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Abstract

We summarize some recent work of ours on the design and analysis of multi-
grid and overlapping domain decomposition algorithms for solving efliptic prob-
lems on unstructured meshes in two and three dimensions. We describe a class
of algorithms which are based on the construction of a coarse grid hierarchy, and
the associated standard finite element interpolation operators, from the given
fine grid. We develop a theory which shows that our domain decomposition
algorithms have the same optimal convergence rate as the usual algorithms for
structured meshes. Very general meshes and subdomains are allowed: neither
the fine mesh nor the coarse mesh need to be quasi-uniform, the subdomains
can be of arbitrary shapes and sizes, and the coarse mesh need not be nested
to, or cover the same physical domain as, the fine mesh. Some numerical results
will be presented to demonstrate both the theory and the algorithms.
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1 Introduction

Unstructured meshes have become increasing popular in scientific computing i1, 12].
Compared to structured meshes, they have increased flexibility in adapting to com-
plicated geometries as well as to large changes in the solution. However, traditional
solvers have to be modified so that their efficiency will not be adversely affected by
the lack of structure in the mesh.

In this short paper, we summarize some recent work of ours on the design and
analysis of multigrid and overlapping domain decomposition algorithms for solving
elliptic problems on unstructured meshes in two and three dimensions. For this class
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of algorithms, unstructured meshes present several additional practical and theo-
retical difficulties: the absence of a natural coarse grid hierarchy, the need to con-
struct well-balanced subdomains, the typically highly non-uniformity of the mesh,
the non-matching of the fine grid boundary and the coarse grid boundary and the

non-nestedness of the finite element spaces on the fine mesh and the coarse mesh. We
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skall describe some approaches we have taken $o overcome these problems.

We describe a class of algorithms which are based on the construction of a coarse
grid hierarchy, and the associated standard finite element interpolation operators,
from the given fine grid. We use recursive spectral graph partitioning technigues to
construct the subdomains. We develop a convergence theory for overlapping domain
decomposition algorithms which allows very general meshes and subdomains: neither
the fine mesh nor the coarse mesh need to be quasi-uniform, the subdomains can be
of arbitrary shapes and sizes, and the coarse mesh need not be nested to, or cover the
same physical domain as, the fine mesh. The theory shows that our algorithms have
the same optimal convergence rate as the usual algorithms for structured meshes.

There has been relatively little work on domain decomposition and multigrid
algorithms for unstructured meshes. Some references are: (12, 11, 5, 4, 14].

The present paper is essentially a summary of our results in the papers (8, 9, 7]
More details can be found in those papers.

2 Construction of coarse grid hierarchy

In both multigrid and domain decomposition algorithms, a coarse grid hierarchy
is need. Unlike for a structured mesh, this is not naturally given as part of the
refinement procedure. Our approach is to comstruct the coarse grid hierarchy, as
well as the associated interpolation and restriction operators, directly from the given
unstructured fine mesh. It suffices to describe this for one coarse level because the
procedure can be recursively applied to obtain all the coarse meshes. Typically, the
whole coarse grid hierarchy is used by a multigrid algorithm but only one of the
coarser grids is used by a standard two-level domain decomposition algorithm.

We shall need the notion of a mazimal independent set of the vertices of a graph.
A subset of vertices V of a graph G is said to be independent if no two vertices of
V are connected by an edge. V is said to be mazimally independent if adding any
additional vertex to it makes it dependent. Note that maximal independent sets of
vertices of a graph are generally not unique.

Qur procedure has four steps:

1. Form a maximally independent set of the boundary vertices and from these
construct a set of coarse boundary edges,

2. Form a maximally independent set of the interior vertices,
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3. Apply a Cavendish type algorithm {6] to triangulate the resulting collection of
coarse boundary edges and coarse interior vertices,

4. Construct the interpolation and restriction operators.

Step (i) is fairly straightforward. For each disjoint boundary segment, the bound-
ary vertices are ordered say in a clockwise direction, starting with a random vertex.
Then every other veriex is thrown out and the remaining ones are connected with new
coarse boundary edges. This forms a coarse representation of the boundary segment.
After several coarsenings, one may find that the boundary is no longer gualitatively
similar to the original boundary. This may be prevented by simply retaining some of
the vertices in the coarse grid boundary that would normally be dropped.

Step (i) uses a greedy wavefront type algorithm. A random interior vertex is
selected for inclusion in the maximally independent set. Then every interior vertex
connected to it is eliminated from consideration for inclusion in the maximally in-
dependent set. Next, one of the interior vertices connected to the newly eliminated
vertices is selected for inclusion and the procedure repeats until all interior vertices
have been considered. An algorithm similar to this has been used by Barnard and
Simon [2] in designing graph partitioning algorithms, also see Guillard [11]. This
procedure can be implemented in linear time, i.e. proportional fo the total number
of interior vertices. An alternative to step (ii} is to construct a maximal independent
set of the dual graph of the mesh and use the center of the remaining elements as the
coarse grid vertices.

The input to Step (iii) is thus a collection of coarse boundary edges and coarse
interior vertices. A version of Cavendish’s algorithm [6] is then applied to triangulate
this collection. This algorithm is an advancing front technique and “grows” new
triangles from those already built by selecting an interior vertex to be “mated” to an
existing edge. In doing so, it tries to optimize the aspect ratio of the new triangle
formed, preferring those that are close to being equilateral. It is possible to implement
this algorithm in linear time, i.e. proportional to the number of interior vertices, but
our current implementation is not optimal.

Finally, in Step (iv), the interpolation operator is constructed in the form of a
sparse matrix and stored. To determine the entries of this interpolation matrix, the
coarse triangles are taken in sequence and the entries corresponding to all the fine grid
vertices within the coarse triangle are then computed using the standard piecewise
linear interpolation. This procedure can also be implemented in linear time because
the fine grid triangles close to the vertices of the coarse triangle (which are also fine
grid vertices as well) can be found by a local search, We emphasize that this is not
possible if the coarser grids are generated completely independently. The restriction
matrix is then just the transpose of the interpolation matrix.
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3 Convergence analysis of Two Level Schwarz Meth
ods

We will develop a theory to make the two level Schwarz overlapping domain de-
composition methods applicable to nnstructured meshes and keep the same optimal
convergence. We give only the results for the model problem with Dirichlet boundary
condition. For more general problems and boundary conditions, we refer to Chan,

Smith and Zou {9} {7].

3.1 Uniformly elliptic problems with non-matching bound-
ary
We consider the following model problem: Find u € H3{(Q) such that

a{u,v) = fnp(w) VuVude = f(v), Vve H(Q) (1)

where 0 ¢ B* (d=2, 3) and p(z) 2 2 > 0, in ().

Suppose we are given a family of triangulations {T{} on Q, consisting of simplices.
We will not discuss the effects of approximating 2 but always assume in the paper
that the triangulations {7} of ( are exact. So we have = QF = U opir. Let
h, = diam 7 and A = & = max,c7( h,. Let V* be a piecewise linear finite element
subspace of H}(§2) defined on T* with its basis denoted by {48}p,, and O; =supp $!.
As usual, we decompose the domain §2 into p nonoverlapping subdomains {}; such that
Q0 = UE_ T);, then extend each subdomain £ to a larger one {2} such that the distance
between 9§ and 8¢ is bounded from below by & > 0. We denote the minimum
of all §; by 6. We assume that 80} does not cut through any element 7 € T{, For
the subdomains meeting the boundary we cut off the part of {); which is outside of
. No other assumptions will be made on {{%;} except that any point z € { belongs
only to a finite number of subdomains {f2{}. Therefore, we allow each §; to be of
quite different size and of quite different shape from other subdomains. We define
the subspaces of V* corresponding to the subdomains {§2(},: =1,2,---,p by

Vi =V H (). (2

In order to get an optimal preconditioner even when the number of subdomains
increases greatly, we introduce a coarse grid TH which can be completely independent
of 71, i.e., none of the nodes of 7# need to be nodes of T¢. In general, Q¥ # Q.
Let H be the maximum diameter of the elements of 7%, and 0 = U,,.Heq"}("f'H . By
VH we denote a subspace of H2(02¥) consisting of piecewise polynomials defined on
TH by {$#}", we denote its basis functions related to the nodes {gFym,. Let
Of = supp $¥. We note that V¥ need not necessarily be piecewise linear as 1%

%
Thus we do not necessarily have the usual condition: VH cvh,
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For technical reasons, we make two additional reasonable assumptions on the
coarse grid:

(A1) ™HNQ#Q forall 7 ¢ TH,
that is, no coaise giid element Lies completely ouiside the fine grid. For the comple-
ment set 2\ QF let § be the set of all vertices qff of OF which belongs to 2\ 17,
and By(r) be a ball at the point p with radius ». We assume that

(A2): O\ OF C Upngs Byp(diam OF ),

that is, the coarse grid must cover a significant part of the fine grid.

To overcome the difficulty that V¥ ¢ V%, in both the theory and the algorithms,
we need a way of mapping values from V# {0 V*, For the coarse space to be effective,
this mapping must possess the properties of Hl-stability and L? optimal approxima-
tion. We will show that the standard finite element interpolant II; is one of such
choices.

3.2 Two level overlapping Schwarz algorithms

Based on the finite element spaces V* and V¥ given previously, we formulate the
two level overlapping Schwarz methods for nonnested grids. Schwarz methods are
techniques to construct preconditioners for the stiffness matrix A = {ai;)7;=; with
ai; = a(¢f, cﬁ;’) These preconditioners are built using local and coarse grid solves,

The local soives are defined as in Dryja and Widlund [10}, and Bramble, Pasciak,
Wang, and Xu [3]. Define the H'-projection operators P : V* = VA i =1,...,p
such that for any u € V?, Pau € V* satisfies

af P, v} = afu, v), Yo Vi, (3)

There are two ways to define the coarse grid projection, in order to handel the
non-nestedness of the coarse grid space. Let I be any linear operator which maps
VH# into a subspace Z,V¥ of V*, But in the rest of the paper, we only discuss the
choice T = [} -the standard finite element interpolant,

In Method 1 we define B, by first defining Pgu € V¥ on the original coarse grid
space by

a{ Pru, v} = a{u, Tyv), ueVh voevH {4)

and then define Py = T, Py: V" — V. Here the subspace Vj* = IhVH c Vi
In Method 2 we define Fy by calculating the projection directly onto the subspace
Vi: For any u € V*, Puu e Vi such that

a(Pou,v) = a{u,v), VYo eV {5)
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We now derive the matrix representation of the operators P: and Py. Next, we use
u* to denote finite clement functions and u its coeficient vector, that is uf = T updi.

Let {¢%,}%, C {#F}i: be the set of nodal basis functions of VA, i =1,2,---,p.
For each ¢, we define a matrix extension operator RY as follows: For any ub e VA,
we denote by u; the coefficient vector of u} in the basis {¢?;Yii,, and we define that
RTu; to be the coefficient vector of u? in the basis {881,

Since {#f}7, is the set of basis functions of VH then {ZypF}R, is the set of
basis functions of V;*. We define a matrix extension operator B3 as follows: For any
ul € V, we denote by uo the coefficient vector of ul in the basis {ZuypH}m,, define
REup to be the coefficient vector of ul in the basis {gﬁf};‘;l Let Ay be the stiffness
matrix corresponding to the original coarse space VE.

Then it is straightforward to derive that for any u* € V*, the matrix representa-

tion of Pub with P =P+ Y0, P is

r
My Au = RTAZ RoAu+ > RT A7 RiAu, (6)

f=l
and the matrix representation of Put with P=Y"1 4P is

r
MyAu=)" R A7'RiAu (M)
=0

where A; = R;AR] for i = 0,1,---,p are the stiffness matrices corresponding to
the subspaces Vi*. The preconditioners M; and M, may be also thought of as an
overlapping block Jacobi method with the addition of a coarse prid correction. The
multiplicative Schwarz method is the Gauss-Seidel version of the additive algorithm.
We write down the symmetrized version, using Method I as,

M = (I—(I-RBTAT'R:iA)...(I ~ BT A" RyA) (T — R AR RoA)
(I — RTA'R,4) .. (I— RTAT' Ry ADAT (8)

In practice the application of the multiplicative Schwarz preconditioner is done di-

rectly, not as given in (8).
For Method 1 and Method 2, we have the following estimates for their condition
numbers, see Chan, Smith and Zou (7] for details:

Theorem 3.1 Suppose that both triangulaiions T and TH are shape regular (not
necessarily quasi-uniform), and satisfy Assumptions (A1) and (A2). Then, with
Iy, = I, we have

s{(MyA), s(MaA) <C(1+ %)2. (8)

We remark that the ratio H/§ in (9) can be replaced by a completely localized
ratio.
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4 Numerical results

In this section we present convergence results for two basic algorithms: two level
overlapping multiplicative Schwarz methods and standard V-cycle multigrid. The
fine grid is as depicted in Figure 1. In Figure 2 we depict the three coarser grids
which have been generated automaticaily.

For our computations we have used Laplace’s equation with homogeneous bound-
ary conditions. This problem was diseretized with the usuval piecewise linear finite
elements. In our calculations the discrete right hand side was chosen to be the vector
of all I’s. Other numerical examples may be found in Chan and Smith [8} and Chan,
Smith and Zou [7].
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Figure 2: The coarser Airfoil meshes
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Figure 3: The Aérfoil mesh: 16 subdomains computed by RSB

4.1 Multiplicative Schwarz results

We have partitioned the original fine grid into 16 pieces using the recursive spectral
bisection method, [13]. These are given in Figure 3. In Table 1 we give the number
of iterations required to achieve a relative decrease in the discrete two norm of 1075
Exact solvers (sparse LU factorization) were used to solve both the local problems
and the coarse grid problem.

Table 1: Iterations for the Airfoil mesh. Multiplicative Schwarz

Overlap Level of Regular | Dual graph
(no. elements) | coarse grid | coarsening | coarsening
0 None 56 56
4 21 22

3 15 12

None 16 16
4 10 10

1 7
None 14 14
4 8 8

5 3

f=0 1 Il ol Wl | [ R
Y]
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4.2 Multigrid results

In Table 2 we give the convergence results for standard V-cycle multigrid. We have
used 2 pre and 2 post smoothing steps of symmetric pointwise Gauss-Seidel on each
level. These results are comparable to those obtained on a uniformly refined mesh.

Table 2: Multigrid iterations for the Airfoil mesh

Regular coarsening | Dual graph coarsening
MG Levels | Nodes Dir. B.C. . | Nodes Dir. B.C.
2 1180 4 1507 4
3 518 4 328 4
4 89 4 171 5
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