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ABSTRACT OF THE DISSERTATION

A level set approach for computing solutions to incompressible two-phase flow

by

Mark Sussman
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1994

Professor Stanley Osher, Chair

A level set approach for computing solutions to incompressible two-phase flow
is presented. The interface between the two fluids is considered to be sharp and is
described as the zero level set of a smooth function. A new treatment of the level
set method allows us to efficiently maintain the level set function as the signed
distance from the interface. We never have to explicitly reconstruct or find the
zero level set, Consequently, we are able to handle arbitrarily complex topologies,
large density and viscosity ratios, and surface tension, on relatively coarse grids.
We use a second order projection method along with a second order upwinded
procedure for advecting the momentum and level set equations. We consider the
motion of air bubbles and water drops. We also compute flows with multiple fluids

such as air, oil, and water.
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CHAPTER 1

Introduction

A numerical method is developed for computing the motion of incompressible
two-phase flow. We will consider immiscible fluids where steep gradients in density
and viscosity exist across the interface. Instead of explicitly tracking the interface,
we intend to implicitly “capture” the interface using a level set approach. The
interface will be identified as the zero level set of a smooth function.

As mentioned in [36], conventional conservative schemes will incur excessive
numerical diffusion which will destroy the sharpness of the front. High order
conservative schemes can produce numerical oscillations around the front. The
approach presented in [36] was to track the velocity using an Eulerian grid while
explicitly tracking the interface using a grid that moves through the stationary
grid. The investigators cited good results, but the algorithm for tracking the front
seems hard to implement. Complications occur when one needs to add or subtract
points to the moving grid. These problems are amplified when solving a three
dimensional problem.

In [30], a level set formulation for moving interfaces was introduced. The level
set function is typically a smooth (Lipschitz continuous) function, denoted as ¢,

which eliminates the problems that conventional difference schemes incur. This



formulation also eliminates the problem of adding/subtracting points to a moving
grid and it automatically takes care of merging and breaking of the interface.
Furthermore, the level set formulation generalizes well to three dimensions. The
actual front location never has to be computed. Instead the front is embedded as
a particular level set in a fixed domain PDE.

An application of the level set formulation was used in {27] for compressible
fluid flow. Examples from [27] include Kelvin-Helmholtz instability and Rayleigh-
Taylor instability for helium and air. The density ratio was about 29 to 4 and
both gases were treated as perfect gases. These investigators found it was best to
initialize ¢ as the signed distance from the front, thus eliminating steep gradients
from $. A second-order non-conservative ENO scheme was used for solving the
equation for ¢.

Instead of helium and air, we shall consider water and air. The density ratio of
water to air is about 1000 to 1 and the equation of state for water is not that of a
perfect gas. One can approximate the flow of water in the compressible framework
if one replaced pressure P with P + B and v with N. B and N are constants
derived from the modified Tait equation (see, for example, [12]). For compressible
flow there would be a restriction put on the size of the time step since the sound
speed of water is about five times that of air at sea level. In order to avoid this
restriction, we will solve the problems involving water and air using the equations
for incompressible flow. This is a very good approximation as long as the fluid

velocities are much smaller than the speed of sound.



Incompressible flow algorithms that have been used to track the interface of
air/water problems include vortex methods [2], boundary integral methods [3],
volume tracking methods [15, 18, 10], front tracking methods {36], and projection
methods {6, 14, 21, 20]. We will use a projection method similar to [6]. If one
combines the level set techniques of [30] with a projection method (see [41]), one can
avoid having to explicitly track the interface (hence the term “front capturing”).
Furthermore, one can use higher order upwinded methods for differencing the non-
linear convective terms. These methods provide robust treatment of convective
terms at high Reynolds numbers ([35, 40, 37, 17]).

In this paper we shall also combine a level set technique with a projection
method. Our approach allows for large density ratios (about 1000 to 1), surface
tension, and jumps in viscosity, while retaining a high order of accuracy. The
important feature of our method is that we maintain our level set function as a
distance function for all time, without reconstructing the interface. This prevents

the interface from ever changing thickness.



CHAPTER 2

Description of Algorithm

2.1 Equations of Motion

In our study we shall consider the fluid motion for rising air bubbles in water
and falling water drops in air. We shall denote the density and viscosity inside
the bubble (or drop) by p, and y, respectively and for the continuous phase by p,

and p.. The equations of motion are given by the incompressible Navier-Stokes

equations

= - 1 - -
G+ (D) = Pt (=Fp+ ¥ (2uD) + ox(d)7) (2.1)

<
£
1l

o

(2.2)

where @ = (u,v) is the fluid velocity, p = p(&,t) is the fluid density, p = u(&,t)
18 the fluid viscosity, D is the viscous stress tensor, and Fisa body force. The
surface tension term is considered to be a force concentrated on the interface. We
denote o as the surface tension, x as the curvature of the front, d as the normal

distance to the front, § as the Dirac delta function, and # as the unit outward



normal vector at the front. For immiscible liquids the density and viscosity are

constant on particle paths, therefore

pet(@-V)p = 0 (2.3)

I
bt

e+ (@ V)p (2.4)

We will assume solid wall boundaries with the free-slip condition

K1
T
Il
)
.
0o
[
S~

where i is the normal vector at the boundary.
The initial radius of the bubble (or drop) is denoted as R and the only body force
we consider is gravity denoted as §.

After the non-dimensionalization of (2.1) we have:

1
Re

oy

B 1 - , 1
B, = (@ V)it gt S(~Vp+ 5V QuD) + eb(dA)  (26)

Li — Vp/p.

The key parameters are p,/p., dimensionless density inside the bubble, /g,
dimensionless viscosity inside the bubble, Re == (QR)%\/ﬁpC /tt., Reynolds number,
and B = 4p,gR? /o, Bond number. The dimensionless density and viscosity outside

the bubble are equal to 1. We have §, represent a unit gravitational force.



2.2 Projection

From (2.6), we have i, = Lii — Vp/p. Let V = L@, As noted in [5, 14], if the
initial value problem for equation (2.6) is well posed, then there exists a unique
decomposition (Hodge decomposition) where V = V,+ V¢ and V, is divergence
free. As in [6], we define a density weighted inner product such that we can
decompose V into f/‘d and Y‘“;'i,b /p. Given our density weighted norm, we have Y7d L
6'!,[? /p. Given a vector V, we define our projection operator as ﬁp(x?) = T7d. Since

the Hodge decomposition is unique and 4, is divergence free, we have @; = ﬁp(Lﬁ).

So, (2.6) and (2.2} are reduced to
i, = B,(La). (2.7)

In order to compute the projection, we take the curl of both sides of the equation

pf} = pf}d + Vi to obtain
V x (pV) =V x (pVy).

Given any divergence free vector V‘d, there exists a stream function ¥ such that
f/; = V x U. Furthermore, in two dimensions we have U= (0,0,%). The above

equation can now be written as
—V(pVT) =V x (pV). (2.8)

We consider problems obeying the free-slip condition (2.5); hence ¥ = 0 on the

boundary.



2.3 Level Set Description

Since p and p change sharply at the front, conventional finite difference schemes
will incur excessive numerical diffusion when solving (2.3) and (2.4). Instead, we
shall use the level set technique to “capture” the interface as in [27] and [41]. Our
level set function is denoted as ¢ and it is taken positive outside the bubble and
negative inside the bubble. Therefore, the bubble interface is the zero level set
of ¢. We shall initialize ¢ to be the signed normal distance from the interface.

Consider the following equation
bt (@ V)¢ =0

This equation will move the zero level set of ¢ exactly as the actual bubble interface
moves. Since ¢ is a smooth function, unlike p or y, the above equation is more
easily solved numerically. Therefore equations (2.3), (2.4), and (2.7) can be written

as

i = B (2.9)

b = -l V)é (2.10)
1 if ¢ >0

Po=3 plee if ¢ <0 (2.11)
(o + p)/(2p.) i $=0




1 if¢>0

b= %/ p. if ¢ <0 (2.12)

| (s + 1)/ (2uc) i =0

We shall solve the above system in the domain
Q={(z,y) | 0< 2 <TR,0<y <TR},

where @ obeys the free slip condition (2.5) on 9.

It should be noted that while ¢ is initially a distance function it will not remain
so. Furthermore, solutions of ¢ can develop a jump at the interface when interfaces
merge. Below we shall present a novel way of reinitializing ¢ so that it remains a

distance function.

2.4 Smoothing

Special care must be taken when resolving the discontinuity in the equation
for density at ¢ = 0 and when computing the delta function that appears in the
surface tension term.

If we use (2.11) for determining p(#), the solution of the elliptic system (2.8)
will yield unwanted instabilities at the interface; especially for large density ratios.
A method was proposed in [24] for solving (2.8) with a discontinuous p. Unfortu-
nately, this method would require the solution of a non-symmetric matrix and the

method is difficult to implement. In order to prevent instabilities, we decided to



smooth p at the interface. We have the following equation for p(¢):

,

1 if o>«
H,(¢) = (0 if ¢ < —ax (2.13)
| 41+ ¢ + Lsin(rg/a)) otherwise
p(¢) = Hu($)+p/p.(1 — Hal)) (2.14)

The above equation for p effectively gives the interface a finite thickness a. H,(¢)
is our smoothed “Heaviside function”. « is constant with respect to time and is
assigned values with size O(h). A justification for spreading the interface can be
found on p.29 of [36]. Implicit in the above formula is that ¢ is a distance function.
This important point will be discussed in section 2.5 below.

The surface tension force is represented by

1
- n8(d)i.

As pointed out in [11, 10], the surface tension force can be cast in the level set

formulation and smoothed using:

(1/B)rs(d)ii = (1/B)e(#)8($)V,
where the curvature is
. V¢
") =9 () (2.15)
If we maintain ¢ as a distance function, as we shall do, then we may numerically
approximate §(¢) by a mollified delta function, 6,(¢#), smoothed in similar fashion
as in [31]:

8a(¢) = OH,(8)/06



H,(¢) is defined by equation (2.13) as our smoothed “Heaviside” function. We
denote « as the prescribed “thickness” of the interface. In our computations, we

use a = %A:E.

2.4.0.1 Inclusion of surface tension into the projection step

When surface tension is active, special care must be taken when computing the
right hand side of (2.8). The contribution of surface tension to V x (pV) is

— L (K(D)5D,). — (R(DFB).),) 2.16)

We write §(¢) as 8H($)/0¢. It follows that we can reduce (2.16) to

1

- E(E(é)wHy - K(¢)wa) (2'17)

The equation for H,(¢) is defined by equation (2.13).

By writing the surface tension contribution in our “Heaviside” formulation,
we eliminate the numerical instabilities that occur when differentiating a delta

function.

2.5 Keeping ¢ a Distance Function

While equation (2.10) will move the level set ¢ = 0 at the correct velocity, ¢

will no longer be a distance function (i.e. | V¢ |# 1). ¢ can become irregular

10



after some period of time (see figures 7.1 and 7.2). For example when two bubbles
{or drops) merge, a steep gradient in ¢ will arise between the bubbles. Also, a
drop moving at constant speed will cause a steep gradient to form in the distance
function after a finite amount of time. Maintaining ¢ as a distance function is
essential for providing the interface with a width fixed in time. Computation of
surface tension is difficult to compute near a steep gradient in the distance function.
The values for p(¢), especially for large density ratios, will be greatly distorted if
| Vi | is far from one. In fig. 7.3, we see that without reinitialization, the drop loses
41% of mass at time ¢ = 3.5 while mass is conserved with reinitialization. In fig.
7.4, we compare results at time ¢t = 8.8 for a gas bubble rising with large surface
tension and viscosity. Without reinitialization, the bubble loses 19% of mass and
the velocity does not attain a steady state. Furthermore the bubble shape does
not attain the characteristic steady state of an ellipsoid. With reinitialization,
the bubble velocity and minor axis attain a steady state and the bubble mass is
conserved (see figures 7.5,7.6,7.7, and 7.8).

Conventional routines for re-initializing a distance function have to explicitly
find the contour ¢ = 0 and reset ¢ at all points close to the front. This takes O(n?)
operations (see [13]) and can distort the front (e.g. mass loss, corners) depending
on how one reconstructs the shape of the contour ¢ = 0. Through our experiments,
we have found that one needs to reinitialize ¢ after every time step in order to keep
the solution accurate. Thus any distortions from constantly re-initializing ¢ are

amplified.

11



An iteration method for re-initializing ¢ was introduced by [33]. Given a region
Q+ with ¢ > 0 on Ot and ¢ = 0 on dQ+, evolve the equation ¢, = 1~ Iﬁqb] until ¢
reaches a steady state. If ¢ is already close to a distance function, then one should
not have to evolve too far in time.

Unfortunately, one still has to prescribe boundary conditions on 91+ which
entails explicitly finding the interface. We can eliminate the problem of finding
the interface. Consider the following function ¢4(Z) whose zero level set is the air-
liquid interface; ¢y(F) need not be a distance function, however. We shall construct
a function, ¢(%), with the properties that its zero level set is the same as ¢y(Z) and
that ¢ is the signed normal distance to the interface. This is achieved by solving

the following problem to steady state

b= S(do)(1 — /82 + ¢?) (2.18)
¢(Z,0) = do(7), (2.19)

where S is the sign function. For numerical purpeses it is useful to smooth the

sign function; we do this as

%o

Equation (2.18) has the property that ¢ remains unchanged at the interface;

therefore the zero level set of ¢y and ¢ are the same. Away from the interface
¢ will converge to |Y_?¢§ = 1. Therefore, it will converge to the actual distance,

The above algorithm completely avoids finding the interface and it proves to be

12



efficient to implement numerically. In our computations, one iteration per time
- step was usually enough for meeting our convergence criterion. In [33], existence

and uniqueness proofs are provided for the problem:
| Vé(3) 1= M@) in O+ (2.21)
#(Z) =0 on 0T

In our case A(Z) = 1.

2.6 Summary

We can now summarize our algorithm.

Step 1 Initialize ¢(Z,0) to be signed normal distance to the front.

Step 2 Solve

i, = P,(¢) and ¢ +T-Vé=0

for one time step with p(#) given by (2.14), u{¢) given by (2.12), and the surface
tension force given by (2.17). Denote the updated ¢ by ¢(”+%), and the updated @

by u(r+1),

Step 3 Construct a new distance function by solving

¢ = S("HDY1 — [V(g)]) with @(Z,0) = (5 (Z)

to steady state. We denote the steady state solution by ¢(»+1.

13



Step 4 We have now advanced one time step. The zero level set of ¢(*+1) gives

the new interface position and ¢(*+1) is a distance function. Repeat steps 2 and 3.

14



CHAPTER 3

Discretization

A staggered mesh will be used for the velocity and the distance function. With

h as the mesh size, we define

i 1
Ty = ((F+ E)ha (7 + 5)71)
i ; = ul(Z; ;)
¢i; = (&)

: = 0...M~-1

j = 0...N—-1

For a square box, we have Mh = TR and Nh = TR. For a rectangular box, we

have Mh =5R and Nh = 10R.

3.1 Discretization in Time

We will use a second order Adam Bashforth method for evolving the equation

in time (see [21]).

B (L") ~ %ﬁpn_z (L)) (3.1)

15



where k is the time step. A similar formula as above is used in discretizing the

equation for ¢.

3.2 Convection Terms

We will use a second order ENO method for the approximation of the convective
terms.

For 4 divergence free, we have:

(@ V)¢ = (ug), +(v8), (3:2)
@ V)i = f,+3§, (3.3)
where
u? Uy
f= g = (34)
uw v?

For a conservative scheme, we approximate f, using f,, 1~ fie L Unfortu-

nately, there are unwanted oscillations since (3.3) is not always numerically accu-
rate. We will use an algorithm similar to that of equation (2.9) in [6]. For the

equation for ¢, we have:

(ug), + (U¢)y ~ ((u¢)é+-12-,j - (uﬁﬁ)i—%,j + (U¢)i,j+§ - (”¢)e,j-%)/(2h)
= (ui-i-%,j + ui—%,j)(¢i+%,j - ‘151'—%,3')/(25)
+ (vi,j+% + vi,j-—%)(¢i,j+% - ¢i,j—«%)/(2h)

+ (¢i+g~,j + ¢i—%,j)(ui+%,j - ui—%,j)/(zh)

16



+ (Bijer + i io1) (w41

- Ua‘,j—%)/(zh)

For smooth data, we have ¢a,-+%,j+q5z-__%’j R~ ¢i,j+%+¢i,j—l§~' Since ¥ is numerically

divergence free, we have u;

approximation

(ug)s + (v),

Similarly we have

(Fi)e + (91)y

(f2):r: + (92)3}

For computing u; 1 ; (similarly for Uit Dipljr -

scheme (see [35, 272

Define

Let

Uy, =

1
2 ]

+

&

Ui gt 5 (Uigr; — Ui Ui

—_ N =, J— .. —_
J u‘“%ﬂ ~ (U"uJ‘I'% v

1 ). We find the following

i!j_§

= 6i,5-1)/(2R).

(Ui,j+% + ;-1 (qbi,j-}--;»

(Wip1s + uieg N irg — oz )/ (20)
(vijad Vo2 ) 5e1 — g jo1)/(2R)

(ui+%,j + “i—%.j)(“ﬂ-%,j - ”i—%,j)/(%)

(”i,j+§ + Ui,j--%)(vi,j-i-% - Ui,j—%)/(zh)'

.), we use a second order ENO

a if]al<|b]

b otherwise

1
- ui—l,j)

2
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1
Uit = 5T Mika,g — Wika s Yivas ~ u; ;)

UR

Il

1
Un ‘2‘(“L + ug).

We now have
up fup <0and up =0
Uipl; =Y up fupy <0andug <0 -

up fupy >0andup 20

3.3 Viscous and Curvature Terms

We approximate the components of the viscous stress tensor I} using central

differencing:

(Ug)ivifzgrrse R (Wigrj + Yipr 41 — Ui — ; 541)/ (2R)

(uy)i+1/2,j+1/2 A2 (Uipr,541 = Uigt,g T Uiger — i i)/ (2h).

Similar equations are used for v, and v,

The divergence of the stress tensor is computed as follows:

((eD™)e)ig & (D™ )ipajzgere + (D™ )isayai-as2
_(#Dm'n)i—l/2,j+1/2 - (#Dm’n)imlﬁ,j—l/?)/(gh)
(eD™™))is ~ (D™ )isajagaaje = (BD™ )igsja5-172

H(pD™™); 1o jraja — (D™ )iZ12,5-172) [ (2R)
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with

vt gt = (it F Bige i) /4

We use the freeslip condition (2.5) to determine the discretization at the left

boundary. For example,

(ug) 141 = 2(ug; + Uoi41)/(2R)
popiey = (Hog T Hoa)/2:
Similar equations are used for the other boundaries.

The curvature is discretized in the same fashion as the discretization of the diver-

gence of the viscous stress tensor.

3.4 Discretization of the Projection

Given V = Lii®, we decompose V into the form Tm/:i + 61,[) /p where ﬁd is diver-
gence free and define ﬁ:(L*&'“) = V, and Vpr = Vih. Following [6], in order to
define the discrete approximation of the projection, we must first define discrete
divergence and gradient operators and a discrete p-weighted inner product.

For divergence we have:

—

(V- U)i+%,j+% ~ (DU)H%,H% =

(ui—i-l,j-l-l —Uiqn T Uiy ”’i,j)/(zh)
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+(Vip1,41 — Vigrg + Viger — Vi) /(2R)

For the gradient we have:

(Vo) % (GB)y = ((Go®)s, (G,®):s)

i}

(Go®)iy = (Digpges = Pumgus + Pugog — iy yn1)/(20)

Il

(Gy®ii = (Biynjuy — Piagiog T Piget — Bing o)/ (2h)

2

For the inner product we have:

Lo M-1N-1 _ .
(Vi,Vy), = z Z (Vmg‘ Vo) 04
=0 j=0

Note: The divergence operator and ® are defined at the cell corners &, 1td where
ti=—-1..M—-1landj=-1...N~1.

With the above definitions for D and @, the discrete operators are skew adjoint
(G = —DT see [6]). Using our definitions of G, D and (:,-),, discretely divergence
free vector fields with zero normal components are orthogonal to discrete vector
fields of the form G® /p. Consequently, we can uniquely decompose any discrete
vector field into U + G®/p where DU =0,

In two dimensions, a divergence free vector can be written as the curl of a
vector ¥ = (0,0, T) (see p. 77-78 of [4]). Define a discrete function ¥ at the cell
corners &, 1tk Since our divergence free vector field has zero normal component
at the boundary, ¥ = 0 at the boundary (i = —1,M —1 or j = —1, N —1). Define
GLW as the discrete curl of W; e.g. G = (G,¥,-0,¥). Then we have :

o

GG +Gylp = V (3.5)
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GL(pGHT) = GH(pV) (3.6)

~CL(p(G) — Cy(p(G, 1)) = GalpVa) = Gy(oW2) (3.7)

When surface tension is active, we modify the right hand side of (3.7) using
our Heaviside formulation {2.17).

The difference formula for (3.7) is

- [pi,j‘yi—%,j—-% S NTEL FIETER ORI W SRR A T
—(pig F Pivrg + Piga + Pi+1,j+1)‘1’i+%.j+%]

= C(oT) — G,(0) ~ (Cunl )G, H — Gyr($)GuH)

where f’ is V with the surface tension terms excluded.

Once ¥ is known, we can set U = GL¥, The matrix system is solved using a
preconditioned conjugate gradient (PCQG) algorithm using an incomplete Cholesky
factorization as a preconditioner. The initial data for the PCG algorithm is a linear

combination of the results of previous time steps.

3.5 The Reinitialization of ¢

In this section, we describe how to numerically evolve (2.18) to steady state.

We can write (2.18) in the form

b+ 13-V = S() (3.8)
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where
V¢
|V

Equation (3.8) is a nonlinear hyperbolic equation whose characteristics are given

= 5(do)= -

by @. The vector 1 is a unit normal always pointing outward from the zero level
set (¢ = 0).
One possible discretization of (2.18) is as follows. We define
az=Ds¢; = (bij— i1 )/h
b=DFéi; = (digrg— $i)/h
c=D ¢i; = ($ij— Si5-1)/h
= Djﬁi’i,j = (¢£,j+1 - ¢i,j)/h

and

Se(@)iy = duilJb7;+¢

Jmax((@¥ ), (57)7) + max((cH), (d)F) — 1 if 42, > 0

G(¢)i; = \/ma,x =)2, (01)2) + max((c™)?, (dF)3) -1 if ¢¢. <0

] otherwise

“

where the + superscript denotes the positive part and the — superscript denotes

the negative part. Equation (2.18) is then updated using
B = G, — ALS (42,081 (3.9

It is shown in [33] that (3.9) is a consistent, monotone scheme of (2.21), which

is known to converge to the unique viscosity solution of (2.21). If ¢° > 0 and
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G(¢%) < 0, then [33] proved that ¢ / implies G(4) /. An extension of this can
easily be deduced for ¢® < 0. If ¢° < 0 and G(¢°) < 0, then ¢ ™ implies G(¢) /.
So, if G(¢°) < 0 and if At sufficiently small, then G(¢V) /0 as N ~» co. This
follows from the fact that as long as G(¢V) < 0, then ¢V < ¢N+1 for ¢V > 0 and
N > N+ for ¢V < 0.

While (3.9) has the advantage of being a monotone scheme, it has the disad-
vantage of being only first order. We observed a significant improvement in our
results by approximating the derivatives of ¢ by higher order schemes. In our
tests, we used a second order ENO scheme upwinded in the proper direction (see
[35]). As mentioned previously, we typically needed only one iteration per time
step in order to meet our convergence criterion. We have also done tests where ¢
was initialized as +1 outside of a unit circle and —1 inside of a unit circle and our
iteration converged successfully (see figure 7.34).

The stopping criterion for the iteration is

B Siei<o | S5 = 6N |
- M

< At h?,

where M = number of grid points where | ¢, |< @. In our experiments we had

At = h/10 and we used € = h in the expression for S,.
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3.6 Computation of At

The time step must obey the CFL conditions due to the convective terms.
Restrictions due to stiff source terms (e.g. gravity and surface tension), and due

to viscous terms must also be satisfied (see (6.3) of [27] and (61) of [10]):

At = (pc+p5)Bh3/2
? 8n
B 3 . p(Re)h?
At = min(7) )
At, = mi h
© =

1
At = Emin(l_\tv,AtS,Atc)
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CHAPTER 4

Axisymmetric Flow

4.1 Introducing Axisymmetric Flow

In axisymmetric flow, instead of our grid consisting of = and y coordinants, we
replace them with r and z respectively. If our flow is assumed to be axisymmetric
about the z axis, then we may approximate fully three dimensional problems using
only two dimensions. In other words, we assume our fluid variables are independent
of @ where the three independent variables in cylindrical coordinants are (r, 8, z).
On axisymmetric grids we can model fully spherical bubbles and drops, so that
we may compare with the toroidal bubbles in [25] (figure 7.16) or the colliding
drops in [28] (figure 7.32). We will also model the capillary jet problem found in
[10} (figure 7.35), the problem of a gas bubble rising to the surface of an air/water
interface [9] (figure 7.36), and the problem of a water drop splashing down on a

surface of water [29] (figure 7.41).



4.2 Changes to Two-Dimensional Algorithm

In axisymmetric flow, the divergence and laplacian operators depend on r. For

example, the divergence free condition now becomes:

i

V- i =(ru),/r+v, =0 (4.1}
The expression for the laplacian of a scalar is:

A¢=(r¢.),[r + $...

The computation of the projection, the viscous terms, and the curvature are

all effected by the above issues.

4.2.1 Axisymmetric Projection

In section 2.2, it was shown that any vector V can be uniquely decomposed
into a divergence free vector V, and the gradient of a scalar Ve /p. In cylindrical

coordinants V, and (Tj}l, f;}_) have the form,

Vi=(0./r,~ T, /[r)

(¥, ) = [ V- Vrprdrdz.
The equation for ¥ (see eq. (2.8)) is now written as

—V(EVE) =V x (o). (4.2)

T
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We discretize the projection in a similar manner as that in section 3.4. In

cylindrical coordinants, our discrete divergence has the form,
(V- ﬁ)i+%.j+é~ ~ (Dﬁ)i+%,j+§ =
((ru)ipa, i~ (P)igpn + (Pe)igr — (W)i,j)/(zh?’ur%)
H((rv)isr g = ((0)isa + (M0)ijn = (10)i3)/ (2hripy)-

For the inner product we have:

.. M-1N-1 _
(ViuVa), = D % (Vi - Vasii)pigris-
=0 5=0

We can write our discrete gradient and divergence free vector in the form,

(ﬁq))i,j ~ (éq))i,j

((qu))i,j: (qu))i,j)

(Gm(ﬁ)i..ﬂ'

(Pippies = Picg et + Pipg oy — Ring 1)/ (20)

2

(qu))i,j

i

2

Vy= (G, /r, -G, /)

Finally, we solve a system of equations for ¥ using a formula that is similar to

equation (3.7:

~G.(L(Gw)) - 6,

R

(G,¥)) = G.(pV2) —G,y(p%1) (4.3)

4.2.2 Divergence of the Stress Tensor in Axisymmetric Coordinants

In cylindrical coordinants (for axisymmetric flow), the stress tensor is as follows:

eTT‘ — ur
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eft = ufr
The divergence of the stress tensor (V - (ue)) has the following form:
(V- pe)y = (rpe), /v + (per=), — peté/r (4.4)
(9 - pe)a = (rme™), /1 + (e, (45)

We discretize the above equations using similar equations as that found in
section 3.3. In equation (4.4), the term e#¢/r can become large near r = 0. We

rewrite equation (4.4) as,

(V- pe)y = (uer™), + p(e?®), + (per?).. (4.6)

When we discretize equation (4.6), we need to evaluate u/r at r = 0. Since the
normal component of the velocity is zero at the boundary, we have u = 0 at r = 0.

So, we can use the limit of u/r at r = 0 which is u,.

4.2.3 Computation of curvature in Axisymmetric Coordinants

As in equation {2.15), the curvature is written as,

<:
S

P
=
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We use equation (4.1) to express the gradient of a vector in cylindrical coordi-

nants,

gy = 81900,

(6:/ 1V ). (4.8)

Equation 4.8 is discretized in similar fashion as the viscosity. The curvature is

approximated as follows:

(¢r)s+%,j+§ = (Pip1ju1 + Givr,; — Piger — i)/ (2R)
(qsz)i-i-%,j-;-% = (Gip1 a1+ Gijar — Pivr,; — i)/ (2R)

i V¢ |i+%,j+% = \/(Gﬁr ?+%,j+% + (?Sz)?_i_%}j_i_%

Cirl i+l Tird (¢r)i+§,j+%/ | Ve |i+~%,j+%

(b)irr s/ 1V g 41
£(@)i; = (Copginrd T Gadioy — Cimdgrd — Ci-34-1)/(2rih)

H(dieg ey + dimging — ding oy — ding -1/ ()
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CHAPTER 5

Three Fluid Flow

5.1 Motivation for Multi-Fluid Flow

Many flows consist of more than two immiscible fluids. Examples include strat-
ified flow [38] (figure 7.45) and flow consisting of air, oil, and water (such as flow
through pipes [1}). We have computed flows of gas bubbles rising up to a water/oil
interface (figure 7.43). There are also many problems consisting of two fluids where
one would like to study the motion of multiple interfaces. An illustration of this
is the case where one would like to study the subsequent motion of the point of
impact of merging bubbles and drops (figure 7.32). Also, when a gas bubble rises
to the surface of an air/water interface [9] (figure 7.40), or when a water drop hits
an air/water interface [29] (figure 7.42), one would like to study the motion of the

bubble or drop as it penetrates the interface.

The main complication with multi-fluid flow is the computation of the flow at

“triple points”. A triple point is a point where two interfaces intersect (in three

fluid flow, a point where all three fluids touch). An example of this occurring
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would be a gas bubble rising in water which intersects a water/oil interface (see
figure 7.43). In [7], a paper on multiple interfaces whose motion is determined by
mean curvature, level sets were used to automatically resolve the intersection of
interfaces without any extra work needed for reconnecting or separating interfaces.

We will use ideas similar to that in [7] for applying level sets to multi-fluid fow.

5.2 Changes for Three-Fluid Flow

For each fluid 4, we will introduce a level set function ¢; which is used to capture
the interface between fluid ¢ and all the other fluids. Each ¢; will be advected and
re-initialized similar to that of ¢ which was used for two-fluid flow. Special care
must be taken when computing density and surface tension for multi-fluid flow.
One must be careful to avoid cases where all the ¢; are bigger than zero at some
grid cell {“void”). At all points in the domain, one and only one ¢; should be less
than zero. In [7], where each front was advected by a different velocity determined
by its respective mean curvature, a special procedure had to be performed every
time step in order to prevent voids from forming in the domain. For incompressible
applications, where each ¢; is advected with the same velocity, the problem of voids
forming should not be an issue, but the problem still persists on a lesser scale. In
certain cases where corners in the flow occur, the re-initialization step tends to
smooth the corners, thus possibly producing an arvea where all ¢; are greater than

zero. In [7], the ¢; were modified with the following equation after each time step;
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thus eliminating voids and insuring the proper motion of triple points:

1 .
¢; = “2"(95;' - I{;}?QSJ) (5.1)

We also use equation (5.1), but we do not update the existing ¢; with the new
values. Instead we store the values from the above equation in the quantities d;

which are to be used when computing density and surface tension. We do not

update the ¢; for two reasons:
1. As opposed to flow by mean curvature, our void areas remain small.

2. Equation (5.1) does not preserve the distance property at triple junctions,
thus distorting the solution and also giving rise to more iterations in the

re-initialization step.

Using figure 7.44, we can compare our “multi-level set” formulation for a gas bubble

rising through water with the single level set solution (fig. 7.11).

5.2.1 Computing Density in Multi-Fluid Flow

We compute the temporary variables d; using equation 5.1:

1
d. = —(¢; — min ¢;). 2
The density is computed similarly to that in equation (2.14),

. Z;;l p‘iHa(di)

p(¢1,...,¢n)‘———”—p(dl,..-,dn)"" Zﬂ H(d) )
i=1 TN

32



The Heaviside function H, is determined by equation (2.13). The denominator is

assured of being positive because of how the d; are computed in equation (5.2).

5.2.2 Computing Surface Tension in Multi-Fluid Flow

There are two ways to compute surface tension when capturing multiple inter-
faces. For the first way, we assume that interfaces “burst” immediately on contact
with another interface of the same fluid. TFor the second way, we assume that
interfaces never “burst” {rupture). To illustrate this, we use the merging of two
water drops as an example (see figures 7.31 and 7.32). For both cases, as for the
computation of density, we first compute the values d; from equation (5.2). These

values will be used in determining the curvature and delta function.

5.2.2.1 Computing Surface Tension with Rupture

We describe the computation of surface tension, where we assume the interface
will rupture on contact with another interface of the same fluid (figure 7.31). We
compute the surface tension at fluid interface d;; if the following conditions are

met:
e d; and d; are less than all other dj.

e | d;}and | d; | are less than o (interface thickness).
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¢ d; and d; represent different fluids.

If the above criteria are met, then we compute the surface tension at interface d;

using the formula,
- 1 fuad —

As for two-fluid flow, we do not explicitly compute equation (5.3). Instead
we compute the above equation as part of the projection step in our “Heaviside”

formulation (see equation (2.17)).

5.2.2.2 Computing Surface Tension without Rupture

We describe the computation of surface tension, where we assume the interface
will not rupture on contact with another interface of the same fluid (figure 7.32).
We will assume the simple case of the problem where two water drops collide.

There are three level set functions:

¢, Negative in the top drop and positive elsewhere.

#, Negative in the air and positive in the drops.

#3 Negative in the bottom drop and positive elsewhere.

We use equation (5.2) to initialize the d;. Let B,,, represent the Bond coeflicient
for an air/water interface. Since surface tension acts to keep the drops spherical,

we choose to use only d; and d; for computing surface tension. Since we assume
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that the collision of the two drops will not rupture the interface, we compute the
surface tension at the point of collision (water/water interface) exactly the same as
at an air/water interface. So, we use the following formula for computing surface

tension:
5= B,y k(d)6(d)Vdy + B,y k(ds)8(ds)Vds). (5.4)

As for the ruptured case, we do not explicitly compute equation (5.4). Instead
we compute the above equation as part of the projection step in our “Heaviside”

formulation (see equation (2.17)).

5.2.2.3 Discrepancies When Computing Surface Tension With Rup-

ture

We again study the case of two drops merging. In figure 7.31, we average the
contribution at interface d;; using d; and d;. Unfortunately this may not be very
accurate as the drops get closer. The distance function representing air (d;) has
almost zero curvature near the middle of the two drops, which is an inaccurate
representation of the curvature if the drops are near each other. For example,
at a cell near drop d;, and also near the midpoint of the two drops, we compute
the surface tension by averaging the contribution -from d; (curvature about one -
ok) with that of d; (curvature pear zero - not ok). If we know that the surface

tension is acting to keep the drops spherical (as in the case where we do not assume
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rupture - eq. (5.4)), we should not average the two contributions, but instead just
use the contribution from d; which has the proper representation for curvature.
We modify equation 5.3 in a similar fashion as equation 5.4. If we assume all the
criteria for the “burst” case are met, then we use the following equation for our

drop merge case (see figure 7.33):

g

Booy(dy)6(d;)Vey if | dy | and | dy <] ds |
85 =4 Bour(ds)8(ds)Vds if | ds | and | dy |<| d, | (5.5)

0 otherwise

\
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CHAPTER 6

Analysis of Results for 2D, 3D axisymmetric, and Three Fluid Flow

Our experiments simulate the flow of air bubbles and water drops. We will
assume the flow is symmetric about the axis z = 0 (r = 0). The key parameters
are density ratio p,/p,, viscosity ratio u./p,, Bond number B = 4p,gR?/o, and
Reynolds number Re = (ZR)%\/Epc/ .. Using the tables in [4], we have p,; =
1.226 x 10-3g/cm®, puaser = 1.000g/cm®, pg; = 1.78 x 10~4g/(cm sec), fyater =
1.137 x 10-2g/(cm sec), g = 980 cm/sec?, and o = 72.8 dynes/cm. These physical

constants are used in determining the above parameters.

6.1 Convergence study

6.1.1 2D Rising Gas Bubbles

We consider two 2D rising bubble problems. The first problem is a bubble
rising with medium range Reynolds number and small surface tension. For the
second problem, we consider a bubble rising with low Reynolds number and high

surface tension. We let the second bubble rise to a steady state.
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For the first test, we have B = 200.0, Re = 100.0, p./p, = 1000.0 and p./pp =
100.0. Grids of 36 x 36,72 x 72, and 144 x 144 are used. The number of time steps
for each of the respective grids is 734, 1467, and 2934. We cormapare results up to
time ¢t = 4.4 (see figures 7.10 and 7.11). We compute the relative error between

successive grids as follows:

4.4
By = E | foo = fan |-

£=0.0
Table 6.1 contains values for the position and velocity of the center of the bubble.
Table 6.1 also contains relative errors for minor axis size and area. Figure 7.12
compares the position of the center of the bubble.
For the second test, we have B = 0.40, Re = 5.0,p./p, = 40.0, and p./p; = 500.
Grids of 16 x 32,32 x 64, and 64 x 128 are used (see figure 7.5). The bubble reaches
a steady state where its oblate shape is the expected result (see {36], p. 31). The

area, velocity, and minor axis are each plotted with respect to time (see figures

7.6,7.7, and 7.8).

6.1.2 3D Axisymmetric Gas Bubble - Convergence at Singularity

We would like to investigate the convergence properties of a 3D axisymmetric
gas bubble as it evolves through its first break up. We will study a gas bubble
with Re = 200 and B = 200. The motion was computed on grids of size 50 x 50,

100 x 100, and 200 x 200. In figure 7.18, we compare results at the time of pinch oft
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Eyan | Eapan Order
position 0.01 0.05 2.3
velocity 0.021 0.07 1.8
area 0.02 0.16 3.0
minor axis | 0.04 | 0.12 1.6

Table 6.1: 2D Convergence study: t = 4.4

on the two finest grids. In figure 7.19, we compare the mass conservation properties.
The time of break up on the three grids are 1.85, 1.55, and 1.61 respectively. The
minor axis sizes at t = 1.5 were 0.37, 0.09, and 0.06 respectively. From figure 7.19,
we see that more mass is conserved as the grid is refined. On the finest grid, we see
that break-up occurs slightly offset from center; a tiny bubble, unresolved on the
coarser grids, appears between the two main broken parts of the bubble. While
more mass is conserved as the grid is refined, we see that even on the finest grid,
mass is lost at a steady rate after break up. This is due to the inability of the

algorithm to resolve on our finest grid either the tiny bubble or the upper tips of

the two main broken pieces.

6.2 Analysis of Gas Bubble Problems
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6.2.1 Validation of 3D Rising Gas Bubble

As with the 2D case in section 6.1.1, a gas bubble rising with low Reynolds
number, and a substantial amount of surface tension, will reach a steady state
after a finite amount of time. The resultant shape and velocity of the bubble
depends on the Reynolds number 2pU R/ y, Weber number 2pU2 R/, and Froude
number U?/(2Rg). One can also represent the flow using the drag coeflicient
Cy; = 4/(3Fr) instead of the Froude number, In [8, 19], physical experiments
were done to determine the resultant steady shape and velocity. They initialized
their apparatus with values for the Morton number gut/(po®) and Eotvos number
(similar to Bond number) 4gR?p/o. After the experiment was finished, they used
their measured values of U/ in order to determine Re, We, and C;. The resultant
steady shapes ranged from almost spherical to cap shaped. Numerical experiments
were done in [34] using equations for incompressible steady state flow. In our
computations, we will compute the evolution of a 3D axisymmetric gas bubble as
it rises and reaches its characteristic steady shape. In figure 7.9, we have results
for M = 0.056 and E0 = 39.8. For ¢ > 3.0, the computed dimensionless velocity
varied between 0.82 and 0.86. The dimensionless major axis size was 1.26. Finally,
our computed values for Re, We, and C; were 16.8, 10.6, and 5.01 respectively. In

[8] the following formula was used to predict the steady rise speed,

2
U= — .
3VTed
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For our problern, the predicted dimensionless rise speed is 0.86 which compares well
with our computed steady rise speed of about 0.84. We also have good agreement
with [34] (figure 2), [8] (figure 8), and with [19] (fig. 1a) for the resultant shape of

our bubble.

6.2.2 Effects of Surface Tension

We study the effects of adding surface tension to the rising bubble problem
where Re = 100.0. In figure 7.13, we compare the results with Bond number of
200.0 (a) to that of Bd = 25.0 (b). The change in shape is similar to that found
in [25] (experiments using the boundary integral method) where the bubble skirts

become more thin and the indentation at the bottom flattens out.

6.2.3 Effects for varying Reynolds Number

6.2.3.1 Computation of 2D gas bubble for low,medium, and high Re

We compare the results of figure 7.14 (Re = 10.0), figure 7.11 {Re = 100.0),
and figure 7.15 (Re = 1000.0). The change in shape due to low Reynolds number
is similar to that found in the experiments of [8] (see figure 3 of [8]). The results for

high Reynolds number flow compares well to the results in [3]. In [3], the authors
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computed the solution until pinch off (¢ = 4.0), of an inviscid gas bubble. They
used both the boundary integral method and the point vortex method and got
almost identical results using those methods. The fact that our results using an
Eulerian grid are also very close to the above Lagrangian schemes validates our

code for high Reynolds number and for steep density ratios.

6.2.3.2 Convergence as Re approaches oo for 3D gas bubble

In [25], computations using the boundary integral method were done for an
inviscid 3D axisymmetric gas bubble with slight surface tension. We will compare
with the case for Bond number of 200.0. We ran successively higher Reynolds
number cases until finally we ran a case with Re = co. Our density ratio is 1000 to
1 and our viscosity ratio is 100 to 1. Our thickness parameter « is 32/2. In table
6.2 and figure 7.17, we show that the minor axis size and bubble shape converges
as Re approaches co. For Re = oo our results (see 7.16) are remarkably similar
to that of [25] (figure 2a), including the time that the bubble begins to break up.
The fact that we can compare with the boundary integral method demonstrates
that, for this particular problem, we do not have added numerical viscosity. We
also note that in figure 7.16, the solution is fully resolved up to ¢ = 1.30. The
solution was computed with a mesh size of 240 x 240 (h = 0.025) and a thickness
of @ = 3h. There are no significant changes in bubble shape, rise speed, or minor

axis size when the mesh is refined and/or the interfacial thickness () is enlarged.
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Re | Minor Axis
100 0.38
200 0.24
400 0.18
800 0.17
00 0.17

Table 6.2: Convergence of shape of a 3D gas bubble in the inviscid limit. { = 1.4,

a=3h/2

6.2.4 Effects of Different Density Ratios

We compare the results of figure 7.11 (p./p, = 1000.0) to that of figure 7.20
(pe/py = 5.0). The shape of the bubbles are similar except that the skirts on the
low density-ratio bubble are allowed to grow longer than those on the high density-
ratio bubble. The pinch off time is 4.5 for the high density-ratio bubble and 5.6 for
the low density ratio bubble. We also compare the above results to that of figure
7.21. For slight density ratios, the skirts of the bubble begin to roll up (see [2]).

In figure 7.22, we plot the velocity of the bubble for different density ratios.
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6.2.5 Gas Bubble bursting at surface

As a gas bubble rises to the surface of an air/water interface, the buoyancy force
due to gravity interacts with surface tension effects at the interface, thus causing
the bubble to burst, and emitting a jet of water. According to [9], studying and
minimizing the burst effects can minimize the cell death rate in a bioreactor. We
will run computations on problems similar to that computed in [9] which used the
boundary integral method. We noun-dimensionalize the problem by normalizing
the surface tension coefficient to one and the gravitational coefficient to the Bond
(Eotvos) number (see [9]). The calculations will be for inviscid flow. In figure
7.36, we observe the expected jet of water. As in other calculations with change
in topology, we are able to automatically compute the break up of the water jet as
it falls back to the surface. In figure 7.37, we compare with [9] for EQ = 0.3. We
have similar shapes and velocity profiles (see figure 7.38) except that the jet in [9]
(fig. 4a) is taller and their velocity profile is less oscillatory. An advantage of the
boundary integral method, for inviscid problems without complex topology, is the
ability to place many more points on the interface than Eulerian schemes. Also,
while we enforce solid wall boundary conditions, the boundary integral scheme
can approximate flow in an infinite domain. In figure 7.39, we run the same
problem again, except that we demonstrate the advantages of our level set scheme
by starting with our gas bubble fully submerged. We have similar results as with

the “pre-burst” case except that a small air bubble is entrained. Finally, we run

44



the problem with E0 = 0.3 using multiple level set functions. Thus, we are able to
compute the flow of the air bubble as it bursts out of the water (see figure 7.40).
The results for the multiple interface version are similar to the other results except

that the jet emitted is shorter than in the “pre-burst” case.

6.3 Analysis of Water Drop Problems

6.3.1 Surface tension validation; Surface Tension Driven Oscillations

A cylindrical or spherical drop of liquid, which has a slightly perturbed circular
cross section, will display oscillatory motion in the presence of surface tension and
in the absence of gravity. In [23], equations are derived for the predicted frequency
of oscillation for the 2D drop (p.472, eq. (8)) and for the 3D drop (p.475, eq.
(11)). These equation are valid for small perturbations in inviscid flow. In figures
7.23 (2d case) and 7.24 (3d case) we compute the above motion and compare our
computed frequencies with that of [23]. We have Re = 20.0, B = 0.5, p./p, = 0.01,
po/py = 0.01, @ = 1.0, A = 0.06, s = 2, and Az = 0.07. “A” is the amplitude of
the initial perturbation, “s” is the disturbance type and “a” is the base radius of
the drop. For the 2D case, our computed period of 1.92 agrees closely with the
result predicted by the formula 27 /o (1.81) where 02 = 6/B. For the 3D case, we

also get close agreement. The computed period is 1.71 and the expected result is
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1.57. Any discrepancies in our results should be due to the presence of viscosity

and also due to our size of the initial amplitude.

6.3.2 Analysis of falling drop hitting boundary

We study the flow of a falling water drop hitting a solid wall boundary (see
[16]). We refer the reader to figures 7.25 and 7.26. When the required surface
tension is added, we get the expected circular shape as the drop is in mid-flight.
We compare our results (i = 0.125cm, B = 0.00125, Re = 10.0) to that of [26]
(R = 0.140¢m). Our results are similar to that of {26]. The added surface tension
prevents the drop from “flattening out” near the lower boundary. Figure 7.27

displays the position of the drop versus time. The average acceleration was 0.95

(5% error).

6.3.3 Analysis of head-on collision of two drops

As stated in {28], drop collisions can be classified into four categories:

¢ bouncing collision; drops separate after colliding, retaining their original

“dentity”.

¢ coalescence collision; drops collide to form as one drop.

e separation collision; drops temporarily become one but then break up again.
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e shattering collisions; upon impact, drops break up into many smaller drops.

The motion of drops is important in a number of applications such as combustion
of fuel sprays, spray painting, coating processes, and rain drops. We will study
the collision of two equal sized drops in the absence of gravitational forces. The
two drops are each accelerated at each other with a body force of 0.5. After time
t = 2.0, when the drops are traveling with a dimensionless velocity of about 1.0,
the force is turned off.

In figure 7.28, we have the collision of two 2D drops. The drops are allowed
to coalesce into one large drop. Mass is conserved throughout the collision (see
figure 7.29). After the collision, the combined drop undergoes oscillation due to
the surface tension forces {Re = 20.0, Bd = 1.33). As with bubble pinch-off above,
our level set formulation enables us to merge the two drops without any extra
programming.

In figure 7.30, we have the collision of two 3D drops (Re = 20.0,Bd = 12).
As in the 2D case, the drops are allowed to coalesce. We get similar profiles as
in [28] (fig. 17) where they manually merged their drops. In figure 7.32, we use
multiple level set functions to compute the motion of each drop separately. The
surface tension is computed using equation 5.4 for the “non-ruptured” case. In this
case we get a “bouncing collision” where the drops separate after colliding. Our
results here can be compared to those in [28] (fig. 9). Finally, in figure 7.33, we

use multiple level set functions again. This time, we compute the surface tension
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using equation 5.5 for the “ruptured” case. We get a “separation collision” for this

case, where the drops eventually separate again, following initial coalescence (see

(28], fig. 9).

6.3.4 Capillary Jet

We start our problem with a vertical cylindrical column of liquid. We assume
the flow is inviscid and we ignore gravitational effects. In [32], theory was de-
veloped for the evolution of this column, driven by surface tension forces, in the
presence of a small radial perturbation in the jet. After a finite amount of time, the
perturbation grows until parts of the jet contracts and eventually breaks up into
detached drops (see figure 7.35). Equations were developed in {32] that predicted
the time when the jet is supposed to break up. The equation depended only on the
perturbation wave number k. We will run with parameters similar to that found in
[22]. The computations in [22] were done using a volume tracking algorithm. We
non-dimensionalize our parameters so that our dimensionless initial radius is one,
and the dimensionless surface tension is 1/2. We set k = 0.3 and our initial per-
turbation amplitude € = 0.05. The expected break up time is t, = 25.92 and our
observed break up time was about 20.5. Our results (see figure 7.35) are in good
agreement with the results in [22] (see fig. 13). The results here demonstrate yet
again, the ability of our algorithm to effortlessly and accurately compute through

pinch-off with relatively low resolution. The results also demonstrate the ability
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of our scheme o compute flows heavily influenced by surface tension forces.

6.3.5 water drop splashing water surface

As a high speed water drop hits an air/water interface, a “splash” occurs caus-
ing water to be displaced to the sides of the drop. In [29], many inviscid compu-
tations were done using the boundary integral method and compared with experi-
mental results. We will non-dimensionalize our parameters in a similar fashion as in
[29]. Since we are computing flow with air and water, values for o,p, and g are fixed.
One must specify the impact velocity U and the drop radius B. The dimension-
less surface tension force depends on the Weber number We = 2pU2R/o and the
dimensionless gravitational force depends on the Froude number Fr = U2/(2¢gR).
Our dimensionless impact velocity is 10 and our dimensionless drop radius is 1.
We initialize our problem with the drop exactly one drop radii above the surface.
The gravitational force is initialized as 50 and reduced back to the specified force
after ¢ = 0.2 (time of impact). In figure 7.41, we compute the splash profile for
U =T76m/s and R = lmm. In figure 7.42, we compute the same problem except
that we use multiple level set functions. Thus, we are able to compute the shape

of the falling drop as it combines with the other water.
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CHAPTER 7

Conclusion

In summary, we have designed a formally second order accurate algorithm for
tracking the interface(s) of multiple incompressible fluids. The interface remains
sharp (p./p, = 1000) without ever having to explicitly find the front. As in {36],
the front is given a finite thickness O(h) which does not change in time; hence
there is no added numerical diffusion. Since we solve a PDE for ¢ (insured to be a
smooth distance function for all time) instead of for p, relatively coarse grids can
be used. The algorithm is easy to code since the initial Eulerian grid remains the
same throughout simulation. There is no extra code needed for handling merging,
break-up, dilation, or contraction of the interface. Since the algorithm does not
have to explicitly find the interface, the code can be easily generalized to three
dimensions. Furthermore, surface tension is incorporated as a body force term
which is easy to compute. Because of the special treatment of the convective
terms, the algorithm can accurately handle high Reynolds number flow. Finally,
we can generalize our study of bubbles and drops to many different incompressible
(“low-speed”) flow applications requiring complex interfacial structures, surface
tension, and large density ratios. Applications include coating processes, ink-jet

printers (drop dynamics), mold-filling and solidification, fuel sprays in internal
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combustion engines, liquid extraction processes, and free-surface flows, to name a

few.
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Re=10.0 Bd=inf density 1/1000 grid 50x100

(a) t= 3.50|| (b) t= 3.50

CONTOUR FROM ~.5 TO 5 BY .25 CONTOUR FROM -5 TO .5 BY .25

Figure 7.1: Level sets of a large water drop (a) reinit. (b) no reinit.
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Re=5.0 Bd=0.4 density 40/1 grid 64x128

t= 8.80

(a) t= 8.80|| (b)

CONTOUR FROM —.5 TO .5 BY .25 CONTOUR FROM ~.6 TO .6 BY .26

Figure 7.2: Level sets of rising bubble (a) reinit. (b) no reinit.
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Re=10.0 Bd=inf density 1/1000 grid 50x100

(a) t=350|| (b) t= 3.50

Figure 7.3: Without surface tension, large drop should deform as it hits the base

(a) reinit. (b) no reinit.
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Re=5.0 Bd=0.4 density 40/1 grid 64x128

(a) t=8.80{| (b) t= 8.80

Figure 7.4: With large surface tension, bubble should reach ellipsoidal steady state

(a) reinit. (b) no reinit.
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Re=5.0 Bd=0.4 density 40/1 grid 64x128

N

t=12.00

N

t=12.80

N

t=13.60

N

t=14.40

t= 8.80

t= 9.60

1=10.40

t=11.20

Figure 7.5: Evolution of 2D rising bubble with large surface tension. Bubble

reaches a steady shape and velocity.
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Re=5.0 Bd=0.4 density 40/1

area

|
o2
W
o]
e
[y
o]

1

g.00 3.00 6.00 9.00 12.00 15 .09
time

Figure 7.6: Convergence test for bubble rising with large surface tension: mass

conservation,
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Velocity Re=5.0 Bd=0.4 density 40/1

114 T T t T T | T 1 T

velocity

-2.88 .
32x64
- — - 54x128 .
-3 .38 ] ] : | 1 ] 1 § 1
@.89 1.89 3.60 5.49 7.208 9.8%9

time

Figure 7.7: Convergence test for bubble rising with large surface tension: velocity

steady state.
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Minor Re=5.0 Bd=0.4 density 40/1

2.11% T I T T T I T I i

32x64
2.82 ——= 64x128 -

minor axis size

@.00 1.80 3.60 5.40 7.20 9.00
time

Pigure 7.8: Convergence test for bubble rising with large surface tension: minor

axis steady state.
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M=0.056 £0=39.8 density 1000/1 50x100 3d

C

t= 4.80

D

t= 8.00

C

t=7.20

D

t= 8.40

Q0.00

(D

t= 1.20

1= 2.40

t= 3.60

Figure 7.9: Evolution of 3D rising bubble with large surface tension. Bubble

reaches a steady shape and velocity.
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Re=100.0 Bd=R00.0 density 1000/1

(a) t= 440 || (b) t=4.40 || (c) t= 4.40

Figure 7.10: Convergence test for bubble rising with medium range Reynolds num-

ber and small surface tension. (a) 36 x 36 (b) 72 x 72 (c) 144 x 144
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Re=100 Bd=200 density 1000/1 grid 144x144

N AR D
0 O 0 0 o 0
t= H.20 t= B.60 t= 6.00
Y| Y| o
i= 4.00 t= 4.40 t= 4.80
t= 2.80 t= 3.20 t= 3.60

Figure 7.11: Evolution of rising bubble with medium range Reynolds number and

small surface tension.
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Position Re=100.0 Bd=200.0 density 1000/1

3.13 1 .
2.580 +
1.88
=
o]
4]
C
oy
1.26 - -
B.63 -
36x36
- — = T2X72 -
—— e 144%144
2.00 | ] 1 1 ! 1 i
7. 53 .88 1.76 2.64 3.52 4.40

time

Figure 7.12: Convergence test for bubble rising with medium range Reynolds num-

ber and small surface tension: position.
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Re=100 density 1000/1 grid 72x72

(a) t= 400 || (b) t= 4.00

Figure 7.13: Surface tension effects on bubble rising with medium range Reynolds

number. (a) Bond number 200.0 (b) Bond number 25.0
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Re=10.0 Bd=inf density 1000/1 grid 72x72

()

—

t= 4.80 t= 5.20 t= 5.60
t= 3.60 t= 4.00 t= 4.40

t= 2.40

()

t= 2.80

()

t= 3.20

Figure 7.14: Evolution of rising bubble with low Reynolds number and no surface

tension.
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Re=1000 Bd=200 density 1000/1

140x140

D
0 O

D
0O

>
g 0

t= 5H.20 i= 5.80 t= 6.00
o <
0 O
t= 4.00 t= 4.40 t= 4.80
t= 2.80 i= 3.20 t= 3.60

Figure 7.15: Evolution of 2D rising bubble with high Reynolds number and low

surface tension.
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Re=inf Bd=200 density 1000/1 240x240 3d

t= 1.60 t= 1.80 t= 2.00
= 1.00 t= 1.20 t= 1.40
i= 0.40 t= 0.60 t= 0.80

Figure 7.16: Evolution of 3D rising bubble with no viscosity and little surface

tension. o = 3A
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Bd=200 density 1000/1 120x120 3d

AV INCAVEN BNEAN

(a) t= 140 || (b) t= 140 || (c) t= 1.40

Figure 7.17: Convergence check for 3D rising bubble as Reynolds number ap-

proaches infinity (o = 3h/2). (a) Re = 200 (b) Re = 400 (c} Re =800
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Re=200 Bd=200 density 1000/1 viscosity 100/1 3d

(a) t= 180 || (b) t= 1.80

(a) t= 180 || (b) t= 1.60

Figure 7.18: Convergence check for 3D rising bubble at time of break-up. High

Reynolds number flow with low surface tension. (a) 100x100 (b} 200x200
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Re=200 Bd=200 density 1000/1 3d th=3

\ 4

medinm 100x100

—\fine 200x200 A

area

3 .80 1 l I ! t | 1 1 i
D.06 .60 1.20 1.80 2. 44 3.88
time

Figure 7.19: Volume conservation for 3D rising bubble at time of break-up. High

Reymnolds number flow with low surface tension.
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Re=100 Bd=inf density 5/1 grid 72x72

t= 5.20 t= 5.80 t= 6.00
t= 4.00 t= 4.40 t= 4.80

@ | O | 0

t= 2.80 t= 3.20 t= 3.80

Figure 7.20: Evolution of rising bubble with low density ratio and medium range

Reynolds number.
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Re=100 Bd=inf density 1.01/1 grid 140x140

S D J ) O Q
t= 8.00 t= 6.60 t= 7.20
t= 4.20 t= 4.80 t= 5.40

SR EOHEE®

i= 2.40 t= 3.00 t= 3.60

Figure 7.21: Evolution of rising bubble with slight density ratio and medium range

Reynolds number.
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Velocity Re=100 Bd=inf grid 50x100

.78 T T T T Y T T

H T

59 1 i 3 i : I 1 ] I

density 1000/1
31 F ~—— -~ density 5/1
———— density 1.1/1

3.00 1.26 2.52 3.78 5.04
time

Figure 7.22: Effects of density ratio on bubble rise velocity.
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Re=20 Bd=1/2 density 1/100 h=0.07

@.93 -

amplitude
=
=
T T
]

|
=

21 =

?.0d 1.83 3.67 5.58 7.33 9.17
{ime

Figure 7.23: Amplitudinal oscillations of a two-dimensional drop driven by surface

tension forces. Amplitude decays exponentially due to viscosity.
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Re=20 Bd=1/2 density 1/100 h=0.07 3d

2.16 T T T T T T T T T

amplitude

2.0a 1.94 3.89 5.83 7.77 9.71
time

Figure 7.24: Amplitudinal oscillations of a three-dimensional drop driven by sur-

face tension forces. Amplitude decays exponentially due to viscosity.
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Re=10 Bd=inf density 1/1000 grid 50x100

t= 3.50 i= 4.00 i= 4.50 t== 5.00

t= 1.50 i= 2.00 t= 2.50 t= 3.00

Ol 0 A -

Figure 7.25: Evolution of a large water drop (no surface tension). Drop deforms

as 1t hits the base.
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Re=10 Bd=1/800 density 1/1000 50x100

t= 3.50 t= 4.00 = 4.50 t= 5.00

O\/\/

t= 1.80 t= 2.00 t= 2.560 t= 3.00

OOQ

O

Figure 7.26: Evolution of a water drop with surface tension. Drop remains circular

as it hits the base.
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Figure 7.27: Position of water drop with surface tension versus time.
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Re=20 Bd=1.33 density 1/14 grid 44x44

1= 9.75 t=11.00 t=12.25
i= B.00 t= 7.256 t= 8.50
t= 2.25 t= 3.50 1= 4.75

Figure 7.28: Evolution of two 2D water drops colliding with each other. Combined

drop experiences surface tension driven oscillations.
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Re=20 Bd=1.33 density 1/14 grid 44x44

2B

.58

.82

.bo

Nl

.be

Figure 7.29: Conservation of mass for colliding drop problem.
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Re=20 Bd=1R2 density 1/14 grid 44x44 34

t= 8.75 t=11.00 t=12.26

t= 6.00 =725 t= B.50

8 O | =

t= 2.25 t= 3.50 t= 475

Iigure 7.30: Evolution of two 3D water drops colliding with each other. Combined

drop experiences surface tension driven oscillations.
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Re=20 Bd=12 density 1/14 grid 44x44 3d

t= 9.76 1=11.00 t=12.25

t= 6.00 t= 7.25 t= 8.50
t= 2.25 t= 3.50 t= 4.75

Figure 7.31: Evolution of two 3D water drops colliding with each other. Drops
are burst on contact. Surface tension is modeled using the average of level set

functions active at the interface.
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Re=20 Bd=12 density 1/14 grid 44x44 3d

Ak

= 8.75 t=11.00 t=12.26

O S

t= 6.00 t=7.25 t= 8.50
t= 2.25 t= 3.50 t= 4.75

Figure 7.32: Evolution of two 3D water drops colliding with each other. Drops

never allowed to burst. Surface tension at interface depends on ¢, and/or ¢;.
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Re=20 Bd=12 density 1/14 grid 44x44 3d

S=

:

B 0=

t= 9.75 t=11.00 t=12.25
t= 6.00 t= 7.25 t= 8.50
t= R2.26 t= 3.50 t= 4.75

Figure 7.33: Evolution of two 3D water drops colliding with each other

. Drops are

burst on contact. Surface tension at interface depends on ¢; and/or ¢s.
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color functltion init. Re=100 Bd=200 72x72
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Figure 7.34: Rising gas bubble with medium range Reynolds number and low

surface tension. Initial level set function is -1 in the bubble and 1 outside.
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Re=inf Bd=2.0 density 1/1000 grid 80x80 3d
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Figure 7.35: A slightly perturbed cylindrical column of fluid with surface tension

)
D

D

(viscous and gravitational forces are zero) breaks up. Jet evolves in time from left

to right and bottom to top. t, =12, 1, =20, tg = 24, ...
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Re=1000 Bd=1 I'r=0.2 density 1000/1 64x128 3d

O 0

C==3Q

t= 1.20 t= 1.50 t= 1.80 t= 2.10

Q—\/“

t= 0.00 t= 0.30 t= 0.80 t= 0.90

Figure 7.36: Upon rupture of a gas bubble at an air/water interface, surface tension

effects cause a high speed jet of water to form.
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Re=inf Bd=1 E0=.3 density 1000/1 150x150 3d

W

t= 1.20

~—__~ N\___

t= 1.40
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t= 0.20

Vel

t= 0.40

Iigure 7.37: Results of a “pre-ruptured” gas bubble using an initial profile depen-

dent on the Fotvos number. Viscous forces are zero.
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Velocity Re=inf Bd=1 E0=.3 density 1000/1 150x150 3d

29.620 T T T T | I T I

22.57 -

1615

Velocity

9.72

-3.13 1 | 3 | i i 1 i 1
@.8d @B.25 B.59 g.75 1.080 1.25
time

Figure 7.38: Velocity profile of water jet emitted during the evolution of a

“pre-ruptured” gas bubble £0 = 0.3.
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Re=inf Bd=1 E0=.3 density 1000/1 70x70 3d
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Figure 7.39: Gas bubble allowed to rise to surface and then rupture. Results should

be compared with “pre-ruptured” case.
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Re=inf Bd=1 E0=.3 density 1000/1 80x80 3d

t= 1.20 t= 1.40

= 0.60
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I

0.80 t= 1.00
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Figure 7.40: Gas bubble allowed to rise to surface and then rupture. Surface

tension is modeled using average of level set functions active at the interface.
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Re=inf R=1mm U=7.6m/s density 1/1000 grid 70x70
t= 2.00 t= 2.30 t= 2.60

U U U

t= 1.10 t= 1.40 t= 1.70

t= 0.20 t= 0.50 t= 0.80

Figure 7.41: Water drop splashes against water surface.
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Re=inf R=1mm U=7.6m/s density 1/1000 grid 140x140
t= 2.00 t= 2.30 t= 2.60

— U U U

t= 1.10 1= 140 t=1.70

t= 0.20 t= 0.50 t= 0.80

Figure 7.42: Water drop splashes against water surface. Extra interface between
drop and surface is tracked throughout simulation. Surface tension is modeled

using ¢, and ¢,.
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Re=100 Bd=inf density 1000/100/1 grid 50x100
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t= 6.40 t= 8.00 t= 9.680 t=11.20
t= 0.00 t= 1.680 t= 3.20 t= 4.80

Figure 7.43: Air bubble rises through a water/“cil” interface. “oil” is a less dense

but more viscous fluid. Surface tension effects are ignored.
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Re=100 Bd=200 density 1000/1000/1 grid 56x56

t= 3.60 t= 4.00 t= 4.50
t= 2.00 t= 2.50 t= 3.00

M

t= 0.50

T

t= 1.00

— )

t= 1.50

Figure 7.44: Air bubble rises through a water/water interface. Results compare

well with the “one level set” version with Re = 100 and B = 200.
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Re=100 Bd=inf density 10/8/6 grid 100x100

t= 8.00 t=12.00

t= 0.00 t= 4.00

Figure 7.45: Rayleigh-Taylor instabilities occur when three fluids are layered:

heavy,medium, and light. Flow assumed to have medium range Reynolds num-

ber and no surface tension.
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