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Abstract. The Composite Step Biconjugate Gradient method {CSBCQG), introduced recently by
Bank and Chan {2, 3], in a stabilized varfant of the Biconjugate Gradient (BCG) method which cures
one of two possible causes of numerical instability in the BCG algorithm. Specifically, the composite
step idea is to avoid breakdowns due to undefined iterates by skipping over those steps. This composite
step idea can be incorporated into any algorithm which involves the BOG polynomial thereby leading
to a family of composite step methods. In this paper we present a survey of these methods. For -i‘
example, in [11], the OSBCG method is squared {o obtain CSCGS, and in [12], composite step is :
applied to other product methods including Bi-CGSTAB {32], and some of its variants. Doing this
not only cures the breakdown mentioned above, but also takes on the advantages of these product
methods, namely, no multiplications by the transpose matrix, a faster convergence rate than BCG,
and only two matrix-vector products per step to advance two degrees in the Krylov subspace, Our
strategy for deciding whether to skip a step does not involve any machine dependent parameters and
is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments
show that methods in this family do produce improved performance over those without composite
step on practical problems. Furthermore, we extend the “best approximation” result in {2] to obtain
convergence proofs for CGS and Bi-CGSTAB,

1. Introduction. The Biconjugate Gradient (BCG) algorithm {26] is the “natu-
ral” generalization of the classical Conjugate Gradient method [24] to nonsymmetric
linear systems. It is an attractive method because of its simplicity and its good prac-
tical convergence properties. The BCG iterates are defined by a Galerkin method
on the associated Krylov subspaces. Given initial guesses of zy and Z, to the so-
iutions of the linear system Az = b and an auxiliary system, BCG produces iter-
ates z, = ¥ + ¥,, with corresponding residuals of the form r, = b~ A4z, where
Yn € K {ro,A) = span{rg, Ary,..., A" 'ry}, and similarly for #, and ., and such
that the following Galerkin conditions are satisfied:

{1} ry L K, (Fo, AT); f, L K, (1, A).

If we define K, K to be matrices whose columns span the Krylov spaces K, (ry, 4) and
I, (75, AT), respectively, condition (1) implies that the BCG iterate 1, = 20 + K, v,
exists if we can find a solution to (K3 )T AK, v, = (K2)Tr,. In other words, the iterate
exists when the Hankel moment matrix

B g

B = (KT AK, = | 12 B 7 Hen
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where y; = f§ A'rg, is nonsingular.

It is well known that the BCG method is closely related to the nonsymmetric Lanc-
708 process for computing the basis for the Krylov subspaces K,(ry, A) and K, (7, AT).
One standard way to compute the BCG iterates is as follows [26, 16]):

Algorithm BCG

Set ry=0b— Az Fy = b— AT,
Po = Toj Po =Ty
Po = #37o

For n=0,1,...
On =ﬁ;{‘Apn; ay, :Pnlan
Tatl = Tn — o Apa; i‘n+1 = fy — C"H-afngﬁn
Tpp1 = Ty + CaPaj én-!-‘.l = &, + QnPp
Prt1 = ’€+1T‘n+1 Bat1 = Pas1/Pn

fnd Pt = Tagt + Bog1Pai Bagr = Fnyr + Baafn

n

We can see that there are two possible kinds of numerical breakdowns (attempts
to divide by 0) in the above routine: (1) o, = 0 (pivot breekdown), and (2) p, = 0,
but r, # 0 (Lanczos breakdown). * Although such exact breakdowns are very rare in -
practice, near breakdowns can cause severe numerical instability.

‘We term the first kind of breakdown a pivot breakdown because it is due to the non-
existence of the residnal polynomial implicitly caused by encountering a zero pivot in
the factorization of the tridiagonal matrix generated in the underlying Lanczos process.
In terms of formally orthogonal polynomials [4], the BCG polynomial ¢, (defined from
rn = Pn(A)ry) exists and is unique if and only if the WY is nonsingular. In other
words, a pivot breakdown will occur at the n-th iteration of the BCG algorithm if
det(HY) = 0.

The second source of breakdown, Lanczos bregkdown, is directly related to the
breakdown of the underlying Lanczos process, and is tied into the singularity of Hankel
moment matrix HY for Ki(f) K, (ra) [22] defined by:

He H1 0 HBaa
H(o) _ “1 lu'2 e Pn
Bn-1 Ha " Hin-2

To overcome the pivot breakdown, we can “look ahead” in HY by not computing
z, where it is not defined. Rather, we build H™ until it is no longer singular and
we have an iterate Z,.m,m > 1. There are several approaches to handling this. In
the case where A is symmetric, for which Lanczos breakdown cannot occur, it can be
treated by the method of hyperbolic pairs due to Luenberger [27], and later expanded
by Fletcher {16].

For general nonsymmetric matrices, the pivot breakdown can be cured using a
three-term recurrence as done in the unnormalized BIORES algorithm of Gutknecht

' In other literature, what we term the pivot and Lanczos breakdowns, are also known as frue and
ghost breakdowns [6], Galerkin and serfous Lanczos breakdowns (18], hard and soft breakdowns [25].
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[22]. The QMR method, due to Freund and Nachtigal [18], if considered without
look-ahead Lanczos, numerically stabilizes the BCG method by computing an iterate
defined by a "quasi-minimized” solution (which always exists) instead of the Galerkin
condition.

Although the methods described above can cure possible singularities in H.Sl), 7
caa still be singular and cause breakdown problems. These breakdowns are harder to
fix and many look-ahead methods have been proposed to remedy them as well, see
e.g., Freund, Gutknecht and Nachtigal [20], Brezinski, Redivo-Zaglia and Sadok [8, 9],
Brezinski and Sadok [4], Joubert [25], and Parlett et al [30]. Although the step size
needed to overcome an exact breakdown can be computed in principle, these methods
can unfortunately be quite complicated for handling near breakdowns since the sizes
of the look-ahead steps are variable (indeed, the breakdowns can be incurable).

Recently, Bank and Chan introduced the Composite Step Biconjugate Gradient
(CSBCG) algorithm [2, 3], an alternative which cures only the pivot breakdown {as-
suming no Lanczos breakdowns) by skipping over steps for which the BCG iterate is
not defined. This is done with a simple modification of BCG which needs only a max-
imum look-ahead step size of 2 to eliminate the (near) breakdown and to smooth the
sometimes erratic convergence of BCG. Lemma 4.3 in [3] proves that only two steps are
needed, but this can also be seen in the relationship between the two Hankel matrices
defined above. Assuming that det{ H{") # 0 for all n, then no two consecutive princi-
pal submatrices of H{" can be singular. (The structure of these Hanke] determinants
was studied in detail by Draux [13).) Thus, instead of a more complicated (but less
prone to breakdown) version, CSBCG cures only one kind of breakdown, but does so
with a minimal modification to the usual implementation of BCG in the hope that its
empirically observed stability will be inherited.

The composite step idea, then, can in principle be incorporated anywhere the BCG
polynomial is used; in particular, in product methods such as CGS [31], Bi-CGSTAB
{32], Bi-CGSTAB2 (23}, and TFQMR [17]. Doing this not only cures the breakdown
mentioned above, but also takes on the advantages of these product methods over
BCG, namely, no multiplications by the transpose matrix and a faster convergence
rate. For example, if we take the CSBCG polynomials and square them, we obtain the
Composite Step CGS method as shown in [11]. The Bi-CGSTAB algorithm computes
iterates that are constructed from a more stable basis for the Krylov subspace, thereby
handling some of the instability of CGS. In applying composite step to Bi-CGSTAB
(CS-CGSTAB), we compute products of the CSBCG polynomial with a steepest de-
scent polynomial to handle similar instability in CSCGS while maintaining the de-
sirable properties. Other techniques can also be employed to stabilize CS-CGSTAB.
For example, the Bi-CGSTAB2 method (Gutknecht, [23]) employs an alternate mini-
mization strategy which can be applied during a composite step to further improve on
this method. We can also apply composite step to the entire Bi-CGSTAB2 algorithm.
These ideas are explored in [12].

There are other methods which also employ Jook-ahead techniques for product
methods. The unnormalized BIORES? {22] squares the BIORES method to handle
pivot breakdowns. MRZS and its variants [5, 7] treat both breakdowns in the CGS
method, as does the Look-ahead TFQMR method, currently being developed by Fre-
und and Nachtigal [19]. The composite step approach, thus, should be viewed as one in
a spectrum of methods with varying degrees of breakdown protection and complexities
of implementation. Granted that it tries to cure only one of the two possibie break-
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downs, the composite step approach makes a conscious decision in favor of having a
simpler method instead of a version (some of which were mentioned in the previous
section)} which is less prone to breakdown but more complicated and may require more
matrix vector products.

An advantage to the composite step approach is that since CSBCG is based on
BCG, it inherits its nice properties when extended to product methods. Extending
other methods may not be so straight forward. For example, although it was stated
carlier that the QMR method is a pivot breakdown-free, more stable alternative to
BCG, we mention that the QMRS (QMR-squared) [21] cannot perform analogously
for CGS because it is based on two-term recurrences that may suffer pivot breakdown.
Moreover, it Tequires one more matrix-vector product per iteration. The MRZ method
[8, 9] has been extended to the product method MRZS [5, 7] but this, too, involves
extra matrix-vextor multiplications.

In {2], Bank and Chan also prove a “best approximation” result which establishes
a bound on the error of BOG. Having this bound enables us to extend this result to
prove convergence results for CGS and Bi-CGSTAB since these product methods both
involve the BCG polynomial ¢,.

2. The Basic Composite Step Idea: CSBCG. Suppose in running the BCG
algorithm (see section 1), we encounter a situation where 7, = 0 at step n, and there-
fore, the values .41, Fnt1s Tas1s Tngs are not defined. The composite step approach is
to overcome this problem by skipping the n + 1 update and computing the quantities
in step n + 2 by using scaled versions of 7,43 and fay, which do not require divisions
by o,. More specifically, we define the auxiliary vectors

Zatl = OnTnyr € Kn+2(f'u)3 Znp1 = Opfnsl € K;+2(FU)-

These always exist and thus, can be used in looking for the step n +2 iterate

Tppa = Ty + [Pns Zas1) S

with corresponding residual and search direction

(2) Taga =T — A{Fntzn+1}fn; Prtz = Tnyz + [pn: zn-}-l]gm

where f,,g, € RZ, and similarly for 5':,,,;2, Froyz, aRd Prys.

T T
To solve for the unknowns f, = ( (1) f,(f)) and g, = (gf.l}, g,(f)) , we impose the
Galerkin condition and conjugacy condition of BCG which result in solving two 2x 2

linear systems. This yields the quantities:

= (Cn-;-me 9,1_,_1);),21/6“ and g, = (Pn+2/pm Unpn+2/8n+1):

where (41 = £41A%415 0041 = Zag1Znss, b = Onlnyrp3 ~ 0241 Furthermore, Lemma
5.1in [2] shows f, = f, and §, = g.. It is now possible fo compute Z, 43, Fpy2r Tasn
#u42 and thus, advance from step n to step n+2. The Composite Step BCG algorithm,
then, is simply the combination of the 1 x 1 and 2 x 2 steps.

2.1. CSBCG Stepping Strategy. As far as deciding when to take a 2 x 2 step,
we do s0 whenever

(3) rasall > max{firall, lrasali}s
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as decribed in [2, 3]. Obviously, this will avoid exact breakdowns by skipping over
the “peak” in the residual convergence. Moreover, this strategy will yield a smoother,
more stable method. In order to avoid unnecessary computation of ||r,;si|, we first
evaluate condition (3a): [[roul] < [|7a]]. Sinee r,,; may be nonexistent, we use the
auxiliary vector and check instead the equivalent condition: {|z,41|| < |ow]||rall- I this
condition is not met, then we evaluate condition {3b): ||, || < [|*ngall, by restating
it as boll|2Znstll < lonllvnrall, where voyy = burnyy = 8arn — 8, f Ap, — 6, £8P Az, .
The extra cost is minimal and note that no user specified tolerance parameters are
required. Moreover, this stepping strategy can easily be applied in the implementation
of the composite step product methods. The CSBCG algorithm is given in Table 1,

2.2, The Symmetric Case. Ideas similar to the composite step approach were
used eazlier by Luenberger [27] and Fletcher [16] in the case where A is symmetric.
Note that in this case, there are no Lanczos breakdowns and mathematically, CSBCG
and the methods in [16, 27] are, in fact, breakdown-free, and all produce precisely the
same iterate z, 4.

However, the details of exactly how z,,,, is updated are different. Luenberger
itreats only the case of exact breakdowns (o, = 0) and computes the iterates from a
set of basis vectors different from that of CSBCG. I'letcher, on the other hand, handles
near breakdowns similar to CSBCG but varies in the actual computation of f, and
gn- This yields different roundoff properties wher practically applied and compared to
CSBCG on symmetric matrices.

Thus, CSBCG ¢an be viewed as a way of generalizing [16] to nonsymmetric ma-
trices,

3. Composite Step CGS. The Conjugate Gradients Squared (CGS) method
{Sonneveld, {31]) is an attractive alternate to BCG because it is transpose-free and
it often has a faster convergence rate. The CGS residual is based on a squaring of
the BCG polynomial, r$%% = {¢Z°%(A)]?r,y, and thus, breakdowns exist in the CGS
algorithm analogous to the breakdowns encountered in BCG. Hence, applying the
compasite step technique can eliminate the pivot breakdown in CGS assuming no
Lanczos breakdowns, ]

For a I x 1 step, CSCGS is equivalent to CGS. In the case where we need to take

a compasite step, we must first express the CSBCG quantities in polynomial form:

Th = ¢n(A)rB; Dn = 1!)11(‘4)7‘0; Znpl = En-{-l(A)TO'
For CSCGS, we want to compute
r£9995 = g

which yields corresponding iterates of the form z§5°¢% € z, + Kyn(ry). This can be
done using auxiliary vectors p§ %% = $2(A)r, and s,y = £2,,(A)r,. The details of
this computation can be found in [11].

The same stepping algorithm as described in section 2.1 for CSRCG can be used
here but the details are different. Condition (3a) is now replaced by ||s, .|| < o2||ra |-
Condition (3b) is more difficult because in order to compute v, ,; = 821, .5, a matrix-
vector multiplication is needed, and this would be wasteful if 2 1 x 1 step is actnally
taken. An approximation to ¢, ., which does not involve a matrix-vector multiplication
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TABLE 1
Algorithm CSBCG

po=ro; Po=r0; qo=Apo; Go=ATPo; po=Pyro
n+—{
While method notl converged yel do:
Tn = f)?:q" .
Zntl = OpTn = Puln; Ingr = Oni'n — Pndn
Unt1 = Azng1; Tppr = AT
brny1 = ‘:'z+1zn+li Cngr = Zatilnsr
bnst = llznttll;  én = [Irall
% Decide whether to take a I x 1 step or a 2 x 2 step.

If {ng1 < |onfn, Then % Hrnsall < ffrail
one-step = 1
Else
Vngz = [Batn — PACnt1gn = Bt 102 Yo |
If |6n{én+3 < |onlvnie, Then % [irasall < lfrnsell
one-step =1
Else
one-step =
End If
End If
% Compute next iterate.
If one-step, Then % Usual BCG

an = Pﬂ/a'n
Pril = Ons1 /02 Batr = pasifon
P4l = Pn — Anpfdn; 'Fn+1 = ¥ — andn
fatl = Tn + OnPa; Tnt1 = Zp + anpn
Pyl = Zng1/On + Bag1Pn; Pre1 = Fng1/0n + Bt
In+l = yn-é-i/a'n + Bat1¢n; Gn41= §n+1/f7n + Brt1dn
ne—n+l

Else % 2 x 2 step C SBCG
bn = "'ncn-HPﬁ - 9%4—1
tp = Cns1Pn/Oni @arl = Ong1pn/6n
Tat2 = Tn — &ndn ~ Qn4ilintl; Fn-}-? =y — ondn — Onp1lngr
Zniz = Tn o EnPy F Onp1ints; Fpgz = Tp — Wnfn — Cnpifng
Zn42 = Tngd; Znt2 = Fni2
Pnta2 = EE+2"ﬂ+23 Br = pns2/pns Prss = Oapnya/One
Prt2 = Zn42 t BopPn + Batanst; Potz = Fngz + Babn + Pat1Znsa
gn+z = Apniai  Gniz = Afnte
rRe—n+2

End If

End While
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is used to overcome this problem. Estimating v,;3 by ¥y4, condition (3b) can be
written 628,11l < 627, 1l

In Table 2, we give the complete CSCGS algorithm. Note that there are § matrix-
vector multiplications required for a 2 x 2 step, whereas in two steps of CGS, only
4 are needed. This is the price we pay for the composite step. However, it is still a
considerable savings from BCG and also significantly less work than QMRS [21] and
TFiQMR [10], where an extra matrix-vector multiply is required at every step.

In {11], the Minimum Residual Smoothing technique described in {33] by Weiss and
in [34] by Zhou and Walker is applied to CSCGS. Similarly we can apply the QMR
Smoothing algorithm, also in [34], to obtain a smoother version of CSCGS. Another
possibility is to apply the composite step approach to Freund’s Transpose Free QMR
[17].

4. Composite Step Bi-CGSTAB. Similar to CSCGS, we can apply the com-
posite step idea to handle breakdowns in other product methods. One such method
is the Bi-CGSTAB method proposed by Van der Vorst {32] to stabilize CGS by
multiplying the BCG polynomial with another polynomial of equal degree formed
from a carefully chosen set of basis vectors for K,{»,). Specifically for Bi-CGSTAB,
we let 1,(A) = (I — w AYT — w,A) - (I — w, A), where the w,’s are chosen to lo-
cally minimize the residual by a steepest descent method, and define the residuals:
o ~CGSTAB o ¢BCG(A)r, (A)r,. To incorporate the composite step idea, we simply

use the CSBCG residual polynomial ¢,, and obtain the CS5-CGSTAB polynomials:
TES“CGSTAH - Tn(A)¢n(A)rﬂ; pSS-»CGSTAB - TN(A)T}‘)n(A)TD.

For the 2 x 2 composite step, we will need to evaluate

Tgfz_CGSTAB = TnsaPnsaTo; Pffz—CGSTAB = TniaW¥niaTo

using the quantities obtained from the »** step. The details are worked out in [12].

Bi-CGSTAB finds wyyy in 27695748 = 1 o im0 = (1 — Wap1 A)TadnpsTo by
choosing it to minimize ||r5{;%5T48(|. We employ the same steepest descent rule to
compute w,y; and w,, by a minimization of ||r, 4]l and {|r.;.}|, without having to
actually compute 7,1y and rn4,. If we let u, = 7,{,4170, then [|rop,|| is minimized
by choosing wnys = (Aua,u,)/(Au,, Au,). Similarly, we let w, = 7,,1¢04270 and
minimize |jr,.|| by choosing w, 1o = (Aw,, w,)/{Aw,, Aw,) .

Once again, to decide when to take a 2 x 2 step, we use the algorithm from section
2.1. Trom the relationship {n1y = ,Pn41, we multiply by 7,4, and obtain o, ,; =
{I — wny14)u,. Hence, condition (3a) can be written: [|[(7 — wyysA)u,|| < {o,]finall-
To estimate ||r, ,}], we rescale the r,,, update and let v,y = 8,70, where §, is the
determinant of a 2 x 2 matrix used in finding the unknowns f, and g, in CS-CGSTAB.
Again, evaluating v,,, exactly would involve extra matrix-vector multiplies, so for
practical purposes, we use an upper bound approximation to estimate ||y, ,.|| using
multiplications with & =~ ||A||. Thus, the condition {fr,, 11| < [[*n42f| can be expressed
as: |6pl|sn41fi < |onll|Znsall. The same consequences of the approximation of CSCGS
apply in this case.

In Table 3, we present the CS-CGSTAB algorithm. Once again, there are 5 matrix-
vector multiplications required for a 2 x 2 step, whereas in two steps of Bi-CGSTAR,
only 4 are needed.
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TABLE 2
Algorithm CSCGS

po = Fira; po=tg=ro; bo=eoc=Apo
Compute & = estimate for ||A}|
n«—0
While method not converged yet do:
oy = 74 by
Gntl = Tnlp ~ Pubn;  Cnir = Adnys
Snii = O2Tn — prOnen — Prtntt; Ens1 = [lsatalli én = [Irall
% Decide whether to take a 1 % 1 step or a 2 x 2 step.

If £u41 < 07 ¢n, Then % (a) lira41ll < iraff
one-slep = 1 ’
Else

9n+1 = qun+1; én = Nd’ofnu;‘ bp = a'nCnP?. - 9£+1
b = (apdi Ongr = Ony1ph
thsr --_‘: TaTn — Pnésn N )
By = Enur: — Gtpbn — &ni—lcn-}l; iy = ‘sntn:i-i — &ptaqt — Gpp1K8n4l
Dn-fz = H‘ng'nﬂ + &f|én{dnun + Bn) + ons1{fntnsr + 1B, )]
If 82€n41 < 0iUn42, Then % (b) fira+ll < lirasall
one-step = 1
Else
dp1 = Asnt1; Codl = Fadner; 6n = Oalarps — fasa
If 62£,41 < 02n42, Then % Test again with true 8, in case test (b) failed
one-step = 1
Else
one-glep = 0
End If
End i
End If
% Compute next iterate.
If one-step, Then % Usual CGS
an = Pn/0n
Ta4l = Tp = tnlen + Cn-]-l/o’n)
Tp4l = Zn + an(un + ‘In+1/f7n)
Pngi = Fg"'n+1; Ba= Pﬂ+1/Pn
Untl = Tl + Balns1/0n}  eng1 = Atinpa
P41 = Ungy + Balgnt1/on + Bapn)
bn-i-!. = €np1+ ﬁn(‘-’n-&-l/an +ﬁnbn)
n+—n-+1l
Else % 2 % 2 step CSCGS
@n = Cnt1P2/6n;  ngr = Ong1ph/6a
VU = Up — by — Ont1ng1li Wnil = lnpt — EnCagr =~ Gn410n41
42 = Tn — A[an(un + vﬂ) + a’n-i-l(tn-q-i + wn+i)}
Tnpz = Zn+ [Q'n(un + 'Un) + an-i-l(tn-{-l + T-Un-{-l)]
Priz = T8 Fas2s Ba = Pos2fpni Pryr = OnpatafOnir
Uppz = Tnia + Bavn + Briitntt;  entz = Aliniz
Pngz = Ung2 + .Bn(vn + Bnpn + ﬁn+l‘1n+1) + ﬁﬂ-{-l(wnq»k + Brngnyr + .Bn+1 sn-ﬂ)

bnya = Appye
ne—n-+2
End If
End While
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TABLE 3
Algorithm CS-CGSTAB

po=Flre; po=ro; do=|roll; g¢o=4Are; po=1
n+0

While method not converged yet do:
On = (’:g'(In)Pni en = Arp; ey = Aqn
Untt = OnPn — Prdny Yn+l = Onn — Ppin
Wntl = (Uns1, Bnt1)/ (Fns1, Ynar)

Frpl = tngl — Wagilnal;  Ynsr = ol
% Decide whether to take a 1 x 1 step or a 2 x 2 step.

If Y41 < {onidn, Then % (2) firnsall <llrall
one-step = 1
Else

dy 1 = Kingl

a1 = gni @13 =F Yas1; Gm =Tl cng1; Ghp = Fg‘d;ﬂ-l

6§, =anahy —@zan; W =pafpn; br=Flenq

of = alaby — G1aby; By = —a by + agsby

& = 8,tn — andn — Gny1lni1; U= Ghen —ancn — Gnpidngr; v =wt!
w e —wapt; 2=t —wapt

whi = (2L 020 1= —Awnis tunga)i % = wnnwngg

rare = 8+ 1+ 7y Gpe = llrngall

If |6, [¥n 41 < |onlén 12, Then % (b) [Irnsafl < lirasadl
one-step == |

Else

dagr = Aty
823 = Fydnsr;  8n = Gu1032 — 612821 Gn = ageby — agabs
8= 8urn — Gngn — Gnp1¥nsli = bnen — Gncn — Gnpadnyr;  v= At
w=§—wppnl; z2=1—wppv
wnsz = (2,0)/(2,2); Tt = —(Wag1 F@ng2)i T2 = WopiWnga
fntz =8+ NE+ 720 Enyo = ||Fuell
If |6n|tn+1 < |onlénsa, Then % Test again with true £,40 in case test (b) failed
one-step = 1
Else
one-step =
End1f; EndIfi EndIf
% Compute next iterate.
If one-step, Then % Usual Bi-CGSTAB
a4t = T:n+l/0'n; Pni1 = ¢n+1/‘7n
Tngr = T + (pnpn + Wniiting1)/on
tng1 = (Hnpa)/(Gany1)i  Pag1 = (T-'/(]I‘Tn+i)#n+l
Bat1 = prt1/pn
Prtl = Tagl + Bng1(Pn —Wni1gn)
Gn+1 = €ngt + Fng1{gn — Wns16n)
nen+l
Else % 2 x 2 step CSCGSTAB
ez = Fryafbn;  Gnaz = Ensa/bn
Zng2 = Tn + (GnPp + Gnp1Uarr — 115 — 728}/ 6a
Hngz = = pn(&ns1Pn/6nT12);  Praz = (Fg'rn+2)ﬂn+2
by = fZtnps; b2 =Fhtap
Ba = {azaby — ar2b2)/bn;  Bng1 = (—anbs + ay1bs)/ba
Praz = Puge — BalPa + 1100} — Brgt (Untr + 11¥ns1) — T2AButn + Bot1¥nts)

dn42 = Apn+2
ne—n-42
End If
End While
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5. Variants of CS-CGSTAB. We can also apply the composite step idea to
the Bi-CGSTAB?2 algorithm due to Gutknecht [23]. In this method, a two dimensional
residual minimization is performed to handle problems in the steepest descent part of
Bi-CGSTAB caused by eigenvalues of A with large imaginary part. In [12], we consider
two such variants.

5.1. Hybrid CS-CGSTAB/CGSTAB2. A modification to the CS-CGSTAB
method can be made in the minimization process similar to the odd steps of Bi-
CGSTAB2. When we take a 2 x 2 step, we need not choose Wy, 10 behave as in
Bi-CGSTAB. Instead, we minimize ||7a42l = |[(J — waya A ~ Wyt AV gatol| over
the two degrees of freedom in wpy; and Wayy. This yields a noticeable improvement in
the convergence behavior in practice.

5.2. CS-CSCGSTAB2. Another possibility is to consider the Bi-CGSTAB2 al-
gorithm as a whole. This is a product method that takes two steps at a time. The first
part is like Bi-CGSTAB, and the second part involves the minimization mentioned
above. However, in Bi-CGSTAB2, the BCG polynomial ¢, can still break down in
either part of the two-step since the method was designed to cure the 7, breakdowns
only. We can overcome this by applying the composite step idea to Bi-CGSTAB2 when
we forsee a nonexistent ¢, polynomial and taking a 3 X 3 step in cases where both may
occur. The details of these variants are given in [12].

6. Best Approximation Results. Until recently, there has been very little the-
ory known on the convergence of the Biconjugate gradient algorithm or other related
methods. When Bank and Chan intreduced CSBCG in {2}, they also included a proof
of a “best approximation” result for BCG. It is based on an analysis by Aziz and
Babuska [1] and is similar to the analysis of the Petrov-Galerkin methods in finite
element theory. Specifically, if we define the Lanczos tridiagonal matrix T, = WT AV*
and its LU-factorization Ty = Ly DUy, and let the symmetric positive definite matrix
M, = W, UT(DT D)?U,WT define the norm [[|v}]|2 = v'Myv, then Bank and Chan
showed that the BCG error term ¢P°¢ = z — 2f%C = ¢r(A)ey can be bounded as
{ollows:

) el < (1 +T/6),_int _ lin(ME AMEH Ylalleall,

0)=1
where I', § ate constants independent of k.

This result establishes convergence of BCG in the case where there are no break-
downs because then M, is well-defined and symmetric positive definite. If this were
ot the case, the tridiagonal matrix 7} would be singular and such an M; would not be
positive definite. However, this result can be extended to cover sitnations with break-
down. For example, assuming no Lanczos breakdowns, the composite step approach
does yield an M; matrix based on a factorization of T}, which may involve 2 x 2 blocks,
and hence, the above result applies [3]. In principal, if we add a look-ahead method
to handle the Lanczos breakdowns to this, we can prove convergence of BCG for cases
where both breakdowns cccur.

Note that in general, simple upper bounds for the term

; 4 -4
{5) m:;?(g):l llee( M7 AM® 2
are known only for special cases. For example, if we assume that the eigenvalues of
A are contained in an ellipse in the complex plane which does not contain the origin,
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then, using a result by Manteuffel [28], the quantity (5) can be bounded by a valne
dependent on the foci of the ellipse.

The product methods discussed earlier (CGS and Bi-CGSTAB) both involve the
BCG polynomial. Hence, we can use the result in (4) to establish bounds on these

methods as well. These bounds are given in the following two theorems, the proofs of

which can be found in [12].
TrEOREM 1. Let ef9% = $i(A)es. Then

gl <o (g I6sC08E MY i) el

$

TuEoREM 2. Let eB905TAD = 1, (A)d(A)eo. Also, let A=M} AM,:13 , and
define § to be the symmetric part of A (i.e., 5 = 1 (A+ AT)). Then if § is positive
definite,

; Amin(5)?
BiCGSTAB||| < 1 o lminlO )

wpr

(.6, 1Dl ) ol

7. Numerical Experiments. All experiments are run in MATLAB 4.0 on a
SUN Sparc station with machine precision about 10715, In most cases, composite step
methods behave similarly to their non-composite step counterparts. Here, we present
a few selected examples where composite step does make a significant difference. More
numerical examples are found in (2, 3, 11, 12).

7.1. Example 1. We begin the pumerical experiments with a contrived example
to illustrate the superior numerical stability of composite step methods over those
without composite step. Let A be a modification of an example found in [29]:

€ 1
Aﬁ(_.l £)®IN/2’

i.e., 4 is a N x N block diagonal with 2 x 2 blocks, and N = 40. By choosing b =
(1 0 1 0 ---)F and a zero initial guess, we set op = ¢, and thus, we can forsee
numerical problems with methods such as BCG, CGS, and Bi-CGSTAB when ¢ is
small. Although these methods converge in 2 steps in exact arithmetic when € # 0, in
finite precision, convergence gets increasingly unstable as ¢ decreases. Table 4 shows
the relative error in the solution after 2 steps of BCG, CGS, and Bi-CGSTAB. Note that
the loss of significant digits in BCG and Bi-CGSTAB is approximately proportional
to O(e™!) and the loss of digits in CGS is proportional to O(e”?). The accuracy of
CSBCG, CSCGS, and CS-CGSTAB is insensitive to ¢ and these methods all converge
in two steps with errors < 1075,

7.2. Example 2. We now show the effect of composite step when applied to the
CGS algorithm using an example which comes from the Harwell-Boeing set of sparse
test matrices [14]. The matrix is a discretization of the convection-diffusion equation:

L{u) = —Au + 100(zu, + yu,} — 100

—225—




TABLE 4

Ezample 1
Rel. error in the soln. after 2 steps {N=40)
it BCG CGS Bi-CGSTAB
e=10-T [ 20x10°{36x107%] 15x 10717
e=10"8 | 47x107° | 22x10° | 48x107°
e=10-2 f 3.7x107* | 3.0x10% | 1.0x10°*

on the unit square for a 63 x 63 grid. We use a random right hand side, zero initial
guess, and left diagonal preconditioning. Figure 1 plots the number of iterations versus
the true tesidual norm for CSCGS, CGS, and TFQMR. This illustrates the effect of
cutting off the “peaks” of CGS. Specifically, note that the maximum point of the CGS
curve is around 10%° whereas it is only 10° for the composite step version. For this
particular example, the CGS residual stagnates at 10~% and so does TFQMR, whereas
CSCGS reaches the stopping criterion jir, [{/|lrsl] < 107®. The total number of 2x2
steps taken is 23, whereas 133 1 x 1 steps are taken.

log{residual norm}

100 A00

Iteration number
Fi1G. t. Ezample 2

7.3. Example 3. Using the same matrix example, without preconditioning, we
look at Bi-CGSTAB versus its composite step counterparts. We use a different right
hand side from Example 2, one yielding some numerical instability for Bi-CGSTAB
around step 140 which results in convergence stagnation. Taking composite steps in
this case overcomes this problem. We also show the advantage of the hybrid variant
discussed in section 5.1 over the standard CS-CGSTAB for this case.
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