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Abstract

Monte Carlo integration using quasirandom sequences has theoretical
error bounds of size O(N ' log® N) in dimension d, as opposed to the er-
ror of size O(N~*/?) for random or pseudorandom sequences. In practice,
however, this improved performance for quasirandom sequences is often
not observed. The degradation of performance is due to discontinuity or
lack of smoocthness in the integrand and to large dimension of the domain
of integration, both of which often cccur in Monte Carlo methods. In this
paper, modified Monte Carlo methods are developed, using smoothing
and dimension reduction, so that the convergence rate of nearly O(N 1)
is regained. The standard rejection method, as used in imporfance sam-
pling, involves discontinuities, corresponding to the decision to accept or
reject. A smoothed rejection method, as well as a method of weighted
uniform sampling, is formulated below and found to have error size of
almost O{N™') in quasi-Monte Carlo. Quasi-Monte Carlo evaluation of
Feynman-Kac path integrals involves high dimension, one dimension for
each discrete time interval. Through an alternative discretization, the ef-
fective dimension of the integration domain is drastically reduced, so that
the error size close to O(N 1) is again regained.
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1 Introduction

Monte Carlo integration using quasirandom sequences has theoretical error
bounds of size O(N 1 log® N) [1] in dimension d, as opposed to the error of size
O(N~*/?) for random or pseudorandom sequences. In practice, however, this
improved performance for quasirandom sequences is often not observed. The
loss of accuracy was found by Morokofl and Caflisch {2, 3, 4] to be due to two
causes:

The first is discontinuity or lack of smoothness in the integrand. The
O(N~-'log® N) error bound quoted above is established using the Koksma-
Hlawka inequality, which states that for Monte Carlo integration of a function f
on the unit cube in RY using N points, the integration error Ex(f) is bounded
by

En(f) < DNV(f) (1)

in which Dy iz the discrepancy of the sequence and V(f) is the variation
of f in the Hardy-Krause sense [1]. Moreover, for quasirandom sequences the
discrepancy Dy is of size O(N~log® N). For V(f) to be finite in dimension
d > 1, in general, f must be smooth (see [1] for a precise statement). On
the other hand, discontinuous integrands arise often in practical Monte Carlo
methods. For example, many methods involve a decision process, for which
some component of the integrand is 1 or 0 if the decision is “yes” or “no.”
For such a discontinuous integrand, the inequality (1) is inapplicable, and the
computation of [2] indicate that the error bounds revert to size O{N /%),

A second limitation on the accuracy of gquasi-Monte Carlo integration occurs
for integration problems in which the dimension d of the integration domain is
large. For large d, Morokoff and Caflisch [4] found that the discrepancy of
the quasirandom sequence is of size O(N~/?) for intermediate values of N,
even though Dy is O(N~1log? N) for N sufficiently large. The transition from
O(N-Y?) to O(N? log? N ) behavior for Dy appears to occur approximately
at N = e?, although this has not been proven.

There are a range of applications, such as scattering from rough surfaces,
collisionless particle transport [5, 6], and simulation of small networks [7], for
which the dimension is not too large and quasi-Monte Carlo is directly appli-
cable, On the other hand, integration in high dimensions is one of the main
reasons for using Monte Carlo in the first place, and high dimensional integra-
tion occurs in many problems coming from atomic physics, neutron fransport,
computational chemistry and molecular biology. These results indicate that it
will be difficalt to adapt quasi-Monte Carlo methods to such problems.

The purpose of this paper is show how these two fundamental limitations —
smoothness and dimension — can be overcome, as least in several examples. This
will be accomplished through modification of standard Monte Carlo methods, by
smoothing discontinuities and reducing the effective dimension of the problem.



The standard rejection method, as used to sample from a density function in
importance sampling, can be phrased as an integration involving a discontinuous
integrand, with the discontinuity coming from the decision to accept or reject.
As shown in Section 2.2.1 below, this leads to large errors in a quasirandom
method. A smoothed rejection method will be formulated, for which the optimal
error size of nearly O(N~1) is attained (here and in the subsequent discussion
the logarithmic factors log? N are omitted, since they cannot be reliably detected
numerically). This is also true of the method of weighted uniform sampling.

Quasirandom simulation of a stochastic process, such as Brownian motion,
requires a high dimensional quasirandom sequence, with one dimension for each
time step that is simulated. This easily leads to loss of the optimal O(N -1
convergence rate. This will be illustrated in Section 3.2 below for Feynman-Kac
path integrals. Nevertheless, by a modified representation of Brownian motion,
or equivalently a modified quadrature rule for the path integral, the effective
dimension of the problem can be drastically reduced, so that the optimal error
size of approximately O{N~?!) is attained in this problem as well.

These applications of quasi-Monte Carlo to test problems may serve as a
starting point for the application of such methods to a range of problems in
which the integrand is smooth and the effective dimension is small, after some
modification. For example, Moskowitz [8] has applied these methods to the
determination of the ground state energy for the square well potential and the
hydrogen atom.

2 Integrand Smoothing

In this section quasi-Monte Carlo integration is applied to problems in which
the integrand is first smoothed to remove discontinuities that would naturally
appear. The first application is an illustrative example of integration of a char-
acteristic function. Then the rejection method and smoothed versions of the
rejection method are presented.

2.1 Example: Smoothing a Characteristic Function

The characteristic function yg of the set E has infinite variation, unless the
set E is rectangular with sides parallel to the coordinate axes. Consider the
characteristic function f; of a rotated cube, defined as follows:

Example 1 Given z1, 22,23 ~ U{—%,%}, let



V2&; + 23+ T3

Uy =

2
—/2® + a9+ T3
Ug =
2
~/2z3 +/223
Us ————“'—2

Define discontinuous characteristic funclion
3
Jolmy, &2, 23) = H x {lul € .2}
k=1

1 if luyg} < .2

0 otherwise and smoothed funciions f5 (§ is the

where x {Juz] < .2} = {

H

level of smoothing)
3
fo(@r, @2, 23) = [ ] xs {lusl < .2}
k=1

1 if up| < 26

where x5 {jux] < .2} =< 0 iffug) > 246
§:,§_L‘;_%I:£l otherwise

The integrals of the functions fy and f5, 0 < § < 1, over the unit cube in
three dimensions all equal .064.

The results of crude Monte Carlo estimation in three different cases are
compared: First, the discontinuous case; second, the continuous case with weak
smoothing (6 = .025); and third, the continuous case with strong smoothing
(6 = .1). Results are obtained by computing the root mean square error over 75
repetitions. (See Section 2.2.4 for more details.) Log-log plots are used so that
the slopes (which are presented parenthetically in the figure keys) correspond to
convergence rates. Numerical results are plotted in Figure 1. As expected, the
quasirandom sequences, in this example from Halton [3], perform better as the
level of smoothing is increased, while pseudorandom sequences are not affected
by the smoothing.

The results for this simple example show how the effectiveness of quasi-
Monte Carlo integration is lost if the integrand is discontinuous, but can be
regained if the integrand is smoothed without changing the value of the inte-
gral. Similar tests have been performed by Morokoff and Caflisch {2], Press and
Teunkolsky [10], and Berblinger [11] with consistent resuits.
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Figure 1: Results, 75 runs, Example 1.



2.2 Importance Sampling Using the Rejection Method

Variance reduction through importance sampling is one of the most com-
monly used Monte Carle methods, For the integral A = fD f(=)d=, introduce
an importance function k which mimics the behavior of f over D but is either
integrable analytically or easily numerically integrated. The sampling proce-
dure is then altered to generate points distributed according to h instead of
points which are uniformly distributed. Then, instead of evaluating f(z) at
each sample point, one evaluates %, which provides an unbiased estimate of
the integral, since

Ea (%):L%-h(m)dm:[of(m)dwzfl

The Importance Sampled Monte Carlo estimate can be written as follows;

1 o (i)
A=) ==% ;~h 2
where @®; ~ h{x) indicates that the sample points, 1, ..., Ty have a probability

density given by k (note that i should be normalized so that f;, hda = 1). The
variance of this estimate is substantially reduced if f/h has a smaller variance
than f.

For a limited class of density functions h, the sample points may be generated
by a transformation of the uniform distribution. For more general k, some other
generation procedure must be used, such as the rejection method.

2.2.1 Standard Rejection Method

Here is the basic algorithm for the Rejection Method when the original
sample is uniformly distributed in the d—dimensional unit cube. Note that one
additional dimension is added for the extra variable y which acts as a “decision-
maker”:

1. Select v > supgcp h(x).
2. Repeat until N points have been accepted:

(a) Sample (s, y¢) from U([0, 1]4+1).

(b) If y, < v~ h(wmy), accept trial point x;.
Otherwise, reject the trial point.



This algorithm produces a sequence of accepted points in d dimensions which
are distributed according to ki, as required for Importance Sampling.

The sumn (2), in which the points ©; are chosen using the rejection method,
can be reinterpreted as a Monte Carlo evaluation of the following integral

1
A= va A {%%x(y < v h(z))dydz. (3)

The direct Monte Carlo estimation of this integral is

N
T Y h(:) } f(=:)
Ay = — p ol sy L 4
Y Ex{y; v h(x:) @
The variance of this integral is reduced by replacing the total number of points
N by the number of accepted points to get the following Monte Carlo estimator

dy = 1 > {us < 12D Sz
AN_Zf—.lx{ys<ﬁ%il}sz=;x{yl< Y } h(w:) ®

One difference between the sum (5) and a straightforward Monte Carlo evalua-
tion of (3), is that in (5) the number N is taken to be the number of accepted
points rather than the total number of trial points. This accounts for the factor
v in (4).

Quasi-Monte Carlo cannot be effectively applied to the integral (3) because
the integrand contains a characteristic function, corresponding to the decision to
accept or reject. This will be demonstrated in computational examples below.

2.2.2 Smoothed Rejection

The Rejection Method is discontinuous as a result of the inherently discontin-
uous nature of the binary decision: accept or reject. This can be eliminated
by allowing sample points to have associated “acceptance” weights as described
below. A Smoothed Rejection method that retaing the flexibility and advan-
tages of the Rejection method but does not involve a discontinuous integrand
will now be formulated. First, replace the integral in {3) by an equivalent smooth
ntegral, as in

1
A=~ fD fo %E:—;x.s(y, v~ h(z))dyda. (6)

in which the smooth function y;s satisfies

jﬂ xo(u, 7~ (w))dy = 1~ h(=). (7)




The function ys, which will also be referred to as the weight w, will be chosen
to be piecewise linear below.

The corresponding Monte Carlo approximation corresponds to the following
Smoothed Rejection procedure:

1. Select v > supgep h{x) and 0 < 6 K 1.
2. Repeat until weight of accepted points is within one unit of N:

{a) Sample (=, y:) from U{[0, 1]*+).

() fw< h—(%)- - %6, then acceptance weight is w = 1.
Else if 3, > !-'Lf—’—l + %6, then w = 0.
Else w = } (!—'-f%m'l—i- %E—yt).

The density of accepted points z is faccept(®), given by (with w = xs)

1. fol w(m: y)dy
Jrall- fy w(€, y)dvldé
h(z)/y

1/
Jaceept(z) = h(=)

which shows that the density function ki is correctly sampled.

There is some extra work required by Smoothed Rejection as compared to
ordinary Rejection. First, there is the work associated with assigning each
sample point a weight, and storing and using these weights. This is typically
small enough to be considered insignificant, Second, there is additional work
which comes from the acceptance of points with weights of less than 1; ie., in
order to reach a total acceptance weight of size N, more than N evaluations
of f are required. This extra work can be minimized by setting the constant &
sufficiently small. On the other hand, if § is made too small, the advantages of
continuity will be effectively lost.

faccept (:l:)

2.2.3 Weighted Uniform Sampling

Ancther alternative to the Rejection method can be formulated by elimninating
the accept/reject decision entirely, and instead assigning each sample point a
weight equal to its acceptance probability given by vy~ 1A(z;).

A new Monte Carlo estimate is obtained as follows:

N X A{T;

5, - Diikes.ued
N = N h{(E;}
=1




Y f()

2?;1 h(a;)

This sum is essentially the ratio of two Crude Monte Carlo integration esti-
mates - an estimate of the original function, f, in the numerator, and an esti-
mate of the importance function, h, in the denominator. The resulting estimate
is biased. Nevertheless, Powell and Swann [12] and Spanier and Maize [13] have
shown that this bias is negligible in comparison with the rms-error as N — co.
Moreover the positive correlation between f and &, when h has been well chosen
to closely mimic the behavior of f, provides substantial variance reduction.

The bias and rms-error are given as follows:

biﬂ‘.s(fIN) = Av‘;\:(h)_ covfw{’g) +O(N—3/2) (8)

Vvar(f) + A2 var(h) — 2 A cov(f, h)
VN

One advantage of Weighted Uniform Sampling, as emphasized in [12], is that
sample points need not be generated for the density i. A second advantage is
that the weighted uniform sampling estimate is continuous (assuming that f
and h are continuous) so that quasirandom sequences may be effectively used
in the sum. This will be demonstrated in computational examples below.

On the other hand, a disadvantage of Weighted Uniform Sampling is that for
problems with large regions of low importance many more function evaluations
will be performed within such regions than if Importance Sampling were used
instead. This is reflected in a greater amount of variance reduction in the latter
case, and for such problems Smoothed Rejection may be preferable to Weighted
Uniform Sampling,.

+O(N~¥Yy  (9)

rmse(.;iN) =

2.2.4 Computational Examples

The Rejection, Smoothed Rejection and Weighted Uniform Sampling meth-
ods will now be compared on several examples. Consider the following integral:

A=} f(z)de
Id

where I% is the unit cube in d dimensions, and evaluate the following four
estimates of this integral:

N
. 1
Crude: AE,&) = T\T_E flas) , @i~ UIY
i=1



@ g f@)
Wuss AP = LRSS m Ul

N
, “ 1 i .
Rej Meth: Ag\‘?) = 5 E ﬁ::; , @; ~ h{z), accepted point.
Smooth Rej: figé) = E M y {®iywi) ~ h(z)

For the last estimate, (x;, w;) represents a weighted sample point with accep-
tance weight w;, and N* is chosen such that the sum of the acceptance weights
s within one unit of N.

For a given value of N, take M samples of each of these estimates, denoted by
A(J) for 1 < k < M. (For quasirandom, using successive points from a single
quasuandom sequence) Two measurements of the average integration error
are the empirical root mean square error and the empirical standard deviation,
defined as

rmse(AY)) ~ Z(AU) A2 j=1,...,4 (10)

M -
sd(,agg))z\j D (AR (AQ, - AWy |, i=1,...,4 (11)

k=1

in which AY A = L zk =1 Agf,)k Note that the formula for rmse error uses the
exact integral A, whlch is known for the examples below, whereas the sd error
uses an empmcal average.

Since successive estimates Agf,)k , k=1,...,M are not mdependent for
quasi-Monte Carlo, there is no theoretical basis for these error expressions. This
is in contrast to standa.rd Mente Carlo for which the Central Limit Theorem
implies that the A (g }k come approximately from a Gaussian distribution with
varianee given by the rmse. Nevertheless, in the examples below these two
error estimates give consistent results; in the examples below, they never differ
by more than 2%.

Finally, the bias of Weighted Uniform Sampling proved to be insignificant, as
expected, when using either pseudorandom or quasirandom sequences of points.
(Note: In Examples 2 and 3, we use the base-2 Niederreiter quasirandom se-
quence [14].)

Example 2 The first ezample is Monte Carlo integration over I° = [0,1]° of

10




the function

5 2 +sin E§;1 ;20 Tf
falw) =exp | Y ara? (2’ )
i=1

using the positive definite importance function:

5
he(z) = -::‘-exp (Z a; mf)
i=1

where a = (1, —;1;, 1l andn= Jps exp (E?ﬂ a; mf) da so that hy is normal-

ized (i.e. its infegral is one).

The resulting rmse error for Example 2 using pseudorandom and quasiran-
dom points are presented in Figures 2 and 3, respectively. Note that 5 is easily
computed with high accuracy as the product of five one-dimensional integrals,
using for example Gaussian quadrature,

Example 3 The second ezample is Monte Carlo integration over I' = [0,1]"
of the function

o1t tory

fs(-’ﬂ1, ' __,m) — 81—(sinﬂ(ga:l)-ysinz{§$2)+ain=(§m)) aresin(sin{1) + 500

using the positive definite importance function:
11— (sin? (F21)ein?(Foa)4sin?(F23)

h3(:l:1,...,.’177) -

where 1 is

1
n:/ ha(ml,...,:c-;)dxl...d:c-;:e-(/ e—sinz(%w)da:)
I 4]

which is easily approzimated to high accuracy as a one-dimensional integral.

3

The resulting rmse errors for Example 3 using pseudorandom and quasir-
andom points are presented in Figures 4 and b, respectively.

These computational examples show that quasi-Monte Carlo works well for
the Smoothed Rejection Method, but even better for Weighted Uniform Sam-
pling.

The results confirm that Smoothed Rejection is an improvement over Or-
dinary Rejection when using quasirandom sequences. Furthermore, Weighted
Uniform Sampling produces results that are far superior to those obtained us-
ing Importance Sampling with the Rejection Method, even with smoothing. We

11
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Example 2 - Pseudorandom Sequence
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Figure 2: Pseudorandom Results, 70 runs, Example 2.
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Example 2 - Niederreiter Sequence
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KEY (Convergence Rate)

Crude Monte Carlo:

Woeighted Unif Sampling:

Rejection Method:
Smooth Rej, deita= .2:

Y

10

10

Figure 3: Quasi-Random Results, 70 runs, Example 2.
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Example 3 - Pseudorandom Sequence
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£
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Figure 4: Pseudorandom Results, 75 runs, Example 3.
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Example 3 - Niederreiter Sequence
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Figure 5: Quasi-Random Results, 75 runs, Example 3.
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believe the reason for this to be that although the Smoothed Rejection method
involves a continuous integrand, there is still a relatively sharp slope in accep-
tance weights in the transition from acceptance to rejection regions. This leads
to higher variation and poorer quasirandom performance, in general, than for
Weighted Uniform Sampling, where the sharp transition is completely elimi-
nated. Another, admittedly minor, advantage to Weighted Uniform Sampling
is that the extra ‘decision’ variable y is no longer needed, reducing the effective
dimension by one.

Nevertheless, Smoothed Rejection may be superior to Weighted Uniform
Sampling for problems in which there are large regions of low importance, as
discussed at the end of Section 2.2.3.

3 Reduction of Dimensions

Unlike standard Monte Carlo which is independent of the number of di-
mensions, quasirandom methods tend to become less effective as the number of
dimensions in the integrand increases [2, 4, 15, 16], although much less so than
mumerical quadrature methods such as the trapezoidal rule. Therefore, while
numerical quadrature methods are best for low dimensional integrals, and pseu-
dorandom Monte Carlo appears to be best for very high dimensional integrals,
quasirandom methods can often be optimal for moderate dimensional integrals.
Our experience indicates that quasirandom methods, with N in the range of
10% to 108, are effective for integrals of dimension four to thirty.

In this section, we discuss methods to reduce the effective dimension of a
quasi-Monte Carlo integration problem.

3.1 A Simple Example of Dimension Reduction

The following example shows that quasirandom integration error may be re-
duced by rearrangement of the variables so that the principal variations of the
integrand occur over the lower dimensions:

Example 4 Compare the results of approzimating these two equal infegrals us-
ing pseudorandom and Halton points:

A:/--~] 5cos(4(a:4+ﬂ:5+ms)+(—:cﬂlj?ﬂ) dzy...dzs
Id

B:/---[ 5cos(4(m1+:c2+m3)+-(£4—“:5§————w) dzq...dzg
Id

16



These are equivalent, but the first integrand varies more as a function of the
higher three dimensions while the second varies more as a function of the lower
three dimensions. Therefore we should expect that quasirandom estimates will
be more effective estimating B than A. On the other hand, using pseudorandom
points, there should be little difference between the two cases. The resulis,
shown in Figure 6, confirm this.

3.2 Dimension Reduction for the Feynman-Kac Formula

The Feynman-Kac Formula provides a connection between linear parabolic dif-
ferential equations and stochastic path integrals, which is similar to the method
of characteristics for selving hyperbolic differential equations. In the simple case
when the stochastic paths are Brownian motion, a modification of the discretiza-
tion of the Brownian path allows one to concentrate most of the variance into the
first few dimensions, which significantly improves the accuracy of quasi-Monte
Carlo integration.

Consider the following initial value problem:

fu  10%u

ot 20x?
with initial condition u(z,0) == f(z). Its solution is given by the Feynman-Kac
formula as

(#,8) + v{z,t)u(z,t) , t20 (12)

u(:c,t) - E:u,O l:f(g(t)) ef; v(é(r),t—r)dr (13)

where £ represents a Wiener path starting at £(0) = «.

This solution can be approximated by discretizing time, generating Wiener
process sample paths, and averaging over the set of sample paths to obtain
Monte Carlo estimates of the expectation above. The integral in the exponent
is itself approximated for each sample path using the Trapezoidal rule.

3.2.1 Standard Discretization

The Standard Discretization of the Wiener process is defined as follows:

1. Choose (z,t) at which the solution is to be approximated.

9. Choose the number of equal time steps m and set At = % and t; = { At
fori=20,...,m.

3. Generate Gaussian independent variables, AW from the distribution
N(0, At) (the normal distribution with mean 0 and variance At), for i =
i,...,m.

17
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A pseudorandom || -0.479 (solid)

B pseudorandom || -0.490 (dashed)
A Halton -0.814 (dotted)
B Halton -0.974 {dot-dash)

Figure 6: Convergence Results and Log-Log Plot for Example 4, 100 trials.
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4. The Wiener path is sampled exactly at each ; as the following sum:

i
D=ty awt) (14)
i=1
The sample paths are exact at the discrete times {;, bul an approximation

is involved when the path integral of v is estimated. For example, using the
Traperoidal rule the Wiener path integral is approximated as

f{: v(é(r),t —7) dr A [v(x +2 Z w(€D,t— ;) + (€™, 0)| =T (15)

i=1

The nondifferentiability of the paths leads to an error (bias) of order O(VAt)
for this quadrature rule. In the computations presented below, however, At is
sufficiently small so that discretization errors are negligible in cormparison to
statistical errors,

Using the sample paths above, the Monte Carlo estimate of the Feynman-
Kac path integral is

v(z,1) = Z Gt (16)
in which I; and gi’“) for i < k < N are N realizations of I and €™, If the 5,(;")
are normally distributed, as described above, then
E(in{z,t)) = u(x,t) + bias error

in which the bias error comes from the quadrature rules and is insignificant.

For application of quasirandom Monte Carlo, this average is expressed as
a multidimensional integral. First, each normal variable AWU) can be repre-
sented as a transformation G of a umformly distributed variable z; by AW =
G{x;). Then define

f(:m, Lo, .. .,a:m) = f(€(m))

f(:cl,mg,... Em) = i

in which £0) = z + EJ _; G{z;), and z; are uniformly distributed, e.g. pseudo-
random or quasirandom points. The expectation of the Monte Carlo estimate
in (16) can then be written as the following integral:

1 1 .
E(ﬁN(mlt)) :/ "'j f(mlsl'-;zm)el(ml’mﬂ:m} diﬂ} ...dz
[\] 0

The Monte Carlo estimate of this integral is

(z,1)) = Zf(a:l, e mfn)ef(”;:""’”fn) (17}

19



The transformation G used here is that of Marsaglia [17], which is continuous
and monotonic. By contrast, Box-Muller, which is discontinuous, gives poorer
results for quasirandom sequences [3].

3.2.2 Alternative Discretization Method

When the number of dimensions, m, is moderately large, an alternative dis-
cretization method leads to significant improvements in the quasirandom inte-
gration estimates by concentrating most of the variance into the lowest dimen-
sions,

Assume that m is a power of two, and define the alternative discretization
as follows:
Alternative Discretization:

1. Choose (z,t) at which the solution is to be approximated.

2. Choose the mumber of equal time steps m = 2°. Then let At = % and
ti=iAtfori=0,...,m.

3. Generate Gaussian variables, AW distributed according to A(0,) and
AW distributed according to A'(0,¢/a), for i =1,...,m, in which a =
4. 2int(]og, s')_
4. The Wiener path £¢) is sampled exactly at each ¢; as follows:
5(0) = g
gm) = (O 4 AW®

&) = M+AW(U (18)
2
(B %f_%r AW

(2 W+AW(3)

For this discretization method, the first step is directly from 0 to ¢. Then
the intermediate steps are filled in by taking successive subdivisions of the time
intervals into halves. Each new intermediate path position is determined using
the following rule:

FAW , AW € N(0, 42Tt (19)

g{j) _ E(.‘h) + E(J"n)
B 2 4

20



Variance
Standard ] Alternative

zy || 1.0000¢ 3.1875¢
zz || 0.8750¢ 1.68756¢
wa {| 0.75001 18758
z4 [ 0.6250¢ .1876¢
zs i 0.5000¢ .0625¢
zg || 0.3750¢ 0625t
z7 || 0.2500¢ .0625¢
zg || 0.1250¢ .0625¢

Table 1: Variances for Standard and Alternative Discretization Schemes, m = 8

where ji, jo are the indices of the nearest prior and later time steps, respectively,
for which the positions have already been determined. This representation of the
Wiener path in terms of past and future positions is referred to as the Brownian
bridge (also called a tied-down Wiener process).

The representation (18) can be conveniently rewritten as follows:

5(0) S

g = 4 AWO

£ = 24 Aw® + AW (20)
£ = o4 MZ(O) + Mgm + AW
S NN 3azv(0) N Avg(l) AW

The variance contributed by each dimension to the Wiener sample paths
is compared for the Standard and the Alternative Discretizations in Table 1
for the case m = 8. Note that variance due to z; slowly decreases for the
Standard Discretization, since early values of the Wiener process affect more
parts of the path than later values, but that this decay is much more rapid for
the Alternative Discretization.

Figure 7 is a graphical comparison of the Standard and Alternative dis-
cretization points for m = 4, showing how more of the variance is concentrated
in the lower dimensions for the Alternative method. The dotted horizontal lines
demark one standard deviation, The solid lines show the actual discretized
stochastic paths. In the upper figure, the dash/dot line indicates the additive
nature of the snccessive steps, In the lower figure, the dashed line shows the ef-
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fects of the large first step on all of the intermediate positions, while the dash/dot
lines show the effects of the second step on intermediate positions. Note that
the two plots show the same resultant paths for convenience only. There is no
connection between the particular path generated by the same psendorandom
or quasirandom point using each of the two different methods. There is only an
equivalence in terms of the expectations over all such paths.

3.2.3 Computational Example for the Feynman-Kaec Formula

This example demonstrates the accuracy of Monte Carlo estimates of the
solution of a simple linear parabolic differential equation using (16} at selected
values of = and a fixed (small) time ¢. A comparison will be made of pseudoran-
dom and quasirandom sequences with either the Standard discretization (14),
or the Alternate discretization (19).

Example 5 Consider the following linear parabolic differential equation:

af . _10f 1 1 42>\ of
=3 g+ (t+1 teErT (m2+1)2) 9zt

with tnitial condition f(z,0) = F%;“i' The exact solution is solution: f(z,t) =

141
o241

Estimates are computed at a fized (small) time, T, and at eight equally spaced
positions befween x = —3 and & = 3 using a discretization of time into m equal

steps and a sample size of N. The estimales are then compared with the eract
solution using the following L? measure of error:

L2e = i [f(mk,T) - fN(EksT)]z

k=0

QO] et

where o = —3 +6k/7.

T is selected to be very small so that discretization errors are insignificant
relative to the Monte Carlo errors.

A measure of the rate of decrease of the values of L2e is obtained by a
least squares fit of the function ¢N ™% to the calculated values of L2e. The
resulting values of & for pseudorandom and quasirandom (Halton was used here)
points used in both the standard and alternative discretizations are presented
along with log-log plots of the data in Figures 8-10 for three values of T" with
equal time increments in each case; ie., T'= 02 (m = 8), T' = .04 (m =
16) and 7" = .08 (m = 32). The results show that the convergence rate for
pseudorandom is independent of 7' and of the discretization scheme. On the
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Figure 7: Graphical Comparison of Discretization Schemes.
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other hand, the performance of quasirandom Monte Carlo rapidly degrades in
the standard discretization scheme, but is maintained at o nearly equal to 1 in
the alternative discretization. It is important to notice that the quasirandom
improvement from the alternate scheme grows as the dimension increases. This
is expected, as is the fact that at 32 dimensions standard quasirandom is just
barely better than pseudorandom.

For standard Monte Carlo using pseudorandom sequences there is no differ-
ence between the two discretizations, since the total variance of the two methods
is the same. On the other hand, the Alternative discretization method provides
significantly more accurate results than the Standard discretization, when using
quasirandom sequences in the Feynman-Kac formula. This improvement is due
to reduction of the effective dimension of the problem.

4 Conclusions

The analysis and computations presented above demonstrate the need to
modify standard Monte Carlo methods for effective implementation of quasir-
andom sequences. The advantages of quasirandom sequences over psendoran-
dom sequences are lost for problems with discontinuous integrands or large
dimension. These advantages can be regained, at least for some problems, by
smoothing or dimension reduction.

This has been successfully implemented for the Rejection method through a
Smoothed Rejection method, and for the evaluation of Feynman-Kac integrals
through an alternative discretization. In a forthcoming paper, one of the authors
(BM) will show how quasirandom sequences may be also used in Diffusion Monte
Carlo for computation of the ground state energy of various systems. On the
other hand, we have not yet been successful in applying quasirandom methods
to the Metropolis algorithm.

We consider the results presented in these examples to be an important step
forward in the continuing and promising application of quasirandom sequences
to Monte Carlo methods. While quasirandom sequences will probably not be
useful in all Monte Carlo methods, we expect that a wide range of effective
applications may be developed.
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Figure 8: Log-Log Plot for Example 5, 75 runs, 7' = 0.02, m = 8.
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Figure 9: Log-Log Plot for Example 5, 7 runs, T' = 0.04, m = 16.
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