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Abstract

We develop high resolution shoek capturing numerical schemes for hyper-
bolic systems with relaxation. In such systems the relaxation time may vary
from order one to much less than unity. When the relaxation time is small,
the relaxation term becomes very strong and highly stiff. Usually one can not
decouple the problem into separate regimes and handle different regimes with
different methods. Thus it is important to have a scheme that works uniformly
with respect to the relaxation time. Using the Broadwell model of the nonlin-
ear Boltzmann equation we analyze some existing schemes and develop a second
order scheme that works effectively, with a fixed spatial and temporal discretiza-
tion, for all range of mean free path. Formal uniform convergence proof for a first
order scheme, and numerical convergence proof for the second order method are
also presented. This study is motivated by the reentry problemn in hypersonic
computations.
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1 Introduction

Hyperbolic systems with relaxation are used to describe many physical prob-
lems that involve both convection and nonlinear interaction. In the Boltzmann
equation from the kinetic theory of rarefied gas dynamics, the collision (re-
laxation) terms describe the interaction of particles. In viscoelasticity, mem-
ory effects are modeled as relaxation. Relaxation occurs in water waves when
the gravitational force balances the frictional force of the riverbed. For gas in
thermo-nonequilibrinm the internal state variable satisfies a rate equation that
measures a departure of the system from the local equilibrium. Relaxations also
occur in other problems ranging from magnetohydrodynamics to traffic flow,

In such systems, when the nonlinear interactions are strong, the relaxation
rate is large. In kinetic theory, for example, this occurs when the mean free
path between collisions is small (i.e. the Knudsen number is small). Within
this regime, which is referred to as the fluid dynamic limit, the gas flow is well-
.described by the Euler or Navier-Stokes equations of #iuid mechanics, except in
shock layers and boundary layers. The characteristic length scale of the kinetic
description of the gas is the microscopic, collision distance; in the flnid dynamic
Timit it is replaced by the macroscopic length scale of fluid dynamics. By analogy
with the kinetic theory, we shall refer to the limit of large relaxation rate (or
stnall relaxation time) for a general hyperbolic system with relaxation as the
fluid dynamic Hmit.

The fluid dynamic limit is challenging for numerical methods, because in
this regime the relaxation terms become stiff. In particular, a standard numeri-
cal schemne might fail to give physically correct solutions once the (microscopic)
relaxation distance is smaller than the spatial discretization. Although a full
simmilation of the relaxation process would require a very fine (and expensive)
discretization, it may be possible to accurately compute the solution on a coarser
fluid dynamic length scale. The goal of this paper is to present a class of numer-
ical methods using implicit finite difference equations that work with uniform
accuracy from the rarefied regime to the fluid dynamic limit for the Broadwell
model of kinetic theory.

Numerical methods for hyperbolic systemns with relaxation terms have at-
tracted a lot of attention in recent years [7], [15], [16], [20], [21]. Studying the
numerical behavior for these problems is important not only for the physical
applications, but also for the development of new numerical methods for con-
servation laws, such as kinetic schemes ([14], [8], [22]) and relaxation schemes
[17]. Most kinetic or relaxation schemes can be described as fractional step
methods, in which the collision step is just a projection of the system into a
sort of discrete “local Maxwellian” or local equilibrium. Although the goal of a
kinetie scheme or relaxation scheme is different from ours, nevertheless we use
them as guidelines for the study of the properties of a numnerical scheme near
the fluid dynamic regimne.



In earlier works on system of equations with relaxation, the goal was to
develop robust numerical schemes that handle effectively the stiffness of the
problem. In regions where the relaxation time is no longer small and the prob-
lemn becomes nonstiff, however, these schemes usually may not have high order
accuracy uniformly with respect to the wide range of the relaxation time.

Our motivation differs from these earlier approach in that we seck to develop
robust numerical schemes that work uniformly for a wide range of relaxation
rate. We consider a simpler model of the Boltzmann equation, and we derive
a numerical scheme which is of second order uniformly in the mean free path.
This is motivated by hypersonic computations of reentry problems. We develop
robust schemes that are able to handle all different regimes, from the rarefied
gas to the fluid limit (the stiff regime), with a fixed spatial and temporal grids
that are independent of the mean free path. Although we develop our method
based on the Broadwell model, this scheme can be applied to a much wider
class of hyperbolic systems with relaxation terms and to other discrete velocity
kinetic models. In particular, it applies to a class of hyperbolic systems with
relaxation characterized by Liu [19].

Probably the paper that is closest in spirit to our work is the one by Coron
and Perthame [7]. In that paper the authors derive a numerical scheme for solv-
ing the BGK model of the Boltzmann equation under a wide range of mean free
path. They discretize velocity space and use a splitling scheme. The collision
step is treated by a semi-implicit method that guarantees positivity and en-
tropy condition for the time-discrete model. The scheme is first order accurate
in space and time.

Development of numerical methods for the problems considered here is con-
siderably aided by knowledge of the equations for the fluid dynamie limit. In
other problems, such as stiff detonation waves and oscillatory fluid flows, the
corresponding limit may be less well understood. The goal of “numerical ho-
mogenization” [9, 10} for such problems is to formulate numerical methods that
automatically give the correct macroscopic or homogenized solution.

2 The Broadwell Model

A simple discrete velocity kinetic model for a gas was introduced by Broad-
well [2]. It describes a 2-D gas as composed of particles of only four speeds
with a binary collision law and spatial variation in only one direction. The gas
defined by a density function in phase space satisfies the equation

b +0.0 = ('~ fa),

oah = (W - fg), (2.1)



1
Gy — aa:g = E(ha _fg)l

where ¢ is the mean free path, f, k and g denote the mass densities of gas
particles with speed 1,0 and —1 respectively In space = and time ¢. The fluid
dynamic moment variables are density p, momentum m and velocity u defined
by

m
P:f+2h+g) m:f_g’ u:_mp,... (22)
In addition, define
z=f+g. (2.3)
Then the Broadwell equations can be rewritten as
dp+8m = 0, (2.4)
6gm‘§' aa:z = 0, (2.5)
1
Bz + O,m = g(,p2 4+ m® —2pz). (2.6)
A local Magwellian is a density function that satisfies
Q(f,h,g):hz—fg:p2+m2_2pzx{), (2.7)
i.e. 1 1
z = zp(p,m) = %(,02 +m?) = 5(p+ pu’) (2.8)

As £ — 0 Eq. (2.1) or (2.6) gives the local Maxwellian distribution (2.8). Ap-
plying (2.8) in (2.5), one gets the fluid dynamic limit described by the following
model Euler equations

Bip + Oz (pu)

o + 02 (o + 7))

To the next order, a model Navier-Stokes equation can be derived via the
Chapman-Enskog expansion [5]. For a description of the Broadwell model and
its fluid dynamic limit see, for example, references [3] and [13].

The Broadwell equations is a prototypical example for more general hyper-
bolic systems with relaxations in the sense of Whitham [25] and Liu [19}. These
problems can be described mathematically by the system of evolutional equa-
tions

0,

il

(2.9)
0.

Il

8U + 8, F(U) = —% R(U), UeRY. (2.10)

We will call this system the relazation system. Here we use the term relaxation
in the sense of Whitham [25] and Lin (19]. The relaxation term is endowed with
an i X N constant matrix @ with rank n < N such that

QR(UY=0, forall U. (2.11)



This yields n independent conserved quantities v = QU. In addition we as-
sume that each such v uniquely determines a local equilibrium value U = £(v)
satisfying R(£(v)) = 0 and sach that

REv) =7, forall . {2.12)

The image of £ then constitutes the manifold of local equilibria of R.
Associated with Q are n local conservation laws satisfied by every solution
of (2.10) and that take the form

0(QU) + 8,(QF(U)) = 0. (2.13)

These can be closed as a reduced system for v = QU if we take the local
relaxation approximation

U = &), (2.14)
v+ Ope{v) =0, (2.15)

where the reduced flux f is defined by
e(v) = QF(E(v)). (2.16)

A system of conservation laws with relaxation is stiff when ¢ is small compared
to the time scale determined by the characteristic speeds of the system and
some appropriate length scales. While we mainly concentrate on the Broadwell
equation, the analysis as well as the numerical schemes can certainly be applied
to this class of relaxation problems. In fact from time to time we will use the
general equation (2.10) to simplify the notation.

3 A Brief Review of Previous Methods

‘We introduce the spatial grid points Tigpls j=---,—1,0,1, - with uniform
mesh spacing Az = ;.1 — #;_3 for all . The time level #p,%1, -+ are also
gpaced uniformly with space step Af = g+l —¢? for n = 0,1,2,- ... Here the
assumption of a uniform grid is only for simplicity. We use UT' to denote the
cell average of U in the cell [a:j_%,mj+%] at time &,

yr =L / e o) d 3.1)
P = Ag ), T '

The most natural way to solve the Broadwell equations is to split an implicit
collision step from an explicit convection step. In the collision step, the backward
Euler method can be used to achieve numerical stability independent of €. In



this step it is very convenient to use the fluid variables. In the convection
step, the characteristic method can be applied for the free stream. The overall
Courant-Friedrichs-Lewy (CFL) number then will be solely determined by the
convection step, and it is 1. This simple splitting scheme is as follows:

- " - At -
pi=p}, fy=mi, E=2z+ “2';((19?)2 +(m})* — 207 %) ; (3.2)

fJ’.""l = j":;."_wl , h?-l-l = h? ) g?+1 = §j+1 . (33)
Between the collision and convection steps the relation (2.2) and (2.3) will be
used. This method is going to have the correct fluid limit when £ — 0 since
the first step always yield the correct local Maxwellian z = (p* + m?)/(2p).
Applying it to the next step, one gets a first order approximation to the model
Euler equations. However, the overall accuracy is first order, uniformly in € (see
Section 8).

Previously the numerical solution of the Broadwell equations has been con-
sidered by several authors {11, 12, 1]. These authors did not consider numerical
schemes that work also in the fluid dynamic regime.

In paper [11] a fractional step method, consisting of a convection and a
collision step, was analyzed. The author proved that the numerical solution
to the scheme converges to the solution of the Broadwell equations. He also
showed that in the limit ¢ — 0 the scheme is equivalent to Lax-Friedrichs
scheme applied to the model Euler equations, provided the initial condition is
a local Maxwellian.

While it is a step in the right direction, the method of [11], suffers from
several deficiencies that make it inapplicable in practice. For small £, the scheme
does not provide the proper relaxation to a local Maxwellian unless the small
mean free path is well resolved temporally, and therefore the scheme is not able
to handle initial layers with underresolved temporal discretizations.

In the papers [12] and [1], numerical solutions of the Broadwell model have
been obtained. In these papers the aim is to study the behavior of the Broad-
well model and to formulate conjectures abou$ the asymptotic behavior of the
solutions.

In {12] the authors considered the 1D Broadwell model that originates from
the six-velocity model, Their aim is to study the long time behavior of the 1D
Broadwell equations with reflecting boundary conditions. For this purpose they
use a space-time discrete Broadwell model, which is basically a consistent finite
difference scheme for the Broadwell model, with Az = A¢. The scheme is the
following:

f?+1 = ftn—1+AtQ?

artl = AP - ANQT (3.4)
gt = gl +AWQY



with QF = (h?)? — fI* 19}y, Note that the discrete collision term is different
from (h?)?— fF g7, corresponding to the naive explicit scheme, which is unstable.
For this scheme they proved that, provided the total initial mass is less than
€, the scheme preserves positivity and total mass, and the solution 1s bounded.
Moreover, the solution to the discrete scheme converges to the solution of the
true Broadwell model, at least when the solution of the latter has been proved
4o exist. The numerical results suggested that the solution converged toward a
stationary uniform state, !

In another paper [1] the authors make use of a splitting scheme for the 2D
Broadwell equations, in which the collision step is treated by a fully implieit
scheme, and the convection step is treated by exact free flow. Their goal is to
study the decay of solutions for boundary value problem with specular boundary
conditions. They found numerical evidence that the solution decays to a uniform
state.

Numerical methods for more general hyperbolic systems with stiff relaxation
terms (2.10) have been considered in [20, 21, 16, 15]. There the goal is to
develop underresolved numerical schemes (Az > ¢, At 3> ¢) that work in the
stiff regime. The zero relaxation limit guides the development of these methods.
We will use some of the ideas there to study the behavior in the underresolved
regime, however here our goalis to develop a scheme that works with a uniformly
second order accuracy in all different regimes.

4 The Convection Steps—Upwind Schemes

We use the method of lines — in which the time discretization and spatial
discretization are taken separately — for the Broadwell equations. In this section
we shall discuss the spatial discretization, which concerns the linear convection
terms. Note that the linear convection in the Broadwell equation is of hyperbolic
type. Thus it is natural to use upwind schemes.

Consider the convection part of the Broadwell equations in fluid variables

Bip+Oem = 0,
S+ Gz 0, (4.1)
6;2‘ + me = 0,

Il

A conservative spatial discretization of (4.1) is

My — My 1
it 3
Bip; +——2 123 = @
p_? A:ﬂ 3
1Recently, Niner {23] proved that the solution to the 1D Broadwell model with specular
reflection at the boundary converges to a uniform solution.




Zipl — &1

Btmj+ﬁ“gmj—2 = 0, (4.2)
Mgl —My_1

Buzj + — = 0.

Eq. (4.1) can be diagonalized into the Riemann invariant form

atf +6-T-'f = 01
&h = 0, (4.3)
Gg— 09 = 0,

where f, h and g are exactly the original density functions for the Broadwell
equation. The connection between (4.1) and (4.3) are established through the
definition of the fluid moment variables (2.2), (2.3). Since f and g travel along
the constant characteristics with speeds 1 and —1 respectively, upwind schemes
can be easily applied to them.

4.1 The Upwind Scheme
The upwind scheme applied to f and g gives

fisn =8, gi4y = giss, (4.4)
while h; is constant. This implies
(z+ m)j_,_% =(z+m);, (z-— m)H_% =(z—m)js1, (4.5)

or equivalently in fluid moment variables

_ My +my Zie1 T %
M1 = —
ity 9 9
L., = At Mg oy
itz 2 2

(4.6)

Applying (4.6) in (4.2) gives the semi-discrete upwind scheme for the con-
vection step:

Mgl — Mj-1 _ Zi4y — 225 F 251

O1pj + 2Ax 2Az =0
Zipl — F—1 My —2my g
. — = 4.
Oum; + 2Ax 2Az 0, 1
P T ML I W NS Wl 7 B et N
012 + 2Az 2Az = 0



4.2 van Leer’s MUSCL Scheme

A second order extension of the upwind scheme is van Leer’s MUSCL scheme
[24]. While the upwind scheme uses piecewise constant interpolation (4.4), the
MUSCL uses piecewise linear interpolation, along with slope limiters to elimi-
nate numerical oscillations at discontinuities. Applying MUSCL to the Riemamn
Invariants f and g, respectively, we obtain

1 1 -
fj+% =fi+ §A$ o';' o Bi4d =i — §Aa: Oi1r {4.8)

Here a'?' and ¢} are the slope of f and g on the jth cell respectively. For

wt = f,w™ =g, o* are defined by [18]

ok = 1 (wi o )¢(9i) gdzzw;’b_wfwl (49)
VA AL ’ Wi, — wy '
and the slope limit function ¢(¢) by van Leer is
6] + 6
)= ——. 4.10
o0 =125 (1.10)

With this limiter the MUSCL scheme is total-variation-diminishing (TVD).
Rewriting Eq. (4.8} in the fluid moment variables gives

M1 + ™My Zj41 — % Az _

miyy = - i - J+T(o»?'+gj+1), (4.11)
zig1+2z mip—my | Az -

24y = 2 ; i my - J_{,q—(a;*'—crﬂl). (4.12)

Applying (4.11), (4.12) in (4.2} finally gives

Mgy — M1 Zi4t = 2% + %1
2Az 2Ae

Az _ -
+ T(af’+0'j+i—a;‘_1—aj)=0,

dip;  +

Zigr — Zj—1 _ M1 = 2my bmi

dmj + ToRa AT
A _ -
+ —Zv—(cr}*‘ — 0~ cr;""1 +07)=0, (4.13)
_ M4l = Mi-1 _ Zi4y — 2% F %1
Oz + e 9Az

Az - -
+ T(G’?'{‘G’j_‘_l’_o'j_l—aj):o.



5 The Collision Steps — A Uniformly Second Order
Time Discretization

Since our goal is to seek a robust scheme that works uniformly for all range
of €, it is essential that the time discretization is stable for every e. This is
especially important near the fluid regime where the mean free path is small
and the problem becomes stiff.

Uniformly numerical stability can be achieved with implieit temporal inte-
grators. Since stiffness appears only through the relaxation term, it is natural
to keep the convection terms explicit, while the collision step has to be freated
implicitly.

Numerical experience for such relaxation problems shows that this problem
is not merely a numerical stability problem. Stable numerical discretization
may still produce spurious solutions {20}, 21}, [15]. For example, the Crank-
Nicholson scheme

n At n
G =27+ ol + (m]) = ] + 2T (5.1)

coupled with the free streaming convection with Az = At gives a scheme that is
stable independent of ¢, but does not have the correct fluid limit. If the initial
data are not local Maxwellians, then the departure of the relaxation process
from the local Maxwellian persists for all later time, creating an O(1) numerical
error (see Figure 4).

Previous results [15] demonstrate that an effective condition for the cor-
rect numerical behavior near the fluid regime is that the numerical scheme
should possess the correct fluid limit, in the sense that a discrete analogue of
the Chapman-Enskog cxpansion for the continuous equations remains valid for
the numerical discretization, and the resulting numerical fluid limit should be a
good discretization for the model Fuler limit. A sufficient condition to achieve
this is that the collision step always projects the nonequilibrium data into a
local Maxwellian at every time step.

We now show how to construct a uniformly second order scheme. The basic
idea is to combine a high order convection step with an implicit collision step
according to the following guidelines:

i) Truncation error analysis is used to obtain second order accuracy in the
rarefied regime (g = O(1)).

ii) The collision step is well-posed Ve > 0.

iii) ‘The limit scheme obtained as ¢ — 0 is a good discretization of the model
Euler equations when € < 1.

10



1t is possible to show that if condition iii} is not satisfied, then the scheme
may give the wrong behavior in the fluid dynamic limit (this is the case, for
example, of the scheme in [11]).

A generalization of scheme (3.3) applied to system (2.10) can be written in
the form:

At

Uy = U"=a—RU), (5.2)
Uy = Ui—@aAtDF(Uy), (5.3)
Uy = Ug—,@%R(Ug)m-y%t—R(Ul), (5.4)
Us = Us—fGDF(Us), (5.5)
Us = eU™+qUa, (5.6)
grtt = Us—p%:—tR(U""'i). (5.7)

The scheme is a fractional step combination of convection and collision steps.
The parameters o, 8,7, u, &, 8, £, 7 will be determined by conditions 1)-iii).

Roughly speaking, this splitting scheme mimics the asymptotic process that
leads from the Broadwell equations to the model Euler equations. At ¢ =
#1). the stiff source solver gives R(U;) = 0, which is the local Maxwellian.
Applying it to the next convection step t = t(2) should give a numerical flux
that approximates the flux for the model Euler equation. Similar behavior
oceurs ab ¢ = £(3) and %), The last step gives R(U™¥1) ~ 0, guaranteeing the
correct local Maxwellian at ¢ = t"*1, The above steps are combined in a second
order way, aiming at a scheme with uniform second order accuracy.

In order to satisfy condition i) we apply the scheme to the linear system

8,U + AU + BU =0, (5.8)

where A and B are constant matrices. The exact solution of (5.8) at time ¢ = At
is given by
U(At) = e~ AHBAL(g),

Applying scheme (5.2-5.7) to (5.8), and write the difference equation in the

compact form
gt = U, (5.9)

To achieve a second order accuracy we impose that
(C(AY) — e A+BA () = O(Ar),
then the following restrictions on the parameters should be satisfied:
E+n=1,
n@+p)=1,

11



o+ B+y)+p+m=1,

mag=1, (5.10)

(e + af+ By +B) =1,

(&8 + pé + pB) =1,

(a® + ay + af + By + B2) + 2un(a+ B+7) + 26 +mpp’ = 1.
This is a system of seven algebraic equations with eight unknowns. The system

can be explicitly solved by expressing all the parameters as function of y. The
solution is given by:

2n—1 2u? —2p 41
a=0, B=gi—in Y=o
-1 7 2ufp~1)
§= - 5’=——1m E=22—2u+1, n=-2p(u-1).
2’ 2(p - 1)

We shall use this freedom to satisfy the second condition ii). When applying
the scheme to the Broadwell model, the collision step (5.2) becomes

4 a(Al2)(zE + m)
1+ afAt/e)p1 ’

Therefore for positive data, both numerator and denominator are positive pro-
vided & > 0. The same property holds for step (5.7), provided p > 0.
Step (5.4) becomes:

o+ AL/ 26)(p} + m3) + v(At/2)(pf + mF ~ 2pm21)
B 1+ B(At/e)pa '

The denorminator is positive for positive data, provided # > 0. We therefore
look for a solution of equations (5.10) that satisfies also the restrictions:

a>0, >0, u>0, (5.11)

5=

A set of parameters satisfying equations (5.10) and the conditions (5.11}) is
given by:

£=5/9,n=4/9, =0, p=1/3, §=1/4, y=5/4, &=3/2 =34 (5.12)

A- and L-stability analysis for stiff ODE’s can be performed on (5.2}-(5.7)

by letting F' = 0 and R(U) = al/, with R(a) > 0. Set ¢ = aAt/e. Applying
(5.2)-(5.7) in this case, after combining steps, one has

urtl = M(gU™ (5.13)
where the amplification factor is given by:

_Ebn+(EB-my)g | 14 (p—1/(2~20)) (5.14)
(1+p(1+8g) — A+ p0)(1+¢/(2-24) '

12



A simple analysis shows that for 0 < g < 1/2 the region of complex q plane
for which |[M(g)| < 1 includes the half plane #(g) > 0. Furthermore, since the
amplification factor — 0 as ¢ — oo, this scheme, as a stiff ODE solver, is
L-stable and any oscillations generated by the transient behavior will rapidly
decay.

The construction of the time discretization that combines the convection and
the relaxation term is similar in spirit to the time discretizations used in [10f
and [15]. Both time discretizations of [10] and [15] have negative parameters in
the implicit terms, which may cause numerical breakdown in the intermediate
regime At = O(e).

A good feature of the time discretization in [15] is that it has the correct
initial layer behavior, since in the first step it projects into the local Maxwellian,
and in the fluid limit it becomes the second order TVD Runge-Kutta method for
the fluid equation. Qur scheme here does not have such a mechanism, because
as a result of truncation analysis, & = 0 in Eq. (5.2), thus the de facto fivst step
(5.4) is not a projection into the local Maxwellian. This will introduce an initial
disturbance if the initial layer is not well resolved. Although at later time the
scheme has the mechanism to project the data into the local Maxwellian, this
initial error will remain at all later times, causing nonconservative numerical
solutions, thus degrading the quality of the numerical results. This has been
demonstrated in [15]. Hence an extra care must be taken to properly handle
the initial layer, which will be discussed in the next section.

6 An Initial Layer Fix

One possibility to overcome this burden is simply to resolve the initial layer,
by using a time step At < ¢ in the first few steps, and then switch to a larger
time step. This procedure is very expensive if the problem also contains nonstiff
regions where ¢ is not small and one does not need to resclve the initial layer.

The initial layer analysis performed in {3] indicates that the initial layer
projects the initial data into the local Maxwellian. In order to have the correct
behavior, the numerical scheme should have the same projection in the first
time step. Note that in the first order splitting scheme (3.3), the first step,
due to its fully implicit collision term, always projects the initial data into the
local Maxwellian, thus can be used for the first time step along with our new
splitting scheme. The first order accuracy of this initial step will be overcome
by a Richardson type extrapolation on (3.3).

Let us write the exact solution to (2.10) as

Ut) = S@U(0), (6.1)

where S(t) is the evolutional operator and U(0) is the initial datum. Suppose

i3



the difference operator is denoted by 7(¢). Then the numerical solution u(?) is
given by

u(t) = T()YU(0). (6.2)
A first iteration of the splitting scheme (3.3) can be written as
ui{At) = T(A)U(0), (6.3)

while a two half step iterations give
At
ug(At) = ’T(?)ZU(O) . (6.4)
We define our first time step as
u(At) = 2ug(At) — u (At). {6.5)

This Richardson extrapolation will give a second order approximation, as will
be demonstrated now.

Since the splitting scheme (3.3) is globally first order (locally second order),
one has

ui{At) — U{AL) = (T(At) — S(A))U(0) = CAL? + O(AY), (6.6)
where C depends on 7,8 and U(0). Of course this implies

uGh-vh= @G- sGhwe = ot +o@ar). (67

Also,
T{At) = I+ O(Af) (6.8)
where I is the identity operator. Now,
‘U.(At) = 2u2(At) - ul(At)

= 2’1’(%)211(0) - T(AH)U(0)

= arShisEh +1(8H - s(GHw O
_[S(AL) + T(AL) — S(ADIU(0)

Making use of (6.6) one has:

way = 27(GHuEh v

—U(At) — CAE® + O(A?)
= asEhH+ T(5H - S(%)]U(%) - U(Al) - LOA +O(AF)

CAL2 4+ O(AHH)]

= 2W(A+2ACAL + O] - U(AY - %cmﬁ + O(AP)
= U(At)+0(A%).

14



Thus we have a locally third, or globally second order approximation in this first
step. In fact this second order scheme alone can be applied to system (2.10).
However such scheme would be slightly less efficient that the one we use (5.2-
5.7), since one has to integrate the convection part three times in each time
step, while (5.2-5.7) only needs two. This Richardson extrapolation (6.5) may
also lose positivity of the numerical solution.

7 The Numerical Fluid Dynamic Limits

To show that the scheme has the correct fluid dynarmic limit, we assume
that the solution is smooth in the sense that all of the spatial derivatives are of
O(1). We also assume that £/At < 1,¢/Ar < 1. The asymptotic analysis will
be performed with fixed At and Az, while letting € - 0.

7.1 The Spatial Discretizations

We first analyze the limiting behavior of the two spatial discretizations discussed
in Section 4.
Applying the upwind scheme (4.4) to the Broadwell equation, one has

Mjgr — M1 Ziwl = 2% 4 %1

dps + 2Azx 2Az =0,
Zigy — Zj mipq — 20 + mj—

Bym; + -"“QMJ S L2 S — L=, (1.1)
Mmjp1 —mj-1 _ Zim—2ztzo 1, o e

312_1' o 9AT - Az = %(Pj + m; - 2szj) .

If ¢ — 0, then the third equation gives
2= 3 (4 )+ 0(c). (7.9)
Applying this to the first two equations implies (after ignoring the O(¢) term)
mypi—mi—1 gt ou)ia — o+ put)s + s+ put)1
2Azx 2Ax

Mo+ )i — gl pu®)io1 mygs — 2my +mya
24z 2Az

atP_;u + = 0:

6¢mj + =0. (73)

This gives the limiting scheme of the upwind scheme. It can be easily seen that

this is a first order conservative discretization of the model Euler equation (2.9).
Thus the upwind scheme has the correct asymptotic limit.

15



Applying the MUSCL scheme (12) to the Broadwell equations gives

_ Mig1 o1 Zg1 225+ 251 4
ey + 9Az 9Az (7:4)
Az - _
+ _(‘7 '+1_°'}'-—1”"7j)20:
. Zigy — Zj—1 Mgl 2my oy
By + 2Azx 2Ax
Az _ _
+ —(a Tip1— a}"_l +0; )=0, (7.5)
_ Mjs1 — M1 Zi4 — 2% + %1
Bz + Az Az (7.6)
Az

+ —(a +074 — 0 -0y )= 5(p?+m2~2pz)-

As £ — 0, the last equation again gives (7.2), which can be applied to (7.5) to
yield the limiting scheme of the MUSCL:

mjgr —mi—1 e+ pul)ien — (o + pu%); + 3o+ pui

dp; +

2Am 2Az
A
) o
! 5l +p?)in — a(p +put)ior My —2my +mi
vy IAT B 2Ax
Az -
+ et e - i) =0, (7.8)
h
where or i; 79)
O'j - z:J-(pz-{-mz)‘ .

Note that or is defined by p, m and z, and the right hand side of (7.9) simply
means applymg the local Maxwellian z = (p® + m?)/(2p) into 0’ . One can see
that this is a second order conservative discretization of the model equations
(2.9). Tt is close to the second order relaxed scheme of Jin and Xin [17}. Thus
the MUSCL also has the correct fluid limit.

7.2 The Temporal Discretizations

We now demonstrate that the new temporal splitting scheme (5.2)-(5.7) has the
correct fluid limit in the sense to be specified below. We always assume that
R(U) is Lipschitz continuous in U, and I + 8 At Rt is invertible for all ¢ and
At where R' is the Jacobian matrix of R. This 1nvert1b1hty ig true for genela,}
hyperbolic systems with relaxations classified by Liu [19]. In particular, it is
easy to check that the collision term of the Broadwell equations satisfies this
condition.
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By the initial layer fix, we can assume that
R(U™) = O(e). (7.10)
Now, we want to show that this condition will imply that
R(U1) =0, R{Us)=0, RU™)=0, (7.11)

up to some error terms depending on £ and At. First, since o = 0, thus Uy = U™,
and

R(U4) = R(U™) = O(¢) (7.12)
Using (5.3),
U, — Uy = O(AL) (7.13)
By (54))
U=ty = —pEURUS) — R(U2)) - FEZR(U) + O(AL)
= —ﬁ%R’(U*)(Us —Uy) — ﬁ—A;(R(Ul) + O(Af) + O(AL)
2
= —BELR(U)(Us - Us) + O(At+ ATt) (7.14)
where [U* lies between Uy and U3. This implies
2
Us-Uy = (14ATRE) 0B+ f‘si) (7.15)

= O(3)0(At+ ‘—'\‘-;i) = O(c + At) = O(At).  (7.16)
Applying this back to (5.4) then implies
R(U3) = O(e). (1.17)
Similar arguments also imply
R(Upn41) = 0(¢). (7.18)

By this argument, for any initial data, with the initial layer fixing, one always
has
R(Us) = O(e}), R(UM=0(), for all n>1. (7.19)

Thus this scheme projects the numerical data into the local Maxwellian at every
time step. Moreover, applying these into (5.3), (5.5) respectively, after reorder-
ing the indices,

v, = U - &At'DF(U“)lR(Un)=0 ; (7.20)
U, = U1 —BADF(U) rvy=0, (7.21)
gttt = UM 4 qUs, (7.22)
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after ignoring the O(e) terms. In (7.20), (7.21} F(U)|rq)=o are the relaxed flux
given in (4.6) for the upwind scheme or the second order relaxed flux (4.8) of
the MUSCL. This shows that the new splitting scheme indeed has the correct
fluid limit in the coarse regime.

7.3 The Intermediate Regime

The intermediate regime is defined as ¢ < 1, At < 1 but /At = O(1). We
now show that the splitting scheme (5.2)-(5.7) also has the correct fluid limit in
this intermediate regime. The key is to demonstrate that (7.11) are valid also
in this regime.

First, since @ = 0, (7.12) is valid, Thus (5.4) implies

Us—r = —BELRTE)+O()
= 6" R(ws) - R(U) - PR+ 0)
= PR - U - RO + 0(80) +0(0)
- _«ﬁ%R’(U*)(Ua _ U2) + O(AD)

Therefore At
Us— Uy =(1+ ﬁ——é——R’(U*))‘lo(At) = O(At).

Applying this to (5.4) gives
R(Us) = O(At)O(»—AE—t) = 0(e).
Similarly one can also show
R(U™) = 0O(e).
Thus, one always has
R(U3) = Ofe)}, R({U™) =0(e), foralin>1.

independent of the initial data. So the solution is always a Jocal Maxwellian.
Moreover, as € — 0 (At — 0 as well) one gets (4.7) or (4.8) depending on the
order of the numerical fluxes. Thus in the intermediate regime this scheme also
has the correct fluid limit.
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8 'Theoretical Results

In this section we derive several properfies of the simple fractional step
method (3.3), including positivity, the entropy inequality and convergence in
certain regimes.

8.1 Positivity
The velocity densities (f, g, h) are positive if and only if
p>z>|ml,

by (2.2) and (2.3). In the collision step p = p* and 7 = m" are unchanged,
while

2= (1+26p") 7 (2" 4 &((m")* + ("))
in which & = At/(2¢). Since p = p* > z" > |m"{ = |, it follows casily that
p>E> |l
In fact, it is

2 = m| + s(p — m])?

14 2xp >0

Pl =%—|m|=

and
_ p— 4 (g2 —m?)

p—i=p—i= 1+ 2rp > 0.

So (f,7, h) is positive. Positivity of f.q, R) clearly implies positivity of f7*?,
y
g™t and k™t the result of the convective step in (3.3).

8.2 Entropy Inequality
We prove next that the H function, given by
H = flogf+2hlogh+ glogg,

decreases in the collision step at each grid point j. This result is valid both for
periodic boundary conditions and for unbounded domain.

Let (p, m, z) be the state after the collision step, and (B, M, 2) = (p, ™, 2-+24)
be the state before the collision step, in which

A = 26(h® - fg).
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Since f = (2 +m)/2, g = (z —m)/2 and h = (p — 2}/2, then
F=f-A, §=g-A, h=h+A.
Moreover since (f, g, k) and (f,ﬁ, h) are all positive, then

Af}._é>

I >max | —, -,
(f g h

Before the collision the H function is
H=7Flogf+ 2hlogh+ jlog§.
First rewrite the f term in H as

flog f (f — A)log(f — A)

I

Il

> —A+(f-A)logf.
The last bound uses the elementary inequality
(1—a)log(l—a)> —a

for 1 > a, in which a = A/f. Similarly

Flogi > ~A+(g—A)logg, hlogh>A+ (h+A)logh.

Add these together to obtain

H > (f—A)logf+2h+A)logh+(g—A)logg

= H+Alog(h*/fg)
= H+2x(h* - fg)log(h*/fg)
> H.

Finally note that the total “entropy”

H"=Az) HT
g

£(1-5 ) (1»~§§—) (- A)logs

(8.1)

(3.2)

is preserved by the convection step of the fractional step method (3.3), since the

values of f,g and A do not change but only move between j points.

The results of these two subsections are summarized by the following propo-

sition.,

Proposition 8.1. Let (f}, g}, h}) be the solulion of the fractionul step

f R

method (3.3). Assume that f >0, g9 >0 and h{ > 0 for all j. It follows that:
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i P> 0,7 >0,k > 0 foralln >0 and all §.
i J j
(ii) Define

H® =) (ff log f} + 20} log hf + g} log})
i

and suppose that H® < co. Then for alln >0

Hn-l—l S HTI .

8.3 Formal Analysis of Convergence: Uniform Bounds on
Consistency Error

Finally we present a formal analysis of the splitting method which shows that
it is first order accurate uniformly in e, if the underlying Broadwell solution
is smooth. This analysis does not apply for the solution in a boundary layer,
initial layer or shock, in which numerical results indicate that a half order of
accuracy may be lost. The analysis here is only of the consistency error, which
is shown to be of size O{A#) uniformly in e. Analysis of the stability error has
not yet been successful.

This estimate will be performed by writing the Broadwell equations and the
discretized Broadwell equations for the fluid dynamic variables p and m, and
for the difference from equilibrivm w, defined by

2 2
W= 22— p _?:)m (83)
Define also ) )
P+ m
zplp,m)= —/—. 3.4
(o) = T (3.4)

Whereas the equation for z involves a forcing term of size €71, in the w equation
the factor £~1 appears only in a decay term.
The Broadwell equations (2.1) can be written in terms of p,m and w as

Pt = —Mmg (85)
me = —(w+zp(pm): (3.6)
w, = —& lpw—my—zelp,mh (8.7)

The equation for w can be written in integral form, for each z, as

w(t) = A(t)w® + L ﬁg))y(s)ds (8.8)
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in which

Alt) = exp(—e! ./Dt p(t', z)dt’)
gt) = —(ms +ze{p,mh).

The discrete Broadwell equations (with At = Az) can be written in terms
of the discretized variables j, 7t and @, with the convection and collision steps
combined, for each spatial value j, as

-~ ~; i ~n 4L
-t = —g D" + 292( + Zp) (8.9)
1 1
Al — gt = —oDo(@" + £3) + F D" (8.10)
Pt = (HA Y1 4 At (8.11)

in which
i 1
JH = — A F = B Do - DU+ ).
The difference operators Iy and D? are defined as

(Dof); = fi+1 — fi-r, (P*f); = fimn = 2fi + fi—1. (8.12)

The equation for wW"™t! can be considered a linear difference equation n w".
The solution can be written as

~n

0
= B"w +Atsz - (8.13)
in which
= At . -
=[Ja+=#", B'=1. (8.14)
ji=t

Assume that p, m and w are smooth and bounded uniformly in € (this excludes
shocks, boundary layers and initial layers).

The consistency error is defined is the error formed by substituting the
continuous solution (g™, m®, w") = (p(nAt), m(nAt), w(nAt)) into the discrete
equations. Define

By = (o — /At - {—%Dom“‘ b DM+ zg)} /AL (8.15)

By = (m"tt—m)/AL— {——;—Dg(w” + )+ %Dzm"} /AL (3.16)

k=1

n i
E3 = wn—{anG+AiZB—-E::“fgk} (817)
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inn which B" and ¢" are defined as above in terms of the continuous solution
(p*, m", w"). Note that the consistency error for the w equations is defined here
in terms of the “integrated solution” rather than the finite difference equation.
In fact the error due to the implicit collision operator is better behaved over
many time steps than over a single step. This is also the reason that the factor
1/At does not appear in the definition of Ej.

The consistency error serves as a forcing term in a finite difference equa-
tion for the total error. Define the difference between the numerical solution
(5", 7", ®"} and the continuous solution (p*, m",w") = (p,m, w)(nAt}) as

a" =t —pt, =" -m", " =a"-u". (8.18)

Denote A{p™, m™,w") and B(p",m", w") to be the bracketed convection terms
in the p and m equations (8.15) and (8.16). Also denote Clp,m,w] to be the
bracketed term in the w equation (8.17). Then the error quantities (a®, 5", c")
satisfy

a®tl g = (A(p" 4 ™, m" + B " ) — Afp", ", w™)) + ALE,
b = (B(p" +a",m" b, w4 ) — B(p", m", w")) + AlEsy
e = (Clp+a,m+bw+c—Clp,muw]}+ Es (8.19)

The first term on the right hand sides of these equations is the stability error,
and is approximately a linear operator in (a,b,c). If the difference scheme is
uniformly stable, which we have not proved, then the error will be of the size of
the consistency error By, Es, Fa.

Under the assumption that the continuous solution p,m,w is smooth and
that the density p is uniformly bounded above and below, i.e.

f<p<ip (8.20)

we prove the following uniform bound on the consistency error.

Proposition 8.2. Suppose that p,m, w is smooth and that the densily p sai-
isfies (8.20) for some constants p and &. Then the consislency error B, Ey, Eg,
defined by (8.15), (8.16) and (8.17), for the discretized Broadwell equations
(8.9), (8.10) and (8.18) with At = Az salisfies

|E1| + |E2| + IE3I < cAt (321}

for some constant ¢ that is independent of €. In other words, the consistency
error is untformly first order.
The estimates on K, and Fy are straightforward; i.e. for some constant c,

|Exl+ | o} < cAt. (8.22)

In order to compare the integral (8.8) to the sum (8.17), we first replace the
integrand by a piecewise-constant function, Define

A(s) = A((m — 1)AL),  g(s) = g{(m — 1)At). (8.23)
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for (m — 1)At < s < mAL. For t = nAt define
FAQ)
o A(s)
“. AlnAt
A(t)wu + At ; mg(klli) (8.24)

i

A{t)w"

w(t) g(s)ds

il

Now estimate, for (m — 1)At < s < mAt, m < n,

lg(s) —g(s)] < cAt (8.25)
49 a0| _ |ag e
A(sy  A(s) A(s) A(s)
< o (= [ tshase)
1 — exp (—~ -/(.m—i}Ai p(s')ds’/e)
< min(l, eAtp/e) exp(—(n — m)Atj/e). (8.26)

since |e~* — 1! < min(1, &) for any o.
Next estimate the difference between A(t) and B". First make a simple
general estimate (for ¢ = nAt)

AW < e <t (8.27)
B* < (1+£—§ﬁ) , (8.28)
so that
. At \T"
IA(t) = B < 2(1—{-?;)) . (8.29)

If Atj/e is small, a more refined estimate is needed. In this case

log (1 + %pk) = %pk +0 (%‘Eﬁy (8.30)
Then
Aly—B* = At {1 — exp (./t p(s)dsfe — Xﬂ:log (1 + %—t—’ok)) }
9 k=1

Alt) {1 — exp (nO (%ﬁ) 2) } (8.31)
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in which we ignore a term of size n O{At*f/¢) in the exponential.
Now n{Atp/e)? = (¢p/c)(Atp/e). If this is larger than 2, we use the estimate
(8.29); while if it is less than 2, then

IA(t) — B"| < A()O (2—’ (ﬁﬁ)) . (8.32)

£

Combining these estimates, we obtain the bound

|A(t) — B*| < min (2, t;_—%fﬁz) (1 + %ﬁ) - . (8.33)

Finally the estimate on A(t}/A((k — 1)At) — B*/B*~1 is found in a similar
way to be
A(t) _ B
A((k —1)At) Bk

< min(2,e 3 (n—k+ 1)AL*5%)

—(n—k)
t
(1 + %ﬁ) . (8.34)

Now these basic estimates are combined to estimate F5. First

w(i) — W = t Al s—{i(t)“s 8
w00 = [ (434~ 13000)d
tULAR)Y  AQ) A(t) _
< | (z:' 20 01+ 53 o) - )
< el E min(1, Atpe ™! Y exp(—(n — m}Atp/e)
m=1
+eAt /t e~ Pt=8)2 g
< eAtmin(l, Atpem ) (1 — e M) 4 ceAt/p
< EAL (8.35)

min(1, y) €
ax = .
¥>0 \ 1 — exp(—y) e—1
Next, making use of {8.33),

B+ (1) — "] =§mm—8ﬂw
n AR B
DY (= g a0 - ') ‘
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IA

oo (2. ALY (14 ALY
|w|m1n(2, =P 1+ — P
n At —(n—k+1)
4 eAt (1+—ﬁ) At
21+
LI At2p2 pAt\ L
Al —k+1 I+ — 8.
+ ¢ ;mm (1, o {(n—k+ ))( + = (8.36)

Denote the three terms on the right side of (8.36) as D1, Dy, D3 respectively.
The first term Dy is bounded by

cmin (2, mﬁ%) (1 + ﬁﬁ) - < 2eAt. (8.37)
e € €
In fact, if Atpfe > 1/2, then
D1 < 26(3/2)™" < 2cAt (8.38)
while if Atj/e < 1/2 then
Dy < e(1/n)(nAtp/e)?(1+ Atp/e)™™ < efn < cAt, (8.39)

since 22(1 + z/n)™™ is bounded by 1 uniformly inn > 2 and > 0.
Now we consider the second term Da. Let ¢ = (1 + pAt/e)~!. Then

1—g"

s
D, = cAtZEq"_k‘H = cAtlg ¢

k=1

Ate

< earL_ =2 8.40
< eavr o= (5.40)
Finally consider the third term Dj.

If Atp/e > 2, then

D3

IA

n
e Z qn—k+1
k=1

_ 1-4" q
= CAtql,.q SCAti—g
£ cAt
= eAt—r < —

CSIGAL = T2

If Atj/e < 2, then

Ds

IA

Atp\* S
At | —— m
c (E);mq

AN
= cAt]{Z=E
Ct(€>(1—4)2

= cAt{1+ Atpfe) < 3cAt (8.41)
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since

Zmzr:’"_1 =(1-z)%
0
This shows that
|Ea + w(t) — w"| < cAt, (8.42)
Combine this with {8.35) to obtain

|E3| < eAt. (8.43)
Together with (8.22), this implies that
| 1] + | Ea| 4 | Ea| < cAt. (8.44)

This concludes the formal demonstration that consistency error in the discrete
method is first order accurate, uniformly in &.

9 Numerical Results

In this section we present some numerical examples in order to compare
some existing schemes and the new splitting scheme developed in this article.
Temporal discretizations to be compared with are the first order splitting scheme
(3.3), the new splitting scheme (5.2)-(5.7) and a second order Strang splitting
combined with the Crank-Nicholson source term (5.1). Spatial discretizations
that we take are the upwind scheme (4.6) or the MUSCL scheme (4.12). Note
that when the CFL number = 1 the upwind scheme becomes the characteristic
method which is exact for the stream operator. These two spatial discretizations
combined with the three different temporal discretizations give six different
numerical schemes, which will be abbreviated as SP1 ( the basic splitting scheme
(3.3)), SCN ( the Strang splitting combined with the Crank-Nicholson source
term (5.1)), SP1vL (the splitting scheme (3.3) with the stream step replaced
by the MUSCL scheme (4.12), SCNvL (5.1) with the stream step replaced by
the MUSCL scheme), NSP (the new splitting scheme (5.2)-(5.7) combined with
the MUSCL scheme without the initial layer fix), and NSPIF (the new splitting
scheme (5.2)-(5.7) combined with the MUSCL scheme with the initial layer fix)
respectively.

First we solve the Broadwell equation with the following initial data

p=2, m=1, z=1, for r <0, (9.1)
p=1, m=013962, =z=1, for z >0, (9.2)

We integrate over domain [—1, 1] with reflecting boundary conditions. We take
Az = 0.01 and At = O(Az) (for precise At sce the Figure captions). We
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test six different schemes. The exact solution is obtained using fine grids with
Az = 0.0005.

First we take ¢ = 1. This is in the rarefied regime. The numerical solutions
of p,m and z are depicted with the “exact” solution in Figure 1. In this regime,
SP1 yields the best resolution, SP1vL is very diffusive, SP1vL and SCNvL is
slightly oscillatory near the discontinuities. NSP and NSPIF are comparable
and are slightly more diffusive than SP1.

Next we take £ = 10~% and compare the behavior of NSP and NSPIF. This
is the regime when the mean free path is very small and the limiting Euler
equation has a shock wave moving right with a speed s = 0.86038 determined
by the Rankine-Hugoniot jamp condition. The initial data for z is not a local
Maxwellian, which yields an initial layer. The results are displayed in Figure
9. The NSP and NSPIF are comparable with respect to the shock, however,
without the initial layer fix the NSP create a bump near the initial discontinuity
x = 0, solely caused by the kinetic effect.

Finally we integrate over [~1,1] with ¢ = 0.02. We also take Az = 0.02.
This is in the intermediate regime where £, Az and A¢ are of the same order.
The results are depicted in Figure 3. It seems that NSP and NSPIF give the
best results, especially in the viscous shock region.

We then choose another initial data

p=1, m=0, z=1, for r<0.5, (9.3)
p=02, m=0, z=1, for r>05, (9.4)

We integrate over domain {0, 1] with reflecting boundary conditions. We take
Az = 0.01 and £ = 1078 g0 the solution is close to that of the model Euler equa-
tion. By solving the model Fuler equation one obtains a left moving rarefaction
wave and a right moving shock wave. The initial data are not in the local
Maxwellian. The numerical solutions are plotted in Figure 4. In this fluid limit
we observe that the SP1 and SCN are both very diffusive, the SP1vL gives sharp
resolution but is oscillatory. With the Crank-Nicholson source, the solution does
not yield the correct local Maxwellian for z. Both NSP and NSPIF give good
numerical resolution of shock and rarefaction waves and are monotone.

Next we perform the numerical convergence study. We consider an ini-
tial value problem with periodic boundary conditions, such that the solution is
smooth in a time interval [0, 7] for any value of the parameter £. We compute
the error at time T by differencing, i.e. by comparing the result obtained with
a given grid (Az, At) with the one obtained with the grid (Az/2, At/2).

In Sec. 8 we proved that the consistency error for SP1 is uniformly fivst
order. By truncation analysis we know that the scheme NSP and NSPIF are
second order both in space and time, if At € ¢, and they are second order also
in the fluid regime (for smooth solutions).

The goal of the test is to perform a numerical study of the convergence rate
for a wide range of ¢, and check whether the convergence is uniform in € also
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in the intermediate regime. The test problem is given by equations (2.1) with
periodic boundary conditions: s(z + L,t) = s(z,t) with s = f, g, h. The initial
data is given by:

27z

1 .
u(z,0) = 3 + a, sin 5

m(z,0) = p(z,0),m(z,0), z(z,0) = zg(p(z,0), m{x,0))* bar,

where 8y is a real parameter. H f3 = 1 then the initial condition is a local
Maxwellian, otherwise it is not. If far # 1, € < 1, there is an initial layer. The
system is integrated for ¢ € [0,7]. The values of the parameters used i the
computations are:

plz,0) =1+ a,sin "2{_:1:’

L=20,T=30,a,=03, a, =01
The values of Az used in the computations are:
Az = 0.4,0.2,0.1,0.05,0.025
for the first order scheme SP1 and
Az =1,0.5,0.25,0.125,0.0625

for the second order schemes. The time step is chosen in such a way that CFL
condition is satisfied: At = Az for scheme SP1 and At = Az/2 for the second
order schemes. The convergence rate is computed from the error according to

the formula:
log(error; ferror; 1)

10g(A:c;/A:n,-+1)

where error; is obtained by comparing the solution obtained with Aw; to that
obtained with Az;;;. The errors and convergence rate are computed and plotted
as function of e. For each value of &, five runs have been done for five different
values of Az, resulfing in four error curves and three curves of convergence rate.

Several measures of the error have been used, namely, L1, Lg, and Lo
relative norm of the error. The diffevent norms give essentially the same results,
therefore we shall show only the L4 norm.

First we consider the simple splitting scheme SP1. In Figure 5 we show the
relative discrete norm of the error in p and in m as function of € (left column)
and the corresponding convergence rate (right column).

The initial state is a local Maxwellian in the first two cases and it is not
in the last. The convergence rate increases when the mesh becomes finer, and
seemns to confirm that the scheme is first order, uniformly in ¢, for a fine enough
mesh.

Next we consider second order schemes. In Figure 6a-b the result of scheme
NSP is shown. The initial condition is a local Maxwellian.

convergence rate; =
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As it is evident from the figures, the scheme is second order accurate for
small and large values of ¢, and there is a slight deterioration of the accuracy
in the intermediate regime.

Figure 6¢ shows the effect of the initial layer if scheme NSP is used, without
using Richardson extrapolation for the first step. The accuracy of the scheme
of course degrades due to the initial layer. In Figure 6d the convergence rate is
shown.

The problem of the initial layer can be overcome by using Richardson ex-
trapolation for the first step (scheme NSPIF, Figure 6e-f). A similar result
is obtained by using a scheme entirely based on Richardson extrapolation, in
which every step is of the form (6.5).
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Figure 1. The numerical solutions of p ("+°), m (0’) and z ("} at ¢t = 0.5
in z € [—1,1] for initial data (9.2) by (from left to right, then top to
bottom) SP1, SCN, SP1vL, SCNvL, NSP and NSPIF. € = 1, Az = 0.01.
CFIL =1 for SP1 and SCN, CFL = 0.5 for SCNvL, NSP and NSPIF, and
CFL = 0.25 for SP1vL.
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Figure 2. The numerical solutions of p (+'), m ("0’) and z ("*’) at £ = 0.5
in z € [—1, 1] for initial data (9.2) by NSP and NSPIF. € = 1078, Az = 0.01
and CFL = 0.5.
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Figure 3. The numerical solutions of p (*+7), m (*0’) and z ("*’) at £ = 0.5
in z € [—1,1] for initial data (9.2) by (from left to right, then top to
bottom) SP1, SCN, SP1vL, SCNvL, NSP and NSPIF. £ = 0.02, Az = 0.02.
CFL =1 for SP1 and SCN , CFL = 0.5 for others.
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SP1, SCN, SP1vL, SCNvL, NSP and NSPIF. ¢ = 1078, Az =001.CFL=
1 for SP1 and SCN , CFL = 0.5 for others.
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Figure 5. Uniform convergence of the simple splitting scheme SP1. Rel-
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mesh. (a-b): L1 error in p. Initial condition: local Maxwellian. (c-d): In
error in m. Initial condition: local Maxwellian. (e-f}: L1 error in p. Initial
condition: not local Maxwellian.

37



006

L S \
(a} @ (b}
o025k ‘é 1
8
002k =4
- 4]
g g‘Ls
= uotsh
o g
8
L
0,005F o8
w0’ w0’ 10° 1{;*
natsp
250
{e) o (d)
s
8
3
amf c
D
i \/\ Dy
= D
o £
3
coost
............................ Wl
- B e e ) ) )
0’ 10° 10° w! 1a* 10" 10* w*
onsr 261
(e} o (
st
g
8
ootk c
N S
:
® c
Q
o
aoost
................ o8t
otyiteisd e O X , , )
‘0’ 1nﬂ 5. Iﬂ-. ‘0’ 1 £ ﬂl 1 G
epkilon 8 epkiion "
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Initial state: local Maxwellian. (c) and (d): Scheme NSP. The initial state
is not a local Maxwellian. (e) and (f): Scheme NSPIF. Same initial state
of (e-d).
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