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COMPOSITE STEP PRODUCT METHODS FOR SOLVING
NONSYMMETRIC LINEAR SYSTEMS

TONY F. CHAN* AND TEDD SZETO!

Abstract. First proposed in [2, 3] by Bank and Chan, the Composite Step method is a technique
for curing the pivot breakdown (one of two possible breakdowns) in the Biconjugate Gradient (BCG)
algorithm by skipping over steps in which the iterate is not defined. We show how to extend this
method to cure the same breakdown inherited in product methods such as CGS [26], Bi-CGSTAB [28],
Bi-CGSTAB2 [18], which are derived from a product of the BCG polynomial with another polynomial
of the same degree. New methods sntroduced in this paper are CS-CGSTAB {composite step applied
o Bi-CGSTAB) and a more stable variant of this, CS-CGSTAB2, which handles a possible additional
breakdown problem due to the Bi-CGSTAB process in the case where A is skew-symmetric. CS-
CQSTAB2 can be viewed as an improvement over the BiCGSTAB(!) algorithm (Sleijpen and Fokkema
[25]) with I = 2 in that although BiCGSTAB(2) is designed to cure the skew-symmetric breakdown,
it does not handle pivot breakdown as CS-CGSTAB?2 does. The new methods requize only a minor
modification to the existing product methods. Moreover, the sizes of the steps taken in our methods
can vary as opposed to fixed step methods like BiICGSTAB(I) and BiCGSTAB2. Our strategy for
deciding whether to skip a step does not involve any machine dependent parameters and is designed to
skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new
methods do produce improved performance over those without composite step on practical problems,
Furthermore, we extend the “best approximation” result in [3} to obtain convergence proofs for CGS
and Bi-CGSTAB and their composite step stabilized versions.
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1. Introduction. The Biconjugate Gradient (BCG) algorithm [21] is the “natu-
ral” generalization of the classical Conjugate Gradient method [19] to nonsymmetric
linear systems

(1) Az = b.

It is an attractive method because of its simplicity and its good practical convergence
properties. Unfortunately, one of its drawbacks is that it requires multiplications
with the transpose matrix A7. Methods have been developed which overcome this
by computing residuals characterized by a product of the BCG residual polynomial
with another polynomial of equal degree. Hence, we term the class of these algorithms
product methods.

The Conjugate Gradients Squared (CGS) algorithm (Sonneveld, [26]) is a product
method whose residuals can be written 75 ®% = ¢i(A)ro, where bn( A1y is the residual
from the standard BCG method. However, as discussed in [29], the convergence be-
havior of CGS can sometimes be irregular (i.e., 798| can vary wildly with i). This is
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due to the fact that if ¢,(A) is viewed as & reduction operator applied twice to rg, since
$n(A) is quite dependent on the initial residual rq, it is not likely to be a reduction for
any other vector, not even for ¢,(A)r, itself.

The Bi-CGSTAB algorithm [28] due to Van der Vorst attempts to stabilize this
by multiplying the BCG polynomial ¢,(A), instead, by another polynomial of equal
degree,

(2) ma(A) = (I —w AT —wa ) (T - w,A),

where the w;’s are chosen to locally minimize the residual by a steepest descent method.
Thus, by computing residuals rfi~¢9°T4% = Ta(A)d,( A)rg, we obtain a more smoothly
converging algorithm.

Unfortunately, problems arise in this method if we encounter a matrix A hav-
ing complex eigenvalues with large imaginary parts. Since 7, has only real zeros,
it is difficult to accurately handle such eigenvalues. Thus, the BICGSTAB2 algo-
rithm (Gutknecht, [18]) was developed to overcome this by performing two steps of
BiCGSTAB at a time to allow for pairs of complex conjugate zeros but doing the
local minimization at the n-th step over the two degrees of freedom in w, and w,_1.
BiCGSTARB2, then, is also a product method.

In the case that A is (nearly) skew-symmetric, however, BiCGSTAB2 will suffer
(near) breakdown due to the 7,_y polynomial. The BiCGSTAB(2) method (a case of
the BiCGSTAB(!) algorithm by Sleijpen and Fokkema. [25] when [ = 2) cures this by
not involving 7,-; in the intermediate step.

Since all of the product methods mentioned above involve the BCG residual poly-
nomial ¢,, they not only inherit the good properties of BCG, but they also take on
some of the problems of BCG. Specifically, it is well known that BCG suffers numer-
ical breakdowns (attempts to divide by 0). There are two different possibilities of
breakdown in the algorithm and many methods have been designed to cure them by
“looking ahead” to avold computing iterates where a breakdown can be predicted. The
spectrum of these methods ranges from simple modifications of BCG to handle only
one of the breakdowns to more complex algorithms which provide total breakdown
protection using a variable look ahead step. (See e.g., [3, 5, 7, 8, 14, 16, 17, 20, 24].)

Tn this paper, we consider the composite step technique (Bank and Chan [2, 3])
which cures one of the breakdowns (assuming the other one does not occur) by simply
looking ahead only one step when a (near) breakdown occurs. This technique is attrac-
tive because there is no need for user specified tolerance parameters, no variable step
sizes, and requires only a minimal modification of the standard BCG algorithm. More-
over, the composite step technique can easily be extended to product methods. For
example, the Composite Step CGS (CSCGS) algorithm was developed in by Chan and
Szeto [9] and in this paper, we show how composite step can be applied to Bi-CGSTAB.

In [3], Bank and Chan also prove a “best approximation” result which establishes
a bound on the error of BCG. Here, we extend this result to prove convergence results
for CGS, Bi-CGSTAB, and their composite step variants since these product methods
all involve the BCG polynomial ¢,.

Section 2 describes in detail the composite step idea as originally presented for
BCG and in Section 3, this is extended to Bi-CGSTAB yielding the method CS-
OGSTAB. We emphasize in this section the strategy used to decide when to take a
look ahead composite step. We note that this stepping strategy not ouly skips exact
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breakdowns, but is also designed to yield smoother residuals and does not require any
user specified tolerance parameters. A variant of this method, CS-CGSTAB2, which
is a way of combining composite step with an idea from BiCGSTAB2, is presented
in Section 4. The purpose of this variant is to cure additional breakdowns that may
occur due to instability in the BICGSTAB steepest descent polynomial in a manner
similar to BICGSTAB(]) with I = 2. The advantage is that our method cures pivot
breakdowns as well. In addition, the step sizes in our new methods can vary 28 opposed
to steps of fixed size in BICGSTAB2 and BiCGSTAB(I). In Section 5, we show some
numerical examples which compare these methods and show the advantages over their
non-composite step counterparts. Finally, Section 6 details the proofs for convergence
of CGS, Bi-CGSTAB, and their composite step variants,

2. The Composite Step Idea: CSBCG. It is well known that the Biconju-
gate Gradient method [19] is closely related to the nonsymmetric Lanczos process for
computing the basis for the Krylov subspaces K.(ro) and K;(7), defined as follows:

(3) Ko(ro) = span{ry, Ar,..., A" 1o}
4) Ki(7)) = span{f, AFo, .. S (AT R
The BCG iterates are defined by a Galerkin method on the associated Krylov sub-
spaces. Given initial guesses of z, and , to the sclutions of (1) and an auxiliary
system, AT% = b, BCG produces iterates

Zy, = g+ Yn; Ep = Fo + Uns
with corresponding residuals of the form

rp = b— Awmg,; o= b— ATE,,

where g, € K,(ro) and §, € K;(#), and such that the following Galerkin conditions
are satisfied:

(5) Ty A I(:;(’FQ); ?n L I(n(‘ro).

If we define K, K* to be matrices whose columns are as given in (3) and (4) and
span the Krylov spaces K,(ry) and K3(7,), respectively, condition (5) implies that
the BCG iterates z, = &g + K,v, are defined by the solution to the linear system
(B2 TAK,v, = (K})Tre. We note that the iterate , exists whenever the Hankel
moment matrix

M1 Mz ottt Hn
Y = (Ray AR, = | 2 P
Ha Hnser 00 Hon-1

where p; = 7 A'ry, is nonsingular.



One standard way to compute the BCG iterates is as follows [21, 13]:

Algorithm BCG

Set 1o =b— Azg; o= b— AT,
Po = Toy g =To
Po = ?':gﬂ""o
For n=0,1,...
Ty = Pp An; tn = pn/0n
Thgl = Tp — anApn; 'Fn+1 = 'Fn - anATﬁn
Tpy1 = Tp + anPnj ﬁn+1 =T, + anﬁn
Prt1 = 'FZ+1T:1+1; Bryr = Pt/ Pn
Prnit = Tn4r + ﬁn+1pn; Prp1 = g1+ ﬁn-}-lﬁn

End

We can see that there are two possible kinds of numerical breakdowns (attempts
to divide by 0) in the above routine: (1) o, = 0 (pivot breakdown), and (2) p, = 0,
but r, # 0 (Lanczos breakdown). ! Although such exact breakdowns are very rare in
practice, near breakdowns can cause severe numerical instability.

We term the first kind of breakdown a pivot breakdown because it is due to the non-
existence of the residual polynomial implicitly caused by encountering a zero pivot in
the factorization of the tridiagonal matrix generated in the underlying Lanczos process.
In terms of formally orthogonal polynomials [5], the BCG polynomial ¢,, (defined from
r, = ¢.(A)r) exists and is unique if and only if the HS is nonsingular. In other
words, a pivot breakdown will occur at the n-th iteration of the BCG algorithm if
det(HEV) = 0.

The second source of breakdown, Lanczos breakdown, is directly related to the
breakdown of the underlying Lanczos process, and is tied to the singularity of another
Hankel moment matrix H [17] defined by:

Mo M1ttt Hax
1O = RiRary = | T

Hn-1 Ha - Han-2

There are many methods designed to handle pivot breakdowns (see e.g., [3, 14, 17]),
as well as methods which cure both types of breakdown (see e.g., [5, 7, 8, 14, 16, 20,
24]). Although the step size needed to overcome an exact Lanczos breakdown can
be computed in principle, these methods can unfortunately be quite complicated for
handling near breakdowns since the sizes of the look-ahead steps are variable (indeed,
the breakdowns can be incurable).

The Composite Step Biconjugate Gradient (CSBCG) algorithm (Bank and Chan,
[2, 3]) is an alternative which cures only the pivot breakdown (assuming no Lanczos
breakdowns) by “looking ahead” in HY and not computing z,, where it is not defined.
Looking ahead means that we build H,-(l) until it is no longer singular and we have
an iterate Zn4m,m > 1. In CSBCG, this is done with a simple modification of BCG

! I other literature, what we term the pivot and Lenczos breakdowns, are also known as {rue and
ghost breakdowns [6], Galerkin and serious Lanczos breakdowns [14], hard and soft breakdowns [20].
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which needs only a maximum look-ahead step size of m = 2 to eliminate the (near)
breakdown and to smooth the sometimes erratic convergence of BCG. It was shown in
[2, Lemma 4.3] that only two steps are needed if we assume no Lanczos breakdown, but
this can also be seen in the relationship between the two Hankel matrices defined above:
assuming that det( H") # 0 for all n, then no two consecutive principal submatrices
of HSY can be singular. (The structure of these Hankel determinants was studied
in detail by Draux [10].) Thus, instead of a more complicated (but less prone to
breakdown) version, CS5BCG cures only one kind of breakdown, but does so with
a minimal modification to the usual implementation of BCG in the hope that its
empirically observed stability will be inherited [27].

We shall next briefly review some of the details of CSBCG. Suppose in running
the BCG algorithm, we encounter a situation where ¢, = 0 at step n, and therefore,
the values 2,41, Fny1s Tntls Tngr cannot be defined. The composite step approach is to
overcome this problem by skipping the n +1 update and computing the quantities in
step n + 2 by using scaled versions of 7,14 and 7,.,, which do not require divisions by
o,. More specifically, we define the auxiliary vectors:

(6) Znit = OpToyt = Oplu — pndp, € Knia(ro);
2n+1 = G"ﬂﬁ'z+1 = Unﬁn - praATiﬁn & I{;:+2(’FU)'

These exist even if o, = 0 and thus, can be used in defining 245 :

3?,,+2 =&y + [pn-; zﬂ+1}fﬂ7
with corresponding residual and search direction
(7) Thaa — T — A[pn7 zn-]-llfn;
(8) Pntz = Tn42 + [prn zn+1]gns

where f,, g, € R?, and similarly for &, 43, Fry2, Dntos f., and g,,.
W @\’ ® N wei
To solve for the unknowns f, = ( w7y fo ) and g, = ( O ) , we impose the
Galerkin condition and conjugacy condition of BCG which result in two 2 x 2 linear

systems:

) [?E:Apn Az H E;] _ [ gﬁ”rn]
zf:,:»lnlApﬂ Z,T+1Azn+1 In Zne1Tn

ay [ fHn e[ ]
2n+1APn zn+1Azn+1 gn Zn+1A'"n+2

This yields (after some algebra) the quantities:

fﬂ - (Cn+1pns 6n+1)p33/5n a'nd gn = (pn+2/Pnaann+2/9n+1)a

where (up1 = 5541 A%p1, 0041 = FagiZatny b = OpCng1pt — 0241 Furthermore, a
lerama in [3, Lemma 5.1] shows f, = f, and §, = gn. It is now possible to compnte
Zpizs Fntas Tniar Tnyz and thus, advance from step n to step n + 2. The Composite
Step BCG algorithm, then, is simply the combination of the 1 x 1 and 2 x 2 steps.



3. Composite Step Bi-CGSTAB. We now apply the composite step idea to
handle the pivot breakdowns that occur in the Bi-CGSTAB method proposed by Van
der Vorst [28]. Since the Bi-CGSTAB residual polynomials are formed from multiplying
the BCG polynomial ¢, with another polynomial 7, of the form (2), we can use the
subset of well-defined ¢;’s from CSBCG to multiply with 7, instead. To do this, we
first define

PECG = ¢'n(A)'f'o§ fof = En+1(A)To-
The CS-CGSTAB polynomials, then, take on the form:
TTC:'S-CG’STAB e Tn(A)QSn(A)To; pS'S'—C'GSTAB - Tn(A)'i,bn(A)TU-

In the case of a 1 x 1 step, we simply use the Bi-CGSTAB update. For the 2 x 2
composite step, we will need to evaluate

(11) "'"ffz_CGSTAB = TppaPataTo

= (I - wn+2A)(I - Wn+1A)Tn¢n+2'f‘o
and
(12) Pf-f; CGSTAB - Tn+2'¢n+2'ro

(I - wn-§-2A)(I - wﬂ+1A)Tn¢ﬂ+2’r0

using the quantities obtained from the n-th step: 7.$,, and 7,%,. We first show how
to compute the polynomials 7,¢,42 and 7,9¥,4s appearing in (11) and (12). We use
the CSBCG relationships from (6) - (8):

(13) §n+1(?9) = Und’n - pnﬂ¢ns
(14) bnsa(9) = b — P f — g S,
(15) ¢n+2('ﬂ) = ¢n+2 + ¢ﬂgf(l1) + §n+1g£a2}
and multiply by the 7, polynomial to evaluate the needed quantities:
(16) Tn(ﬂ)gn-i-l(?’) = OnTa®n — PnﬁTn":{’n
(11) Tn(f&)an—[-Z('ﬂ) = Tn(‘abn - ﬂ“tbnfr(zl) - ﬁ§n+1ff(12)),
= Tadp — ﬁrn@bnfr(;l) - ﬁTn€n+1fr(12)a
(18) Ta(0)ng2(®) = Ta($nra + $agD + €npag®)

= Tn¢n+2 + Tﬂ’t)bﬂgi(ll) + TnEn+ig$12)-

We now show how to compute the unknowns f, and g, in (17) and (18). The
CSBCG residual 74, in (7) and search divection p,y» in (8) are, respectively, orthog-
onal and A-conjugate to K7.i(Fo) [2]. By imposing orthogonality and A-conjugacy
condjtions on two specific vectors 7,(A”)Fy € Kiyi(7o) and AT 7 (AT € K ya(Fo),
we obtain two linear systems which give f, and g,.

Specifically, by writing equation (7) in polynomial form (14) and taking an inner
product with r,(AT)F,, we obtain the relation:

(Tn(AT)?m Pnra(A)ro)
(f'gﬂa Tn(A)¢n+2(A)TG)

= (7';0, [Tn¢n - ATn/'ibnfr(ll) - ATn£n+1f1£2)](A)T0)-
6

0



Similarly, for the A-conjugacy of the search direction (8),

0 = (AT, (A")o, Yusato)
= (Fo, ATa(A)thasa(A)r0)
= (FCH [Aansn-ﬁ-Z + ATn/gbng:(‘al) + ATn€n+lg$z2)](A)rﬂ)'

We derive two similar relations by imposing the orthogonality and A-conjugacy
conditions on AT, (AT)F,. Combining the four relations, we obtain the following two
2 x 2 linear systems:

(7:03 ﬁfnwn'rﬂ) ('FO 3 '!?Tngn 7'0) 1(11) — (ﬁ)a Tn¢n ?‘o)
(19) [ (7’"'0-; 7927'n¢n "“0) (’Fo, 1927'115::17‘0) ] [ r(lz) ] B [ (fm "97'n¢n?'n) ]

(ﬁm ﬁTn"pn 7‘0) (7’;03 79Tn£n 17'0) QE) — (FO, ﬂrn‘ﬁn 2)
(20) [(T"U:'ﬂzrnwnrﬂ) (’Fﬂa 'ﬁngEn':-iTD)] [91(12)] - [(7’:03 ‘1927'“4’).,:,2)] '

These are easily solved since all of the entries in the 2 x 2 matrix and the right
hand sides can be obtained from equations (16), (17), and quantities from the n-th
step. Thus, we can update (17) and (18).

The next step in evaluating (11) and (12) is to choose wyy1 and wpyp t0 satisfy
some local minimization property. In the case of a 1 X 1 step, we imitate the Bi-
CGSTAB update steps. Specifically, wpy is chosen to minimize the norm of r,4y =
Tnp1Pns1To = (I — Wnp1 A)ranpato. For the 2 x 2 step, we employ the same steepest
descent rule to compute wyy; and Wy, by minimizing [|7a4]l and [|ra4l|. Note that
Tn41 18 nOt available in a 2 x 2 step, bt we can use a scaled version for minimization.
To do this, let %,y1 = Tan41To = 2= TuPnsa?o. Then we can write

1
(21) Tpi1 = TnsiPnarTo = (I — Wni1 A)Tndnsato = (I — wn-]—iA);_— Upypt-

The vector u, 4, is already computed in the CS-CGSTAB algorithm (see relation (16))
and thus, we minimize

1
rasalt = Pl (- ‘*"ra+1A)”rn+1)T (I — wny1 AYtingr)

by choosing w11 = (Aty1, Uni1)/ (A, .y, Atinyy), an orthogonal projection of t,4
onto Aty
Similarly, let

(22) Uppr = Taq1Pna2fo = (I — Wni1A)TnPniaTo
which can be computed because T, ¢, is available from relation (17). Then write
(23) otz = TnpaPniaTo = (I — Wapa A)Tni1Prialo = (I = Woy2A)tnga
and minimize
2 gall = (I = wagaA)tngs)” (T = wns2A)tnta)
by choosing

(24) Wpa = (Atinga, Unya)/ (Alnia Atpya).
7



Finally, in Tunning CS-CGSTAB, we must be able to recover the BCG constants
pE€S and ¢BYG in order to update the BCG polynomial part of the residual. In [28],
Van der Vorst defined the Bi-CGSTAB constant

Bi—CGSTARB

pBi-CGSTABY
n

— {5
oy 'n
and showed its relation to

BCG _ (ﬁBCG
n

Pr T ).

?

Using the property that by construction, ¢,(A)r, is orthogonal with respect to all
vectors X, 1 (AT )F, where x,_1 is an arbitrary polynomial of degree at most n—1, one
gets:

pECE = (u(AT)To, Pn(A)To)

= g an_1((—AT) o, du(A)ro),
pBimCASTAR  — (G 1 (A)ba(A)o)
= (1u(AT Yo, $ul(A)r0)

= wy - wa({—AT)*Fo, n(A)T0)-

The relationship between them follows:

BCG
peg . %0’ "% Bi-CGSTAB

n
Poxl = 7 FPa+yl , where a, = ~gzz -
Wyt afce

Tf we let pn = (@ -+ *0per )/ (w1 *wy), this reduces to the update formula:

BCG

BCG Bi-CGSTAB _. Pn Bi-CGSTAB

Prtl = Ho+1Png1 = Hn BCG Pni '
Tn Wnit

In a 2 X 2 step, we determine p535 ¢ similarly. First we use relation (14):

(25) PszBCG = (¢n+2(AT)'Fu, ¢n+2(A)T‘e)

= ((¢lAT) — 0n AT, (A7) — 11 AT £yt (AT ))F0, Brt2(A)70)-
Then, the fact that ¢p .m0 is orthogonal to all vectors Xns1{AT)F, implies that the
inner product (25) picks out the coefficient of the highest order term of the n+2 degree
polynomial that ¢, is being orthogonalized against. In this case, the coefficient of
the highest order term for the polynomial £, (A7) = oBCG g 1 (AT)is oBCC%qy - iy,
so (25) reduces to:

pgfgca = —Qp*"" Oﬁn+1C’fCG((—AT)"+2'F0a ¢n+z(A)7'u)

which leads to the update formula:

CSBCG
(26) CSBCG _ C5~CGSTAB _ _ Pn n+1 CS-CGSTAB
Pnt2 = Mpp2Prtz =—fp\ — T T b2 .
Wont1Wn 2

The update for 6B°¢ = (4,(AT)Fo, Aps(A)ro) can be calculated similarly, We

define g€5—CFSTAB = (Fo, AT (A)h,(A)ro) = (Fo, ApG8-CG5TABY apd obtain the anal-
ogous update formula:

CSBCG CS—CGSTAB
(27) Ont2 = Hn+20n42 .

8



TABLE 1
Notation for CS-CGSTAB

vector | polynomial | where/how derived | where used B
Tn Tﬁ(rbﬁ’rs (\11) (16) (17) (19)
Pn Tﬂ¢ﬂTU (12) (18)
Up 41 Tn€n+1'r0 (16) (17) (18) (21)
Spy2 Ta®pyato (17) (11) (18) (22)
Up 42 Tﬂ+1¢n+27‘u (22) (23)
€n At d.mo Ar, (19)
dn ATn¢ﬂTO Apn (16) (17) (19) (20)
Ynt1 Arp 1T Aty gq (19) (20) (21)
tpaa AT, PnyaTo Aspis (20) (22)
Ynt2 AT, q10n 4270 Aty ya (23)
¢ Al b7 Aq, (19) (20)
S AzTnanTu Ayt (19) (20)
Vogs | A*Tadnialo Alnys (20)
oy 10 (19) (17)
1 #2 (19) (17)
Bn g (20) (18)
B & (20) (18)

3.1. Implementation Details. In Table 1, we summarize the notation we will
be using in our implementation of the CS-CQSTAB algorithm, We list the vector used
in the algorithm, its corresponding polynomial form, and the equations in which it is
derived and used.

At every step, we must anticipate a 2 X 2 step even if we decide to take a 1 x 1
step. (The stepping strategy will be discussed in Section 3.2.) Recall that in one step
of Bi-CGSTAB, only two matrix-vector multiplications are performed: ¢, = Ap, and
Ypp1 = Altpyi. From the third column of Table 1, we see that 8 matrix-vector products
are required to do a 2 x 2 step which appears to be 4 more than 2 steps of Bi-CGSTAB.

However, the total 8 products can be reduced to 4 multiplications by precomputing
certain values and absorbing them into vector updates rather than explicitly multiply-
ing by A. Specifically, by precomputing ¢, = Agy, the multiplication ¥n41 = Atnyr
can be written:

Ynt1 = Gnen-pnAQn
= Op€p ~ Pl
Similarly, if we have dyy1 = A¥nga, then the product €41 = ATpyq can also be
evaluated without having to multiply by A:
€nyr — (yn+1_wn+1Ayn+1)/an
= (yn+1 - wn+1dn+1)/an'

Furthermore, gn41 = APny1 can also be updated:

Qn+1 — A'rn+1 + ﬁn+1(Apn - wn+1Aq”,)

= €p41t ﬁn+1(qn - wn+1cn)'
9



Thus, the 1 x 1 step can still be performed with only 2 (pre)multiplications with A:
Ag,, and Ay,;,. Moreover, by precomputing v,z = Atyys and guyz = Apnyy, We cant
update the remaining values in the 2 x 2 step in a similar fashion.

However, using this precomputing strategy to update

€nyz = ATn+2 = A(I - Wn+1A)(I bt wn+2A)sn+2

implies that we need A3s,, 5 which we do not have. Thus, the 2 x 2 step requires an
additional matrix-vector multiplication: w, 4q = A%, = Alvypa)

Hence, as in CSCGS, there are 5 matrix-vector multiplications for a 2 x 2 step,
whereas in two steps of Bi-CGSTAB, only 4 are needed. This is the price we must pay
for composite step. If we do not need to take many 2 x 2 steps in practice, this price
will not be too costly.

3.2. CS-CGSTAB Stepping Strategy. As far as deciding when to actually
take a 2 x 2 step, we follow the principles in [2, 3, 9]. As with these methods, CS-
CGSTAB employs a practical stepping strategy that will skip over exact breakdowns
using the criterion:

(28) linsall > max{lirall, lirasall}-

If this condition were met (e.g., at a near breakdown) and we performed two
1 x 1 steps, it would result in a “peak” in the residual convergence. By taking a
2 x 2 step, we skip over this and obtain a smoother, more stable method. In order to
avoid unnecessary computation of ||7,42]|, we express condition (28) in the following
algorithm:

¥ (|rngall < llral]) then ~— Condition (28a)
choose 1 x 1 step
else
if (|7ass]l < [7nsall) then  +— Condition {28b)
choose 1 x 1 step
else
choose 2 x 2 step
end
end

In order to avoid repeating work and to do this in a stable way, Condition (28a)
can be written:

H(I - wn-i—lA)un-i—l“ < lo'nH|Tn“'

For Condition (28b), we first rescale the r,, 1, update in order to estimate ||7,42|| stably
by letting

Vﬂ+2 = ﬁnTﬂ.’_g = 6n(I - wn+1A)(I - wn+2A)3n+2,

where 6, is the determinant of the 2 x 2 matrix in (19). Evaluating v, exactly
would involve the quantity A%s,, which would require an additional matrix-vector
multiplication if we decide to take a 1 X 1 step. Hence, for practical purposes, we
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use an upper bound approximation to estimate ||, 42|} Note that although we do not
have AZs,,q, the quantity As, s can be made available even if we take a 1 x 1 step,
and can be done without an additional matrix-vector product using the precomputed
values e, Cp, and d,q1:

(29) tn+2 = A3n+2
= A(én'rn — Opfln — an+1yn+1)

- 6nen - QnCy — an+1dn+1 .

Thus, we would like to estimate ||1, 5| = 160 (1 = wp2 AT — Wy A)8n 0|l using
(29) and without any further matrix-vector multiplications. Our strategy is to set
Wnyo = 0 and minimize [|6,(1 — w1 A)S,42]|, thereby eliminating the need to compute
A%s, 5. Doing this gives an upper bound estimate to ||v,4s|] which can be shown by
defining

h(wn+1%wn~i-2) = ||6,(1 — Wnpr AN — wn+2A)5n+2”’
and establishing the following inequality:

30 min  A{w,y W@ < min hlw,,1,0).
( ) Wi g1y Wn ( i+l n+2)—wn+l ( +1» )

The minimization problem:
{f)ﬂiﬂ WMwny1,0) = E}lin (£ — wpp1A)snyall = g}ﬁﬂ fl$ns2 — Wnt1tasell
n+1 n+1 ntt

is solved with (:Jn+1 = (tn+253n+2)/(tn+2} tn-{-ﬁ)'
Hence, Condition (28b): irp4all < [7n42]] is evaluated by the approximated con-
dition

(31) 16211 — w1 At gall < |0alilPnsally

where ||#s42]| is the estimated upper bound for [|vn 42 /8al):

(32) a2/ 8all < [Pagall = 8n42 = Pnprtusall-

If a 2 x 2 step is chosen, then the true v,y i8 evaluated. After v, ,q is computed,
we add one final check to make sure the approximation was indeed valid. If not, we
take a 1 x 1 step. In Table 2, we present the (S-CGSTAB algorithm. Note that if only
1 % 1 steps are taken, we have exactly the Bi-CGSTAB algorithm.

4. A Variant of CS-CGSTAB. A problem in the CS-CGSTAB method is that
additional breakdowns may occur if A is skew-symmetric or near breakdowns if it
has complex eigenvalues with large imaginary paris. Suppose we are at step n of
the algorithm. In the case that A is skew-symmetric, it can be easily checked that
Wpyt = Wpyz = 0. The 2 x 2 step attempts to divide by the quantity ¥, = Wnq1Wn42
which causes a breakdown. For nearly skew-symmetric A, v, will be small, thus causing
near breakdown and numerical instability.

This can be cured by modifying the local minimization at that particular 2 X 2
step. The idea is to require

(33) Irnsall = (Pnéi%?z llp(A)ra(A)bnra(A)rolls

11



TABLE 2
Algorithm CS-CGSTARB

Po = ”"%""03 po = TFo; Hu= ﬂ?“GH; eg = qo = Arg; Mo = 1
n+«— 0
While method not converged yet do:
on = (73 qn)tin; €n=Atn % Evaluate (27)

Un4l = OnPn = Pndn; Yni+1 = TnCn ™~ Pnln; dn+1 = Ayn+1
Wntt = (yn+1:un+1)/(yn+1x yn+1)
il = Unpi = Wngilnel;  Entl = Untl — Wnt1dnt PYnt1 = [|Patrll
9%, Decide whether to take a 1 x 1 step or a 2 X 2 step.
Tf Y41 < |0n|én, Then % Condition (28a): lIrnetfl < [lrall
one-step = 1
Else
a11 = M gn; @12 =T Uns1; Q2= #Ten; s =74 dnga
6 = @11022 — @12a21; b1 = pafpn; b2 = 4 eny1
O = ansoby — aiaba; g1 = —ag by + a11bg % Solve (19)
Sn42 = Snrn — Gnn — Cnti¥nil; tnya = 8pn€n — QnCn — C"-’n+1drv§~1
Ongs = (tnt2, 5n42)/ Enta tara); Pngz = |lont2 — Batitnsal| % Evaluate (32)
If |65 |¥ntt < |0niPnte, Then % Condition (28b): Jratill < llrn+zll
one-step = 1
Else % True vni2
Upyo = Atny2, Wniz = AUnp2;  Zng2 = int2 — Wniilni2
Wnyn = (Zn+2, un+2)/(2n+2,zn+2); T = —-(wn+1 +wn~§-2); Yo = Wny1Wna2
ez = Sn4a + Mitni2 + Y2vnsa; Yoz = [Pl
éppn = tnyo + TVnt2 + V2Wn42
if |6n|?,!'1ﬂ+1 < ]Jnlvﬂ,»'.z, Then % Re-test W/Un+2
one-step = 1
Else
one-step = 0
End If; EndIf; EndIf
% Compute next iterate.
If one-step, Then 0 *+* Ugual Bi-CGSTAB ***
Prpl = Fog1/0n;  ntl = Ent1/0n; g1 = Yngi/On
Znpl = En + (Pnpn + wn+1un+1)/0'n
pngt = (npn )/ (Fawngs);  prtr = (78 Fnt1)iings
Bati = o1/ pn
D1 = Pg1 + Bng1{Pn — Wnt1n)
npl = Ent1 + Bai1{qn ~ Wr41Cn)
n—n-+1
Else o, **% 9 « 2 step CSCGSTAB ***
Ptz = Fapa/On;  eniz = éni2/0a;  Pnaz = vny2/0n
Znyz = Tn + (@nPn + Cnp1Unt1 — T15a42 — Tatnt2)/bn

Hnt2 = “Hn (O‘n+1Pn/5n72)§ Pntz — (Fg‘rn+2)ﬂn+2 % Evaluate (26}
by = Fgtntn; ba= L vnsa
Ba = (az2b1 — a12b2)/6n;  Bnt1 = (—agiby + ea1ib2}/6n % Solve (20)

Prtz = Patz = Bn(Pn + N1qn + 7200) — Bos1 (g1 + 1Un+1 + Y2dnt1)
n+2 = APn+2
n—n+2
End If
End While
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where P, is the set of all polynomials of degree at most 2 and @(0) = 1.

Performing this minimization over two degrees of freedom was first presented in
the BiCGSTAB? algorithm by Gutknecht, {18]. The purpose was to cure problems that
arise in the steepest descent part of Bi-CGSTAB due to eigenvalues of 4 in the complex
spectrum that are not approximated well with eq. (2). Hence, every other step of the
BiCGSTAB? method performs (33) in order to handle conjugate pairs of eigenvalues.
(In the remaining steps of the BiCGSTAB? algorithm, the usual Bi-CGSTAB update
is taken.) The BiCGSTAB?2 algorithm can be summarized:

1-D min 2-D min
Tu®n  — Tn+1¢n+1 - Tn+z¢’n+2-

Unfortunately, in the implementation presented in [18), the two-dimensional min-
imization steps of BICGSTAB2 are computed based on the Bi-CGSTAB step imme-
diately before them. For skew-symmetric A, this poses a similar breakdown problem
to the one mentioned above because the Bi-CGSTAB step requires a division by wy, 41,
which will be zero in this case.

Note that BiCGSTAB?2 is mathematically equivalent to the BiCGSTAB(!) algo-
rithm, due to Sleijpen and Fokkema [25] in the case where | = 2, but the implemen-
tation is different. BiCGSTAB(2) does not compute the intermediate Bi-CGSTAB
residual 7,41 = Tar1Pngr1Tor Instead, it uses an intermediate basis vector, AT Pni1T0)
to generate the auxiliary residual 7,45 = Ta®nyzTo. This algorithm can be summarized:

Tnﬁbn ATjﬁ+l Tn¢n+2 Q-D"_m’ln Tn+2¢n+2-
By not involving 7,1, BICGSTAB(2) will not suffer the breakdown mentioned above.
However, note that it is still prone to breakdown in the BCG ¢,,4; part.

We now show how to overcome this breakdown problem. Recall that CS-CGSTAB
already cures the BCG pivot breakdown in step n + 1, so all we need to do now is
to show how to modify CS-CGSTAB so that it will overcome the 7,,; breakdowns
as well. The idea is to note that CS-CGSTAB has access to the AT, ¢, 4170 vector
through the relationship &40 = OpnPnyr. We use it to compute the auxiliary residual
Sni3 = TnPntaTo to yield :

Tn¢n Aq:fi‘;*'l Tn¢n+2 243;‘31“ Tn+2¢n+2'
The quantity s, is updated by (17) and the 2.dimensional minimization step can be
performed by first writing the residual

Tat2 = Sn4z + B [fh] ,
T2
whete B = [Asnys A%Spp2] = [th4z  Ung2], and then minimizing ||7nq2|] by solving
the system:

(34) RTR [71 ] — "'"'RT Sﬂ+2.
T2
In the case where A is skew-symmetric, the attempt to divide by 7, = Wpe Wy s in the
92 x 2 step can now be performed without breakdown. In particular, if A = ~ AT, then
Ay = (U p2s Sng2)/ (Pntas Vnya) 7 O because the numerator vl 08npn = SneadASays >
0.
13



We can now form a variant of the CS-CGSTAB algorithm which follows the former
method in allowing 1 x 1 and 2 x 2 steps and differs only in the 2 x 2 step, performing
instead the minimization over the 2 degrees of freedom described above. We use the
same stepping strategy and approximation scheme to estimate [ji1,42||. We incorporate
this into the new variant, CS-CGSTAB2. This is a more stable unplementation which
will not breakdown when A is skew-symmetric. Rather, in this case, provided there
are 1o pivot breakdowns, it will always take 2 X 2 steps and will be equivalent to the
BiCGSTAB(2) method.

In fact, when only 2 x 2 steps are taken, the methods Bi-CGSTAB, BiCGSTAB(2),
CS-CGSTAB, CS-CGSTAB2, are all mathematically equivalent. In general, the com-
posite step methods differ because they are variable step methods.

Note that in CS-CGSTAB2, the composite step is used to skip over breakdowns
in the 7,4, polynomial as well as ¢y However, if there was no ¢, 4, breakdown, and
we took a 2 x 2 step in CS-CGSTAB?2, then it is still possible that there could be pivot
breakdown due to ¢,4,. In principle, we can solve this by applying the composite step
idea to Bi-CGSTAB? and taking a 3 X 3 step when we forsee possible pivot breakdown
because ¢,,3 exists under our assumption of det(H®) # 0. However, we will not
pursue this in this paper. ‘

5. Numerical Experiments. All experiments are run in MATLAR 4.0 on a
SUN Sparc station with machine precision about 10~!%, In most cases, as expected,
composite step methods behave similatly to their non-composite step counterparts.
In terms of the number of iterations it takes to converge, composite step methods
are never worse in almost all cases, and in terms of the number of matrix-vector
products performed, the cost is minimal. Here, we present a few selected examples
where composite step does make a significant improvement.

Example 1. We begin the numerical experiments with a contrived example to
illustrate the superior numerical stability of composite step methods over those without
composite step. Let A be a modification of an example found in {23]:

1

ie., Ais a N x N block diagonal with 2 x 2 blocks, and N = 40. By choosing
b=(1 0 10 .+)T and a zero initial guess, we set og = ¢, and thus, we can
forsee numerical problems with BCG polynomial based methods such as Bi-CGSTAB,
BiCGSTAB2, and CGS when € is small. Although these methods converge in 2 steps
in exact arithmetic when € # 0, in finite precision, convergence gets increasingly un-
stable as € decreases. Table 3 shows the relative error in the solution after 2 steps
of BCG, CGS, and Bi-CGSTAB. Note that the loss of significant digits in BCG and
Bi-CGSTAB is approximately proportional to O(e™') and the loss of digits in CGS is
proportional to O(e”?). The accuracy of ('S-CGSTAB, CS-CGSTAB2, and CSCGS,
the composite step CGS algorithm [9] is insensitive to € and these three methods all
converge in two steps with errors < 1074°.

Example 2. Next we alter Example 1 slightly to show the advantage of CS-
CGSTAB?2 over CS-CGSTAB. Recall, CS-CGSTAB was developed to overcome break-

downs in cases where A is (nearly) skew-symmetric. Hence, if we change the last

14



TABLE 3

FEzxample 1
Rel. error in the soln. after 2 steps (N=40)
¢ [ Bi-CGSTAB | BiCGSTAB2 | BICGSTAB(2) I CGS
107* 1.5 x 107 8.6 x 10712 2.5 x 107 3.6x107°
107% | 4.9x107° | 4.7x107° 1.0 x 107° 2.2 x 10°
10712 3.0x 1075 7.3x 1074 2.5 x 107* 3.0 x 108
CS-CGSTAB, CS-CGSTAB2, and CSCGS all converge with errors < 107%°.

example so that

A

e 1
(_1 ¢ ) ® Inya,

we see that as ¢ gets small, CS-CGSTAB exhibits poor numerical results whereas CS-
CGSTAB2 converges in the first 2 x 2 step as in the Example 1.

TABLE 4
Ezample 2

Rel. error in the soln. after 2 steps (N=40)

¢ || Bi-CGSTAB | BiCGSTAB2 | BICGSTAB(2) | CGS | CS-CGSTAB
10-% § 2.1x1072 | 2.9x 1078 20x10- [25x107%] 2.3x10°%
10-8 2.0 x 10~8 bd 1.0 x 1078 1.0 x 10° 7.6 x 10-10
10712 || 1.2x 107t 2.7 % 10 1.0 x 107*2 1.3 x 10% bd

bd: Encountered breakdown
CS-CGSTAB?2 converged each time with error < 107"

Example 3. To emphasize the point made in Example 2, we pick a random
skew-symmetric matrix with dimension N = 20 and a random right hand side. All the
methods mentioned above either diverge or break down, except for CS-CGSTAB2 and
BiCGSTAB(2), which achieve residual tolerance 107!! in 24 iterations.

Example 4. We now show an example using a matrix which comes from the
Harwell- Boeing set of sparse test matrices [11]. It is a discretization of the convection-
diffusion equation:

L{u) = —Au + 100(zu, + yu,) — 100u

on the unit square for a 63 x 63 grid. We use a random right hand side, zero ini-
tial guess, and no preconditioning. Figure 1 plots the true residual norm for Bi-
CGSTAB, BiCGSTAB(2), CS-CGSTAB, and CS-CGSTAB2 versus the number of it-
erations taken, and Figure 2 shows the number of matrix-vector products. We have
chosen a right hand side which yields some numerical instability for Bi-CGSTAB due
to a near pivot breakdown around step 135 which results in convergence stagnation.
Taking composite steps in this case overcomes this problem. We also see the advantage
of the 2-dimensional minimization steps in the convergence behavior of BICGSTAB(2)
and CS-CGSTAB2.
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The stepping strategy that we have described and implemented is conservative in
that a 2 x 2 step is chosen whenever there is a peak in the residual convergence. If
the result of the composite step is only a slight improvement, the extra cost it takes
to perform a 2 x 2 step would be wasted. However, in practice, this increase in cost
is relatively small. For example, in this particular problem, 96 of the steps taken in
CS-CGSTAB are 2 x 2 steps and 50 2 x 2 steps are taken in CS-CGSTAB2. We see
that the composite step methods require only about 15% more matrix-vector prodﬁcts
in this example.

6. Best Approximation Results. Until recently, there has been very little the-
ory known on the convergence of the Biconjugate gradient algorithm or other related
methods. When Bank and Chan introduced CSBCG in [3], they also included a proof
of a “best approximation” result for BCG. It is based on an analysis by Aziz and
Babusgka [1] and is similar to the analysis of the Petrov-Galerkin methods in finite
clement theory. Specifically, if we let M, be any gymmetric positive definite matrix
and define the norm |||v]||2 = v' Myv, then Bank and Chan showed that the BCG error
term eBY% =z — zP°F = ¢ (A)eo can be bounded as follows:

(35) efNl, < (1 4+1T/6)  inf  lldu(My AM, 2 Miallleallls

=1

where T and & are constants independent of k determined from inequalities involving
v € V; and w € W, where V; and W, are the Krylov subspaces generated by the
Lanczos method at the k' step:

[w" Av] < Tlfolllflfwi]l;
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inf sup  wl Av > & > 0.
veV, w € Wy
Mollla =1 Jfjwl]l. =1

Moreover, if we define the Lanczos tridiagonal matrix 7} = WEAVY* and its LU-
factorization T, = L, DU, and define M; = WL UL (DED)Y2UWT, they showed
that ' =6 = 1.

This result establishes convergence of BCG in the case where there are no break-
downs because then M, is well-defined and symmetric positive definite. If this were
not the case, the tridiagonal matrix T; would be singular and such an M; would not
be positive definite. However, this result can be extended to cover situations with
breakdown. For example, assuming no Lanczos breakdowns, the composite step ap-
proach does yield an M; matrix based on a factorization of 1, which may involve
2 x 2 blocks, and hence, the above result applies to the error ¢ corresponding to the
well-defined iterates z, [2]. In principle, if we add a lock-ahead method to handle the
Lanczos breakdowns to this, we can prove convergence of BCG for cases where both
breakdowns occur.

Note that in general, simple upper bounds for the term

(36) nt e (ad M)l
are known only for special cases. For example, if we assume that the eigenvalues of
A are contained in an ellipse in the complex plane which does not contain the origin,
then, due to a result by Manteuffel [22], the quantity (36) can be bounded by a value
dependent on the foci of the ellipse.

The product methods discussed eatlier (CGS and Bi-CGSTAB) both involve the
BCG polynomial. Hence, we can use the result in (35} to establish bounds on these
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methods as well. We first prove a lemma which will be used in the derivation of both
bounds for CGS and Bi-CGSTAB.
LEMMA 1. For any matriz A € RV and vector v € RY,
tAalll. < a2 AM~2 il
Proof. By definition, |||wl|], = [|M3 w|,
and thus,
14vlll, = 13 Avlly = | MF AM™H M3 o,
< M3 AMTE |HIMF ol = [[M? AMTE [a|llv]ll. o
We now use this to estimate a bound on the CGS method and show the squaring

effect on the convergence rate.
TurorREM 1. Let €595 = ¢2(A)ey. Then

1 i 2
el < (,_imf _ IgsCot AN ) ol

Proof. Applying Lemma 1 to ||{ef %5, we get

Hef Nl = [Heh(Aeolll.
Hﬁbk(Mk_ AM? i Hi%(’@%“h
= |lgu(ME AME allleBC)

a(, it IO AMTl) Nlealle

drdn{0)=1

IA

Next we show convergence of the Bi-CGSTAB method and how the convergence rate
of BCG is decreased further by the effect of the steepest descent.

THEOREM 2. Let efiC65TAE = Tk(A)qﬁk(A)eo Also, Let A = M*# AMDE | and
define S to be the symmelric part of A (i.e., § = (A + AT)). Then if S is posztwe
definite,

. Ain(S? \E 7 i
BiCGSTAB . < 1 - TN - - ( f . A ) -
epeostan, <, (1= 2N (g IOl
Proof. First note that we can bound
i e Amin(*‘s’)g %
i [r:(A)ll2 < (1 - m )

by applying the proof in Theorem 3.3 of (Eisenstat, Elman, and Schuliz, [12]) to the
matriz A. Combining this fact with Lemma 1, we can establish the following bound,

= mip [IIn(Ad(Aealll
min (Im(M 445 Yol Aeol )

TREP

flefiees42]],

iA
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< (min ImA)e) N Aeoll
A1".!'!-!"1'5 5 2 %
< ( 2l ATy epoayy,
)"ms'ﬂ,(s)2 : . e
< —_— e l .
< (1o 2l (it ICONL) el
Recently, Barth and Manteuffel [4] have shown that the constant (14 I'/6) in (35)

can be improved to 1. In other words, ef¢¢ is minimized over K, in the [{| - ||, norm.

Correspondingly, the constants ¢, and ¢, in Theorems 1 and 2 can be improved to 1.

7. Conclusions. In conclusion, we have presented two new methods which are
improvements on the Bi-CGSTAB algorithm using the composite step technique to
increase numerical stability. They require only a minimal modification of the Bi-
CGSTAB algorithm and cure the pivot breakdowns. One of the variants simultane-
ously cures the additional breakdown in Bi-CGSTARB due to skew-symmetric A, We
employ an adaptive stepping strategy and the new methods do not require any user
specified tolerance parameters. Numerical experiments support the improved conver-
gence behavior of the new methods. Finally, convergence rate estimates were proved
for the product methods Bi-CGSTAB, CGS, and their composite step counterparts.
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