a basis for N (D’,:_i) , the null space of the decimation operator .We define the
scale coefficients {d;”} in terms of the prediction error e* by

eF = Zdﬁ,wf ,

I

and show that it follows from the biorthogonality relation (1.10a) that the scale

coefficients can be expressed explicitly by

T S

m

The prediction operator PF_, = 1515"_1 in (1.9) is obtained by (1.13b) from the
particular choice of reconstruction sequence {Ry} which is defined by

k

. L b Tr—I;
(1.41a) Riv* =Y ofpf(z), pi(z)=¢ ( ) ;

hy

18



here ¢(z) is the solution of the dilation equation with the coefficients {8} in (1.10)
(1.41b) e(z) = Z Bew(2z — L), Z fre-1 = Eﬂze =1,

¢ ¢ ¢
which is normalized by
(1.41¢) /R o(2)w(z)ds = 1.
Since p(z) is a solution of the dilation equation (1.41b) we get that, as in (1.40a),
(1.41d) pi(2) = Z Bephipe().

¢

It is shown in [CDF] that the biorthogonality condition (1.10a) implies that

(1.42a) / wlzyw(z — Ode = by e,
R
which in turn implies that {(*} and {w!} are biorthogonal systems, i.e.

(142b) (Dk@?)m = / (plé(a’,)w#l(m)dm = 6f,m-
R

In subsection 5.B we shall prove the biorthogonality (1.42b) as part of a more

general result for unstructured grids. Choosing {8¢} such that ¢ € Ly(R), we get

that for any sequence v*:

(1) XivFel(z) e LPe(R),
(i) [De(XivFeb)le = 2, 0f(Drel)e = 3, 0F8ie = vf;

recall that since {8} is a finite sequence, ¢(z) is of compact support. This shows
that Rrv® as defined by (1.41a) is indeed a proper reconstruction in the sense of
(1.12). Finally we show that the prediction operator in (1.13b)

PF =Dy Ry
is identical to (1.9a). It follows from (1.41d) and (1.42b) that

(Dt 1) = Z Be(Drpymee)i = Z Bebam+e,i = Bi—2m,
¢ ¢

and therefore we get from (1.41a) that

(DkRiiv )i = (D Y w70k = D ok (Drph )i

m m

§ : k—1
= v;n ﬂi—‘Zm'

e
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We observe that due to the compact support of {a,} and {3¢}, and the fact
that polynomials are in LI°(R), we can take the polynomials in (1.26) as the set
of exactness. Doing so we obtain in [H7} the following set of conditions

(1.43q) > Brer =) Pau=1,
£ £
(1'435) Z mf Z ﬁ2na2n+m =0= Z me Z ﬂ2n+1 Xantm+1

m n m n

for 1<i<r—-1, 122
and show that conditions (1.43) imply that

(1.44) Y (—1)"mBn =0 for 0<E<r—1, r>2.

e
The conditions on {«,} and {B¢} in [CDF] are derived from considerations of regu-
larity of ¢(2) and w(z), and are expressed in terms of the Fourier symbols ¢(£) and
w(€). On the other hand, our conditions (1.43) are obtained from requirements of
accuracy; however, if we assume duality (see subsection 2.E) then the two different

formulations lead to the same choice of {a;} and {f¢} .

The particular choice
(1.45) Be = 2

corresponds to the case of orthonormal wavelets in [Da}, in which case ¢(2) = w(x)
and (1.42b) implies that {(*} is an orthogonal sequence: To make it orthonormal
we can redefine p¥(z) = (hy) T (z—ﬁ—'k—) and modify the coefficients {a;} and {5¢}
accordingly. We remark that in the case of orthonormal wavelets (1.45), condition
(1.44) which is used here for aceuracy is the same one which is used in [Da] for
regularity (see also [S] and [CDF)]).

For N = 0 we get in (1.36) that ap = 1 and the dilation equation becomes
w(z) = 2w(2z) , which is solvable only in the sense of distributions. In this case
w(z) = §(z) (the Dirac distribution} and then {Dr} in (1.39b) is the pointvalue
discretization (1.21) for the dyadic sequence of uniform grids (1.37)(see [S]). Since
8(z) is not in Ly it is excluded from the class of wavelets; however the discretization
(1.39b) is well-defined once we modify (1.39a) to read Dy : C°(R) — S.

For N = 1 with the choice ag = ay = § we get w(z) = x[_1,g)(2) in (1.36). In
this case {Dy} in (1.39) is the discretization by cell-averages (1.29) in the dyadic
uniform grids (1.37); note that we shifted the support of w(z) from {~1/2,1/2] to

[~1,0] in order to use the notation of Example 1.2.2.
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The examples of subsection 1.E demonstrate that the framework of subsec-
tion 1.D. provides a broad and natural generalization of biorthogonal wavelets: It
removes the need to discretize on the dyadic sequence of uniform grids of R in
(1.37) and allows for discretizations in unstructured meshes in R™, finite or infi-
nite, as long as {Dy} is nested. Furthermore, it allows for nonlinear reconstruction

techniques which are needed for piecewise-smooth functions (Examples 1.1.2 and

1.2.2).
2. General Framework

In this section we generalize the multiresolution representation of sequences of
subsection 1.A to obtain multiresolution representation of elements in a linear space
which has a denumerable basis, and discuss the stability of the corresponding MR
schemes.

Definition 2.1. Multiresolution Setting.

Let {V*} be a sequence of linear spaces which have denumerable bases, and let
{D,’:_l} be a sequence of linear operators which map V* onto VF~1 ie.

(2.1) DE~t L vE b vET D YL = DETH(VR),

We say that ({V*},{DF!1) is a multiresolution setting, and refer to Df " as the
decimation operator.

2.A. Notation agreement:

Let V* denote a linear space which has a basis {nF}, finite or infinite, and
denote the representation of v € V¥ in this basis by the sequence 9% = {dF} of its

coordinates,

(2.2) VE=span{nf}, v* eV oF = Z'F)f”'nf, oF = {oF} € S&

]

here we use for {n¥} and {6%} the same notation agreement as in (1.3); in the
finite-dimensional case we denote dim V¥ = Ji.

We denote the identity operator in V* by I.
Let N (Dif”l) denote the null space of Dﬁ_l
(2.30) N(DEYY = (o pr e VF | DI = 0},

and let {uj’ } denote any basis of A (D,‘E ~1). Observe that in the finite dimensional
case, it follows from (2.1) that

(2.3h) dim MV(DF™Y) = dim VF - dim VF ! = J — Ji_y;
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to distinguish between the different dimensions of the two bases {n¥} and {,uf } we
reserve the index ¢ to denote ¢ = 1,...,J; and j to denote § = 1,...,(Jx — Jr—1).
The index k is reserved for the level of resolution.

Let d* = {al"’?c } denote any sequence which has the dimension of A(D¥™!), and
denote the space of all such sequences by G*. We define the operator E¥ : ¥ —

N(D) by

(2.40) Bpd® = diuk.

7

Let G* : N(Di_l) ~+ G¥ be the operator which assigns to any ef € N(D¥1) the
sequence d* of its coordinates in the basis { ,uj?"}; clearly
(2.4b) F e N(DFTY) , dF = Gret o e =) dEuk = Erd".

J

It follows from (2.4b) that

(2.4¢) & € G* = G Epd® = dF,
and
(24(1) ﬂk € N(DEWI) frmee Ekaek — ek_

2.B. Multiresolution Representation.

It follows directly from (2.1) that for any v»*~1 € V1 there is at least one

u € V¥ such that Dﬁ_lu = v*¥~1. We refer to such an assignment of u to v*~! as

prediction, and define:

Definition 2.2. Prediction operator.

We say that PF_, is a prediction operator for the multiresolution setting (2.1),
if it is a right-inverse of DF~1 in VE-1 e,

(2.5) Pl VR S vE o DEPE =1 .

Note that P,f_I is not required to be a linear operator.
Lemma 2.1.

Let PF | be a prediction operaor, linear or not, and define (the possibly non-
linear) operator Q. by

(2.6a) Qr = I - Pf_,DiL.
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Then:

(2.6b) (i) e e N(Df™Y) = Que® = eF,
(2.6c) (i) Qr: VF 28 A(DEY).

Proof: (i) ¢* € M(Df™1) = DE7lek = 0 and therefore

peF = (I, — PF_ DFNek = ek — PE (D 1eky = ¢F — 0 = €.
k-1 k—1\g

(ii) For any v* € V¥ we get from the linearity of D71 and (2.5) that

DEN(@uv*) = D§I (5, — P, D)ok = DMk — (DE1 P )DL o*
_ Df },UL _ Dk -1 L 0
=Ly k

and therefore Qi(V*) C N(Df™1) . From part (i) we get that
N(DT") = Qu(N(DLT) € Qe(VF)

and we conclude that Qx(V*) = M (DF1), which proves (2.6¢).

Theorem 2.1.

Let ({V*}_,, {D¥1}E.,) be a multiresolution setting, and let {Pf_}L_, be
any sequence of corresponding prediction operators, linear or nonlinear. We define

a transformation M,

M:VE oSt

where S is the space of sequences {1.3), by the following algorithm: Given any
veVl

(2.7a) Set vl =,

(2.7b) 1’ ph-1yk

Do fork=1L,...,1
k
dF = Gk(kak):
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let 9° denote the coordinates of v° in the basis {n{} (i.e. (2.2) with k = 0), and
define

(2.7¢) M(v) = {8°,d", d%,...,d").
Then M is an invertible transformation,
(2.8) ve VvVl &L M(v) e 8T,

and its inverse

M st o vE

is defined by the following algorithm: Given any sequence {3°,d*,...,d"} ¢ St ,

(2.9a) Set v® = Zﬁ?n?,

Do for k=1,...,L
(2.9b) {,Uk = Pk vkl | Eyd*,
and define
(2.9¢) M™({8%,d,...,d" ) = ol

Proof: (i) We want to show that for any v € V¥ | M~ (M(v)) = v. This amounts
to proving the claim that if

,Uk—l — Dﬁ—lvk , dk — Gka'Uk,

k

then v* is recovered by

o¥ = PF_o*1 4 Brdt

From Lemma 2.1 we get that Qrv* € A (D}S_l) and therefore it follows from (2.4d)
that

EGrQiv® = Qv

Using (2.6a) we get that

PE_vF 71 4 Epd® = PE(DF10F) + Ef(GRQiF)
= (P&, Dy~ ok + Quo* = oF,
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which proves our claim.
(ii)We want to show that for any sequence {8°,d*,...,d*} € S L

M(M™Y({3°,dY,...,d") = {8°,&%,...,d"}.
This amounts to proving the claim that if
v* = P ot 4 Epdb,
then
of"t = DETt | dF = GrQpo”.
Since Exd* € N(DF™1) it follows from (2.5) and the linearity of DY that
Df b = Dy PE T 4 DETY(ERd) = 0P 0 = 0h T
and therefore
Quvt =(I ~ PE, DE™ ok = ¥ — P ok

(PE_yo¥™! 4 Epd®) — PE_ o = Eyd¥;

I

using (2.4c) we get that
GrQv* = GrErd* = dF,

which proves our claim.
M

We refer to M(v?) as the multiresolution representation of v, and to algo-

rithms (2.7), (2.9) as the direct and iuverse multiresolution transforms, respectively.

L is any sequence of numbers in S%,

Remark 2.1. Since by (2.2) vZ & 6% where ©
it follows from Theorem 2.1 that the same algorithms (2.7), (2.9) can be used for
M(sY), the associated multiresolution representation of sequences s* in S¥ (1.3),

by defining

(2.10) st ]\;I(,SL) =: M(o%), »* = Zsf‘nf‘

Remark 2.2. Dif_l, G} and E) are linear operators and therefore can be repre-
sented by matrices, finite or infinite, which we denote by D,f_l , G, and E}, respec-
tively; in this case the sequences 5 and d* are considered to be column-vectors;

thus .k
vk—l — D;‘:—lvk — ,&k—-l — Dk—lﬁk,

d¥ = Gre* o d* = GréF,

et = Epd* o &% = B dF.
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If PF | is a linear operator it can be likewise represented by a matrix, which we
denote by f’,ﬂ"_l. '

2.C.. Multiresolution Bases in VL.

The multiresolution transform can be expressed directly in terms of v by

introducing the linear operator B¥ of successive decimation
(2.110) BY =D ... DLV VE SV
and observing that v¥ in (2.7) are defined by

(2.11b) v* = Byl

Thus »¥ =+ M{v!) can be expressed by

(2.11¢) W0 = BYoE, @F = GQrBivt, 1<k <L

If {PF |} are all lnear prediction operators, then the inverse multiresoluton
transform (2.9) can be expressed directly in terms of M(v™) by introducing the

linear operator AL of successive prediction
(2.12a) Ab = pb_ .. pFLVE LV

thus M(v%) — vl can be expressed by

L
(2.12b) v = Af® + ) AL Ed,
k=1
Denoting
(2.13a) ot = Abyk, o<k <,
(2.130) it = Afpk, 1<k <,

we get from (2.12b), (2.2) and (2.4a) that

L
(2.13¢) o =)0t + Y dbgpt

i k=1 j
Thus we have shown:
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Theorem 2.2.

Let ({V*YE_,, {Df71YE_,) be a multiresolution setting, and let {P{_,}{_, be

any sequence of linear prediction operators, then
5 _ 7 L
(213d) Bar = ({80} {18515}

is a basis of VL, and any v* € V* has the representation (2.13¢) where the coordi-
nates are given by the direct MR transform M(v!).

We refer to By as a multiresolution basis of VL,

Remark 2.3. Let us denote the representation of u§ € A/ (DF=1) © V* in the basis
{nf} of V¥ by

(2.14a) ph = (ph)nk,
i

then (Ey);; = (;;’;)2 (see Remark 2.2), and it follows from (2.13a) - {2.13b) that

(2.14b) Pt = (Bl

thus 1,“5;?’1‘ is & linear combination of {@?’L}i which is independent of L.

Remark 2.4 Let 15,5_1 denote the matrix representation of the prediction P;f,,l (see
Remark 2.2). Since P,f_lnf_l is in V¥, this matrix representation is defined by

(2.150) Piyns™t =) (B )it

It follows from the definition of AL in (2.12a) that
ARy = ALPE,
therefore we get from (2.13a) that
gy = AfngTh = ARPL g = AR Z(Pf_i)i,wf;

thus
(2150) @M=D (PR et

T

This shows that @f_l’L is a linear combination of {@f’L}, which is independent
of L.
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2.D. How to Design MR Schemes?

The point of view of this paper is that the primary choice to be made is that
of the decimation operator Dt"’l. In the next section we introduce the concept of
nested discretization and show that it defines a decimation operator, and thus a
multiresolution setting (2.1). Here the “discretization” specifies the nature of the
data in % (i.e. how it was generated), and the “nestedness” induces a sense of

hierarchical levels of resolution.

Once we have chosen a multiresolution setting, we have to make two more
independent choices:

(1) A prediction operator PF | which is a right-inverse of sz_l;
(2) A basis {s¥} of N(D{7T).

In the finite dimensional case we have shown that for any choice of prediction

technique and any choice of basis in N(DF™1)
d* = Gv* — PF_ o)

has (Jg — Jxk—1) components, and consequently the Jy coefficients of oL are repre-
sented by the Jy, coefficients of M(v’). We would like d* to be a good approximation
to the “true” k-th scale. Although the crucial element in achieving this goal is the
accuracy of the prediction, it is not the only consideration.

In order to apply this multiresolution representation to real-life problems for
purposes of analysis and data compression, we have to make sure that the direct

MR transform and its inverse are stable with respect to perturbations

For purposes of analysis, if v¥ is replaced by a perturbed vl, we want the
purp yais, ! .

perturbation in the resulting scale coefficients d¥,
(2.16) df — d* = QB (vl "),

to be “bounded” by the perturbation in the input. Relation (2.16) shows that

the perturbation in the input is subject to successive decimation D]}_; for m =
L,...,k+1, and then the result is projected into A (D’g_}) and represented by
some basis there. Clearly the “dangerous” process that we have to control is that
of successive decimation; the choice of basis in A(D¥71) is not that important: the

basis need not be “orthogonal”, but it should not be “too distorted” either.

Similarly for purposes of data compression, if the scale-coefficients {d*} are
replaced by {d*} which are obtained either by quantization (representation by less
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bits according to some table of prescribed significance) or truncation (setting to zero
of coefficients that fall below some prescribed tolerance), we want the perturbation

in the decompressed v’

L
(2.17) vl —vP =) " AL E(d - db),
k=1

to be “bounded” by the perturbation in the scale coefficients. Examination of
(2.17) shows that the perturbation in the k-th scale coefficients is “translated” into
a perturbation in the prediction error, which is then transmitted into higher levels

of resolution by successive prediciton P™_; for m =k +1,...,L. The danger here

is that this perturbation could be amplified by this process.

In sections 3 and 4 we shall formulate conditions which ensure the stability of

the direct MR transform and of its inverse.
2.E. Design of Biorthogonal Wavelets.

In this subsection we desscribe the derivation of biorthogonal wavelets in [CDF]
and compare it to our approach. The MR scheme of [CDF] is taken to be of the

following form: The direct multiresolution transform is
(2.18a) vl = Dok, d% = Gpo*, k=1L,...,1
and its inverse is
(2.18b) o* = PoF T 4 GhdF, k=1,...,L
The infinite matrices D and P in (1.8)-(1.9) are given by
(2.19a) D;j = aj—ai, Pij = ficaj;
%, and Gp are expressed in terms of {a} and {f¢}, respectively, by

(2.19%) (G)i; = (=1 M agjmicy, (Gpliy = (—1Y" Baizj.

The first condition on {ay} and {B¢} is that of consistency: Using (2.18a) in
(2.18b) we get the identity

(2.20) PD+GYLGp =1.

It is easy to see that (2.20) is equivalent to the biorthogonality relation (1.10a). At
this point we associate w(z) and ¢(z) to {a,} and {8} by defining them to be the
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solution of the respective dilation equation (1.36) and (1.41b)-(1.41c}); the functions
w(z) and p(x) are regarded as scaling functions in dual systems of wavelet bases.
Additional conditions are then imposed on the Fourier symbols ©(£) and ¢(€) in
order to ensure increasing regularity of the scaling functions w(z) and p(z). Note
that there are no direct requirements of accuracy in this formulation; it comes out

later that increasing regularity implies higher accuracy.

Next we would like to compare (2.18)-(2.19) to our MR scheme (2.7)-(2.9) for
the same case. The direct MR transform is

(2.21a) Fl=Do* | =G k=1,...,1
and its inverse is

(2.21b) vF=PofF Tt 4 Bd* ) k=1,...,L

It is easy to see that as in the orthogonal case of [Dal

(2.22a) DG =0 ,
(2.220) GpP =0 ,

and that the biorthogonality relation (1.10a) implies
(2.22¢) GpGY = 1.

It follows from (2.22a) that we can take the basis {g;} of N(D) in (2.4) to be the

columns of GF, i.e.
(2.230) (1) = (=1 agjmi1.
For this choice of basis we get

(2.230) ¥ =Y dip; = Gpd* = E = Gp;
i

multiplying the above equality from the left by Gp and using (2.22c), we get
(2.23¢) Gpe* = GpGhd* =d* = G =Gp.

It follows then from (2.22)h) that

(2.23d) GQ =Gp(I — PD) =Gp,
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and we conclude that the two algorithms are identical.

We remark that the assumption of duality, 1.e. that replacing {a¢} and {f#¢}

by {ac} and {Be} ,
(2.24(.‘.) &g = ﬁg/z s 513 = 2y

results in a consistent MR scheme, amounts to adding the condition (see (1.10b))
(2.24b) S Be= Frr1=1=> age=) a1 =1/2
e ¢ ¢ ¢

this condition implies that w(z) is square integrable. Under this assumption of
duality we can exchange the roles of the sequences {ay} and {f¢} in (1.43) and
obtain in (1.44) the additional condition

(2.25) Y (-1)mlam =0 for 0<L<F-1, #21

m

for some 7 > 1. The system of algebraic equations for {a,} and {8¢} which is used
in [CDF] is (2.24D), (1.43a), (1.10a), (1.44) and (2.25); hence under assumption of

duality the two formulations are identical.

However, unlike [CDF] , we do not attempt to explicitly solve this system of
algebraic equations. Our approach is to first choose w(z) {which is equivalent to
choosing {a,} in (1.36)) and then solve the approzimation problem of finding Ry,
in (1.12) which is an r-th order accurate reconstruction of the discretization Dy in
(1.39). Typically, as in Example 1.1.1, Ryo* is a piecewise-polynomial function.
In [H7] we show that if we use the same reconstruction technique at all the points
and all the levels of the dyadic sequence of uniform grids (1.37), then the prediction
operator (1.13b) PF_, = DyRi—1 has the Taplitz -like representation (2.19a) ,(1.9)
, and the coefficients {#¢} automatically satisfy the set of equations (1.43).

We remark that the piecewise-polynomial reconstruction Ry is different from
the wavelet reconstruction in (1.41) ; the latter can be obtained from the piecewise-
polynomial Ry by the limiting process L — oo in (1.18) (see subsection 5.B).

The main advantage of our approach is that it applies directly to bounded
domains — all we have to do is modify the reconstruction near the boundaries (as in
Example 1.1.1). Thus “biorthogonal wavelets in the interval” are obtained by using

one-sided stencils near the boundaries (see [HT]).
3. Design of MR Schemes from Nested Discretization

In this section we show how to construct a multiresolution setting (Definition

2.1) from a nested sequence of discretization and discuss the stability of MR schemes.
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Definition 3.1 Discretization.

Let D be a linear operator on a linear space F, and denote its range by V. If
V has a denumerable basis, say {n;}, we say that D is a discretization operator and

refer to v = Df as the discretization of f

(3.1) D:F—Y, V = D(F) = spani{n;}.

Definition 3.2. Nested discretization.

Let {D} be a sequence of discretization operators
(3.2a) Dy: F — VE, VE = Dy(F) = span{nf}.
We say that the sequence {D}} is nested if for all &

(3.25) Dkf =0= Dk_1f ={.

3.A. Multiresolution Setting.

Let {Dx} be a sequence of discretization as in (3.2a), and consider the following
mapping from V¥ to V¥~1: For v € V* take any f in F such that v = D f and
assign to it u = Dy f, L.e.

(3.3) v u=Dp_1f, where v="Df.

Lemma 3.1. (Harten-Lax)

If {D} is nested, then (3.3) is a well-defined mapping.

Proof: Since V¥ = Dy(F), any v € V* has at least one f € F such that v = Dy f.
We want to prove that the assignment v = Di—1f to v is independent of the
particular choice of such f. To do so we take any g € F such that

Drf=v="Dg

and show that

Di—1f = Dr-yg.
Since Dy and Dy _1 are linear operators
0=Dif ~Dryg=Di(f —¢)
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we get from (3.2b) that

0="Dy—1(f — 9} = Dk—1 f — Dr—19.

1

We denote the mapping (3.3) by u = D¥_ v, and observe that for any f € F

(3.4) DY YDy f) = Drr f.

Theorem 3.1.

Let {Di} be a nested sequence of discretization (3.2) and let {Dt™1} be the
corresponding mappings (3.3), then

- k_
(VD™D
is a multiresolution setting.

Proof: The linearity of the mapping D’,;'”l follows immediately from the linearity
of Dy, Di_; and the space F. To show that Dif_l maps V¥ onte V*71, for any u
in V¥-! take a f € F such that u = Dy_f and let v = Dy f. Clearly v is in V*
and by (3.4)

D¥1y = DEYDLS) = Dioi f = u.

M

Let D be the discretization {3.1), then to any v in V we can assign a f € F such

that Df = v. We refer to such an assignment of f € F tov € V, as a reconstruction
of f from v = Df.

Definition 3.3. Reconstruction.
We say that R
(3.5a) RV — F, V =D(F)
is a reconstruction operator in V, if it is a right-inverse of D, i.e.
(3.5b) DR =1,

where I is the identity operator in V.

Note that R is not required to be a linear operator.
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Lemma 3.2.
If {Dy} is nested, then

(3’6) Df(RﬂlDTTI) - DE for £ S n .

Proof: For any f € F denote
g = Rm®auf '

it follows from Definitions 3.2 and 3.3 that

Ding = (DmRm)Dmf =Dnf = Deg = Def for £<m
e De(R‘nle)f = Df.’f .

Theorem 3.2.

Let {Di} be a nested sequence of discretization and let {Ry} be a corresponding

sequence of reconstruction (3.5), linear or not. Then

(3.72) (i) D =Dy Ry
is an expression for the decimation operator (3.3)—(3.4);
(3.71b) (i) PF | =DiRi

is a corresponding prediction operator (Definition 2.2),

Proof: It follows from Lemma 3.2 that
Dr1(RiDy) = Di—y ;

thercfore Df ™! in (3.7a) satisfies (3.4), i.e.
(i) Dy 'Di = (Dr-1Ri)Dr = Di—1(RiDx) = Di-1.

(ii) Multiplying the above from the right by Ry..; we get

DE-1PE | = DEHDyRi—1) = (DF ' Di)Ri—1 = Di—1Ri—1 = Jp—1
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Remark 3.1. The operator (Dr—1Ri) in the RHS of (3.7a) is defined for any two
discretizations, nested or not. However, it is easy to see that it is a decimation op-
erator (Definition 2.1) only if they are nested. In this case the decimation operator
D1 s defined directly by (3.3), and then (3.7a) becomes a conceptual description
which is independent of the particular Ry, linear or nonlinear. Likewise, the oper-
ator (DyRi-1) in the RHS of (3.7b) is defined for any two discretizations, nested
or not. However, it is a prediction operator, i.e. a right inverse of (Dr—1R¢) , only
if the two discretizations are nested.

Thus the converse to Theorem 3.2 is also true.

3.B. Sequence of Discrete Approximation.
Let ¥ be any vector in V¥ and denote
(3.8a) f=RterF,

then it follows from (3.4) that the sequence {v*}l_, in the direct MR transform
(2.7) can be expressed by

(3.8b) v =Dyf, k=L,...,0.
The prediction error e¥,
(3.8¢) eb =k — pf Rt

can be expressed as e = e*(f) by

(3.8d) ek(f) =Dif — (DiRp-1)Drif = Di(I —Rp1Di1)f .
Let us assume that {Ry} are linear operators and denote
(3.9) H;I: = (RLDL) v ('Rk'Dk) F = F

and observe that

L L
(3.10a) RyDp =1F =15+ (Tf - Tf_,) =T¢ + > T ~ Re-1Di1) -
k=1 k=1
Applying (3.10a) to f in (3.8) we get

L
(3.10b) Rpvl = RyDpf =17 - Rov® + > Iy, - Ree® .
k=1
Observe that Hﬁ +]T\’,k = ’RLA{? and therefore (3.10b) can also be obtained by
applying Ry, to the inverse MR transform (2.12).

The analysis above shows that the MR scheme in this case can be expressed in
terms of the sequence {(R+Dx)}.

From now on we take F to be a Banach space with a norm || ||.
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Definition 3.4. Sequence of {discrete) approximation.

We say that {(R.D:)},
(3.11a) (ReDy) : F = F

is a sequence of (discrete) approximation in a Banach space F if for any f € F

(3.11b) (i) |ReDifIl < CHIIF
(3.11c) (i) IReDef —Fll >0 as k—oo.

Lemma 3.3.

If {(R«xDx)} is a sequence of approximation, then it is uniformly bounded, i.e.
there exists a constant C, such that for any f € F

(3.12) I ReDefll < Callfll

Proof: From (3.11c) we get that
IR:Defll = IfIl as k— o0

and therefore {||RxD¢f||} is bounded, i.e. there exists a bound B(f) which does
not depend on k such that for any f € F

IRDe S} < B(F) .

This bound, together with our assumption (3.11b), implies (3.12) by the principle
of uniform boundedness (see e.g. [RM, pp. 34-36]).

n

Next we define the discrete norms | |, for elements in V¥, and ( )i for the
scale coefficients d* in G* ; these special norms are designed to accommodate the

different dimensions of the various levels of resolution in the finite-dimensional case.
Lemma 3.4.

Let {(RxDr)} be a sequence of approximation and denote for any v* € V¥
(3.13a) ofle = R0l 5
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then
(i) | | is a norm in V¥,

(i) for any f € F such that vF =Dy f

(3.13D) [0¥e = |Drfle < Call | -

Proof: (i) Clearly v*| = | Rgvf|| > 0, and
i[=0 & R [=0e Rt =0 o v = DR =Dy - 0=0 .

The triangle inequality for | | follows immediately from that of || ||

s vf + @zl = [[Ri(arvy + azvp)l| = laaRyvf + aaRyvy|

< Jea] [[Revf ||+ lea] IRkv3 ]| = loa] fofli -+ fexa] oz -
(i)

Wk = [Defle = |RaDrf
and (3.13b) foliows from(3.12).

Lemma 3.5.

Let {(RyxDx)} be a sequence of approximation and denote for any element

d* € G¥ in (2.4)
(3.14a) (d*Ye = | Epd®iy ;

then
(i) { Vi is a norm in G¥;

(i} for any f € F, d*(f) = Gre*(f) satisfies

(3.14b) (@ (e = 1" (Hlx < Calll7 = Re—1Dr-1)f1l -
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Proof: (i) (d)x = |Exd®|x > 0. It follows from Lemma 3.4 and (2.4c) that
(d* ) =0 |Bpd* |, =0 & Efd* =0 o dF = GF(E*d*) =G*-0=0.

The triangle inequality for ( )i follows immediately from that of | |;.
(ii) It follows from Lemma 3.3 and (3.8d) that

(@ (e = 1Bed* (s = 1Pk = IRre* (N = IR&De(I — Ri—1Dr—1)f]|
S Call(I =R Dr—1) f|l

Corollary 3.1.

If {(Rr D)} is a sequence of approximation then for any f € F

(8.14¢) (A (e =¥l =0 as ko oo
and
(3.14d) (@ (e < Call +CA I

3.C. Stability and Data Compression.

In this subsection we discuss the question of stability of the MR scheme that
we raised in subsection 2.D.

First let us consider the direct MR transform (2.7) and denote by §(v) the
perturbation in its input, and by §(d*) and §(v?) the perturbation in its output.
Because of the linearity of the operators we get from (3.8) for f = R18(v") that

RiBeb(d*) = Ripd(e®) = RpDp(I — Rp—1Di—1)R1E(v)
and

Roé(v°) = RoDp - Rr8(v") .

Using the discrete norms (3.13a), (3.14a) and Lemma 3.3 we conclude that
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Theorem 3.3.

If {(RyDy)} is a sequence of approximation then the direct MR transform (2.7)

is stable and

(3.15a) ((d))k = 16(e") ]k < Call + Ca)l8(v")e
(3.15b) 16(v")o < Cald(v™)lz -

Observe that the assumption of nestedness implies through Lemma 3.2 that
BY¥D, = Dy ; this eliminates the possibility of amplification of the perturbation
§(v™) by the successive decimation in (2.16).

Definition 3.5. (Uniformly) n-Stable sequence of approximation.

We say that the sequence of approximation {(R,D;)} is m-stable if for all k > 0
there exists a constant Cy such that for any f € F

(3.16a) ITE - fll < Culifll, L>k.

We say that the sequence is uniformly n-stable if there exists a constant Cr ,such

that for all k > 0 in (3.16a)

(3.16b) | Cr < Cr < .

Lemma 3.6.

The sequence of approximation {(R¢D¢)} is m-stable if and only if for any k > 0
there exists a constant Cy, such that for any v € V*

(3.17a) ITE,,  Riv|| < Clvls, L2k+1.

The sequence is uniformly m-stable if for all k > 0 in (3.17a)

(3.17b) Cr < Cp < o0,

Proof: If the sequence is w-stable, for any v € V* take f = Ry in (3.16a); then
MEf = OERew = O, (R Dp)Riv = I, Ryv
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and we get that
gy Revll = NI £ < CllFIl = CrllRavll

and (3.17a) follows from the definition (3.13a) of |v|g. Clearly, if the sequence is
uniformly n-stable, then (3.17h) is also true.

Conversely, if (3.17a) is true then for any f € F we take v = Dy f; then
Hi{f-{-leU = H£+1(Rkpk)f = H%f
and we get from (3.17a) and (3.13b) that
T A1l = 1Ty Ravll < CrlDefle < CrCallfIl

If (3.17b) is true, then
ITIE £I| < CoCall ]
and the sequence is uniformly w-stable.

M

We turn now to consider the stability of the inverse MR transform and prove
that

Theorem 3.4.

Let §(d*) and 6(v°) denote the perturbation in the input of the inverse MR
transform (2.9) and let §(v*) denote the resulting perturbation in its output. If

{(RxDs)} is a w-stable sequence of approximation then the inverse MR transform
(2.9) is stable and

L
(3.18a); 6(v™) L < Colé(w®)]o + D Cr(d(d* N -

k=1

If the sequence is uniformly w-stable , then

L
(3.18b); 80"z < Cr 18" Vlo + Y (6(d*)x ].

k=1

Proof: It follows from (3.10b) and §(e*) = Ex6(d*) that

(3.19) Ri8(vh) =M Red(v%) + > TIE,, - RiExé(d") .

k=1
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Using Lemma 3.6 we get

L
IRLE@I < Col RL8@) + ) Cill Exd(d®)I,

k=1
and (3.18a) follows from the definition of the various discrete norms.
If the sequence is uniformly w-stable, then (3.18b) follows from (3.17b).
-

Next let us consider the application of the MR scheme to data compression.
In this case we replace the scale coefficients {d*} by {d¥} which are obtained either
by quantization or by truncation. Assuming that §(v®) = 0 and that the data

compression introduces purturbations §(d*) such that
(3.20a) Crl6(d* ) < e

we get from (3.18) that
L
(3.20b) (o™ <) e
k=1

The “art” of data compression is to find a sequence eg, k¥ = 1,...,L which

sums up to a given £ and maximizes the rate of compression.
4. Multiresolution Bases of F

In this section we assume that F is a Banach space with norm || ||, and derive
multiresolution bases for it. To simplify our presentation we continue to use the
notation agreement of subsection 2.A. However, in the infinite case the following
should be regarded as a formal derivation, which can be made rigorous later by
adding conditions to ensure convergence of the infinite sums and to allow for term-

by-term operations when needed.

Let {(RxDr)} be a sequence of approximation and denote

(4.1a) ‘P‘]L b= HL-H Rk?’h‘k
Using

EPILURDIL

J
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we get from (3.10b) that

L
(4.20) RiDif =Y folt + 33 et
or 3 k=1 1
L
(42 RuDLS = 50 Rt Y
é k=1 j

where the coefficients in (4.2b) are computed by the direct MR transform (2.7) of
v[,f ,i.e.

(4.2¢) {fo,d",d®,...,d"} = M(D.f).
Observe that as in (2.14)-(2.15)

(4.2d) Yit = (Euiseit

(4.2¢) or "t = (PE et

2
4.A. Hierarchial Sequence of Approximation.

In this subsection we describe multiresolution bases which correspond to hier-
archial bases of F; the latter are a generalization of the ones that are used within

the context of finite-element methods (see e.g. [Y1] and [Y2]).

Deflnition 4.1. Hierarchial sequence.  We say that the sequence {{RgDk)}

is hierarchial, if for all k

(4.3a) (ReDi)Rg—1 = Ri—1.

Observe that since Pf_l = DrRi—1 (3.8), another way to express (4.3a) is by
(4.3b) RuPE| =Ry

Lemma 4.1.

I {(RxDr)} is an hierarchial sequence then for all k and L > k
(4.4) E = RyDy .

Proof: Using (4.3a) we get
Of = (RyDL)(Rp-1Dr—1) -+ (RyDx) =
= (Re—1Dp—1) - (ReDi) =Ty = =TI} = Ry Dy .



Corollary 4.1.

If {(RxD4)} is an hierarchial sequence of approximation, then:
(i) it is uniformly n-stable ;

(il) perturbations in the inverse MR transform are bounded by

L
(4.5a) 6oz < 1800 + D (8" -
k=1

Proof: (i) It follows from (4.4) and Lemma 3.3 that

1L £l = IReDx 1l < Call£)l-
(ii) It follows from (4.4) and (4.3a) that
(4.5b) HﬁHRk = Rp+1Dk+1Rp = R
therefore in (3.19)

L
RL8(v") = Roé(v°) + ) RpExs(d*),
k=1

and (4.5a) follows from the various definitions of the discrete norms.

n

Observe that the hierarchial structure {4.3a) eliminates the possibility of am-
plification by successive prediction of perturbations §(d¥) in the input of the inverse
MR transform in (2.17); this is analogous to what the nestedness Dgp_1(ReDr) =
Di—1 does for the stability of the direct MR transform (Theorem 3.3).

Theorem 4.1.

If {(ReDr)} is an hierarchial sequence of approximation then

(4.62) By = ({7}, {97 i }ny)
with

(4.6b) o =Ranf

(4.6¢) ¥f = Reul



is a multiresolution basis of F, and for any f € F

(460 F= Y Ay Yt

k=1 j

where the coeflicients df = dj‘?‘( f) are the scale coefficients (4.2c), i.e.

(4.6¢) d*(f) = Gre*(f) = Gu(Drf — PE_Drosi f).

Proof: [t follows from (4.5b) that in (4.1a)-(4.1b)

kL :
0" =Rk = of,

kI k k
i =Ry =15,

and therefore (4.2b) becomes

L
(4.7) RiDuf =3 flol+3 ) divy,

k=1 3

where the coefficients in this expansion are given by (4.2¢). Since by (3.11c), the
LHS of (4.7) converges to f in the norm || || we get (4.6d) and thus By (4.6a) is a

basis of F.

Remark 4.1. Since for hierarchial sequences (pf’L = ¥ and T,b;.c’L = ¢;‘ it follows

from (4.2d)-(4.2¢) that

(4.8a) pi =) (BE ek,
(4.8b) ¥F = (B ek

1

Denoting the linear span of {¢} by ®™, we get from (4.8a) that for all k

(4.9a) F1 C oF,

Furthermore,

(4.90) (ReDi)f = ) ffof = (RiD1)f € &
and l
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(4.96) (T\’,ka)z = Rk('Dk'Rk)'Dk = Rk'Dk;
Thus (RiDy) is a projection of F onto &%, Observe that

(4.10a) RaDif = ReoiDpa f+ )il =D fF ok 4 ) dint
J J

corresponds to the direct swin decomposition
(4.100) ¢* = ¢F1 @ OF

where U¥| the linear span of { 11);-"}, is the complement of ®*~1 in &%,

Remark 4.2. The sequence {(RD)} of the biorthogonal wavelets in (1.40)-(1.41)
is hierarchial. To show that we use (1.9a) and (1.41d) to prove (4.3b), as follows:
For any v*~1 ¢ V-1

’R'k}:'l:c—l""j’c~I = Z(Pif—lvk—l)mﬁ"ﬁz = Z(Z ﬁm—zivf_l)‘an

m e 1

:Z”fﬂ(z Beplyai) = Z’Uf_i@f_l = Rp—v*71.
; 7 ;

It is easy to see that the sequences of discrete approximation in Examples 1.1.3
and 1.1.4 are also hierarchial; this is true in general for reconstruction sequences
{Ri} which are based on splines or spectral expansion (see [DH]|, [H4] and [HT7]).
The standard piecewise-polynomial interpolation in Example 1.1.1 which uses a slid-
ing stencil is not hierarchial. This method is the most commonly used interpolation
technique in numerical analysis, e.g. finite-difference schemes for the numerical
solution of PDEs. In subsection 4.D we show that in many cases, a sequence of
approximation which is not hierarchial to begin with, has an hierarchial form which
is obtained by taking L — oo in (4.1}-(4.2); this hierarchial form has the same scale

coefficients as the original one.

4.B. Cosmetic Refinement.

In this subsection we prepare the framework for taking L — oo in (4.1)-(4.2).

Definition 4.2. n-Convergent sequence of approximation.

We say that the sequence of approximation {(R¢D¢)}52, is m-convergent if for
any k > 0 and any f € F the sequence {II£f}3° , is a Cauchy sequence in || ||.
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Theorem 4.2.

If {{(ReDe)}R, is a w-convergent sequence of approximation then it is also

m-stable.

Proof: Since {ITIL 152, is a Cauchy sequence for any f € F we get that {||TIL f||}
is convergent and therefore bounded, i.e. for any f € F

(4.11a) ITTE £l < Bi(f) -
From Lemma 3.3 we get that for L > &
(4.11b) ITIEfl| < CAllTETH A< o S (CAY IS

since F is assumed to be a Banach space, it follows from (4.11a)}, (4.11b) and the
principle of uniform boundedness that for any f € F and any k¥ > 0 there exists a
constant Cy (independent of f} such that for all L > k

(4.110) Ik 1l < Cul £

Theorem 4.3.

Let {(RxDr)} 32, be a m-convergent sequence of approximation and denote

(4.12a) Jim NEf=fReF;
then

(4.12b) Def? =Def for £<k
(4.12¢) APy =0 for €>k+1.

Proof: It follows from (3.9) and Lemma 3.2 that

(4.13a) DIl = DIy for k+1<€<L
and
(4.13b) DIl =D, for 0<L<k.
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Therefore using (4.13b) for 0 < £ < k we get from(3.13b) that
0 < [Defi® — Defle = |Def® — Delli fle < CallF7° —HffHLjo’oO

which proves (4.12b). Using (3.8d) we get

e“(f°) = De(I ~ Re—1De—1)f§° = De(d ~ Re1 Pe—1)IL f
+ De(I ~ Re—1 Do J(f° ~ 1L f) ;
it is easy to see that (4.13a) impliesfor L>£>k +1
DIl = DIl = DR Dei 11,
therefore
De(I — Re—1 Do )IIF =0
and thus using (3.13b) and (3.12) we get
0 < e (fg)e = IPe(I = Rec1 Dot J(F° =TI F)le
< CAQ+ O - TR, —20

this shows that ¢*(f£°) = 0 for £ > k 4 1, which implies (4.12¢).
N

IL f is described on a higher level of resolution than II,IC‘_I f, and in this respect
fi? corresponds to “infinite resolution”. Nevertheless, Theorem 4.3 shows that fg°
has exactly the same (discrete) information contents as the initial data RiDyf.
Therefore we refer to the limiting process (4.12a) which assigns f° to RyDif as a
cosmetic refinement scheme; the qualification “cosmetic” is used in order to stress
that unlike other refinement processes in numerical analysis, there is no addition of

information in (4.12a).

We remark that the linear operator which assigns f£° (4.12a) to each f € F is
bounded, since by (4.11¢)

(4.13¢) Ifell = Jim IR £ < Cell £

4.C. Sufficient Conditions for 7-Convergence

In this subsection we consider a sequence of approximation {(RxDy)} and
derive suflicient conditions for its 7-convergence (Definition 4.3). Let hr be a pa-
rameter which measures the “coarseness” of the discretization Di. Since {Dy} is

nested, Ay is decreasing with k and we assume that for all &

(4.14) hig1 <Gy, O0<g<l.
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Let 7x(f) denote ||[(I — RxDy)f][, or any error bound of the approximation
(Rkpk)) ie.

(4.15a) I(I - ReD)fI < el f)
(4.15b) (f) =0 as k— oo;

in the latter case we assume that 74(-) 1s a semi-norm in F, and that there exists a
constant Uy such that forall k > 0 and any f € F

(4.15¢) Te(f) < Goltf]] -

Note that these requirements are satisfied for the choice 7(f) = (I — RxDi)f|| in
(4.15a).

Let us suppose now that the sequence is m-convergent and that the limit func-
tion f2°,
lim Off =f e F
L—oo

is of such “regularity” that for large £
m(fE%) = Cr( ) (he)® +o((he)*), @ >0.
Our assumptions on 7¢(-) imply that it is continuous in F. If also
(L F) = 7e(£2°) + o((he)™) = Co(F)(he)™ + o((he)*),
then for large £ we expect
Tepr (T F) < (@)*r(TILf)
where ¢ is defined in (4.14) and 0 < ()* < 1.

Let us denote 7o41(Rev*) by gp(v?) and observe that
(4.15d) I0j = ReAL Dy,

where A{ is the operator defined by (2.12a). Using this notation we can rewrite the
asymptotic relation above for v® = Dy f as

oe(AfF) < qoei (AR, g = (@)™

Since 7%(+) is a semi-norm in F we get from (4.15¢) that

(4.15¢}  ok(Dif) =141 (ReDif) € o1 (f) + 11 (Re D f — f)
< Tpp1(F) + Co| R Dif — fIl < mea(f) + Com(f)
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and therefore by (4.15b) ox(Drf) — 0 as k — co.

Next we present a sufficient condition for m-convergence. Prior to that let us

generalize a,(v®) to denote any upper bound of ¢4 (Rev?), ie.

(4.16a) oe(v?) > 1o (Rev®) > (I = Req1Dep1 ) Rev?| , vt e V*
such that for any f ¢ F

(4.165) oi{Def) = 0 as £ — oo

we assume that oe(v?) is a semi-norm in V¥ which satisfies

(4.16¢) ae(vt) < Colvtls

for all £ > 0 and any vé € V¥ Note that these requirements are satisfied for the
choice ap(v%) = Teg1(Rev?) in (4.16a).

Motivated by the above analysis we now formulate the following condition on
the sequence {(R¢D)} :

Definition 4.3. (Uniformly) o-Contractive Sequence.

We say that {(R¢D;)} is o-contractive if there exists 0 < ¢ < 1 such that for
all k > 0 and any v* ¢ V*

(4.16d) oe(ALv*) < CFgt~For(vF) for all L2 k+1;
here CF is a constant which may depend on k but not on v*. I in (4.16d)

(4.16¢) sup{CF} < C, < o0,
k>0

then we say that the sequence is uniformly o-contractive
Theorem 4.4.

If the sequence of approximation {{R¢D¢)} is o-contractive then it is also -

convergent.

Proof: Using the identity

L4n—1 L4+n-1
I -y = ) (Y -0 = > (RenDer — DI
e=L =L
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we get from (4.15a), (4.15d) and (4.16) with v* = D¢ f that

I4n—1
IO =T < DD I{Rer Dega — DI F|
f=L
L4+n—1 L4+n—1
< >0 (@i < > ol ALDrS)
=L é=L
L4n—-1
<Cfor(Dif) D ¢

=1L
Since 0 < g < 1 we get for any n > 0
L—k

(4.17a) W ) < Clow(Def)—, =20,

which shows that {IIf f}3, is a Cauchy sequence for any f € F.

Corollary 4.2.

If {{RyDy)} is a (uniformly) o-contractive sequence of approximation then it
is also (uniformly) n-stable.

Proof: If the sequence of approximation is o-contractive, then by Theorem 4.4
it is m-convergent and therefore by Theorem 4.2 it is also w-stable. We can get an
expression for the constant €, in the definition 3.5 by taking I = k in (4.17a), and
then use (4.16¢) and (3.13h) to obtain

& Ck Ck
0" = ReDi)fI| < 1 :qok(Dkf) <7 quoCAHfH;
which implies that for all n > 0
(4.17b) T Il < WRaDfI| 4+ (T = RaDi) S|
CoCF ~
<Ca (14550 11 = Gl
If the sequence is uniformly o-contractive, then Cf < C, and we get in (4.17b)
(4.17¢) Cr < Cy (1 + f”c"> =: Cr,
—q

which shows that the sequence is uniformly n-stable.



Lemma 4.2.

oo
If there exist 0 < g < 1, a constant Ca and a convergent series Y Ay < oo of
£=1
positive numbers such that for any v eV*andall > k+1

(4.18a) oe(ALv®) < (1 + Calo)goe (AL M0F)
then condition (4.16d) is satisfied with

(4.18b) C’lk = exp(Ca E Ap) < exp(Ca Z An)=:C,.
m=k+41 m=1

and the sequence {{R¢D¢)} is uniformly o-contractive.
Proof: Since 1+ Calp < exp(Caly) we get in (4.18a)

O'g(Aivk) < exp(CAAg)qarg_q(Ai_lvk)
< exp[Ca(Ae + Ag-ﬂ]qzag_g(fli“?vk) <...

£
g GXP(CA Z Am)qewkgk(vk)
m=k41
< CE R o (o) .

M

Using Lemma 4.3 we now formulate the following sufficient condition (4.19),
which is easier to verify.

Corollary 4.3.

oo
If there exist 0 < ¢ < 1, a constant Cp and a convergent series », Ay < co of
=1
positive numbers such that for all £ > k + 1 and any v*~1 € V¢!

(4.19) oo(Bf ™) < (1+ Cabgoes (v')

where P}_, is the prediction operator (3.7b), then the sequence of approximation
{{R¢D¢)} is uniformly o-contractive,

Proof: For any vF € V¥ take in (4.19)
UE—I — Ai—lvk :
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then
£ £—1_k £k

and (4.19) becomes (4.18a). Hence by Lemma 4.3 we get that condition (4.16) is
satisfied with CF < C, whieh are defined in (4.18b).

Example 4.1.

Let us assume that for any f € Fand all &£ >0
(4200) (I - RaDF] < mulf) = Co(F)(la)®, for some @ >0,
and consider the linear operators T},
Tp = (he) " (ReDy —I): F — F.

It follows from (4.20a) that
1T flf < Co(f)

and from (3.12) that for all f € F

1T Al < ()™ (1 + CallfIl -

Hence by the principle of uniform boundedness there exists a constant C'r (inde-

pendent of £ and f) such that

|Tefll < Crlifll

B |(ReDs = DS < Colh) 1] -

This shows that if 7.(f) in (4.20a) is an error bound so is

(4.20b) 7(f) = Cr(he)* I F1] s

and that for any f € F

(4.20¢) IREDefIl < WFI+ N(ReDx — DL < 14 Cr(he)*]IAl -
For
(4.21a) oo(v) = Frp1 (Rev®) = Cr(her)* | Rav?|
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we get from (4.20c) and (4.14) that

(4.21b)  op(Pf 10" Y) = Cr(hes1)®||ReDeRe—10t Y|
< Crlhes1)*[1+ Cr(he)* ][ Re-10" 7|

= [(1+Cou) - (22) - Crtha R0

< (14 Cr(he)*] - (@)% - o1 (vf71) .

The above inequality shows that condition {4.19) is satisfied with Cp = Cr,

(4.21¢) O<g=(q)"<1,
and
(4.21d) Be= (1), D as (D) = (k)™

thus, by Corollary 4.3, {(R¢D¢)} is uniformly o-contractive and consequently by

Theorem 4.4 it is a w-convergent sequence.
Example 4.2

Let us consider the pointvalue discretization of Example 1.1.1 in the Banach
space F = C°[0, 1] with

1= gma 1)) = lloo
and define

hy = max |z¥., — z%|.
1S5SJA:—1| 41 zl

We assume that {D}} is nested and that there exists 0 < § < 1 such that for all
k>1
hy < Ghg-1.

For any f € F let us consider the sequence of cosmetic refinement (4.12) which

is defined by
(4.22a) fé(x) = I*(2; Dif),
(4.22b) @) = '@ Dega £y, L=ky... 00

In the following we take I*(z;.) to be the piecewise-polynomial interpolation (1.25b)
and derive a sufficient condition for convergence in the maximum norm of the se-
quence above. The piecewise-polynomial interpolation (1.25b) has an error bound

of the form
(4.23a) W55 F) = Flloo < const - w(f; he) =: 7o f),
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where w(f;§) is the modulus of continuity of f
(4.23b) w(f;8) = e |f(=) = f(y)l-
It is easy to see (e.g. by using the Newton form of pF(z;v*) in (1.25b)) that

w(I* (0" heqr) = lx_g%l%};i“ |T8(z; %) — I*(y; v?)| < const - | Jmax iy —vfl

therefore we can take in (4.16) o¢(v*) = const - 5(v*) where

P ¢ £
(4.24a) 6(v’) = 1<’ﬁ%’~’(‘_ﬂ1 vigs — vils

and conclude by Theorem 4.4 that if there exists 0 < ¢ < 1 such that for all £ > 0
ans any v* € V¥

(4.24h) (ALY < CRgt=F5(0%y  for all £k,

then the sequence fﬁ converges in the maximum norm as £ — co to a function in
F, which we denote by f2°. Hence f§° is continuous and by Theorem 4.3

(4.25a) Drfi° = Dif = vF,
which implies that
(4.25b) 159%(2;0%) = f°(2)

is an interpolation of v*. In the next subsection 4.D we prove that I*>(z;v*) is

an hierarchial interpolation.

Let us consider now the case where we use the piecewise-polynomial interpola-
tion (1.25) with the same choice of stencil for all intervals [zf,z%,,] of the dyadic
sequence of uniform grids (1.37). In this case § = 1 in (4.14) and the sequence of cos-
metic refinement (4.22) can be described in terms of the pointvalues (ff); = fi(zf)

by

(F i = (P9,
(4.26) { (f£+l)2z'—1 = Zm ﬁ2m—l(f£)i~m ? Zm Bom—1 = 1.

Applying the results of [Dal.i] and [DaL2] to this case we can conclude that if
the sequence ff{ = A} fF satisfies condition (4.24), then fg°(z) is uniformly Hélder-

continuous
(4.27a) |Fe(z) = f2 () < Cole —y[®
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where
(4.27b) o = min(1, —log, ¢)

and C is a constant which depends on the coefficients {B82,,—1} and the initial data
f,f ; observe that the exponent « in (4.27b) is computed from ¢ = (§)® = (%)“ .

Applying the results of [CDM] and [DL] to (4.26) we can conclude that con-
dition (4.24) is necessary, as well as sufficient, for convergence in the maximum

norm.

Remark 4.3. Taking equality in (4.15a) and (4.16a) we get
5e(0?) = (T = ResiDess)Revf].

The analysis at the beginning of this subsection suggests that if we restrict ourselves
to the case where fg° € F is slightly “more regular” than what is required of ele-
ments of F, then condition (4.16d) is necessary, as well as sufficient, for convergence
in the norm of F. Because of the abstract nature of our framework it is difficult to
express what “regularity” is. For this reason we formulated our condition in (4.16a)
via the error bound 7;(f), as it enables us to relate the rate of convergence ¢ to the

“regularity o” {as was done in (4.27)).

4.D. Hierarchial Form.

In this subsection we show that if the sequence of approximation {{R;Dy)}
is not hierarchial to begin with, then if the sequence is w-convergent it has an
hierarchial form {(R{D;)} which is obtained by cosmetic refinement. We also

show that if {{RDy)} is uniformly o-contractive, then it generates an MR basis in

F.
Theorem 4.5.

If {{R D)} is a m-convergent sequence of approximation, define

(4.28a) RE.VEL F

by

(4.28b) RE .F = Llim nf, - Rev® s
then:

(i) RE is a reconstruction of Dy in F ;



(ii) the prediction operator (PTYE+! of the sequence {(REDy)} is identical to that
of the original sequence ,i.e.

(4.299) (PH)H = Doy RY = Dei Ry = P15
(iii) the sequence {(RID})} is hierarchial :

(4.29b) (REDes)RE = RE .

Proof: i follows from Theorem 4.3 that

(4.29¢) DeREv* = D, Jim I, - Riv® = DyRyv* for £<k+1.

(i) Using (4.29¢) with £ = k we get

DyRE = DyRe =1, .

(ii}) Using (4.29¢) with £ =k + 1 we get

(PAYEH = D RE = DR = PEFY

(iii) Using (4.29a) and the definition (4.28) we get for any v* € V*
R (D1 R 0*) = R (Degr Rio®)

= lim If,,  Rip1(Prpr Rev®) = Jim IE, - Ryv® = RE . oF
—+00

L—oo
We refer to {(RE D)} as the hierarchial form of {(RxDx)}

Corollary 4.4.

Let {{R«Dy)} be a m-convergent sequence, then:

(1) The MR scheme of the hierarchial form is the same as the original one, and

L

(4.30a) Rivt =REDLF = REDF + ) REEE(S)
k=1

(4.30b) eF(f) = DI — Ry1 Dy f .
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(ii) The MR scheme is stable and

L
(4.31a) 6",z < 160" m0 + Y {6(d* N
k=1

where é(-) denotes the perturbation in (-), and

(4.31b) ¥ e = RSV, (@) ae = |B*d"|u -

Proof: (i) It follows from (4.29a) that
Di(I — REL 1 Di—1) = Di(I — Rie—1Di—1)

and therefore the prediction error (3.8d) for the hierarchial form {(R¥ D)} is the
same as that of {{(RsDy)} in (4.30b). Using (4.29b) we get, as in Lemma 4.1, that

(REDL) (R PrptJRY =RY

and therefore (4.30a) follows from (3.10b).
(i1} Since {(RiDr)} is m-convergent it follows from Theorem 4.2 that it is 7-stable,

and therefore by Theorem 3.4 the associated MR scheme is likewise stable. The
bound (4.31) follows from Corollary 4.1.

Remark 4.4. It follows from (4.13¢) that for any v* € V*
[ L = IR < Culo®le, 10"l = [ Rav"|l

and that for any f € F
IREDefIl < CxCall 1
where Cj, is defined in (3.17a) and C4 is defined in (3.13b).

Remark 4.5. If p € F is such that for all £ > 0
ReDep=1p ,

then for all k and L > k&
Myp=p
and consequently

REDp = Llim Mfp=p.
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This shows that the hierarchial form {(R¥ D)} is of the same “accuracy” as the
original sequence {(R:D:)}.

At this point we have shown that if {{(RrDy)} is a m-convergent sequence of
approximation, then it has an hierarchial form {(REDy)}. The MR scheme (2.7) -
(2.9) of the hierarchial form is identical to that of the original one, and it is likewise
stable. The sequence {(R} D)} has the same accuracy as {(RxDx)} (Remark 4.5),
and by Corollary 4.3 we get that

L

(4.32a) RIDLF =3 ol + 375 db(fywk
i k=1 j

where

(4.32b) of = Rinf = Jim Ty, - Ranf

(4.32c) 7!';? = RJI?H;C = I}i_l};oﬂlfﬂ "Rk#? )

and d*(f) are the original scale-coefficients

(4.32d) d*(f) = Gre* (f) = GiDe(I — Ry—1Di—1)f .

From Theorem 4.4 we conclude that if {{RxDy)} is o-contractive, then it is
also m-convergent, and consequently it has an hierarchial form {(RfD;)} which
satisfies (4.31)-(4.32). In order to be able to conclude by Theorem 4.1 that

(4.32¢) Bu = ({e}, {{#5}i}ey)

is a multiresolution basis for F , we have to show that the hierarchial form is also
a sequence of approximation (Definition 3.4). To do this we assume further that
the sequence is uniformly o-contractive (in which case it is also uniformly 7-stable)

and prove:
Theorem 4.6.

Let {{R+ D)} be a sequence of approximation which is uniformly o-contractive,
then:

(i} The hierarchial form {(RI¥Dy)} is a sequence of approximation;

(i} Buy in (4.32e) is a multiresolution basis of F.

58



Proof: (i) From (4.13c) and (4.17c) we get that
IREDefIl < Call£1

which proves (3.11b). To prove (3.11c) we take L = k in (4.17a) and use the
uniformity to obtain

Co
I RE — Ri)Difl| < oe(Def);
+ 1— q

letting n — oo in the above inequality we get that

(RE = Re)Defl| < Caq“"(’Dkf) ,

1—
and therefore using (4.15b) and (4.16b) we get

H(RED: — DYl < N(RT = Re)Di f| + (R Dr — 1)l

o

1-~gq

< ok(Drf) +m(f) =0 as k— oo

(ii) is now a direct consequence of Theorems 4.5 and 4.1.
0
Remark 4.6. Let us take ox{Drf) = 7e41(RiDif) in which case we obtained in
(4.15€) that
ok(Drf) < Teta(f) + Comil(f) -

Using the above inequality in Theorem 4.6 we get the following error bound for the

hierarchial form

Coy
1—¢

(4.33) W(RIDL — D < [rr41(F) + Come(F)] + 7(f) -

This shows, as in Remark 4.5, that the approximations (RD}) and (RyDy) are of

comparable accuracy.

Remark 4.7 We observe that (4.18) and (4.19) imply uniform o-contraction which
we assumed in Theorem 4.6. From (4.33) we see that if we replace C, by CF and give

up the assumption of uniform o-contraction, then we have to add the requirement
Crr(f) =0 as k— oo

instead. Note that uniformity is not needed for 7-convergence, and neither for the

stability of the associated MR scheme.
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Remark 4.8. Letting L — co in (4.2d) and (4.2¢) we get for {¢¥} and {%} in
(4.32) that

(4.34a) vF = (Br)ijef,
(4.34b) of =Y (B )ierl

here E, is the matrix representation of E*¥ and PF_, is the matrix representation
of the original prediction operator (4.29a). Note that when f’,f‘_l is the Toplitz-like
matrix in (1.9) , then (4.34b) is identical to (1.41d), in which case all ©¥(z) are
generated from a single function p{z) which is the solution of the dilation equation
(1.41b). Hence (4.34b) is a generalization of the relation (1.41d) (for wavelets) to

unstructured grids.
5. Nested Discretization of Functions

In this section we take F to be a space of functions
(5.1) F={flf: X CR™ - R"}

and describe several cases of nested discretization. We do so in an increasing order
of “domain of dependence”: In subsection 5.A we examine nestedness of pointvalue
discretization; in subsection 5.B we describe discretization by local (weighted) av-

erages, and finally in subsection 5.C we consider global (spectral) discretization.

To simplify our presentation we take in (5.1) n = 1, and unless otherwise stated,
we also take m = 2 and assume that X is a compact set, i.e. we consider scalar

functions which are defined in a compact set of R2,
5.A. Discretization by Pointvalue

The most commonly used discretization in numerical analysis is that by point-
values (Example 1.1), where we take F = C%X) and define the discretization Dy

on the grid

(5.2a) Xk = {2}, fex,
by

(5.2b) Dif = {f(=f)}, =feX"
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Clearly, if we form X* from X*~! by adding more points to it, then the sequence
of discretization is nested (Definition 3.2).

Next let us consider the sequence {I*(x; Dy f)}52, in the Banach space which

consists of continuous functions in X with the maximum norm
(5.3) [£1l = 1 flleo =2 max |f(x)]-
zEX

The conditions (3.11h) and (3.11¢), which are required of a sequence of approxima-

tion in this space, state that for any f which is continuous in X

k(o E
(5.4a) max [I*(z; De f)| < C - max | f(2)],
and
(5.4b) kigléﬁ%%clfk(m;@kf) — f(z)| = 0.

Since it is difficult to introduce a sense of refinement for completely unstruc-
tured grids, it is common practice in numerical analysis to work with triangulated
meshes. Let us denote the triangles in such a mesh by {t¥} =: T* C X and denote
by XF the set of vertices in these triangles; we refer to T as a triangulation of X.
We consider now a dyaedic refinement sequence where each triangle tf —1 of Tk-1
is divided into four triangles of T* by connecting the midpoints of its sides; these
midpoints become vertices in the triangulation 7', and therefore they are added
to X*~! to form X*; consequently the discretization (5.2) is nested. Observe that
the 3 midpoints of the sides of each triangle are shared with its 3 side-neighbors
(except at boundaries); thus the number of gridpoints is approximately doubled at

each refinement.
Let h; denote the infimum over the radii of all the circles which contain the
triangle t¥, and let hy be the supremum of k; k. over all triangles in T*. Clearly

1
(55) hk m '2‘]?,k_..1

and therefore § = 1 in (4.14).

In the following we describe several techniques of interpolation for values at
the vertices X* of the triangulation T*.

Example 5.1. Piecewise-Polynomial Interpolation.

Let S¥ be a stencil of s = r(r + 1)/2 points of X* which is assigned to the
triangle t¥ € T* and includes its vertices for r > 2. Let p¥(x;Di f) denote the
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unique polynomial of degree (r — 1) which interpolates f(z) at the points of the
stencil SF, and define

(5.6) I*(z; Dif) = pf(w; Dif) for wetf

Clearly this technique is exact for data of polynomial functions of degree less or
equal r — 1.

For r = 2 we get that the 3 points of SF are necessarily the vertices of ¥, and
p¥(z; Dy f) is the piecewise-linear function which interpolates f at these three points.
Observe that in this case {I*(2; Dy f)} is an hierarchial sequence of approximation.

Example 5.1.1. Hierarchial Piecewise-quadratic interpolation.

Take r = 3 and for each ¥ € T* identify the triangle tf:l to which 1t “be-
longs” by being a part of its division. Let Sf be the stencil of 6 points which is
composed of the vertices of tf:l and the midpoints of its sides, and denote the
quadratic polynomial which interpolates f(z) at these 6 points by pf:l(;n;Dk f)-

The piecewise-polynomial interpolation (5.6) can be expressed in this case by
(5.7) Ik(rc;Dkf) = pf*_l(:r:;Dkf) for z € tf:l;

clearly this sequence of interpolation is hierarchial. Observe that this technique is
rather efficient because there is no need to search for a stencil, and due to the fact

that the same quadratic polynomial (5.7) serves 4 triangles of T*,

Similar techniques of refinement that automatically provide a convenient stencil
for higher-order hierarchial interpolation in R? and R® were developed within the
context of Finite-Elemet Methods.

Example 5.1.2. Stencil of closest neighbors.

For any r > 2 let 6(S¥,t¥) denote the largest Euclidian distance between points
in S¥ and the triangle t¥. The stencil of closest neighbors is the one which minimizes
6(Sk,1¥) among all possible choices of Sf. For » = 2, the 3 closest neighbors are
the vertices of ¥ and the resulting interpolation is the same as in Example 5.1.
However for r = 3, the stencil of closest neighbors is different from that of Example
5.1.1. The interpolation of the closest neighbors is of better “quality” than that of
Example 5.1.1, but at a greater computational cost: One has to find this stencil

and to compute a different polynomial for each triangle of T*.

Clearly the resulting sequence of interpolation is not hierarchial, but we expect

it to have an hierarchial form in many cases of practical importance.

62



Example 5.1.3. Adaptive choice of stencil.

In this example we describe the Essentially Non-Oscillatory (ENO) interpola-
tion method of [HC] and [Ab], which is designed to avoid the Gibbs phenomenon.
This is accomplished, as in Example 1.1.2, by an adaptive {data-dependent) choice
of stencil in (5.6), where we assign to t§ the stencil of r(r + 1)/2 points (including
the vertices of ¢¥) in which f(z) is “smoothest” in some sense, e.g. one in which
the following minimum

r—1

ot d
(5.8) ttiin g;;";f::"fpf(-’f;mf) :

over an appropriate set of candidate-stencils S¥, is obtained. Note that since
k

1%

p¥(z; Dif), the interpolating polynomial of f(z) in S¥, is of polynomial degree

(r — 1), the terms to be minimized in (5.8) are constants (independent of z).

The ENO interpolation is a highly nonlinear operator which leads to compres-
sion algorithms that are highly effective for discontinuous data. Due to the strong
nonlinearity of the operator, one should not use the encoding algorithm (2.7), but
rather a “nonlinear” version of it which is deseribed in [H4]|. This encoding al-
gorithm, which we refer to as an “error control” algorithm, allows one to specify
the maximal error in the decompression (which is done at the cost of losing direct

control over the rate of compression),
5.B. Discretization by Local Averages
Let {wf(2)},

(5.9q) wf: X c R™ — R

be square integrable functions of compact support which satisfy

(5.90) /wf(a:)d:c =1,

and define the discretization Dy for f € F = Ly(X) by the inner product
(5.9¢) (Duf)i = (fywh) = [ fayot @)

We refer to w¥(2) as a weight-function and to the discretization (5.9) as local

(weighted) averages.
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Definition 5.1. Nested Sequence of Functions.

Let F denote the linear span of {wF}. We say that the sequence of functions
{{wf}}bc is nested if QF 1 C QF forall k > 1.

The following Lemma 5.1 can be viewed as a generalization to unstructured
grids of Mallat’s notion of multiresolution analysis ([Ma]).

Lemma 5.1.

If the sequence of weight-functions is nested, then the corresponding sequence
of discretization (5.9} is also nested.

Proof:
QL cfF wg"_l = Zafxw? =
]

(Di—1f)i = | fuFlde = aff’ Ffwsde
)= [ Sk f ot
= aldDefle = (D" Def)i
£

=

Let us assume that the sequence {{RyDy)} is hierarchial and examine the

relation between the weight-functions {w}}, and the functions {¢f} and {¢}} in

(4.6b)-(4.6¢).
Lemmma 5.2,

Let {RiDy)} be an hierarchial sequence, and and let ¥ and @bf be defined by
(4.6b)-(4.6c), then:

(5'103‘) ((pf,w?) = (nf)fa
and
(5.10b) (¥, wp™1) =0.

Proof: It follows immediately from (4.61) with the definition (5.9¢) that
(ot wf) = (Dipble = (DeRang)e = ()
Similarly, since ,u;-“ is in the null space of D571, it follows from (3.7a)and (4.6¢) that

(F,wy™h) = (De—1F)e = (Dra Rip)e = (D)o = 0.
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Corollary 5.1. Let {nf} be the cardinal basis of S* (1.3) i.e.
(5.10¢) (75)e = ie,
then {w¥} and {p*} are biorthonormal, i.e.

(5.10d) (f,wE) = 6,

Observe that this result shows that biorthogonality is a consequence of (2.5),
the nestedness of the weight-functions and the hierarchial form; having a dilation
equation for w(z) and ¢(z) is a particular way of getting nestedness and an hierar-
chial structure.

Next we show that, as in the case of biorthogonal wavelets in [CDF|, the roles
of the two systems {wfF} and {p¥} are interchangeable; this introduces the notion
of a dual MR scheme.

It follows from (4.9a) that {p¥} is a nested sequence; therefore, normalizing it

to have an integral of 1 by
(5.11a) ah(e) = ph(e) [ phis

we get that {@F} is a nested sequence of weight-functions. Hence by Lemma 5.1,

{ﬁk}’

(5.110) (Bef)i = (f ) = f f()ik (z)d,

is a nested sequence of discretization.
Theorem 5.1. Let R,

ﬁ’,k Sk L F
be defined by

(5.120) Rist = Y sboh(e), ohe) = k(@) [ b

T

then

(i) Ry, is a reconstruction of '25;;, ie.
(5.12b) DyRy = I,
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(ii) (RyDy) is the adjoint of (RyDy) , ie. for any f,g € F

(5.13) (ReDif, 9) = (f, RiDrg).

Proof: It follows from relation (5.10a) and the definitions (5.11) and (5.12) that
(i) (DiRis*)e = Z HERHE Z Fpt,wf)

= Zsl’(nf‘ Je = s
(i) (RiDyf,9) = Z(’Dkf )i(¢F,9) Z(wz )Y, 9)

= Z(t.o“f)(wz ,9) =(f, Z(Dkﬂ Jipk)

= (f, RiDrg).

i

Remark 5.1. The results of Lemma 5.2 and Theorem 5.1 are a generalization of
the results of [CDF| for the case of wavelets. The duality between the two MR
schemes is a direct consequence of (1.1); Taking the transpose of the matrices in
(1.1) we get that

(5.14a) DET'BE =Dy = (BE)(DETYY = L,
and since

(5.14b) (PE_ )y 5% — g1

(5.14¢) (DE=1yr . gkt gk

we can define a dual MR scheme by taking (Pf_, }* to be the decimation operator,
and (E,’z_l)* to be the prediction.

Example 5.2. Discretization by Cell-Averages.

As in Example 1.2 let C* = {c¥} be a covering of X by disjoint cells,

(5.15a) Uik = X, cfn cf =8 for i#7,
and define the weight functions

. 1
(5.15%) wh(@) = @), I = [,
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where x.(z) is the characteristic function of the cell ¢ (1.34). In this case (5.9)
becomes the cell-average discretization (1.29b). If, as in Example 2.1, we consider
a refinement sequence {C*}L_ .| in which C¥ is formed from C*~! by dividing each

cell cf“l into ¢ disjoint cells {cft 7, then

g
(5.15¢) w1 () = ! Z ek |- wk (2).

[eF 1

and the sequence of discretization is nested by Theorem 5.1.

The “natural” function space for cell-average discretization is F = Ly (X), and
there (3.11b)-(3.11¢) take the following form:

k
(5.16a) ]X \(RuDi f)(x)lde < C* ] \f(2)lde,
(5.160) kl_iin / {RiDifi(z) — f(z)|dz = 0.
> Jx

In Example 1.2,1 we have described a general piecewise-polynomial reconstruc-
tion of the cell-average discretization for unstructured grids. Let us consider now
the simplest case which is the piecewise-constant reconstruction (1.34). Clearly
{(R+Dy)} is an hierarchial sequence of approximation, and therefore it generates a
multiresolution basis (4.6) of L1(X),where

(5.17) pi(e) = x4 (2) ;

the expression for t/);“(:b) depends on the particular way we choose to project into
the null space of the decimation operator in (1.31), and can be made to look like a
“generalized Haar basis”.

Let h; denote the infimum over the radii of all balls in R™ that contain the
cell cf , and let oy be the supremum of h; i over all the cellsin C k  We observe that
the analysis of Example 4.1 indicates that the refinement sequence should satisfy
not only hg ~ 0 as k — oo, but more than that, namely that >, (h)® < co for

some (possibly small) o > 0.
Example 5.2.1. Triengulated Meshes.

The refinement technique in Example 5.1 of connecting the midpoints of the
sides of each triangle tf_l, provides a convenient way to assign a stencil of 6 points
to each of the 4 smaller triangles of T* in tf“l. This stencil is not of “closest neigh-

bors”, but the points are reasonably close, and this arrangement is computationally
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efficient - there is no need to search for a stencil, and a single reconstruction serves

4 triangles.

In the case of cell-average discretization we take cf = t¥ and look for refinement
methods that generate convenient assignment of stencils of cells for the purpose of
reconstruction. These are typically of the “dual mesh” type: e.g. one can start with
a covering by hexagons, each containing 6 triangles, and then divide each triangle
into 4 by connecting the midpoints of its sides as before. This results in a new
system of smaller hexagons (4 times as many). To each triangle of T* we assign the
6 triangles of the hexagon to which it belongs — this is a convenient assignment of
stencil for 3-rd order accurate reconstruction from cell-averages.

Example 5.2.2. Centered Stencils.

In [HC] we present an hierarchial algorithm for the selection of a “centered”
stencil, which is applicable even to completely unstructured éoverings C* in RM™.
In this context the “centered” stemncil is defined as the one which minimizes the
reconstruction error for the one-higher degree polynomials (i.e. degree r). This
algorithm is of “crystal growth” type: starting with the cell cf we begin to add
successively, one cell at a time, to the cluster of cells that we have at the beginning of
each step. The cell which is being added is selected from the set of all side-neighbors
of the existing cluster by the requirment that it will minimize the reconstruction

error of suitably chosen monomials,

This choice of “centered” stencil depends on the geometry of the covering C*,
but not on the data Dy f, and therefore the reconstruction (1.32) is a linear operator.
For r > 2 the sequence of approximation is not hierarchial, but we expect it to have

an hierarchial form in many cases of practical importance.
Example 5.2.3. Adaptive selection of stencils (ENO reconstruction).

In [HC] we also present a modification of the “crystal growth” algorithm of the
previous example 5.2.2, which is designed to assign a stencil S¥ from the smooth part
of f(z), if available, to all cells c¥ which are themselves in the smooth part of f(z).
This way a Gibbs-like phenomenon is avoided, and the resulting approximation
is r-th order accurate everywhere, except at cells which contain a discontinuity.
This is accomplished by selecting the cell from the set of side-neighbors which
minimizes the derivatives of the so-defined reconstruction. We refer to this technique
as Essentially Non-Oscillatory (ENO) reconstruction; observe that this technique is
highly-nonlinear, and therefore (as in Example 5.1.3) it should be applied to data
compression in a proper “Error Control” encoding (see [H4]).
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We refer the reader to [Ab] for details of special ENO reconstruction techniques
for triangulated meshes.

Remark 5.2. The problem of reconstruction from cell-averages comes up in the
numerical solution of hyperbolic systems of conservation laws, where it is needed
in order to ensure conservation on the discrete level — see e.g. [H2-3], [HEOC],
[HC] and [Ab]. On the other hand, the new capability of representing the cell-
averaged solution in a multiresolution basis, has been used recently to improve the
efficiency of the numerical solution of the initial value-problem by evolving it in
its multiresolution form — see e.g. [H3,5-6] and [EOQZ]. Other techniques that use
projection of the PDE on wavelet bases are described e.g. in {BMP], [LT] and [MR].

Example 5.3. Biorthogonal Wavelets

In this example we start with (1.37), the dyadic sequence of uniform grids in
R, and show that under assumptions of “uniformity”, the natural outcome of our
framework is the biorthogonal wavelets of [CDF].

Relation (1.40a) of subsection 1.F. shows that

1 z —af
5.18 flz) = — :
( (I) wt (IE) hkw ( hk ) ’
where w(z) is the solution of the dilation equation (1.36), is a nested sequence of
weight functions; by Lemma 5.1, this leads to a nested sequence of discretization in
(6.9¢). Of particular interest are the weight-functions w{*}(z) which are generated

by repeated convolution with x;_ 11y, Le.

(5.180) wie) = §(z)
(5.18¢) w = =1 4 X[=1,1]» s=1,2,...

= H

212

see e.g. [S],JCDF] and [H4]. For s = 0 we get discretization by pointvalue, which is
reconstructed by interpolation. For s = 1 we get discretization by cell-averages; in
Example 1.2.2 we showed that knowledge of cell-averages equivalent to knowledge
of the pointvalues of the primitive function F(mf),

(5.19a) Fz) = / Fy)dy,
0
and that the cell-average discretization can be reconstructed by

(5.19%) (RxDef)(z) = %I’“(E;F’“),

69



where I*(z; F*) is any interpolation of the pointvalues of the primitive function of
f(z). For s = 2 we get discretization by hat-function averages; in [ADH] we show
that knowledge of the hat-averages is equivalent to knowledge of the pointvalues
H(z%) of the “second primitive” function H(z),

(5.20a) H(z) = fo ’ /0 " f(2)dedy,

and that the hat-average discretization can be reconstructed by

(5.200) (RiDif)(x) = gif'“(m;ﬂ"),

72

where I*(z; H*) is any interpolation of the pointvalues of the second-primitive func-
tion of f(x).

In [H7] and [ADH] we showed that if the interpolation I*(z; f*) of the point-
values has an hierarchial form, so do the reconstruction from cell-averages in (5.19)
and the reconstruction from hat-averages (5.20). Using the results of [DD] and
[DGL] for piecewise-polynomial interpolation with the centered-stencil (1.27a) we
could then conclude that the corresponding sequence of approximation in (5.19)
and (5.20) also has an hierarchial form. Since the reconstruction is the same at all
points and all levels of the dyadic sequence of uniform grids (1.37), the prediction
operator has the representation (1.9) and consequently in (4.34b) we get (see [HT})
that

(5.21a) 0r (@) =) Beoamph(z)
where

(5.21b) () = ¢ (% - Lk)

hk

This shows that ¢(z) satisfies the dilation equation
(5.21¢) o) = 3" Pep(2z — £),
€

and thus the biorthogonal wavelets of [CDF] in (1.41)-(1.42) are the hierarchial form

of the corresponding piecewise-polynomial reconstruction.

When X is the interval {0, 1], we use the centered stencil (1.27a) in the interior,
and suitable one-sided stencils (1.27hb) and (1.27¢) near the respective boundaries

z = 0 and z = 1. The hierarchial form of the so-modified piecewise-polynomial
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reconstruction in (5.19) and (5.20) generates a multiresolution basis that consists of
the same wavelet functions as in (5.21) for the interior of the interval, and special
“boundary” functions for the vicinity of its endpoints; these functions are generated
by cosmetic refinement with the nonuniform reconstruction which is introduced by

(1.27a) and (1.27b). We refer the reader to [CDV] for modification of Daubechies’
orthonormal wavelets for the interval.

Remark 5.3. In our framework we start with the discrete approximation {{ R Dy )}
and obtain the basis in F by taking L — oo in (4.1). However, in applications
we use the piecewise-polynomial approximation (R; Dy f)(z), and not the basis
in Fj recall that both expansions have exactly the same scale-coefficients. The
computational difficulty in using the basis (4.2) is a result of the fact that (z) is
defined by the limit (4.32b), and in general does not have a closed-form expression;
furthermore, for order of accuracy r, ¢(2) is not in C”, and one cannot use standard
numerical quadrature rules. In [BCR], a special class of wavelets (which is known
as “Coiflets”) that satisfy an r-th order accurate one-point quadrature rule, were
developed to circumvent this difficulty; unfortunately this is accomplished at the
high computational cost of doubling the support of the wavelets to (4r).

For all practical purposes it is not important to know the explicit expression
of the hierarchial form, however knowledge of its ezistence is important, because it

implies stability of the original MR scheme (Corollary 4.4).

Remark 5.4. In [H4] we raise the question whether there is any advantage of
using a particular weight function rather than other for the discretization (5.14). We
conclude that there is no real difference at parts where f(z) is smooth; however there
is an important difference in the information which is retained by the discretization
about singularities of f(z). In [H2]and [H4] (see also Example 1.2) we show that
one can recover the location of jump-discontinuities in f(z) to any polynomial
accuracy, from the discrete data of its cell-averages. In [H4] and [ADH] we show
that the location &* of distributions é(z — z*) in f(z), as well as location of jump-
discontinuities, can be recovered to any polynomial accuracy from the discrete data,
of the hat-averages of f(z).

Remark 5.5 When the weight functions wf(z) are defined by (5.18a) from a
“mother” function w(z), the discretization (5.9¢) can be viewed as taking point-
values of f¥(z), the “sliding-average” function of f(z)

(:220)  Fe) = 7 [yl

Sy =prot ok = u (7))
Lk hk

I
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at the gridpoints of (1.37), 1.e.

(5.22b) (Def)i = F*(a5).

Hence the reconstruction (R Dy f)(z) = f(x) is an approximate deconvolution of f#*
w*¥), and the prediction operator Pk, produces an approximation to the pointvalues
of f+ w* at X* from knowledge of f* w51 at the points of X*-1,

Using the above interpretation we can derive multiresolution representation
for data which corresponds to discretization on nested dyadic sequences of uniform
cartesian grids in R™ by a “tensor-product” extension of the one-dimensional op-
erators. We refer the reader to [BCR] and [HY] where the case m = 2, which

corresponds to representation of matrices, is described in detail.
5.C. Global (Spectral) Discretization.

Let 7 be a Hilbert space with inner-produet (, ), and assume that {,}%, is
an orthonormal basis in F, i.e. for any f € F

(5.34a) f= (fren)es;

we refer to (f, ¢, ) as the (generalized) Fourier coefficients. Let us define the spectral
discretization Dy, by

(534b) (Dkf)t = (fa (101')1 0<2< Jka

with monotone increasing {J;}. Clearly {D;} is a nested sequence of discretization
which can be frivially reconstructed by

(5.34¢) RyvF Z vFk,

It is easy to see that the scale-coeflicients of the corresponding MR-scheme in this
trivial case are

(5.35a) dF = {(f,‘Pj)}fiJk_lws

and that the MR basis amounts to rewriting (5.34a) as

(5.35b) f= Z(f,sa)@ﬁz Z (fres)es:

k=1j=Jy 141
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It is well known (see [GO]) that due to the global nature of the spectral dis-
cretization (5.34b), if f(z) is discontinuous then

(et =0(3)

and (R Dy f)(z) in (5.34¢) has a Gibbs phenomenon. This observation was the main
motivation for developing the wavelet theory, which provides a tool for local scale-
decomposition. We would like to point out that due to recent development of local
nonlinear reconstruction techniques which recover accurate pointwise information
from the global Fourier coefficients, spectral discretization can be made useful for
purposes of data compression.

The question whether one can recover accurate pointwise information from
global quantities, came up in the context of numerical solution of hyperbolic PDEs
with discontinuous initial data. In this case schemes with formal order of accuracy
r 2 2 have a Gibbs phenomenon, and therefore they are not r-th order accurate in a
pointwise sense. Mock (Sever) and Lax showed that, with some pre-processing of the
initial data, one can ensure that the first r-moments of the numerical solution will
approximate those of the exact solution to r-th order accuracy, and that pointwise
information can be recovered from these moments to the same order of accuracy,
arbitrarily close to the discontinuity — see [ML] and also [MMO]. This observation
gave rise to development of techniques to obtain accurate pointwise information
from Fourier coefficients in general, and also to nonlinear reconstruction techniques
that identify the location of discontinuities and use polynomial approximation in-
between — see e.g. [CGS] and [GT]. We can use such special piecewise-polynomial
reconstruction techniques (instead of (5.34¢)) to predict the given Fourier coeffi-
cients from those of the k-th level. Once we are satisfied with the accuracy of
the prediction, we consider Ry Dy f to be an adequate approximation to f(z); the
description of f(z) can then be compressed by storing the parameters that define
this piecewise-polynomial reconstruction, instead of the given data of the Fourier
coefficients.

Concluding Remarks.

(1) In this paper we show how to design an MR scheme which is suitable
for a given application, and derive sufficient conditions that ensure its stability;
it seems to us that these sufficient conditions are not far from being necessary.
It is interesting to note that, unlike other fields of numerical analysis, the notion
of m-convergence seems to be more manageable than that of 7-stability — this is

so because the question of stability here is represented by a product of matrices
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which are not of the same size. Note also that under conditions of uniformity, =-
convergence is implied by that of the single sequence limy,_, o I Rou® , where the
initial data 4% is the unit-sequence u? = &,y . This can be tested numerically by
applying the inverse MR transform (2.9) to compute M~!1({u%,0,0,...,0}) for large

enough L; similar tests can be made for boundary terms.

(2) Our framework allows for adaptive MR schemes, which are needed for ap-
plications that involve “mixed data”, such as image compression (where one has
piecewise-smooth sections, as well as regular patterns and various kinds of “tex-
ture”). The stability theory of the present paper applies only to linear (data-
independent) MR schemes. In [H4] and [ADH] we have presented special nonlinear
encoding techniques that ensure “error control” in some particular cases. More work
is needed in order to establish stability of adaptive MR schemes in more general

cases.

(3) The notion of discretization in this paper is very general: It is defined
as a mapping from the “continuum” F onto the “demumerable” V. Therefore F
can be taken to be a family of operators, which enables us to develop a theory
of multiresolution representation of operators. This direct approach may prove
to be advantageous over the indirect derivation of [BCR] and [HY], where such a
multiresolution representation of operators is obtained by tranforming both input
and output into a MR basis.

(4) In section 5 we have examined the case where the data originates from dis-
cretization of functions which are basically piecewise-smooth. In this case our tool
of prediction is basically interpolation (with possible adaptive treatment of neigh-
borhoods of irregularities). We need a different approach for compression of data
which is globally nonsmooth (e.g. fractal data). If this nonsmooth data is generated
by some “rule” and we have a way to find an approximation to the “generator” from
analysis of the scale coefficients, then we could possibly achieve data compression
by representing this nonsmooth but predictable data by the parameters that are

needed to define its approximate “generator”.
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