UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Conjugate Gradient-type Product Methods
for Solving Nonsymmetric Linear Systems
(Ph.D. Thesis)

Theodore L. Doug Szeto

June 1994
CAM Report 94-19

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555

UNIVERSITY OF CALIFORNIA

Los Angeles

Conjugate Gradient-type Product Methods

for Solving Nonsymmetric Linear Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

i Mathematics

by

Theodore L. Doug Szeto

1994

Tntroduction . . . v o v i e e e e e e e 1
1.1 The Problem . . .« v v v v ot e e et e e 1
1.2 Krylov Subspace Methods v v v oo 3
1.3 Overview of the Thesis« v v v v v v oo oo e 7
Nonsymmetric Conjugate Gradient Methods 11
9.1 Minimization Methods« oo oo e 11

911 The Generalized Minimum Residual (GMRES) Algorithm . 12

29 Qalerkin Methods v o v i v i i e 14
9.2.1 The Nonsymmetric Lanczos Algorithm 15
9.9.2 The Biconjugate Gradient (BCG) Algorithm 19

2.3 Quasi-minimization Methods v oo i 21

94 Product Methods v« « v v v v i e 23
9.4.1 The Conjugate Gradient Squared (CGS) Algorithm 25

2492 The Biconjugate Gradient Stabilized (Bi-CGSTAB) Algorithm 28

2.4.3 Other Product Methods v .« v v v v v v o oo v v v s 32
The Quasi-minimal Residual Squared (QMRS) Algorithm ... 33
31 MoObivation . . . v v e e e e e e e e e e e 33

iii

3.2 An Implementation of QMR Basedon BCG 34

3.3 The QMR Squared Algorithm v v v v oo e e e e 40
3.4 Numerical Examples v v o v oo 46
QMR Variants of the Bi-CGSTAB Algorithm 49
4.1 Mobivabion . . v v v v v e e e e e e 49
4.2 The QMRCGSTAB Algorithm . v . o v oo v e e e e 50
4.3 Some Variants of QMRCGSTAB v v i e e 56
4.4 Numerical Experiments . . .« . o v o oo v o 57
The Composite Step Techniqueo 66
Bl MOLIVARION o v o v v v v e e e e e 66
59 Handling Breakdowns in the BCG Algorithm 67
5.3 The Composite Step BCG (CSBCG) Algortihm 70

531 CSBCQG Stepping Strategy . .« v v v om e 73

5.3.2 The SymmetricCase v o oo v o 76
The Composite Step CGS(CSCGS) Algorithm.0 v e v 7
6.1 Motivabion . . .« v v v v s e e e 7
6.2 The Composite Step CGS Algorithmo e 78

6.2.1 CSCGS Stepping Strategy « « » v v o v v v v v e e 82

6.2.2 Implementation Detailso oo v v 84
6.3 Residual Smoothing . .« .« v o v v e e e 88

iv

6.4 Numerical Experiments o oo v oo 90

7 Composite Step Bi-CGSTAB Algorithmscoo 0 95
71 CS-CGSTAB . o o o i e e e e e e 95
7.1.1 CS-CGSTAB Stepping Strategy+ -« v v v v oo v v 101

7.1.2 TImplementation Detailso 104

79 A Variant of CS-CGSTAB v v v oo o 107
7.3 Numerical Experiments« o o oo e e 111

8 Best Approximation Results for Product Methods 116
8.1 A Convergence Proof for CGSo v v v v oo e e s 118
8.2 A Convergence Proof for Bi-CGSTAB 119

O ConcluSions . . v v v v v o o e e e e e e 121
Bibliography . .« o v o 124

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

6.1

6.2

6.3

7.1

7.2

LIST OF FIGURES

QMR/BCG — Two-term vs. three-term recurrences 35
QMRS - Sherman (Example 3.1) oo 47
QMRS - 3D PDE (Example 3.2) 48
QMRCGSTAB - 2D conv-diff (Example4.2) 61
QMRCGSTAB - Saylrl (Example4.3) o0 62
QMRCGSTAB - 2D conv-diff (Example4.4) 63
QMRCGSTAB ~ 3D conv-diff, v = 50 (Example 4.5a) 64
QMRCGSTAB - 3D conv-diff, vy = 1000 (Example 4.5b) 65
CSCGS - 2D conv-diff (Example 6.2a) 92
CSCGS - 2D conv-diff (Example 6.2b) 93
CSCGS - PDE (Example6.3) oo oo oo v oo 94
CS-CGSTAB - 2D conv-diff (Example 74a) 114
CS-CGSTAB — 2D conv-diff (Example 74b) 115

vi

2.1

2.2

2.3

2.4

3.1

3.2

4.1

4.2

4.3

5.1

6.1

6.2

6.3

6.4

7.1

LIST OF TABLES

Algorithm GMRES oo 13
Algorithm BCG oo 20
Algorithm CGS oo 27
Algorithm Bi-CGSTAB e 31
Algorithm QMR without look-ahead from BCG 39
Algorithm QMRSo 45
Algorithm QMRCGSTABo cv e 55
QMRCGSTAB Examples: Cost per step for each method 58
Example 4.1 - Correct digits and matrix-vector products at termi-

nation: d{mu)o 60
Algorithm CSBCG oo oi oo 75
Notation for CSCGS . . . o v v i i e e e e 86
Algorithm CSCGS v oo 87
Algorithm MRS for CSCGS oo oo ee e 89
Example 6.1 .« .« o o i v o e 91
Notation for CS-CGSTAB« v v v v oo 103

Vit

7.2 Algorithm CS-CGSTAB ovcvvemm e o

7.3 Example 7.1

7.4 Fxample 7.2

viit

The research presented in this dissertation was supported by grants from the
Office of Naval Research N00014-90-J-1695, N00014-92-J-1890, the Department
of Energy DE-FGO03-87ER25037, the National Science Foundation ASC90-03002,
ASC92-01266, the Army Research Office DAALO03-88-K-0085, DAAL03-91-G-150,
the Cooperative Agreement NCC 2-387 between the National Aeronautics and
Space Administration and the University Space Research Association, and the

_ U.S. Department of Education Fellowship.

ABSTRACT OF THE DISSERTATION

Conjugate Gradient-type Product Methods

for Solving Nonsymmetric Linear Systems

by

Theodore L. Doug Szeto
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1994

Professor Tony Chan, Chair

The classical Conjugate Gradient (CG) method [39] is a powerful iterative
method for solving linear systems where the coefficient matrix in symmetric and
positive definite, especially when combined with a preconditioner. It is optimal be-
cause it uses short recurrences and minimizes the residual at each iteration. Many
applications, however, involve nonsymmetric coefficient matrices. The Biconjugate
Gradient (BCG) algorithm [44, 24] is the natural extension of CG to nonsymmetric
matrices.

Unfortunately, at each step, the BCG method requires a multiplication with
the transpose of the coefficient matrix, which may be too difficult to perform

or not even available in practice. In any case, this multiplication presents an

xiii

extra cost per iteration as compared with CG. Moreover, BCG also suffers from
wild, oscillatory residual convergence behavior, and possible numerical breakdown.
In this dissertation, we present new algorithms which fall in a class of methods,
product methods, that solves nonsymmetric linear systems without requiring the
matrix transpose while curing some of the other problems.

For instance, since BCG does not minimize the residual as CG does due to
the fact that the residuals satisfy a Galerkin condition, its convergence is typi-
cally erratic. We combine the smoothing properties of the Quasi-minimal Residual
(QMR) method [29] with product methods to obtain “transpose-free” methods
which do not have the erratic convergence of BCG, thus increasing numerical sta-
bility. We will introduce Quasi-minimal Squared (QMRS) and two QMR variants
of the Bi-CGSTAB method (QMRCGSTAB and QMRCGSTAB2).

Another problem for BCG is that it can suffer numerical breakdowns from
divisions by 0. Recently, the Composite Step technique [5, 6] has been developed
to handle one of two types of breakdown in BCG. We extend this technique to
transpose-free methods in the following methods: CSCGS, CS-CGSTAB, and CS-
CGSTAB2.

Numerical experiments show that the new methods do produce improved pet-
formance over existing algorithms. Also, the new methods require only minor
changes to the existing algorithms.

Furthermore, we extend the “best approximation” result in [6] to obtain con-

vergence proofs for the product methods CGS, Bi-CGSTAB, and their composite

xiv

step stabilized counterparts.

XV

CHAPTER 1

Introduction

In this chapter, we give a description of the general problem to be solved (Sec-
tion 1.1) and we describe the class of Krylov subspace iterative methods (Section
1.2), from which we will be developing algorithms to solve the above mentioned
problem. These new algorithms, their performance and their theoretical aspects,
are among the contributions to this thesis, all of which will be summarized in

Section 1.3.

1.1 The Problem

One of the most frequently encountered tasks in numerical computation is the

solution of the system of linear equations

(1.1) Az =b.

In many cases, the N x N coefficient matrix A is large, but sparse. Such systems
arise from many applications; for example, finite difference or finite element ap-
proximations to partial differential equations. More specifically, in computational

fluid dynamics, whenever global dependence is inherent in the physical system

(for example, elliptic-type problems), one encounters a set of equations like (1.1).
These include problems involving almost incompressiblé flow, implicit time march-
ing schemes, convection-diffusion problems, and Helmholtz problems, to name a
few.

Methods to solve these problems £all into two main categories: Direct solvers
and Iterative solvers. Direct methods involve the factorization of the matrix A,
e.g., via Gaussian Elimination, then solving the resulting triangular systems. These
methods are very robust, but unfortunately, can be quite costly. In cases where A
is large and sparse, the factors could, in fact, be dense and require much storage,
thus making these solvers extremely impractical. For example, 3-D simulations
give rise to large problems which oftentimes cannot be solved practically using
direct methods.

The alternative is to solve (1.1) using an iterative scheme. This is advantageous
because these techniques can exploit the sparsity or special structure of A by
involving it only in matrix-vector products A+ v or AT . v». The two main aspects

of the iterative solvers we are interested in are:

(a) Developing an effective method from basis vectors chosen from the Krylov

subspace, and
(b) Selecting a good preconditioner, usually requiring knowledge of the problem.

In this thesis, we will be focusing on the first aspect, presenting methods to

solve an already preconditioned system.

h

i.2 Krylov Sul

hspace Methods

The standard classical iterative methods include Jacobi, Gauss-Seidel, and SOR
(for references, see {38, 57, 61]), but in this thesis, we focus on the class of iter-
ative methods which produce iterates from basis vectors generated from Krylov

subspaces defined by:

K. (re,A) = span{rg, Arg, A¥rg,..., Ar1ro}s
(1.2)

K;('FO,A) = span{fq, ATFy, (AT)?Fg, ... ,(ATY 7o},
where ry = b — Az, is the initial residual for initial guess g, and 7, is arbitrary.
Thus, iterates take on the form , = Zo + y,, where y,, € K, (ro,A). The devel-
opment of Krylov subspace based methods is one of the most studied problems of
computational linear algebra. The advantage of this class of methods is that the
subspace provides approximations to the solution @, by polynomials in A yield-
ing good approximation properties and N-step convergence. There has been a
lot of activity in this field recently with major advancements via algorithms such
as Conjugate Gradients Squared (CGS) [54] and Quasi-minimal Residual (QMR)
[29].

Different Krylov subspace iterative methods are characterized by certain re-

quirements on the residual vector 7, = b — Az, to satisfy some optimal condition

such as

(2) lir,|l = minimum in some norm, oF

(i1) 1 LK (Fo A) (Galerkin condition).

Even though iterates z,, are defined by properties like (2) and (i), they are not
computed directly, but via updates. In most cases, this is done using an updating
formula ,, = Tp_1 -+ dn_1; where d,,_; € K,.(70s A). Methods differ only in the way
d,.; is chosen from the Krylov subspace.

For a symmetric and positive definite coefficient matrix A, the classical Con-
jugate Gradient algorithm (CG) proposed by Hestenes and Stiefel [39] satisfies
property (i) using two-term recurrences. DBy using short recurrences at each it-
eration, this method efficiently minimizes work and storage. CG is one of the
most powerful iterative methods for solving (1.1), especially when combined with
a preconditioning strategy. However, for a general nonsymmetric matrix A, Faber
and Manteuffel [23] proved that property (i) does not hold (i.e., the residual norm
cannot be minimized) with an algorithm using short recurrences.

Thus, if A is nonsymmettic and we wanted an algorithm to satisfy (1), such
a method cannot have the short recurrences as does CQ. For example, the Gen-
eralized Minimum Residual (GMRES) scheme by Saad and Schultz [51} is a very
popular method which minimizes the residual by creating an orthonormal basis
via the Gram-Schmidt process. However, since storage and work per iteration

grow quadratically with each iteration in this algorithm, the computation is ex-

pensive and in practice, restarts are required. Hence, GMRES may display slow
convergence properties for difficult problems.

An extension of the CG method for nonsymmetric matrices which employs
property (it) is the Biconjugate Gradient (BCG) algorithm due to Lanczos [44]. In
fact, the BCG method is closely related to the nonsymmetric Lanczos process for
computing the basis for the Krylov subspaces K, (ro, A) and K*(Fp A)- In BCG,
short recurrences are used, thereby minimizing work and storage, but it runs into
three additional problems: (a) since it is not based on a minimization property,
the convergence behavior can be quite erratic with wild oscillations in the residual
norm, (b) breakdowns - divisions by 0 - can occur, and (c) an extra multiplication
by the transpose of A is needed at each iteration, increasing the work and also
requiring A7,

To handle problem (a), techniques such as the Minimum Residual Smooth-
ing (MRS) algorithm (presented in Schonauer [52], Weiss [60], Zhou and Walker
[62]) and the Quasi-minimal Residual (QMR) method (developed by Freund and
Nachtigal [29]) have been proposed to minimize and quasi-minimize the residual,
respectively, resulting in smoother convergence behavior and improved stability.

As for problem (b}, BCG can encounter two types of breakdown: one due to the
fact that z, may not be defined, and another due to a breakdown in the underlying
Lanczos process used to define the updates. The QMR method also addresses this
problem since it is based on a look-ahead variant of the classical nonsymmetric

Lanczos process used to define the updates. There are many methods like this

oy §

which cure problem () by looking ahead to the next iterates to see whether or not
they are affected by possible breakdowns and handling them accordingly (see e.g.,
[10, 14, 15, 27, 36, 41, 48]).

Recently, Bank and Chan introduced the Composite Step Biconjugate Gradient
(CSBCG) algorithm [5, 6], an alternative which cures one of two possible break-
downs in BCG by skipping over steps for which the BCQ iterate is not defined.
This is done with a simple modification of BCG which needs only a maximum look-
ahead step size of 2 to eliminate the (near) breakdown (assuming that the Lanczos
process does not break down) and to smooth the sometimes erratic convergence of
BCG. Thus, instead of a more complicated (but less prone to breakdown) version,
CSBCG cures only one kind of breakdown, but does so with a minimal modifica-
tion to the usual implementation of BCG in the hope that its empirically observed
stability will be inherited.

Problem () is that BCG requires 2 matrix-vector multiplications (A - v and
AT . v) at each iteration. This is a problem because in many applications, it is
often complicated and perhaps not even possible to perform multiplications with
the transpose matrix. Furthermore, BCG requires twice as many matrix-vector
products than CG to achieve the same degree of the Krylov subspace. Chan, de
Pillis and Van der Vorst [16] have developed transpose-free implementations of
QMR and BCG, but these algorithms require 3 matrix-vector products per step.

Other methods have been developed which overcome problem (¢) by computing

residuals characterized by a product of the BCG residual polynomial with another

polynomial of equal degree. In 9 matrix-vector multiplies (both with A - v) per
iteration, these methods compute two degrees of the Krylov subspace with iterate
., € Ky,(re, A). Hence, we term the class of these transpose-free methods product
methods. Examples of these include methods due to Sonneveld [54], Van der Vorst
[55], Gutknecht [35], Freund [26], and Sleijpen and Fokkema [53]. All of these
product methods, with the exception of the first one mentioned, handle in some
way the problem of erratic convergence. Still other product methods have been

developed which cure breakdowns (e.g., [9, 30])-

1.3 Overview of the Thesis

In this thesis, we focus on the class of product Krylov subspace methods for
solving nonsymmetric linear systems. New methods are presented which not only
climinate the need for a multiplication with AT, but also smoothes the residuals
and handles some breakdowns. We also prove theorems of convergence for some
standard product methods.

Specifically, after a review of existing methods in Chapter 2, we present the
Quasi-minimal Residual Squared (QMRS) algorithm. As mentioned earlier, the
QMR method overcomes some of the problems of BCG stabilizing the residual
convergence but unforfunately requires the multiplication of AT, Thus, in the
same way the Conjugate Gradients Squared (CGS) algorithm [54] squares the

BCG residual to overcome AT products, we square a non-look ahead version of

the QMR residual to formulate the QMRS algorithm. Since it is based on the
QMR polynomial, QMRS is more stable than CGS. Unfortunately, each iteration
of QMRS costs an extra matrix-vector multiplication (3 instead of 2 for CGS).
Note, however, that this is an improvement over BCG and QMR because in one
iteration of QMRS, we advance two degrees in the Krylov subspace.

In Chapter 4, we present another transpose-free method which also attempts to
stabilize the erratic convergence of CGS without the extra matrix-vector product in
QMRS. This is done by applying the quasi-minimization idea of the QMR method
to the Bi-CGSTAB algorithm [55], a stabilized version of CGS. We introduce this
algorithm, QMRCGSTARB, along with some of its variants and we show that these
do in fact yield smoother residuals and improved convergence behavior.

Next, we consider the problem of hreakdowns in BCG. Chapter 5 reviews the
details of the composite step technique [5, 6] as it is applied to the BCG algorithm
to cure one of the two possible causes of numerical instability. Transpose-free
methods like CGS and Bi-CGSTAB have similar breakdown problems since they
involve products with the BCG polynomial. The composite step technique, then,
can also be applied to these product methods to overcome the analogous problem
of breakdown.

Chapters 6 and 7 give the details for CSCGS and CS-CGSTAB, the methods
where composite step is applied to CGS and Bi-CGSTAB, respectively. Chap-
ter 7 also presents a variant, CS-CGSTAB2, which cures an additional potential

breakdown due to the Bi-CGSTAB process in the case of skew-symmetric A, thus

further improving the stability of these composite step product methods. These
composite step methods employ a stepping strategy which allows the step size to
vary and does not require user specified tolerance parameters. Furthermore, this
is done with only a minimal modification of the existing methods, We remark that
5 matrix-vector products arve required per composite step as opposed to 4 in two
steps of the standard product methods CGS and Bi-CGSTAB. Note that this is
still an improvement over QMRS, where 3 multiplications are required at every
step.

As for the theoretical aspects of the convergence of these methods, a recent
advancement was the proof of a “best approximation” result for BCG, due to
Bank and Chan [6]. Until then, there has been very little theory known on the
convergence of the Biconjugate Gradient algorithm or other related methods. In
Chapter 8, we show how we can extend this result to prove convergence of product
methods CGS, Bi-CGSTAB, and their composite step counterparts, since all of
these methods involve the BCG polynomial. Finally, conclusions are presented in
Chapter 9.

Each of the new methods in this thesis improves on the standard BCG algo-
rithm, which is widely used and noted for its simplicity and good convergence
properties. While maintaining these advantages of BCG, we overcome the prob-
lems in BCG that were mentioned and prove convergence as well. In this thesis,
the problem of erratic convergence is handled via quasi-minimization and the MRS

technique in Chapters 3, 4 and 6, The problem of breakdowns is addressed in Chap-

ters 5 - 7, and all of the new algorithms overcome the problem of multiplying by

AT since all are considered product methods.

10

CHAPTER 2

Nonsymmetric Conjugate Gradient Methods

We now survey several of the nonsymmetric Conjugate Gradient methods men-
tioned in Chapter 1. We present details on the methods which will be referred to

in the subsequent chapters. For more complete overviews, refer to [3, 7, 22}.

2.1 Minimization Methods

Suppose we have a nonsymmetric linear system and want to solve it by extend-
ing the Conjugate Gradient method in such a way that the residual is minimized
over K, (ry, A) at step n (Property (i), Section 1.2). There are several iterative
techniques that have been developed which achieve this.

If the symmetric part of A is positive definite, the Generalized Conjugate Resid-
ual (GCR) method and the ORTHODIR method can both solve (1.1) efficiently.
(For references, and other methods, see [2, 22, 21, 40].) Unfortunately, stability
problems due to round-off error occur in these methods when the symmetric part
is no longer positive definite. It is this case which motivated the development of

the Generalized Minimum Residual (GMRES) algorithm by Saad and Schultz [51].

11

2.1.1 The Generalized Minimum Residual (GMRES) Algorithm

GMRES is based on the Arnoldi process [1] for computing an orthonormal basis
of the Krylov subspace K, (rg, A). The Arnoldi algorithm uses (modified) Gram-

Ychmidt orthogonalization to form at the n-th step the system of basis vectors
(2.1) Vo = [vl Vg v vn]

and the (n + 1) X n upper Hessenberg matrix H,, which satisfy the relation:
(2.2) AV, =V, H,.

Recall that the 2-norm of the residual ||r,|| = [[b — Aw,[| is to be minimized.
Thus, one needs to find iterates x, = o+ V.y,., where y, is chosen to solve the

least squares problem
(2.3) min||b— Az,|| = min_{lro — AV, ¥l
ye R"

Tf we begin the orthogonalization with v; = 7o /|Iroll, the quantity to be mini-

mized can be writien:

180, — Vipa Bl = Vs (Be™™ = B,
T
where 8 = ||rg|| and e%n""i) = [1 0 - ()] e R**!, Since V;,, is orthonormal,

the least squares problem (2.3) can be reduced to:

(24) 2R, 18e™ — Lyl

The solution vector y, can be updated by updating the QR-factorization of H,

progressively. This, in turn, can be used to update the GMRES iterate z,,. (See

12

{51} for details.) This gives rise to the GMRES algorithm, as presented in Table
2.1.

Table 2.1; Algorithm GMRES

Choose z, and compute ro = b — Aty
Set vy = ro/[Iroll
For j=1,2,...,n uniil convergence

hi; = (Avj,vg), 1=12,... , 3

b1 = Avy — T higos
hj+1,j = |lf’j+1u
Vi1 = ’f’j+1/ R,

Update y,, to solve (2.4)

T, = To + Vnym

As n increases, note that the amount of storage vectors required grows like n
and the number of multiplies grows like % n2N. This is not efficient in practice,
especially when A is large, unless A is well conditioned (e.g., when there is a
good preconditioner), so GMRES is usually implemented with a truncated version,
GMRES(m), which restarts the algorithm every m steps. This means that after m

steps, the iteration begins anew using the recently computed data as initial values,

13

no longer requiring storage of the old values. By fixing m, one can limit the costs
for computation and storage. |
Unfortunately, a good choice for m is difficult to find. If m is too small, the
method may converge too slowly, or may not converge at all. On the other hand, if
m is too large, it could result in costly and inefficient work and storage. For more
details and extensions of this method, we refer to studies by Saad [49], Vuik (581,

and Walker [59].

2.2 Galerkin Methods

Instead of minimization, an alternative requirement on the residual is to apply
a Galerkin orthogonality condition on it (e.g., Property (i1), Section 1.2). Specifi-

cally, we impose the condition
(2.5) r, L I (o, A)

on r, = b— Az,, where K*(fy, A) is as defined in (1.2). Doing this will eliminate
the long recurrences in methods like GMRES, thereby decreasing work and storage.

If we define K, K * to be matrices whose columns are as given in (1.2) and span
the Krylov spaces K, (ro, A) and K*(f, A), condition (2.5) implies that iterates
of the form z, = #¢ + K,v, are defined by the solution to the linecar system

(K*TAK, v, = (K*)Tro. We note that the iterate z, exists whenever the Hankel

14

moment matrix

251 f2 e Ly

T B
(2.6) HO = (RDTAR, =| o,

PBr Hugr 00 Hap—a)
where pt; = 7T Airg, is nonsingular.

The Biconjugate Gradient (BCG) algorithm [44, 24], a natural extension of
Conjugate Gradient for nonsymmetric systems, is one such Galerkin method. The
BCG iterates are computed from bi-orthogonal basis vectors closely related to the
nonsymmetric Lanczos process [43]. In this section, we first give an overview of
the Lanczos process, then describe how the BCG iterates are obtained from this.

We will also discuss possible breakdowns in the BCG algorithm.

2.2.1 The Nonsymmetric Lanczos Algorithm

The nonsymmetric Lanczos process [43] was originally proposed to reduce an
arbitrary matrix A to tridiagonal form. Starting with vy = ry and an arbitrary

nonzero vector wy € RY, this process generates two sequences of vectors vy, vy, ... ,

and wy, wy,. .., such that, forn =1,2,...,
(27) spa,n{vo, Viyeen avn—l} = I(n('rm A)a
(2.8) span{wy, wy,... , Wy} = I, (wg, AT).

13

It does this via the three-term recurreices:

(29) Vpt1 — A'b"n — Uy — ﬁnv'n—l
(210) Wyt — ATwn - Wy — ﬁnw'n—1$
where
R CITTY R I _(wn0n)
" (wn? Un) " (wn—D Un—-l)

are chosen so that we have the following bi-orthogonality condition:
’w;-TUj = 0, if 2 7/—' j.

We can see that this algorithm will break down if (wy,v,) = 0 but v, £ 0, w, # 0.
We term this the Lanczos breakdown. Methods have been developed to overcome
this by “looking-ahead”, i.e., :f one forsees breakdowns, then successive vectors can
be computed and block bi-orthogonality conditions imposed {10, 14, 15, 27, 41, 48].
(See Section 5.2 for more details.)

The basis vectors generated can be arranged into the matrices:
(2.11) Vn = {UO vy vt ‘U‘n—-l} ’

W, = [wo wy wn_l]-

Thus, the recurrence relations (2.9), (2.10), can be written compactly in matrix

form as follows:

(2.12) AV, =V, T, + vnel),

16

ATV, = W, T, + wnel

where T, is the n X n tridiagonal matrix

‘]
e B
1 oy By
T’ﬂn = 3
1 Cn_2 tBn—l
L b]
and el , = {0 0 .- 1] c R™!. Equation (2.12) can be rewritten:
(2.13) AV, = Vo T,
where
Ty
TTSE) =
€nt1

Note that V, = K,(vo, A) and W, = K {wg, A) and also,
WTV, = D, = diag(dy, - »dn);

where d; = w}v;.
These basis vectors can now be used in computing the solution of (1.1). Solution

iterates are of the form

x, = 2o+ VolYn, wWhere y, € R™

17

The corresponding residual is as follows:

(2.14) r. = b— Az, =1y~ AV, Y
(2.15) = 19— Von T?ge)yn
(2.16) = Vo (e = TOy,),

where eﬁ”*” is the first vector of the canonical basis. Imposing the bi-orthogonality

of the bases gives:
0 = WTr, = WIV,p (ef™ = T¥y,).
Hence, y,, satisfies the equation:
(WIV,) T = (v)el”

If the matrix WIV, is nonsingular, then we can find y, by solving
(2.17) Tt = €8,
and update the solution z,.

Note that the singularity of WIV, corresponds directly to the Lanczos break-
down discussed earlier. In terms of the associated Krylov subspaces given in (1.2),

we see that the Lanczos process will break down when the Hankel moment matrix

H® [36] defined by:

Ho M1 ' Ha-1
o B By M
HO = K2(fo)Rn(ro) = v ,
Bpa Pn Hon—2 }

18

is singular. (K, K7, p;, are as defined at the beginning of this section.)

2.2.2 The Biconjugate Gradient (BCG) Algorithm

The BCG iterate 286C = a4 Vou, is obtained from solving the tridiagonal sys-
tem (2.17) by computing the LU factors of T\, without pivoting. This gives the bidi-
agonal factors L, and U, which implies that the iterate 280G = (VUL e&”))
can be updated using two-term recurrences. Thus, v; and w; do not need to be
stored.

In general, the LU decomposition (without pivoting) may not always exist. If
we Tun into a zero pivot, this will cause a breakdown in the solution of (2.17).
Hence, we term this breakdown the pivot breakdown. In terms of the Krylov
subspaces (1.2), it is easily shown that the pivot breakdown corresponds to the
singularity of the Hankel moment matrix H{Y (2.6). There are several ways of
handling this breakdown, which will be discussed in further detail in Section 5.2.

The BCG algorithm, thus, consists of generating pairs of iterates: z,, which
will solve (1.1), and #,, for the auxiliary system, ATE = b. The corresponding

residuals satisfy the (Galerkin conditions:
(218) T NR K:(f'mA): ﬁn L I{n(rﬁa A):

and we have shown how the iterates can be updated via two-term recurrences.

We give the standard implementation of BCG in Table 2.2. From this table,

19

Table 2.2: Algorithm BCG

Choose zg, #, and compute ro = b~ Azg, Fo = b ATz,

Set py = ro; fo = Toi Po = Fg?"o

For n=0,1,2,..., until convergence
oy = PL AP U = P/
T4l = T ™ QpApn; Frqr = T — o, ATp,
Tpt1 = Ty + P ﬁE'n-qi-l = E:n + anﬁn
Prgl = 7':5.}.17'71-1-1; ﬂn+1 = Pn+1/pn

Pot1 = Tonr + /Bn+1pn; ﬁn+1 = 'Fn+1 + ﬁn+1f’n

we can see the two possible kinds of numerical breakdowns discussed: (1) o, =0
(pivot breakdown), and (2) p, = 0, but r,, # 0 (Lanczos breakdown). ! Although
such exact breakdowns are very rare in practice, near breakdowns can cause severe
numerical instability.

As mentioned earlier, there are other drawbacks to the BCG algorithm: ir-
regular convergence behavior since the residual is not being minimized, and two

matrix-vector multiplications (by A and its transpose AT) are required at each it-

ITn other literature, what we term the pivot and Lanczos breakdowns, are also known as
true and ghost breakdowns [11], Galerkin and serious Lanczos breakdowns [29], hard and soft
breakdowns [41].

20

eration to gain only one degree of the Krylov subspace. In addition, until recently,
there has been little theory known about the convergence of the BCG method.
Hence, developing methods to overcome these problems has been of great interest
in this ficld. In this thesis, we will address all of these problems in the development

of new algorithms and theory.

2.3 Quasi-minimization Methods

The Quasi-minimal Residual (QMR) method, due to Freund and Nachtigal
[29], offers another alternative for characterizing the residual of a Krylov subspace
method. QMR is also based on the nonsymmetric Lanczos process (Section 2.2.1)
for computing a bi-orthogonal basis for the associated Krylov subspaces (1.2).

Note that the implementation of the nonsymmetric Lanczos process in [29] is
presented with look-ahead in order to handle the curable Lanczos breakdowns. In
this thesis, we will only consider the non-look-ahead version of the Lanczos process
(and QMR).

Assuming that this process yields scaled Lanczos vectors v; which are normal-

ized to have unit length:

(2.19) ol =1, §=0,1,2...,

QMR uses the quantities Vi, and T generated from the look-ahead Lanczos

process to produce iterates:

~~
]
]
o

~—

Ty, = Tp + Vnzm

where z, € R™ is the solution of the least squares problem similar to GMRES:

(2.21) JD = Qua Tzl = min, [dlm) — O pa Tl
Here,
T
n+1 2
232) £ =l [1 0 o] €R
and

(2.23) Qn—H = di&g(wl,W2, e ,wn_l_}), w‘? > 0, j = 1,2, P 14 + 1,
is a still arbitrary scaling matrix. Usually, one chooses unit weights
(2.24) w; = 1, for all .

Note that, by (2.20) and (2.13), the residual corresponding to the QMR iterate

x, is given by
(2.25) ro = Vo 01, (0 = Qi TO2,) -

Hence, in view of (2.21), the QMR iterates are characterized by a minimization
of the second factor in (2.25); this 18 the quasi-minimal residual property. Note
that, by (2.19), the scaling (2.24) is very natural, in the sense that all the columns of

V11053, in the representation (2.25) of r, are treated equally. Note also that the

22

QMR iterates can be easily updated from step to step because the QR factorization
of Q11 T(¢) can be updated.

Quasi-minimizing will smooth the residual convergence. Furthermore, it over-
comes the pivot breakdown in BCG. In cases where BCG does not break down, the
convergence of QMR is similar to that of BCG since both methods are generated
from the same bi-orthogonal bases. In fact, it can be shown [29] that one can
recover the BCG iterates from QMR. However, it is noted that in some cases when

BC(stagnates or diverges, QMR may still reduce the residual.

2.4 Product Methods

One major drawback of QMR and BCG is that they require a multiplication
with the matrix AT, In many cases, the transpose matrix is not readily available
or the multiplication is difficult to perform, perhaps due to storage constructs.
Hence, there is a need for methods which are transpose-free.

Freund and Zha [32] have shown that, in principle, the transpose can always be
eliminated by choosing special starting vectors. However, this approach is practical
only for special cases, as, .8, complex symmetric matrices, and in general there
ts a need for transpose-free BCG-like schemes.

Two such methods are the Transpose-iree Implementations of QMR (TFiQMR)

and of BCG (TFiBCG) [16] by Chan et al. These methods recover the QMR and

BCG iterates without requiring multiplications with AT. However, they require 3

23

matrix-vector multiplications per iteration.

In fact, another drawback of the standard BCG and QMR algorithms is that
they require 2 matrix-vector products per iteration. Although this is less than
TFiBCG and TFiQMR, it is still twice as many products as needed in an iteration
of CG to advance one degree of the Krylov subspace.

As mentioned before, product methods are a class of methods which handle

these problems. We first note that the Krylov subspace K,(ro, A) can be written
K, (o, A) = {B(A)ro|® € Pro1ls

where P, is the set of all polynomials of degree at most n. In view of this, the
residual vector r, = b — Az, of any iterate z, € %o + K, (rg, A) is of the form
r,, = ®(A)rg, where & € P,, and &(0) = 1. In particular, the BCG residual can be

written
(2.26) rBOG = ¢, (A)rg, Where bn € Ppy ¢,(0) =1

Product methods, then, are algorithms characterized by residuals formed from

the product of the BCG polynomial with another polynomial of equal degree:
(2.27) rProduct — 1 (A)g,(A)re, where Ty §n € Py Ta(0): 9u(0) = 1

We next give details on the product methods CGS and Bi-CGSTAB, and survey

other existing product methods.

24

2.4.1 The Conjugate Gradient Squared (CGS) Algorithm

The Conjugate Gradient Squared (CGS) algorithm, due to Sonneveld [54], is a
product method in which the polynomial 7, in (2.27) is the BCG polynomial ¢,,

itself. CGS produces iterates @, in which the corresponding residual satisfies
(2.28) r, = $2(A)ro.

This can be done by using the polynomial update formulas for the BCG residual

and search direction from Table 2.2:

(2'29) ¢n+1("9) = ¢n(‘9)-anﬂ¢n(ﬂ)v

(230) ¢n+1('ﬂ) = ¢n+1(ﬂ)+ﬁn+lﬁ¢n(ﬁ)'

Squaring these yields:

(2.31) 2 (@) = ¢ -2 b+ a2 0%,

1

(232) i+1(19) ¢i_§_1 + 2ﬁn+l¢n+1¢n + ﬁi.{,l'%bi'

Hence, in order to compute the OGS residual r, = ¢2(A)ro and search direction
pn = P2 (Ao, the mixed terms ¢, P, $ns1¥, must be calculated as well. By noting
that ¢, are updated

qf’n?vbn = (115,21 + ﬁnqbn?pn—l:

it can, in turn, be used to update

¢n+1¢n = qbn")bn - an.él,“b?b_

25

We denote I = ¢n(A)¢n—1(A)TO and Up = ¢n(A)¢n(A)TO'

The coefficients ., 3, in the polynomials (2.31), (2.32), can be computed using

the BCC constants o,,, p, (see Table 2.2} which can be recovered via:
PEGG = (ﬁbn(AT)'Fmﬁbnro) = (’Fm ¢',21T0) = FET,?GS,

JECG = ('ﬂbn(AT)'FO: A¢n?10) = ('Foa A"vbi'r()) = ﬁg‘Angs'

Note that in the CGS algorithm (Table 2.3), as with other product methods,

with every two matrix-vector products, the Krylov subspace is advanced two de-

grees, CGS, thus, generally has convergence behavior twice as fast as BCG.

26

Table 2.3: Algorithm CGS

For

Choose z4, and compute o = b — Azg
Pick an arbitrary vector 7

Set o =p1=0ip1= 1
n=0,1,2,..., until convergence
o =TT B = Pl Pn-

Uy = Ty + Pudn

P = thy + Br(@n + BuPo1)

Up = App

Tp = FT05; On = Pu/On

Gnip1 = Un — Ay

Tatl = Tn — o, A, + Q‘n-l—l)

Tpt1 ™ Ty + an(un + qn+1)

27

9.4.2 The Biconjugate Gradient Stabilized (Bi-CGSTAB) Algorithm

In the squaring process of @GS, the good behavior of BCG is enhanced, but
unfortunately, large residual values are amplified resulting in loss of accuracy. As
discussed in [56], the irregular convergence behavior of CGS is-due to the fact that
if ¢,.(A) is viewed as a reduction operator applied twice to 7g, since ¢, (A) is quite
dependent on the initial residual 7o, it is not likely to be a reduction for any other
vector, not even for ¢,(A)ro itself.

The Bi-CGSTAB algorithm [55] due to Van der Vorst attempts to stabilize
this by multiplying the BCG polynomial ¢, (A), instead, by another polynomial of

equal degree,
(2-33) u(A) = (I = w A(I = wgd) - (I = wn),

where the w;’s are chosen to locally minjmize the residual by a steepest descent
method. Thus, by computing the residual rf"—CGSTAB = 7,(A)¢,(A)ro, we obtain
a more smoothly converging algorithm.

This residual can be updated by the following polynomial relationship:

Tn+1 ¢’n+1(19) = (1- wn-;-ﬂ?)’rnﬁf’nﬂ
= (1 - wn-{-lﬁ)Tn(qsn - o‘n'ﬁr‘pn)

= (1 - wn-l-lﬁ)(?-an’n - an'ﬂTn'ﬁbn)-

28

Similarly, for pBi-CGSTAB = To(AN, (A)ro,

Tn+1 ¢n+1 ('19) = (1 — Wn+1"'9)Tn(¢n+1 + ﬁn+1¢n)

(1 — w1) (Tnnia + Brr1Tntn)-

Recovering the BCG coefficients is a bit more involved than for CGS. By con-
struction, ¢nq(A)ro is orthogonal with respect to all vectors x,,(AT)To where ¥,

is an arbitrary polynomial of degree at most n. Thus,

pffla = ($n+1 (AT)F()s ¢n+1(A)T0)

= Qpr Oy (("AT)HH Tos ¢n+1(A)"’"o):

picking out the coeflicient of the highest order term. Similarly,

Pfi“OGSTAB = (Fos Tag1(A) ¢n+1(A)?"o)
= (Tn-l—l (AT)f;o, ¢n+1(A)TO)

= Wy Wyl ((“"AT)RHFOa P (A)To)a

and the relationship between them follows:

) BCG
Bi—CGSTAB where o, =

ao PR an oy
Pt ’ = SBCG °
b

BOG o
pn-l-'.{ —

wl...wn+1

TF we let ptypq = (0 -)/ {wr -Wpp1), this reduces to

BCd — Bi—-CGSTAB
pn+1 - .U’n+1pn_|_1

where fi,41 is updated by:
pBC'G
Hntt = Hn Ufcgwn+1 .

29

The value a‘fflg can be similarly derived to yield:

BCOG Bi—CGSTAB
vl S S

Thus, the coefficients o, and ., can be recovered:

. Bi—(GSTAB | +Bi—CGSTAB
a'n. - Pn ! /Crn : H

B = (pBIF0GSTARpB=0OSTAR) o i)

Finally, we comment on the calculation of the w;’s. In [55], the value w, is

computed so that the norm

“Tnu = ‘Ifn‘;bnr(l‘l = “(I - wﬂA)Tn—-lqsnrO“

is minimized. By letting s, = Tae3@alo> “¥n is the orthogonal projection of s, onto

As,:

B (85, Asy)
Wn = (Asn,A.sn))

The Bi-CGSTAB algorithm is given in Table 2.4. As explained in [55], the
first part of the loop corresponds to the BCG step for the matrix A, and s; repre-
sents an intermediate residual which could be tested for convergence . From the
orthogonality of ¢;(A) and h;(A) for § < i, 1 follows that in exact arithmetic
Bi-CGSTAB terminates with the true solution after m < n steps.

This algorithm overcomes some of the wild, irregular convergence behavior
of CQS at convergence rate similar to CGS. Note that since both CGS and Bi-
CGSTAB have the BCG polynomial built in, they break down whenever BCG

does.

30

Table 2.4: Algorithm Bi-CGSTAB

For

Choose x4, and compute ro = b— Axg
Pick an arbitrary vector 7o

Set v0=p0=0;p0=a1=w0=1
n=1,2,..., until convergence

Prn = FETH_1; B, = (pn/pn—l)(an/wn—l)
P = Tne1 -+ BuPa-1 — Wy—1Vn-1)

v, = Ap,

Oy = T3 Vnj an = Puf0n

8y = Pp_1 — CGnUs t, = As,

w, = (8pytn)/ (tnstn)

P, = 8, — Wyly

Ln = Lp—1 + O Pn + Wpdn

31

5.4.3 Other Product Methods

Recently, various other transpose-free algorithms have been proposed. Fre-
und [26] has devised a transpose-free QMR algorithm (TFQMR), that uses basis
vectors from CGS to generate iterates characterized by the QMR property. The
B;-CGSTAB2 method due to Gutknecht [35] and the more general Bi-CGSTAB(I)
method by Folkema and Sleijpen [31] handle instability in the Bi-CGSTAB algo-
rithm.

We will not give the derivations of these algorithms in this section because
these methods are not used explicitly in the following chapters. However, ideas
from TFQMR and BiCGSTAB? are used in Chapters 4 and 7, respectively, and
relevant details will be given then.

To cure breakdowns inherited from BCG, look-ahead techniques can be ap-
plied to product methods also. See, for example, Freund and Nachtigal [30], and

Brezinski and Redivo-Zaglia [9].

32

The Quasi-minimal Residual Squared (QMRS) Algorithm

3.1 Motivation

As discussed in the previous chapter, Freund and Nachtigal [29] have recently
proposed the Quasi-minimal Residual algorithm (QMR), based on a look-ahead
Lanczos process, which overcomes both problems of breakdown and of erratic
convergence in the BCG method by using iterates which are defined by a quasi-
minimization of the residual norm.

Since the QMR method is based on the nonsymmetric Lanczos process it re-
quires one matrix-vector product with the coefficient matrix A, and one product
with its transpose AT. Thisis a disadvantage for certain applications, where AT is
not readily available. Furthermore, it takes 2 matrix-vector products to advance
one degree in the Krylov subspace basis, twice as many as for CG.

In this chapter, we propose a new transpose-free method, the Quasi-minimal
Residual Squared (QMRS) algorithm, based on the non-look-ahead version of QMR
described in Section 2.3. As in the derivation of OGS from BCG (Section 2.4.1),

the QMRS scheme is obtained by squaring the QMR residual polynomials. Like

33

gtandard QMR, the resulting QMRS algorithm converges smoothly, in confrast to
C@S, which typically even amplifies the erratic convergence behavior of BCG in
many cases.

The remainder of this chapter is organized as follows, In Section 3.2, we show
how the iterates of QMR without look-ahead can be obtained directly from the
classical BCG process. This is a new way of looking at QMR using two-term
recurrences instead of three-term recurrences. It has been observed in practice
that two-term recurrences tend to yield more numerically stable results. We then
use this to derive the QMRS algorithm in Qection 3.3. In Section 3.4, a few results

of numerical experiments are reported.

3.2 An Implementation of QMR Based on BCG

We begin by deriving a new implementation of the QMR algorithm without
look-ahead, using the connection of QMR and the classical BCG algorithm. By
reformulating QMR using two-term recurrences, we ate not only preparing for the
squaring process, but also obtaining a more stable implementation of QMR, as
observed in practice. Figure 3.1 is an example of the superior numerical stability
of a two-term recurrence. Shown are the decreasing residual norms of QMR based
on the two-term BCG (solid line) and based on the three-term Lanczos process
(dashed line) when used to solve a linear system that arises in performance mod-

eling of multiprocessor systems. This example is taken from 28]. Asa matrix of

34

size N = 3663 with 23397 non-zero elements, and it is preconditioned by a variant

of Saad’s ILUT preconditioner [50].

10
3-term
10T T -
107
2-term
0, 50 100 150 200

Figure 3.1: QMR/BCG - Two-term vs. three-term recurrences

In deriving this particular implementation of QMR, we will use the notation
introduced in Section 2.3, We have already established (Section 2.2.2) that the

BCG iterates z2C¢ satisfy
(31) QJEOG = By + Vngn.?

where V/, is the set of scaled Lanczos vectors (2.11) defined in Section 2.3, and Z,

is the solution of the linear system
T
(3.2) Tz, = ||r0l|e§n), with & := [1 0 .- 0] € R™.

Here, T}, denotes the n X n tridiagonal matrix obtained by deleting the last row of

35

the (n + 1) x n scaled Lanczos matrix 7). Multiplying (3.2) by Q,, we see that

(3.2) is equivalent to
(3.3) O,T.5, =d".

Note that the coeficient matrix ,T, of (3.3) is tridiagonal, and the right-hand
side is a multiple of e§“). Furthermore, the linear system just consists of the first
n equations of the least squares problem (2.21).

The solutions z, and z,_; of two successive Hessenberg least squares problems
of the type (2.21) are connected with the solution %, of the corresponding leading
square linear system of the type (3.3) via a lemma proved by Freund {26, Lemma

4.1]. By applying his result to (2.21) and (3.3), we obtain the relation

n-1

z
(3.4) z, = (1 — %) + €22,
0

where ¢, is just the cosine of the n-th Givens rotation in a QR decomposition of
the tridiagonal matrix 0, 1T (see [26, Section 4]).

Note that ¢, can be updated at each step in the following manner:

1 1
¥, 1= ‘"——Hdgnﬂ) - Qn+1TT(Le)'§n“-

Cp t=
1/1—?-‘19& " Tp—1

The 7,,’s can also be updated by setting

(3.5)

(3.6) T, = Tu_1UnCn, Where, for n = 1, 7= wiliralls

and the norm in (3.5) is directly connected with the norm of the BCG residual

36

vector as follows:
(3.7) 2D = Q1 Tz, = wagalIrZ el

This is due to the fact that

T
dgn-H) - Q’n+1T,§6)§n - Cn [0 e 0 1:\ 3 Cn € R:
n . Cn
(3.8) pBO6 =V, Ok (A = Qua TOR) = 27 vnsas
Wnt1
and {|v,qq|] = 1. Hence, we can update the relation (3.4).

Next, we use this to show how the QMR iterates can be updated by means of
quantities from the BCG algorithm. Let z,, denote the QMR iterate at the n-th

step. With (2.20) and (3.1), relationship (3.4) gives

(3.9) T, = Tpo1—CTpat 2 gBCC
(3‘10) = Tp.1 +ﬁni

where

(311) ﬁn - —cixn—-l + Cﬁ(mfgla + a'n,-—lpnu—l)

— 2 {BCG 2
= cn(wnai - mn-—-l) + cnan—lpn—l

— 2,02 5 2
- Cnﬁn_lpn—l + cﬂ,an——lpn—-l'

Here, 92_, = 1/c2_, — 1 and ,_1, Pny are from the BCG iteration {See Table
2.2). We note that p, = ciagpo, and thus formula (3.11) remains valid for n = 1,

if one sets ¥y := 0.

37

Thus, we can update the QMR iterates, provided that the BCG quantities
lrBOC|, oy, and pyy are available. By adding the updates (3.4)-(3.7), and
(3.11) to the classical BCG algorithm [44], we obtain the following implementation
of QMR without look-ahead (Table 3.1).

Note that although we are computing QMR iterates, this algorithm is based

on BCG and therefore, can suffer the same breakdowns as BCG.

38

Table 3.1: Algorithm QMR without look-ahead from BCG

Choose zg,7p ¥ 0
Set :cg”MR = a:DBGG = @g, Ppp = rZC¢ =710 = b— Azg,
Set fig = 0, 70 = w1||?"oHa Yo = 0,do = oy Po = ﬁgT""o
For n=1,2,...,do:
Op-1 = 13,1;_1Apn—1 L pn—l/o-n-ml
TEGG = T‘f_cf; — @q_1Apn1 Fp = Fpo1 = Ot ATBp
If BOQ iterates are desired, set £BCC¢ = aBOC + ap1Ppet
d, = wn-»i—l“TECGH/Tﬁ—l
¢, = 1/4/1+ 92 Ty = Tn1nCn
Pn — Czﬂi_lﬁnml + Cian-lpn-—-l mgMR = mgi\d‘lR + ﬁn
o = 'FZTECG ﬁn = Pn/Pn-—i

Pn = T.ECG + ﬂnpn—l ﬁn = an + ﬂnf’n—i

39

3.3 The QMR Squared Algorithm

In this section, we derive the QMRS algorithm by squaring the QMR algorithm.
We consider the QMR algorithm without look-ahead, where—at the moment—we
i1l allow arbitrary weights w; > 0 in (2.23). Let ¢, be the polynomial corre-

sponding to the n-th QMR residual vector, i.e.,
(3.12) rOME = @, (A)ro, where @, € P., @a(0)=1

Note that from (3.9), the QMR and BCQ residuals are connected as follows:
(3.13) r@ME = (1~ cﬁ)rfﬁR 4 c2pBOG,

where c,, is the quantity defined in (3.4). Rewriting (3.13) in terms of polynomials,

we obtain

(3'14) (Ion('ﬁ) = #?’L(Pn—l(,ﬂ) + y’qusﬂ(ﬂ)’

where p, 1= 1 — ¢ and v, = c2.
In analogy to (2.28), we now define the n-th iterate @M7S of the QMR squared

algorithm (QMRS) by
(3.15) gQMES € 2o + Ky (ro, A)
and its residual by

(3.16) PQMES = b — AgGMES = o2(A)ro.

40

Note that the iterate (3.15) can be rewritten in a form involving the polynomial

A

P
(3.17) 2QMES = 13+ @, (A)ro,

where ¢, (9) = (1/9)(1 - ().

Similarly, we have
(3.18) 2068 = 2+ du(A)ro, Where .(9) = (1/9)(1 — $2(9))-

Using (3.14) and the fact that g, -+ v, = 1, one readily verifies that the poly-

nomials @, Pp_1, and ¢, in (3.17) and (3.18) are connected as follows:

(319) $al) = 120nr (9) + 2L/ = aca(9n() + 7200
Furthermore, the fact that p2 +2pu,v, + v =1 gives

(3.20) QMRS = 28RS 4 2p v fr+ ViR,

n

where f,, 1= zo+ AL — . _1{A)$,(A))ro. By means of (3.20), the QMRS iterates
can be generated from the standard CGS algorithm, provided that we can also

compute the scalar g, and the vector f,.
Pirst, we show how to update f,.. Using (3.14), (3.18), and (2.29) (with n

replaced by n — 1),

(321) (/91 —@aa(Dga(d) = e (1/9) (3 = Pra(?)na(9))

+ Vet Poa () + 1Pt (9)Pn_1(P)-

41

Hence, the fact that ppq -+ Va1 = 1 gives

b
D

S

— 3 G
f-n - .‘u'.“.."-lfnwl + Vn—lfﬂg_{g + Ope1Sn-1o

—
[}

where 8,.1 = 1,[)“_,1(A)Lpn,,1(A)r0. We note that (3.22) remains valid for n = 1, if

one sets pp = 0 and ¥ = 1. To show how to update s,, we set

(3‘23) Yo & Pr—1 (A)QSR(A)TO’
(3'24) tn = (Pn(A)(ﬁn(A)TDv
(325) Gn = 1|b'ﬂ,-~—1 (A)¢H(A)'r0'

Then, with (2.28), (2.29), (2.30), (3.14), (3.22), and (3.23), one readily verifies that

(326) Yo — tn—-l . an—-lASn—h
(3.27) t, = vro9 + paYn
(328) 8y, = tn + ﬁn(Vngn + .u'-n'sn-—l)'

The vector g, also occurs in the CQS process, and its update is part of the standard
CGS algorithm.

It remains to show how to obtain g, From (3.14) and (3.4), we have
(3.29) [= NpVny Where vp = 1/(1+n,) and 9, = #2.
Furthermore, in view of (3.4) and (3.7), the quantity 7 is given by

(3.30) o = w2 [PBCNR Gy, Where Euy = Toy

42

Note that, by (3.6) and (3.29), the &,’s can be updated as follows:

(3.31) €n = Entfin:

So far, we have not specified how to select the weight w,4, in (3.30). Recall from
(2.24) that the natural choice is wyyy = 1. However, the computation of 7, in
(3.30) would then require {|rBCG||, which is not available in squared algorithms.

Instead, we set

(3.32) Wapr = (IFGES| - llrol)2 / 1Ir2

so that (3.30) reduces to

(3.33) M = Ir 81 - llroll / €na-

Note that, for the choice (3.32), the relations (2.26) and (2.28) suggest that wl =
[[($a(A))2roll - [Iroll /ll@a (A)rol[* = 1.

[n summary, we have shown that the QMRS algorithm corresponding to the
weights (3.32) can be implemented with short vector updates. One only has to
add the updates (3.20), (3.22), (3.26), (3.29), (3.31), and (3.33) to the standard
CGS algorithm [54]. The resulting QMRS algorithm is as follows in Table 3.2.

We remark that the QMRS Algorithm requires 3 matrix-vector products with
A per iteration. This will gain two degrees of the Krylov subspace, Although in
terms of cost, this improves on the QMR method, both the CQ@S algorithm and
Freund’s TFQMR algorithm {26] involve only 2 matrix-vector products with A per

iteration to achieve two degrees of the Krylov subspace.. However, squaring the

43

already smooth QMR to obtain QMRS yields an improved residual polynomial

over CGS and TFQMR.

44

‘Table 3.2: Algorithm QMRS

For

Choose zq,7 F# 0
Set zFMP = 2865 = g,
soztO:pozuozrgGS =ry, =b— Az
Set vo = Apg, fo =0, bo = H""onzs Mo = fto =0, Yo = 1,
Po = Tor Po = Fg‘”'"o
n=1,2..., until convergence
Tpet = ?ﬁg”n-—ﬁ Qpy1 ™ Pn—1/0'n-1
G = Up_1 — Cn_1Vn—1; fn = tp—1fra + Vp1ZGGF 4 0ty 18p1
2008 = 205 + s (Un-1 + In)
r0G8 = rCGS — g A(tia1 + 9n)
n = PGS\ - Iroll/éam1s v = 1/ (L n)i o = Tn¥ni £n = En1fin
2QMRS = 23S 4 2 f + VIR
pn = TET59%, Bu = PnlPr
Uy, = 7C%% + g
P = tn + Bulgn + BaPur1) Vn = APn
Y =ty 1 — On1ASn_1} t, = Upr T8 + finiin

Sp = tn + :Bn(yngn + /J’n‘gn—d)

45

3.4 Numerical Examples

In this section, we present numerical results for two examples. For both ex-
amples, we have compared the QMRS algorithm, the TFQMR. algorithm [26], and
CQS. For the second example, we have also included standard QMR. The figures
show the relative residual norms lral1/liroll plotted versus the iteration number n,
for QMRS (solid line), TFQMR (dashed line), and CGS (dotted line). For the
second example, the QMR curve (dash-dotted line) is also depicted.

Our first example is the SHERMANS matrix from the Harwell-Boeing collection
of sparse test matrices [20]. This matrix comes from a fully implicit black oil
simulator on a 16 x 23 x 3 grid, with three unknowns per grid point. Here, Ais
s matrix of order N = 3312, and it has 20793 nonzero elements. This example
was run without preconditioning. The convergence curves are shown in Figure 3.2.
Note that CGS does diverge, while QMRS and TFQMR converge.

The second example is a system arising from the partial differential equation
—Au+40(zu, + Yyt zu,) — 240u = f on the unit cube (0,1)3. We discretize this
equation using centered differences on a uniform 95 % 25 x 25 grid with mesh size
h = 1/26. The resulting linear system has a sparse coefficient matrix A of order
N = 15625. This example was run with a variant of an JLU preconditioner. The
convergence curves are shown in Figure 3.3.

From the figures, we can see the smoothing effect of QMRS over CGS. This leads

46

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 3.2: QMRS — Shermanb (Example 3.1)

C@GS diverges. As compared to TFQMR, in

to convergence in Example 3.1 where

Example 3.1, we see some of the additional smoothing of QMRS and in Example

3.2, this leads to convergence in slightly fewer iterations.

47

104

102

100

102

104

10%

10

Figure 3.3: QMRS - 3D PDE (Example 3.2)

48

CHAPTER 4

QMR Variants of the Bi-CGSTAB Algorithm

4.1 Motivation

In Section 2.4.3, we mentioned a variant of CGS due to Freund, called TFQMR
[26], which “quasi-minimizes” [29] the residual in the space spanned by the vectors
generated by the CGS iteration. Numerical experiments show that in most cases,
TFQMR retains the good convergence features of CGS while correcting its erratic
behavior. The transpose-free nature of TFQMR, its low computational cost and
its smooth convergence behavior make it an attractive alternative to CGS. On
the other hand, since the square of the residual polynomial for BCG is still in
the space being quasi-minimized, in many practical examples, CGS and TFQMR
converge in about the same number of steps and breaks down in the same way. We
note, however, that in contrast to CGS, the asymptotic behavior of TFQMR has
been analyzed [25]. It is also well-known that the OGS residual polynomial can be
quite polluted by round-off error[56]. One possible remedy would be to combine
TFQMR with a look-ahead Lanczos technique as was done in the original QMR

method[27].

49

In this chapter, we take an alternative approach by deriving quasi-minimal
residual extensions to Bi-CGSTAB. Our motivation is that the more stable poly-
nomials generated by Bi-CGSTAB will lead to more stable quasi-minimal versions.
We call the basic method QMRCGSTAB and illustrate numerically that it does
result in smoother convergence than Bi-CGSTAB. Indeed, this smoother behavior
parallels the improvement that TFQMR achieves over CGS.

It may appear redundant to combine the local minimization in Bi-CGSTAB
with a global quasi-minimization. However, our view is that the local minimization
is secondary in nature and is only used as a stable way of generating residual
polynomials in the appropriate Krylov subspace over which the residual is being
quasi-minimized. In fact, this view allows us some flexibility in modifying the local

minimization step in Bi-CGSTAB which leads to other quasi-minimal variants.

4.2 The QMRCGSTAB Algorithm

Since our proposed method is based on Bi-CGSTAB, we refer the reader to a
review of the details given in Section 2.4.2. The algorithm proposed in this chapter
is inspired by TFQMR in that the three term recurrence &; = Ty T &P; + WS of
Bi-CGSTAR is transformed into a quasi-minimization problem. In other words, we

use Bi-CGSTAB to generate the vectors p; and s; and quasi-minimize the residual

50

over their span. During each step of Bi-CGSTAB two vector relations hold:

(4.1) s; =Ty — AP, P, = 8; — Wi As;.
Let

Y= [’yl Yo vt Uk]
where

Yau—1 =PI for I=1,... 7[(k+1)/2l
Yoy = 51 for lzl,.,{kle

([k/2] is the integer part of k/2). In the same way, let

TMk-}-l = [’UJO wy " 'I.Uk] 3

with
wmmrl fOl' I:O,.,[k/Z]

wzl_ﬂlu—-—‘gl fOl‘ l‘-—"].,...,[(k-’r].)/Zl
We also define

621"—’_—-(,01 fOl' l=1,.,[(k+1)/2]
[51 . 5}, where .

gy =y for I=1,... ke +1)/2]

In this case, for each vector of Wiyt and Y, (4.1) may be written as
Ay; = (Wj1 — w;)65, j=1,...,k

or, using maftrix notation,

AY; = Wi Blh,

51

{e)

where By, is the (k+1) x k bidiagonal matrix

- s 0 0 0 W
—§t &t 0 0
0 -6 & 0
—B:(:gl =
0 0 0)
0 0 0 —8ri

It can easily be checked that the degree of the polynomials corresponding to the
vectors r;,s; and p; are 24,21 — 1 and 2i — 2 respectively. Therefore, span(Yy) =
span(Wy) = K (ro, A), the Krylov subspace of degree k —1 generated by ro.
The main idea in QMRCGSTAB is to look for an approximation to the solution

of (1.1) using the Krylov subspace Kj,_; in the form
zp = To+ Yigr, with gx € RF.
Hence, we may write the residual rp = b — Az, as
ry = 10— AYigi = 1o = Wi Biagi-
Using the fact that the first vector of Wyyq is indeed rg, it follows that

T = Wit (egk) - Bf(;-?wk)a

where egk) is the first vector of the canonical basis. Since the columns of Wy, are

not normalized, it was suggested in [26] to use a (k+1) x (k+ 1) scaling matrix

52

Y =diag(oy, - .- ,Ogt1)y With oy = ||w;]l, in order to make the columns of W4y

to be of unit norm. Then

(4.2) m= Wkﬂzﬁ_lzkﬂ(@gkﬂ) - B](:glgk) = Wk+1EE_§1_1(fk+1 - 1(032194&)

where H,EjL = D1 B’(ﬁgi and frg = o_legk-i-l).

The quasi-minimal residual approach is defined by the minimization of the

psendo-residual:

(4-3) TR = ”fk+1 - Hﬁﬂk” = lzi?{k | fe4r — H;E‘.?lgn-
g

Although the solution of the least squares problem at each step appears to be
expensive, it is actually possible to use a recursive formula and update the solution

at every step [26]. A QR factorization of H ,E?l‘.

(e) Ry
Qk+1Hk+1 =
0

can be performed in an ‘neremental manner using Ry, as a triangular component of
the decomposition. We also note that since H ,(31 is bidiagonal, only the rotation
of the previous step is needed, s0 no additional memory is required for storing the
orthogonal factor Qq1-

In more detail, this is done by applying [26, Lemma 4.1] to (4.3). This results

in the following relation for the QMRCGSTAB iterate:

&£ = (1 - Ci)ﬂ:k_l + C?cfék,

53

where ¢ is the cosine at the k-th Givens rotation in the QR factorization, and Zj
is the auxiliary iterate:
&y = o + Vil
e)

where §, = H;'f, and Hy is obtained from deleting the last row of H ,(c o1 It is

easily verified that this can be updated:
& = Er_q + Ok

Analogous to TFQMR, we have the values:

Oy = Ok Thots
cp = 1/‘\/1 + 92
Ty — 'rk__lf?kck.

Thus, the QMRCGSTAB iterate can be updated:
), = Ty + Tars

where 7 = ¢}, and dj = (B — zp-1)/ Ok
We check for convergence using an estimated bound on |jrii} since the true 7y

is not generated explicitly.

el < W Sy M — Hiagel

S Vk+17-k-

The pseudocode for the QMRCGSTAB algorithm is given in Table 4.1. Note

that the cost per iteration is slightly higher than for Bi-CGSTAB, since 2 additional

54

inner products are needed to compute the elements of Lipis. A more detailed

discussion on computational costs is given in Section 4.4.

Table 4.1: Algorithm QMRCGSTAB

Choose z, and compute rg = b— Azg
Choose 7o such that (5,70) # 0
Setp0=vo=d020;p{,=ag=w0m1
Set 7 = |[roll; 0 = 10 =0

For k=1,2,--- until convergence
pr. = (Fo, Te1); Be= (Pkak-—l)/(rok—lwk—l)
Dy = o1 + Br(Pro1 — Wr-1Vk-1)
v = Apy
ay, = pi/(Fo, Vi)
S = Tp — QUL

% First quasi-minimization and update iterate

by = lselims e=1/y/1+ 02

7 =700 fip = cray,

5 82 _ kw1
— k=3
dy, = pp + 5,k

By = Tpoy T s
% Compute i, wy and update ry
tk = Ask
Wi = (8p, t)/ (Lrr)
T, = Sp — wktk
% Second quasi-minimization and update iterate

o, =lrll/7; c=1/y/1+8;

T = Tc; N = Ay,
_ B 7

dy = s, + =dy,

2y = T + Ml

If z, is accurate enough, then quit

55

4.3 Some Variants of QMRCGSTA

The use of quasi-minimization in the product algorithms (such as CGS and Bi-
CGSTAB) introduces some flexibility in the underlying methods. For example, the
basic product algorithm need not be constrained to generate a residual polynomial
that has small norm because, presumably, the quasi-minimization step will handle
that. Instead, the basic iteration can be viewed as only generating a (preferably
stable) basis for the Krylov subspace over which the quasi-minimization is applied.
This view leads us to several variants of QMRCGSTAB which we will briefly
describe. Note however that only one of these variants will be used in the numerical

experiments,

We make two observations on the QMRCGSTAB method:

(a) It is not crucial that the steepest descent step reduce the norm of the residual

as long as it increases the degree of the Krylov subspace associated with Wgy,.

(b) If Wiyq were orthogonal, then quasi-minimization becomes true minimization

of the residual.

Therefore, it is natural to choose w; to make Wi,y “more orthogona. ", For exam-
ple, one can choose w; to make r; orthogonal to s; and equivalently, W) pairwise

orthogonal. This leads to the formula:

S’

(Sia 5

(si,%3)

w; =

which replaces the corresponding formulain Algorithm QMRCGSTAB. We call this
variant QMRCGSTAB2. We note that since the inner-product (s;,8;) is already
needed to compuie 0;, we save one inner-product compared to QMRCGSTAB.
We also note that similarly to Bi-CGSTAB, both QMRCGSTAB and QMR-
CGSTAB2 break down if (s;,%;) =0 which is possible if A is indefinite (in fact it
is always true if A is skew symmetric.) This is an additional breakdown condition
over that of BCG. One possible strategy to overcome this is to set a lower bound for
the quantity |(s;, ;). However, for matrices with large imaginary parts, Gutknecht
[37] observed that Bi-CGSTAB does not perform well because the steepest descent
polynomials have only real roots and thus cannot be expected to approximate
the spectrum well. In principle, it is possible to derive a quasi-minimal version
of Gutknecht’s variant of Bi-CCGSTAB, but we shall not pursue that here. An

alternate strategy for handling this additional breakdown in given in Chapter 7.

4.4 Numerical Experiments

We next compare numerically the performance of the QMRCGSTAB variants
with that of Bi-CGSTAB, TFQMR, and CGS.
Table 4.2 shows the cost per step of the methods under discussion, excluding

the cost for computing the residual norm which is the same for all methods.

In the sequel, we present experiments to show that QMRCGSTAB indeed

87

Table 4.2: QMRCGSTAB Examples: Cost per step for each method

Inner DAXPY | Matrix-vector

products | operations multiplications

| BicgsTAB 4 6 2
CGS 2 7)
QMRCGSTAB 6 8 2
QMRCGSTAB2 5 8 2
TFQMR 4 10)

achieves a smoothing of the residual compared to Bi-CGSTAB. Note, however,
that because the Bi-CGSTAB method already improves the erratic residual con-
vergence of BCG, the effect of QMRCGSTAB is not as impressive as the one of
TFQMR on the residual of CGS.

Unless otherwise stated, in all the examples, the right hand side b was generated
as a random vector with values distributed uniformly in (0,1), and the starting
vector z, was taken to be zero. All matrices arising from a partial differential op-
erator were obtained using centered, second-order finite differences. The methods
were compared on the basis of the number of iterations necessary to achieve rela-
tive residual el « 10-8, with r, = b— Az being the true residual. Hence, the

rol}

figures were built with the ordinate axis representing the number of iterations and

58

the coordinate axis representing logyg ||ry]l. Note that all the methods compared
require the same number of matrix-vector multiplies at ach iteration (see Table
4.2},

Experiments were conducted using a Beta test version of MATLAB 4.0 [33]
running on a Sun Sparc workstation.

Example 4.1. We begin by constructing an example which illustrates the
superior numerical stability of Bi-CGSTAB over CGS and TFQMR. Matrix A is

a modification of an example presented in [47].

€ 1
(4.4) A= ® In/z

—25 100

i.e., Ais an n x n block diagonal matrix with 2 x 2 blocks and n = 40. We choose
b=(1 g 1 0 ..)¥ and o = ro. For such a b, the norm of the resulting BCG
polynomial satisfies ||¢,|| = O(e~). Thus, 42|} = O(e~?) in the squared methods
and we can foresee numerical problems when € is small.

Each entry of Table 4.3 shows (i) the number of correct digits, d, in the relative
residual obtained after running each algorithm until the relative residual dropped
below 10~8 but without exceeding 20 matrix-vector multiplications, and (i4) in
parentheses, the number of matrix-vector products, mv, that is not greater than
20 needed to achieve a relative residual of 10-4.

In exact arithmetic, finite termination occurs after the second BCG polynomial

$, is computed in both the BCG and CGS algorithms. We see from Table 4.3 that

all methods behave equally well for € = 1.0. As € decreases, round-off error causes

59

OGS and TFQMR, which are based on the squaring of the BCG polynomial, to
£23] or not to converge within the expected time. Furthermore, both CGS and
TFQMR lose about twice as many digits as Bi-CCGSTAB and its quasi-minimal
variants. We also mark the instances of the quasi-minimal variants whose residuals
stagnate before the maximum number of iterations has been reached. We note

that although the example is contrived, it does justify the implementation of a

QMRCGSTAB-type method.

Table 4.3: Example 4.1 - Correct digits and matrix-vector products at termination:

d(mv)
—
Method 1.0 | 10-4 | 10-% 1012
CGS 14(4) | 5(4)t | -3(20)* -1(4)%
TFQMR | 13(3) | 5(4)% | 1(20)% 1(20)4
BiLCQSTAB | 16(3) | 12(3) | 7(3)1 3(3)1
QMRCGSTAB | 16(3) | 12(3) | 7(3)} 3(3)i
QMROGSTAB2 || 16(3) | 12(3) | 7(3)% 3(3)1

* Oscillatory behavior observed
t Residual stagnates before max. number of mv’s was reached

i Iterations stopped when division by zero was encountered

60

Example 4.2. From [54], the matrix A corresponds to the discretization of

the convection-diffusion operator

(4.5) L(u) = —eu + cos(a)u, + sinfo)u,

on the unit square with homogeneous Dirichlet conditions on the boundary and
parameters ¢ = 0.1 and o = —30°, using 40 grid points per direction, yielding a ma-
trix of order n = 1600. Fig. 4.1 shows the convergence histories, from which we can
see the smoothing effect of quasi-minimization on the CGS and Bi-CGSTAB resid-
wals, We see that Bi-CGSTAB and its smoothed counterparts converge slightly

faster than CGS and TFQMR, with QMRCGSTAB2 winning by a small margin.

10 1 T T I+

log(residual norm)

10 ¢ 10 20 30 40 50 60 70 80 90 100

iteration number

Figure 4.1: QMRCGSTAB - 2D conv-diff (Example 4.2)

61

Example 4.3. This matrix is Saylr! from the Harwell-Boeing collection [20].
It is a nonsymmetric matrix A of order n = 238, Left diagonal preconditioning
was used. Fig. 4.2 demonstrates the significantly better behavior of the residuals

in the Bi-CGSTAB versions, especially QMRCGSTAB2.

Jog(residual nom}

purt
cr

10

0 50 100 150 200 250 300 350 400
iteration mumber

Figure 4.2: QMRCGSTAB - Saylrl (Example 4.3)

Example 4.4. This example comes from the discretization of the convection-

diffusion equation

(4.6) L(u) = —Du + y(zu, + yu,) + Pu

on the unit square where v =100, 8 = —100, for a 63 x 63 grid, yielding a matrix

of order n = 3969. No preconditioning was used. In this example, we see the CGS-

62

based methods converge a little faster than Bi-CGSTAB and QMRCGSTAB, but

the pairwise orthogonal variant, QMRCGSTAB2, is the fastest. See Fig. 4.3.

1 010

un

[y
=

-]

1og(residual norm)
b
[=]

107

' 4 bogstab

-10 1 1 f I 3 1 b '
W5 40 & 8 10 10 140 160 180
iseration number

Figure 4.3: QMRCGSTAB - 2D conv-diff (Example 4.4)

Example 4.5. Figures 4.4 and 4.5 show the results of a 3-dimensional version

of Example 4.4 without preconditioning:
(4.7 L{v) = —Au + y(zug + yuy + zu,) + Bu

on the unit cube where 8 = —100, and 4 = 50,1000 for a 15 % 15 x 15 grid, yielding
o matrix of order n = 3375. For small values of 7, all of the methods converge
without any problems; see Fig. 4.4. However, for large -, this operator will yield

a nearly skew-symmetric matrix and the eigenvalues have large imaginary parts.

63

Therefore, we expect Bi-CGSTAB to have problems [37]. We see in Fig. 4.5 that
QMRCGSTAB variants do inherit the problems of Bi-CGSTAB. We will discuss

ways to overcome this problem in Chapter 7.

log(residual norm}

)] 1 i 3 5 1 L 1 i
W, s e 15 20 25 % 35 4 4
iteration number

Figure 4.4: QMRCGSTAB ~ 3D conv-diff, 7 = 50 (Example 4.5a)

64

: F : T T T .
g v, . s bogstab
% :. s e . RO TP ES
o [R s bl d
:E 10 ‘*}_;H' qrirbgstab? gnircgstab
\
B, +
® "i",‘. $_¥+ + + 4
- 4
ooy B
ﬁ-—'-l' +++
LY + +
~—a 4 o
el i
1 T
10 % +'p #h
tfqmr, ﬂ:l\'f +:l' "
[._.__‘_tq:
0 20 40 60 80 160 120 140 160 180 200
iteration mumber

Figure 4.5: QMRCGSTAB - 3D conv-diff, 4 = 1000 (Example 4.5b)

65

CHAPTER 5

The Composite Step Technique

5.1 Motivation

Since the product methods presented thus far involve the BCG residual poly-
nomial ¢,,, they not only inherit the good properties of BCG, but they also take on
some of the problems of BCG. In Section 9.2.2, we discussed the numerical break-
downs that occur in BCG. Recently, many methods have been designed to cure
them by “looking ahead” in order to avoid computing iterates where a breakdown
can be predicted. The spectrum of these methods ranges from simple modifications
of BCG to handle only one of the breakdowns to more complex algorithms which
provide almost total breakdown protection using a variable look ahead step.

In this chapter, we consider the composite step technique (Bank and Chan {5, 6])
which cures the pivot breakdowns (assuming no Lanczos breakdowns) by simply
looking ahead only one step when a (near) breakdown occurs. This technique
is attractive because there is no need for user specified tolerance parameters, no

variable step sizes, and requires only a minimal modification of existing algorithms

(e.g., BCG).

66

In this chapter we review the details of the Composite Step BCG (CSBCG)
algorithm as presented by Bank and Chan [5]. Then, we show that the composite
step technique can easily be extended to product methods (e.g., CGS, Bi-CGSTAB)

in the following two chapters.

5.2 Handling Breakdowns in the BCG Algorithm

Recall, from Section 2.2.2, that a pivot breakdown in BCG occurs when the

Hankel moment matrix:

B P2 7t e
. — [M o My
HO = (R)TAR, = | o
K Pn Hps1 *0 Mon—1 /

when p; = 74 Arg, 18 singular, and the Lanczos breakdown occurs when H®) =
K;(FG)KH (rg) is singular.

To overcome the pivot breakdown, we can “look ahead” in H{!) by not com-
puting z, where it is not defined. Looking ahead means that we build Hi-(l) until
it is no longer singular and we have an iterate @, m = 1. There are several
approaches to handling this. In the case where A is symmetric, for which Lanczos
breakdown cannot occur, it can be treated by the method of hyperbolic pairs due
to Luenberger [45], and later expanded by Fletcher [24] (See Section 5.3.2).

For general nonsymmetric matrices, the pivot breakdown can be cured us-

67

ing a three-term recurrence as done in the unnormalized BIORES algorithm of
Gutknecht {36]. As previously mentioned, the QMR method [29], if considered
without look-ahead Lanczos, avoids pivot breakdowns as it numerically stabilizes
the BCG method by computing an iterate defined by a “quasi-minimized” solution
(which always exists) instead of the Galerkin condition.

Although the methods described above can cure possible singularities in H{Y,
HO can still be singular and cause breakdown problems. These breakdowns are
harder to fix and many look-ahead methods have been proposed to remedy them
as well (see e.g., Freund, Grutknecht and Nachtigal [27], Brezinski, Redivo-Zaglia
and Sadok [14, 15], Brezinski and Sadok [10], Joubert [41], and Parlett et al [48]).
Although the step size needed to overcome an exact breakdown can be computed
in principle, these methods can unfortunately be quite complicated for handling
near breakdowns since the sizes of the look-ahead steps are variable (indeed, the
breakdowns can be incurable).

The Composite Step Biconjugate Gradient (CSBCG) algorithm [5, 6], cures
the pivot breakdown (assuming no Lanczos breakdowns) by skipping over steps for
which the BCG iterate is not defined. It was shown in [5, Lemma 4.3] that only
look-ahead steps of size 2 are needed, but this can also be seen in the relationship
between the two Hankel matrices defined above: assuming that det(H(®)) # 0 for
all n, then no two consecutive principal submatrices of H(!) can be gingular. (The
structure of these Hankel determinants was studied in detail by Draux [19].)

Moreover, to incorporate comnposite step into BCG requires only a simple mod-

68

ification of the usual implemetation of BCG. By closely relating the composite
step version to the BCG recurrence, there ia a better chance that the empirically
observed stability of BCG will be inherited.

The composite step idea, then, can in principle be incorporated anywhere the
BCG polynomial is used; in particular, in product methods such as CGS [54], Bi-
CGSTAB [55], BICGSTAB2 [37}, and TFQMR [26]. Doing this not only cures the
breakdown mentioned above, but also takes on the advantages of these product
methods over BCG, namely, no multiplications by the transpose matrix and a
faster convergence rate. For example, if we take the CSBCG polynomials and
square them, we obtain the Composite Step CGS method as will be shown in
Chapter 6.

The same can be done for the Bi-CGSTAB algorithm. In Chapter 7, we ap-
ply composite step to Bi-CGSTAB by computing products of the CSBCG poly-
nomial with a steepest descent polynomial. This will handle the instability in
CSCGS while inheriting the desirable properties of composite step. We call the
new method (S-CGSTAB. Moreover, other techniques can be employed to stabi-
lize CS-CGSTAB. For example, the Bi-CGSTAB2 method (Gutknecht, [37]) uses
an alternate minimization strategy which can be applied during a composite step
to further improve on this method. We will also combine composite step with this
strategy from BiCGSTAB2 and give results in Chapter 7.

There are other methods which also employ look-ahead techniques for product

methods. The unnormalized BIORES? [36] squares the BI ORES method to

69

handle pivot breakdowns. MRZ5 and its variants [9, 13] treat both breakdowns
in the CGS method, as does the Look-ahead TFQMR method, currently being
developed by Freund and Nachtigal [30].

We note that all look-ahead versions of a basic method are essentially equivalent
in the sense that, given the same step size, they all compute the same uniquely
defined iterate at the end of the look-ahead step. The different methods differ only
in the details of the stepping strategy and the recurrences used in carrying out the
step.

The composite step approach seeks to achieve this with a minimal modification
of the usual implementation of existing methods, such as BCG and CGS, in the
hope that the empirically observed numerical stability of these methods will be
inherited. In trying to cure only one of the two possible breakdowns in CGS, we
make a conscious decision in favor of having a simpler modification of CGS instead
of a version which is less prone to breakdown but more complicated. Thus, the
CSCGS method should be viewed as one in a spectrum of methods with varying

degrees of breakdown protection and complexities of implementation.

5.3 The Composite Step BCG (CSBCG) Algortihm

We now review briefly the details of CSBCQ. For notation, we refer the reader
to the BCG algorithm in Table 2.2. Suppose in running the BCG method, we

encounter a situation where o, = 0 at step n. We see that the values %,41, Tni1

70

Tnals o1 are not defined. CSBCG overcomes this problem by skipping the n +1
update and computing the quantities in step n+2 by using scaled versions of rp1
and .y, which do not require divisions by &,. This is done by defining auxiliary

vectors Zpi1 € Kppalre, 4) and 2,4, € K _I_z(fo,A):

(5'1) zn—l—-l = Jnrn-l-l
= OpPtn— pnAPm
Zpg1 = O nTr1

_ - T
= O,y — PnA Dne

These are then used in looking for the step n +2 iterates:

mn+2 - mn_l_[pn?zn-i-l]fn,
Eén-i-z = ﬁn+[ﬁna§n+1]fm

where f,, fn e R?.

The corresponding residuals are :

(52) Ttz = L A[pm zn+1]fna

r'F'n.-i—2 = F'n. - ATw'm E'n~1--1]f'ra,°
Similarly, the search directions in a composite step are found using
(53) Pn+2 = 'rn+2 + [pns zn+1]gn3

ﬁn+2 = 7’:n+2+[13m§n+1]§'m

Tl

where g, 0, € B2
T
To solve for the unknowns f, = (fi, fv(f’)) and g, = (91(3)’ gf))T, we impose

the Galerkin condition of BCG:

(Pns Zng1) Ttz = 0,
and the conjugacy condition:

(Bns 5n+1)TAPn+2 =0,

and solve the resulting two 2 x 2 linear systems:

(5.4) PTAP, PEAZnn 1 f,,?ﬂ _ pLr,
LE£+1APW 2T AZni] _fr(f)_ ZL \Tn

(5.5) pLAp, PrAZun 1 Q',(f)T _ PTAT, 42
_§g+1Ap n Zn Az _97(12)_ EL AT

This yields (after some algebra) the quantities:

fn = (Cn+1pn$9n+1)pi/5n a‘nd On = (Pn+2/pn$ ann+2/9n+1)7

where

(5.6) Gt = E:{H Az,

(57) 9n+1 = 23;.{,1 s

(5'8) 611. = O'nCn—i-l Pi - 9i+1 .

Furthermore, Lemma 5.1 in [6] shows f = f, and §, = ¢,- 1t is now possible

to compute T,yz, Fnizr Tnizr Tate and thus, advance from step n to step n + 2,

The Composite Step BCG algorithm, then, is simply the combination of the 1 x 1
and 2 x 2 steps. It can be proven [5, 6], provided the underlying Lanczos process
doesn’t break down, that the use of 2x 2 steps are sufficient for CSBCG to compute

exactly those iterates of BCG which are well defined.

5.3.1 CSBCG Stepping Strategy

As far as deciding when to actually take a 2X2 step, CSBCG employs a practical

stepping strategy that will skip over exact breakdowns using the criterion:

(5.9) 7l > max{llrall, 7aszll}-

This will avoid exact breakdowns by skipping over the “peaks” in the residual
- convergence. Moreover, this strategy will yield a smoother, more stable method.
In order to avoid unnecessary computation of {lrnsll, the inequality (5.9) can be

restated in the following algorithm:

If (||rpgll < |Irnl]) then «—— Condition (5.9a)
choose 1 x 1 step
else
if (JIrpgall < 7o) then e— Condition (5.9b)
choose 1 x 1 step

else

73

choose 2 X 2 step
end

end

Since r,41 may be nonexistent, the auxiliary vector Znp1 = Tnlntt can be used to
evaluate Condition (5.9a). It can be replaced by the equivalent condition: ||z 41} <
lolllrnll. I this condition is not met, then Condition (5.9b) must be checked.

Similarly, [[reqall < rasell is restated as |6, |[lznnll < |onll|¥pyzlls Where
(5.10) Vpyz = OnTnsz = 8, — 6nfr(}'1)Apﬂ - 5nf7(12)Azn+1.

It may appear that it will cost more to perform the additional matrix-vector

product Azyy1 In (5.10) However, note that

Apn+1 = Azn+1/an + ﬁn+1APna

and thus, the vector ¥,41 = Az, can be precomputed and used in updating the
vector ¢uy1 = APnyt

Qnt1 = yn+1/°’n + Brs1n-
Note that this is updated without any matrix-vector multiplications. In this way,
the extra cost of computing the matrix-vector product Az,q1 is saved by elimi-
nating the Ap, multiplication. The additional cost to do this is minimal and note

that no user specified tolerance parameters are required for this algorithm. The

CSBCG algorithm is given in Table 5.1.

T4

Table 5.1: Algorithm CSBCG

po=ro; Bo=7F0; ¢o=Aps; do=ATPo; po= 370
n—0
While method not converged yet do:
Onp = ﬁgfln
Engl = Tnn — Pnin; "Zﬂ+1 =optn — Pnfjn
Ynstr = Azngr; a1 = ATz, 1
Gn-]—l = §Z+1Zn+1§ Cn+1 - 53.{.1%14-1
fny1 = “Zn+1n§ $n = {Irall
% Decide whether to take a 1 x 1 step or a 2 x 2 step.

I nss < [onlém Then % lirnsall < liral
one-step =1
Else
Vpio = Hﬁﬂ.""n - P?a(:n—i-l‘,?n - 9n+1pﬁyn+1u
If |6nlénsr < |on|vns2, Then % lIras1l < llrntell
one-step = 1
Else
gne-step =0
Fnd If
End If
% Compute next iterate.
If one-step, Then % Usual BCG

Oy = Pn/o'u
prsr = On41/0%5 Brt1 = pnt1/pn
it = Tn =~ %nldn} T4l = Fn — nin
ETptl = En T EnPn; En41 = &n -+ tnfn
Pnidl1 = zn+1/0n -+ ﬁn-i-lpn; Pnti = En-l—l/o'n + ,Gn-i-iﬁn
In+l = '.Uﬂ+1/0'n + Bn414n; Gnt1 = gn+1/(7n + Prardn
ne—nil

Else % 2 x 2 step CSBCG
b, = nlnt1Ph — 972:+1
On = Cn+1pﬁ/6n; Ong1 = Bn+1pa21,/5n
Pp42 = Pn = Caln — Ont1¥nils Frp2

~

— a’ﬂ‘jﬂ - an—i—lﬂn-{-l

n
Ent2 = Tn 4 opPn T OngiZndls in+2 = &y — anPn — Ofﬂ+l§n+1

Zn42 = 7:?1_’4-2; Enta = Tnt2
Prtz = Zn42tn42; Bn = Pn~i~2/Pn§ Bay1 = U'nPn+2/9n

+1

Pnt2 = Zn+2 + ﬁnpﬂ. + ﬁn+1zn+l; ﬁn+2 = Znsa + ﬁﬂﬁﬂ- + ﬁn+12ﬂ,+1

Int+2 = Apnia; Gntz = Abpsa
ne—n+2
End If
End While

75

5.3.2 The Symmetric Case

Ideas similar to the composite step approach were used earlier by Luenberger
[45] and Fletcher [24]-in the case where A is symmetric. Note that in this case,
there are no Lanczos breakdowns and mathematically, CSBCG and the methods
in [24, 45] are, in fact, breakdown-free, and all produce precisely the same iterate
Tpro-

However, the details of exactly how T,., is updated are different. In [45],
Luenberger treats only the case of exact breakdowns (o, = 0) and computes the
iterates from a set of basis vectors different from that of CSBCG. Fletcher [24],
on the other hand, handles near breakdowns similar to CSBCG but varies in the

actual computation of f, and g,. For example, f, is computed as follows:

e Glpn _Pa .}_) B
f“‘(o g g e)T

where

Tn Pa GnlPh
pn 002 0.0

This yields different roundoff properties when practically applied and compared to

P =

CSBCG on symmetric mafrices.
Thus, CSBCG can be viewed as a way of generalizing [24] to nonsymumetric

maftrices.

76

CHAPTER 6

The Composite Step CGS(CSCGS) Algorithm

6.1 Motivation

We now use the composite step idea to derive a more stable variant of the CGS
method [54] (see Section 2.4.1) for solving (1.1). The method is based on squaring
the Composite Step BCG method, described in the previous chapter, which itself is
a stabilized variant of BCG in that it skips over steps for which the BCG iterate is
not defined and causes one kind of breakdown in BCG. By doing this, we obtain a
method (Composite Step Conjugate Gradients Squared or CSCGS) which not only
handles the breakdowns described above, but does so with the advantages of CGS,
namely, short recurrences, no multiplications by the transpose matrix, and a faster
convergence rate than BCG by advancing two degrees of the Krylov subspace with
each iteration. We also propose a practical adaptive stepping strategy to cure both
exact and near pivot breakdowns, as well as to provide some smoothing effect to
the residuals.

Existing implementations of CGS can he easily modified to incorporate CSCGS,

as & maximum look-ahead step size of 2 is sufficient. We will also apply the Minimal

T7

Residual Smoothing algorithm of Schonauer and Weiss [52, 60, 62] to the CSCGS
iterates in order to further smooth the convergence behavior.

We begin this chapter by describing the CSCGS algorithm (Section 6.2). Sec-
tion 6.2.2 gives further details of implementation including the decision strategy
for when to take a composite step. This is an important practical issue; as with
CSBCG, the strategy we have chosen does not require any user specified toler-
ance parameters. In Section 6.3, we discuss Minimal Residual Smoothing and its
effect on the convergence behavior of CSCGS, and finally, results of numerical

experiments are reported in Section 6.4.

6.2 The Composite Step CGS Algorithm

The Conjugate Gradients Squared method is an attractive alternate to BCG
for reasons mentioned earlier (see Section 9.4.1). However, because it is derived
from BCG, breakdowns exist in the CGS algorithm analogous to the breakdowns
encountered in BCG. The purpose of (OSCGS is to cure the pivot breakdowns using
a composite step technique similar to CSBCG (Section 5.3) provided that Lanczos
breakdowns do not occur.

Suppose CSBCG were to take only 1 x 1 steps, then we could square CSBCG in
the same way CGS squares BCG [54]. First, we must express the CSBCG quantities
in polynomial form. Since the residual r, = b— Az, of any iterate z, € 2o+ K, (r0)

can be written in the form r, = ¢,(A)re, where #,, is a polynomial of degree <n

78

and ¢,(0) = 1, we can write the CSBCG residual as
pOSBCE = ¢ (A)ro.
Similarly,

PfSBGG = Qrbn(A)TOa

LOSBCG = £, (A)re:

We can now obtain squared CSCGS polynomials
rO8CGS = §2(A)ry

pISC9S = 3 Ayr

n
with corresponding iterates of the form x05¢%% € zo + K, (ro)-

To handle breakdowns, as in CSBCG, if we encounter o, = 0 in the n-th step
of the CGS algorithm, we will need to take a 2 X 2 step. We formulate the 2 x 2

step by first writing the polynomial equivalents of equations (5.2), (5.3), and (5.1):

(6.1) brsa(®) = bp— VPSP —Inpa £,
(6-2) ¢n+2("9) = Qpy2t %953) + fm«lg,(f)a
(63) En-{-l (19) = O',n(,‘bn - Pn'g"pn'

79

Squaring equations (6.1) and (6.2), we obtain:

G4 B, = o+ 0] e+ [f0) e,

—2fMGp i, — 2f@d s + 20 B2 P Lpas
65) W2, = Bt 0] w2+ [0 €

+2980) 2P + 202 ¢ p26nsa + 29511)9,(12) Prlni-

Thus, we see that we will need relations to define the quantities Gulnits Ynlnsrs

£y Grp2¥nr Prroabnsrs From equations (6.3) and (6.1), we can write:

(6.6) Fobnrr = Onbh — pudPnin

(6.7) Ynbaps = Tubathn = PV,

(6.8) 2, = 0l —20,p,0¢nn F p2 o2
(6.9) bnpatn = Gutn — FOOY] - FO9Pbnn
(6.10) bovnbars = Subugt — FODeus — SO,

All of these quantities can be defined in terms of ¢2 (= rCSoGSs), 2 (= pgsoEs),
and ¢,1,,. What remains, then, is the updating of ¢, If the previous step was

a1 x 1 step, ntb, is defined as

(611) Cﬁn"?bn = q3i + ﬁn(nbn’lwb'n—I)

where the term ¢,,%,,_, can be updated (as in CGS) by the relation

qﬁnd)n—l = qbn—l'lnbn—l - anmlﬂfwbipl'

80

However, if the previous step was a 9 % 2 step, we cannot use this because the

mixed term ¢, 1,1 doesn’t exist. Instead, we use the fact that
= b+ Prabids + £n10s-

Hence,

(6.12) bothn = 82+ 000 8tba + G abubnrs

where the terms ¢, ¥,_, and ¢,€,_1 can be updated by the relations GpiatPn and
Pryz€nsr Which have already been computed.

One simplification we can perform is in the process of finding coefficients f,
and g,. As shown in {6, Lemma 5.11, the systems (5.4) and (5.5) can be simplified
and the two systems can be solved explicitly for f, and gp:

(6.13) Fo = (Cat1PnsOnir) P}/ 6n
(6.14) In = (Pn+2/PmO’nPn+2/9n+1)a

where p, and o,, are defined as before. The constants (,4q and f,4; can be evalu-

ated using CSCGS vectors that we have already computed in the algorithm.
o1 = (Enpr (A7)0, Abnga (A)ro)
= (Fo, AEEH(A)?‘OL
Oy = (ni(AT)Fos Enpa(A)70)
= (ﬁaa §i+1(A)To)a

and finally, &, = o, (02 — 02,

81

6.2.1 CSCGS Stepping Strategy

As far as deciding when to take a 2 X 2 step, we use the same criterion as in
CSBCG [5, 6] in order to develop a strategy that will skip over exact breakdowns.

Namely, Condition (5.9)

sl > max{llrall, [Irnsall}

can be applied.

In order to implement the above test efficiently, and stably, we need to arrange
the associated computations in a careful way. Our approach follows that in Section
5.3.1, but the details are somewhat different. Since we do not have 7,4, yet, and
do not want to compute it unnecessarily (if we decide to skip over it), we use the
fact that that £, = Tn®uyr o obtain the relationship s, = 0214, Hence,

condition (5.9a): [|Fpsall < lIrall, can be written

[{$ntall < oRliral]-

To obtain ||ry4sl], we use the fact that we can write f, explicitly as in (6.13)

and scale the r,,, update by defining v, as follows:
(6.15) V4o = 820 ppy = 62r, — Ale! (8,u, + v;+2) + a:"TH_l(6,,,,75,,,4,1 + w:z“)],

! — 3 ! o 2 7 ! 1
where o, = (1P Pppy = Ong1p2, and v 4, W) o 8T€ scaled versions of v,ya;

w,n_l_z v

— — I !
s 6nvn+2 — Enun - Otnbn . O!n+lcn+1,

!
Un-l-?

82

' — — — o —aof
wn+2 = 6nwn+2 = 6nt.n+1 ancn+1 an+1dn+1.

Thus, condition (5.9b): |[ruqall < [Irasell can be expressed as

(6'16) 6illsn+1n < Gi“”ﬂ+2l\'

Unfortunately, evaluating the exact ||, 42l using (6.15) requires one more matrix-
vector multiply. Hence, for practical purposes, we use the following upper bound

to approximate |[v,4all:

(617) “Vn+2“ S ué‘irnn + r‘;”&n(s‘nun + 6n+2) + a;+1(3ntn+1 + Tf}n-i—Z)”a

where & =~ ||A]l (e.g., from power iteration), and where the quantities L
DppgsWnyo are values based on the estimate |Coy1] = [FLAspys| & k||Folili8nsall-

This approximate test may be misleading in the rare case where the 2 x 2
matrix in equations (5.4) and (5.5) is near singular, but is not revealed by the
approximation (6.17). This will result in a 2 x 2 step where a 1 x 1 step is desired.
Hence, we include an additional check to monitor this case by computing the exact
value of {,,, which requires an additional matrix-vector multiplication. In doing
this, a matrix-vector multiplication is wasted only in the rare cases where a 2 X 2
step has to be aborted.

It is important to note, then, that even with the approximation, our stepping
strategy still avoids exact breakdown. Moreover, we want to emphasize that this
stepping strategy not only skips exact breakdowns, it is also designed to yield

smoother residuals. It may use more composite steps than necessary to overcome

83

oxact breakdowns, but it has the advantage of not involving any user specified

tolerance parameters.

6.2.2 Implementation Details

From Section 6.2.1 we see that at each jteration, the estimated norm of the
residual of a 2 X 2 step is required even if we decide to take a 1 x 1 step. This could
result in unnecessary matrix-vector multiplications if a 1 x 1 step is chosen. Recall
from Section 2.4.1, in one step of CGS, we need to perform the matrix products
Arp2ry and A(pparo + b0 +1%¥n70). The CSCGS stepping strategy requires the
additional matrix-vector product Aspi, = o2A¢? at each step. Hence, using a
precomputing strategy analogous to the one used for CSBCG (Section 5.3.1), we
can rearrange the matrix-vector multiplications to eliminate the extra product in
a 1 x 1 step.

Specifically, by precomputing the matrix-vector products e, = Au, and ¢,y =
Ag, 41, We can rearrange the usual implementation of the CCGS algorithm so that
the 1 x 1 step requires only these two matrix-vector multiplications. Thus, the 1X 1
step is equivalent to OGS mathematically and also in terms of work per iteration.
Furthermore, these two multiplications are all that are necessary to implement our
stepping strategy to test for a 2 x 2 step.

If a 2 x 2 step is chosen, the products dpt1 = Aspa and by = Apny, must be

computed. Note, however, that in order to compute (6.4) we also need the extra

84

matrix multiplications: A2, A%EZ ., A%p £, 1y, and Adpliya. These can all be
absorbed into one extra matrix-vector multiply. Hence, the 2 x 2 step requires a
total of 5 matrix-vector products, whereas in two steps of CGS, only 4 are needed.
This is the price we pay for the composite step. However, it is still a considerable
savings from BCG and also significantly less work than QMRS [31] and TFiIQMR
[16], where an extra matrix-vector multiply is required at every step.

In Table 6.1, we summarize the notation we will be using in our implemen-
tation of the CSCGS algorithm. We list the vector used in the algorithm, its
corresponding polynomial form, and the equations in which it is derived and used.

The CSCGS algorithm is given in Table 6.2.

85

Table 6.1: Notation for CSCGS

vector | polynomial | where/how derived where used
T $irg (6.4) (6.5) (6.6) (6.8)
Pn Pirg (6.5)
Un, PatPnTo (6.11) (6.12) (6.7) (6.9)
Spi1 £2 4o (6.8) (6.5)
Tt OnlnriTo (6.6) (6.10)
Gnt1 VrluriTo (6.7) (6.5) (6.11)
Vn+2 $np2Pnto (6.9) (6.5) (6.12)
Wpto | PntabasrTo (6.10) (6.5) (6.12)
€n A bnro Au,, (6.4) (6.6) (6.8)
Cogr | A¥nbasiTo Ay (6.9) (6.10)
dpt1 A€ 1o T (6.10)
b4z A2 1o Apoie (6.7) (6.9)

86

Table 6.2: Algorithm CSCGS

po = FaTo} Po= U = Toj bo = e0 = Apo
Compute # = estimate for |[A[}
n+—0
While method not converged yet do
on = ngn
gn4l = Onlin — pnbn; tng1l = Agppt
Sp4l = OnTn — Pndnen — Pnlatli Entt = lantilh #n = “""ﬂu
% Decide whether to take a 1 x 1 step or a 2 X 2 step.

If ény1 < 05¢n, Then % {rasill < llrall
one-step = 1
Else

bpp1 = Fg‘an'{-i? En = rdodni1} 311 = o'nEnP?; - 93,.1_1

bn = Cnpds Gni1 =fag1pd

ingl = Tnln " Prln .

Ontz = bntn —~ Binbn — Gnt1Cntil Uniz = ntnyt = Gnonil — &np1K8ntl
Dny2 = 182 rn|l + £llén (Bnun + Int2) + orngt (Bntnts + Bage)]

If §2€n41 < 03Pn42, Then % frnall < lirasall
one-step = 1
Else
dntr = Aont1; Cagr = Fldngri dn = Onlnt1Ph — 6oy
If 82¢n41 < &2 fnya, Then % Test again with true
one-step = 1
Else
one-step = 0
End If
BEnd If
End If
% Compute next iterate.
If ene-step, Then % Usual CGS

an = Pn}ran
T4l = Tn = Ofﬂ.(en + Cn+1/0‘n)
Tn4l = &n + ﬂn(’un + Qn+1/0'n
Pril T FE Tatls Bn = fng1/pn
Upg1 = Patl + Ondnit/Oni enp1 = Aup gt
Prbl = Ung1 -+ ﬂn(9n+1f0‘n + Brnpn)
bugps = eng1 + Bulentifon + Brbn)
n+—n+1l
Flse % 2 x 2 step CSCGS
an = Cnpt £ /603 Cngl = Ong1ph/bn
Unt2 = Un — Qnbn — Onpilngls Wnts = Indl = Unlail = ant1dnti
n42 = Tn — A{C’fﬂ(un + 1"11-}2) + an+1(tn+i + 'wn+2)]
#nt2 = 2o + onfun + Un42) + onpa (Bnts + Wapa)}
Ptz = TaTnta; Bn = pny2f/oni Bny1 = Inpntaffntl
Ung2 = Tnt2 + Bntntz + Brt1Wni2i eng2 = Aung 2
Pniz = Un42 + BnlfnPn + Fntignsr + vpgz) + Brata (Bngntt + Bntrntr + Wnia)
buya = APnt2
n+—n+2
End If
End While

87

6.3 Residual Smoothing

One other technique we can incorporate to obtain smoother convergence is
the Minimal Residual Smoothing (MRS) algorithm, due to Schonauer and Weiss
[52, 60] and further extended by Zhou and Walker [62] and Brezinski and Redivo-
Zaglia [12]. The idea is fo generate a sequence {y,} using the relation ¥, =
(1 = 7,)¥n-1 + MZn where z,, is the iterate of a particular iterative method and
N, is chosen so that the new resulting residuals b — Ay,, have monotone decreasing
norms and [|b— Ay,lls < 15— Azylls, for each n. Note that although doing this will
not cure the problem of breakdown, it does track the true residual more accurately,
and in a smooth fashion, as shown in [62}.

To incorporate Minimal Residual Smoothing into the Composite Step algorithm
which does handle pivot breakdown, use {x,} from CSCGS. Choosing this set
of {z,} will provide a more stable basis for smoothing than would, say, CGS.
Then, we generate i, as described above for 1 x 1 steps. For 2 x 2 steps, define
Yy = (1 — 0)¥n—2 + M and choose 7,, to minimize ||b — Ayl

The MRS algorithm we have implemented (shown in Table 6.3), is one of several
smoothing techniques described in [62]. Although we have selected this particular

algorithm, note that the other techniques perform similarly.

88

Table 6.3: Algorithm MRS for CSCGS

Set sg = r§5CG5, yg = &o = z§80G9, and Uy = Vo = 0
Let &g, 2,82, e consecutive iterates of the CSCGS method
(using either 1 x 1 steps or 2 % 2 steps).

Forn=1,2,3,..
Pp = &n — &n
Uy = Up—1 + ADn}
Uy, = Up-1 T Pni
Mo = ST_ytn /U5 Un}
Sp = Sp-1 ~ Mnla)
Yn = Yn—1 ~ TnUn

Uy — (1 - nn)un'y

Uy (1 - nn)vn;

89

6.4 Numerical Experiments

The experiments in this section were run in MATLAB 4.0 on a SUN Sparc
 station with machine precision about 10-1¢. We shall use CSCGS* to refer to an
implementation of CSCGS where the norm estimate is not used in the composite
step decision strategy (i.e., all matrix-vector multiplications are performed). We
will compare the performance of CSCGS, CSCaS*, MRS(CSCGS) with methods
including BCG, CGS, Bi-CGSTAB, TFQMR on a contrived example as well as on
matrices which come from several partial differential equation operators.
Example 6.1. We begin the numerical experiments with a contrived example
to illustrate the superior numerical stability of composite step methods over those
without composite step. Let A be a modification of the example used in Section

4.4 and in [47]:

A= ®In/23
-1 €

ie., Als an xn block diagonal with 2 X 2 blocks, and n = 40. By choosing
b=(0 1 0 --)T and a zero initial guess, we set o = ¢, and thus, we can
forsee numerical problems with methods such as BCG and CGS when € is small.
Although these methods converge in 2 steps in exact arithmetic when € # 0, in
finite precision, convergence gets increasingly unstable as € decreases. Table 6.4

shows the relative error in the solution after 2 steps of BCG, CGS, and their

90

composite step counterparts. Note that the loss of significant digits

CGS is proportional to O(e~!) and O(e~?), respectively, whereas the accuracy of

CSBCQG and CSCGS is insensitive to €.

Table 6.4: Example 6.1

Rel. error in the soln. after 2 steps (n=40)
BCG CSBCG CGS CSCGS
e=10-4 | 1.5 x 10-12 | 1.1 x 10~16 | 2.5 X 10-® 0
e=10-% || 2.5x 108 | 1.1 x 1071¢} 1.0 x 10° 1.1 x 1018
e=10-12 || 4.9 x 10~ | 2.0 x 10-28 | 1.3 x 10 2.0 x 10—28

n BCG and

Example 6.2. This example comes from the Harwell-Boeing set of sparse test

matrices [20]. The matrix is a discretization of the convection-diffusion equation:

L(u) = —Au + 100(zy, + yu,) — 100u

on the unit square for a 63 x 63 grid. We use a random right hand side, zero initial
guess, and left diagonal preconditioning. Figure 6.1 plots the number of iterations
versug the true residual norm for OSCES* and CGS, and smoothed versions of
these: MRS on CSCGS* and TFQMR [26]. This is done in order to illustrate the
cutting off of the “peaks” of CGS, as seen in this figure. Specifically, note that

the maximum point of the CGS curve Is around 101° whereas it is only 108 for the

91

composite step version. For this particular example, the CQS residual stagnates
at 10-8 and so does its smoothed counterpart TFQMR, whereas CSCGS* reaches
the stopping criterion |Ir,[l/|lroll < 1078, We refer the reader to [34] for further

discussion and explanation of the behavior and accuracy of CG-like methods.

MRS{CSCGES") wrvrimrven

r CcsCas BRI RWG=
10'5 -GS P T B TR

TFQMR

1 3 3]
] 50 100 180 200 250 300
iteration number

Figure 6.1: CSCGS - 2D conv-diff (Example 6.2a)

The next plot, Fig. 6.2, shows the same example with different axes: the num-
ber of matrix-vector multiplications versus the norm of the residual. Instead of
CSCGS*, we now illustrate the behavior of CSCGS - using the norm estimation
strategy described in section 6.2.2 . Recall that for CSCGS, an extra matrix-vector

multiply is required when a 2 x 9 step is performed. Note, however, that this does

92

not make a significant impact when compared fo the previous figure. We see that
even with the approximation, the composite step method manages to control the
wild behavior of CGS and eventually converge to the desired residual tolerance. In
this example, the total number of 2 x 2 steps taken is 23, whereas 133 1 x 1 steps

are taken. The 2 X 2 step was aborted 2 times.

10 +—T T 1 T . . ; ' .
4
10° | }
+
10° | + A ’ |
vk
o | A Y f‘ *
10 r +] “ -I- + +1 u
—_ gt ”'h 4
5102 1 i + | i
=]
[\
T g8 o i . _
3 ' l
= 1]
B10° ‘; & L E
.4 ",i.". h + +
10*F MRS(CSCES) womnenn 5% ﬁé P g]
: CSCGS AR]
10°} CcGS . '“].'4' . 'ﬁi&lﬁl-m-mJ(
. TFQMR) _
107 +)
10" ,

1 1 L1 i i L] i 1
¢ 850 100 150 200 250 300 350 400 450 500
matrix-vector multiplies

Figure 6.2: CSCGS - 2D conv-diff (Example 6.2b)

Hence, Figures 6.1 and 6.2 clearly depict the advantage of composite step meth-
ods over OGS for this example matrix.

Example 6.3. The next example, taken from [17], is a discretization of

L{u) = —Au + 263+, — 100y,

93

on the unit square for a 40 x 40 grid. We use a random right hand side, and
the same preconditioning and stopping criterion as in the previous example. Fig-
are 6.3 illustrates the superior behavior of MRS(CSCGS) as compared with not
only CGS, but also Bi-CGSTAB [65], another transpose-free product method, as
well as CSBCG. We did not include the C3CGS plot, so as not to over-complicate
the picture, but mention that it converges in about the same number of matrix-
vector multiplications as MRS(CSCGS). We see that the new method reaches the
desired tolerance with less work than the other methods. There were 239 1 x 1

steps and 37 2 x 2 steps.

-3

PR

MRS(CSCGS)
CGS e
10" | BICGSTAB ~rmeomms
CSBGG

1] 1 H
0 200 400 600 800 1000 1200
matrix-vector multiplies

Figure 6.3: CSCGS - PDE (Example 6.3)

94

CHAPTER 7

Composite Step Bi-CGSTAB Algorithms

In the same way composite step was applied to (@S in the previous chapter,
it can also be applied to other product methods such as Bi-CGSTAB to overcome
analogous pivot breakdowns due to the BCG polynomial involved. As we have
already noted the advantages of Bi-CGSTAB over CGS, our hope is that they
carry over to their more stable composite step counterparts.

In this chapter, we present CS-CGSTAB, the composite step technique applied
to Bi-CGSTAB, due to Van der Vorst [55], (see Section 2.4.2) in Section 7.1.
Additionally, we propose a variant of this method OS-CGSTAB2 (Section 7.2)
which gives further numerical stability by curing an additional breakdown problem

due to the steepest descent part of the Bi-CGSTAB residual.

7.1 CS-CGSTAB

For notation, we refer the reader to the Bi-CGSTAB algorithm (Table 2.4)
in Section 2.4.2. Since the Bi-CGSTAB residual polynomials are formed from
multiplying the BCG polynomial ¢, with another polynomial 7, of the form (2.33),

we can use the subset of well-defined ¢;’s from CSBCG to multiply with 7, instead.

95

To do this, recall

P;C;SBGG = ¢n(A)?"0; foiBCG = §n+1(A)7'o-

The CS-CGSTAB polynomials, then, take on the form:

pC8-CGSTAB = 1 (A)¢,(A)ro; pOS—OGSTAB = 7 (A)ib,(A)ro.

n k2

Tn the case of a 1 x 1 step, we simply use the Bi-CGSTAB update.

92 % 2 composite step, we will need to evaluate

(7.1) Tgf;GGSTAB = Tn+2 ¢n+2r0

= (I —wy A — Wy 1 A) T PryaTo
and
(7.2) pgf;CGSTAB = Tn+2¢n+2'r0

= (I - Wn+2A)(I_ Wn+1A)Tn"/)n+27'0

For the

using the quantities obtained from the n-th step: 7,¢,, and 7,9, We first show

how to compute the polynomials T,,¢n 42 and T, appearing in (7.1) and (7.2).

We use the CSBCG relationships from (5.1) - (5.3):

(73) §n+1 (19) = anqbn - pnﬂ¢n,
(7‘4:) ¢n+2 (19) = (,25“ - T9¢nf£1) - ﬂ£n+1f,,(,,2)7
(7.5) Prp2(F) = dpyat gl + £pp1g?

96

and multiply by the 7, polynomial to evaluate the needed quantities:

(7'6) Tn(ﬂ)€n+1 (19) - anTnQSn = Pn'ﬂ'rn'(l[)n
(77) Tn(ﬂ)¢n+2(ﬂ) = Tn(¢n - ﬂ¢nf7£1) - ﬁén-t—lf,?))v

= Tty — 9T SO — 9T L0 f1P,
(7.8) T (O hnia(F) = TolPri2 T 1%9,(11) + fn+19'£2))
= Tn¢n+2 + Tn@bngﬁ) -+ Tn§n+1g£,,2)-

We now show how to compute the unknowns f, and g, in (7.7) and (7.8).
The CSBCG residual 1., in (5.2) and search direction p,y; in (5.3) are, re-
spectively, orthogonal and A-conjugate to K* +1(Fo) [6]. By imposing orthogo-
nality and A-conjugacy conditions on two specific vectors 7,(AT)F € K, (To)
and ATr, (A7), € K, (7o), We obtain two linear systems which give f,, and g,.

Specifically, by writing equation (5.2) in polynomial form (7.4) and taking an
inner product with 7, (AT)#,, we obtain the relation:

0 = (Tn(AT)$0>¢n+2(A)7"o)
= (Fo Tn(A)‘?SnH(A)To)

= (For [Tutpn — ATuthn SO — ATy fP1(A)r0)-
Similarly, for the A-conjugacy of.the search direction (5.3),
0 = (A7, (AT)Fo, Yntalo)
= (7o, AT, (AYh1a(A)To)

= (";01 [A7n¢n+2 + ATn¢ng£1) “Jf' ATnén-i—lggz)](A)TG)'

97

We derive two similar relations by imposing the orthogonality and A-conjugacy
conditions on ATT,(AT)7. Combining the four relations, we obtain the following

two 2 x 2 linear systems:

(7.9) (0 ﬂTn¢nT0) (Fos ﬁfuénﬂ’"o) -| -f ,(,,1)-] _ (Fos anbn‘r[})
(o G27,1pur0) (Fos V27 €nt1 7‘0)_ Lf ,(f)_ L(Fm I duTo)

(7.10) (Fos V7, 1PuTo) (o, ﬁTnEn-{-«lrﬂ) 7 -95,,1)1 _ - (o, G brya)
(Fo» 927, 10) (For ¥27Tnbn +17°o)_ Lg,(f)_ L(FD, 927 i)

These are easily solved since all of the entries in the 2 x 2 matrix and the right
hand sides can be obtained from equations (7.6), (7.7), and quantities from the
n-th step. Thus, we can update (7.7) and (7.8).

The next step in evaluating (7.1) and (7.2) is to choose Wnyy and wy,yp tO
satisfy some local minimization property. In the case of a 1 % 1 step, we imitate
the Bi-CGSTAB update steps. Specifically, w41 18 chosen to minimize the norm
of Ppy1 = Tag1PrsiTo = (I — W31 A)TpPrsiTor For the 2 x 2 step, we employ the
same steepest descent rule to compute Wy and Wyio by minimizing llrpya]] and
rnyell. Note that 7440 is not available in a 2 x 2 step, but we can usc a scaled
version for minimization. To do this, let Upss = Tnéns1T0 = -al—n T Pni1To- Lhen we

can write

1
(7-11) Prtl = Tn+1¢n+1?"o = (] — Wn+1A)Tn¢n+17‘o =~ Wn+1A)B_“" Up41:

The vector t,,, is already computed in the CS-CGSTAB algorithm (see relation

98

(7.6)) and thus, we minimize

2l = o (= g Atinga)” (T = s A)tngn)

o
by choosing w,y; = (Au, 1o Unys)/ (At Aty +1), an orthogonal projection of
Uppy Onto Aty
Similarly, let

(7.12) Unys = TnprPniaro = (I — Wop1 A)TnPniaTo
which can be computed because 7, ¢, is available from relation (7.7). Then write
(7T.13) Tope = Tny2Pns2lo = (I — wyy2A) g1 Brpalo = (1 — w2 Aty
and minimize
“ri.}.z“ = (({ - wn+2A)u"n+2)T (I~ wﬂ+2A)un+‘2)
by choosing

(1. 14) Wyta = (At oy, Un-{-z) [(Attpia, Aun+2)'

Finally, in running CS-CGSTAB, we must be able to recover the BCG constants
pBCG and 0B in order to update the BCG polynomial part of the residual. Recall

in Section 2.4.2, we showed the relation due to Van der Vorst [55]:

Bog _. &0 "% Bi-CGSTAB i

— kil
pEtl = oo , where o, = =5 -
ot Wy Wy T oF

Tf we let p, = (g~ @y)/{wy -w,), this reduces to the update formula:

BCG

BCG Bi—CGSTAB — Py Bi~CGSTAB

Pn+1 Hnt1 pn+1 Hn O'BCGw T p'n+1 .
n n

99

In a 2 X 2 step, we determine pG$BoG similarly. First we use relation (7.4):

(7.15) pOSBCE = (fga(AT)Fos SialA)ro)
= (($alAT) = au ATHh,(AT)

— Oy AT5n+1(AT))%B= ¢n+2(A)TO)'

Then, the fact that ¢,4qm0 is orthogonal to all vectors Xni1 (AT)#, implies that
the inner product (7.15) picks out the coefficient of the highest order term of the
n+2 degree polynomial that ¢, is being orthogonalized against. In this case, the
coefficient of the highest order term for the polynomial &,44(AT) = oBUGg, +1(AT)

is aBCay - - - ey, 50 (7.15) reduces to:
§9BOT = — -+ 143050 (= ATy bgal A)ro)

which leads to the update formula:

pCSBCCy
(7.16) pCSBOG = C5—CGSTAB = _ n ntl C5-CGSTAB
. Pn+2 - nu’ﬂ.+2pn+2 = —Hn pn+g :
Wrt1%n+2

The update for 0BCG = (. (AT)T0, Atp,(A)rg) can be calculated similarly. We

define ¢CS-CGSTAB = (7o, AT (A)hn(A)ro) = (7o, ApGS—-CCSTAB) and obtain the

analogous update formula:

CSBOGE — C85-0OGSTAB
(7 17) Jn+2 = fny2 Jn+2 .

1060

7.1.1 CS-CGSTAB Stepping Strategy

As far as deciding when to actually take a 2 x 2 step, we follow the principles
used in Chapters 5 and 6 for the CSBCG and CSCGS methods. As with the other
composite step methods, CS-CGSTAB employs a practical stepping strategy that
will skip over exact breakdowns using criterion (5.9).

Analogous to CSCGS, in order to avoid repeating work and to do this in a

stable way, Condition (5.9a) can be written:

H(I - wn-&-lA)un-H” < |%|||7“n”-

For Condition (5.9b), we first rescale the r, ., update in order to estimate |7, ol

stably by letting

Vn+2 = 6n7'n+2 = 671(1 - wn+1A)(I - wn+2A)'sn+2a

where 6, is the determinant of the 2 x 2 matrix in (7.9). Evaluating v, exactly
would involve the quantity A2, which would require an additional matrix-vector
multiplication if we decide to take a 1 X 1 step. Hence, for practical purposes, we
use an upper bound approximation to estimate |¥ns2ll. Note that although we
do not have AZs,,,, the quantity As, ., can be made available even if we take a

1 x 1 step, and can be done without an additional matrix-vector product using the

101

precomputed values e, ¢x, and dp41:

(718) tn+2 = Asn-}-?

= A(8,rp — Cpln — Ol g 1Ynt1)

= 6?1.611, — 0ty — an+1dn+1'

Thus, we would like to estimate pgall = N6 — W AT — WnpaA)snsall
using (7.18) and without any further matrix-vector multiplications. Our strategy
is to set wpyp = 0, thereby eliminating the need to compute A2s,,5. Doing this

gives an upper bound estimate to ||¥,42il ©

“Vn+2“ < Hén(f - wn+1A)Sn+2”'

Hence, Condition (5.9b): [Iragsll < Urniell is evaluated by the approximated

condition

(719) lénl“(f - LL)1'1+1A)u"n.~’r1“ < Io-nmﬁn-lﬂna
where ||7,42]] is the estimated upper bound for ||Vpp2/6xl:
(7'20) Hyn+2/5n” < ”ﬁn-i-Z” = “Sn+2 - wn+1tn+21l'

If a 2% 2 step is chosen, then the true v, is evaluated. After v, is computed,
we add one final check using the true |42l to decide whether a 1 x 1 step should

be taken instead.

102

Table 7.1: Notation for CS-CGSTAB

vector | polynomial | where/how derived | where used

Ty T ®nTo (7.1) (7.6) (7.7) (7.9)
P To¥nTo (7.2) (7.8)

U1 TunsiTo (7.6) (7.7) (7.8) (7.11)
Snia T PniaTo (1.7) (7.1) (7.8) (7.12)
Upsz | Tni1Pata’o (7.12) (7.13)

e, AT, dn70 Ar, (7.9)

n AT, barg Ap, (7.6) (7.7) (7.9) (7.10)
Yntl AT €T Aty (7.9) (7.10) (7.11)
trao AT, ¢riaTo Asio (7.10) (7.12)

Yntz | ATnt1Pntaro Aty (7.13)

Cn A, Ag, (7.9) (7.10)
dpyi A7 €, 1T Ay, (7.9) (7.10)

Upyz | A nnyaTo Atppg (7.10)

iy, f (7.9) (7.7)

Oyt f& (7.9) (7.7)
8., g (7.10) (7.8)
g, | o (r10) | (18)

103

7.1.2 Implementation Details

In Table 7.1, we summarize the notation we will be using in our implementa-
tion of the CS-CGSTAB algorithm. We list the vector used in the algorithm, its
corresponding polynomial form, and the equations in which it is derived and used.

As with CSBCG and CSCGS, at every step, we must anticipate a 2x 2 step even
if we decide to take a 1 x 1 step. The stepping strategy is similar to the strategies
described in Sections 5.3.1 and 6.2.1, so this implies that we must be able to
approximate the residual of a 2 X 2 step regardless of the step size we ultimately
choose. (The stepping strategy will be discussed in Section 7.1.1.) Recall that
in one step of Bi-CGSTAB, only two matrix-vector multiplications are performed:
Gn = Ap, and Ynp1 = Alnyr. From the third column of Table 7.1, we see that 8
matrix-vector products are required to do a 2 X 2 step which appears to be 4 more
than 2 steps of Bi-CGSTAB.

However, the total 8 products can be reduced to 4 multiplications by precom-
puting certain values and absorbing them into vector updates rather than explic-
itly multiplying by A. Specifically, by precomputing ¢, = Ag,,, the multiplication

Ynp1 = Aty qq can be written:

Yot = anen“pnAQn

= Op€; — Ppln-

104

Similarly, if we have dyy1 = AYngrs then the product e 4y = Arpgy can also be

evaluated without having to multiply by A:

gy = (Yns1 — Wnir Ayn+l)/ Ty
= (’yn+1 = Wnpt dn+1)/ T

Furthermore, ¢, 1 = Apy41 can also be updated:

Qny1 = Arn-i-l + ﬁn+1(Apn - wﬂ-i—lAQn)

= €up1 T ﬁn+1(qn - wn+lcn)'

Thus, the 1 x 1 step can still be performed with only 2 (pre)multiplications with
A: Ag, and Ay, ,. Moreover, by precomputing v,o = Alpys and g,y = APpios
we can update the remaining values in the 2 % 2 step in a similar fashion.

However, using this precomputing strategy to update
R Y Al — wpn A)I - Wrt2A) 8042

implies that we need A3s, o which we do not have. Thus, the 2 X 2 step requires
an additional matrix-vector multiplication: w9 = A3s, 10 = A(Vnia)-

Hence, as in CSCGS, there are 5 matrix-vector multiplications for a 2 x 2 step,
whereas in two steps of Bi-CGSTAB, only 4 are needed. This is the price we must
pay for composite step. If we do not need to take many 2 x 2 steps In practice,
this price will not be too costly.

In Table 7.2, we present the (S-CCQSTAB algorithm. Note that ifonly 1 x1

steps are taken, we have exactly the Bi-CGSTAB algorithm.

105

Table 7.2: Algorithm CS-CGSTAB

o= fre; po=ro; $o=lroll; eo=qo=4Are; po=1 n—0
While method not converged yet do:
on = (F gn)itn; o = Atn % Evaluate (7.17)

Up4l = OnPn = Palny Ynbl = FnCn — Pnln; dn«i-i = A¥ns
Wpil = (yn,+1, un+1)/(yn+1, yn+1)
Fatl = Untl — Wntilntls Entl = Unil Wni1dnt1; Pngr = [[Fngall
% Decide whether to take a 1 x 1 step or a 2 x 2 step.
If %41 < |on|pn,Then % Condition (5.9a): P4l < lleall
one-step = 1
Else
a1y = "L gn; @12 = Ff Yns1; @z = #Ten; a2 = 74 dat
b == a11822 — G12021; b = Pn/Mn; by = v’*’é’enﬂ

Gy = dggby - a1abe; Gny1 = —ga1hy + a11be % Solve (79)
Sn42 — $uTn = Calln — Cn41¥nt1; tngo = dpen — QnCn — 0fﬂ-l--ldn-{-i
Vg2 = 1804z — Wnritntal] % Evaluate (7.20)

If |8nthn+1 < |0n|Pns2, Then % Condition (5.9b): [|[Patil] < rn+ell
one-siep = 1

Else % True Vp4yo
U2 = Atpys; Wnya = Avpyn; Znq2 = otz — WnttUntz
Wnt2 = (zn+2;un+2)/(zn+21 Zn+2); T = —(wn,+1 + wn+2)} Y9 = WptiWni2

Fogz = Sng2 + Tilng2 + V2Un42; Unp2 T {|#n g2l
Epnto = tnys + TiVns2 + Y2Wanqi2
If |64 |%n+1 < |on|Vny2, Then % Re-test W/vni2
one-step = 1
Else
one-step = 0
End If; Endlf; EndIf
% Compute next iterate.
If one-step, Then 9% *** Usual Bi-CGSTAB ***
T4l = ’Fﬂ+1/5n; Entt = én-{—l/an; hng1 = "Pwﬂ/Un
Ent1 = o+ (PaPn + Wnt1tint1)/0n
pngr = (pnpn)/ (Gnni1); Pt = (78 Tati)ina
Boti = put1/pn
Pntl = Pugl + ﬁn—}-l(pn - wn+1Qn)
(n4l = €n41t ﬁn+1(‘1:‘s ‘“’Wﬂ+lcn)
ne—n+l
Tilse O, %%% 9 % 2 step CSCGSTAB ***
Prps = Fnga/bni enyz = éntafbai Pnaz= Vnt2/0n
Epaz = Tn + (@aPr + Cnpilingl = V18n42 — Yatnt+2)/On
pings = —pn(0ni10n/8n72); Pniz = (75 Tn42)iin+2 % Evaluate (7.16)
by = Tatnpz; b2 =g vnge
By = ((1221}1 — algbz)/lsﬂ; Bry1 = (“"“32161 + anbg)/ﬁn % Solve (710)
Prt2 = Tnt2 — Bn(pn + 1100 + Y2n) — Brt1(Unp1r + T¥nsr + Yadnt1)

Iny2 = Apn+2
ne—n+?2
End If

106

7.2 A Variant of CS-CGSTAB

A problem in the CS-CGSTAB method is that additional breakdowns may
occur if A is skew-symmetric or near breakdowns if it has complex eigenvalues
with large imaginary parts. Suppose we are at step n of the algorithm. In the case
that A is skew-symmetric, it can be easily checked that wyyy = Wye = 0. The 2% 2
step attempts to divide by the quantity 7, = Wni1Wnya which causes a breakdown.
For nearly skew-symmetric A, v, will be small, thus causing near breakdown and
numerical instability.

This can be cured by modifying the local minimization at that particular 2 x 2

step. The idea is to require

(7.21) I nsall = sonéi%’z [lp(A)7a(A)$ns2(A)roll,

where P, is the set of all polynomials of degree at most 2 and ¢(0) = 1.
Performing this minimization over two degrees of freedom was first presented in
the BiCGSTAB?2 algorithm by Gutknecht, [37]. The purpose was to cure problems
that arise in the steepest descent part of Bi-CGSTAB due to eigenvalues of A in
the complex spectrum that are not approximated well with eq. (2.33). Hence,
every other step of the BiICGSTAB2 method performs (7.21) in order to handle
conjugate pairs of eigenvalues. (In the remaining steps of the BiCGSTAB2 algo-

rithm, the usual Bi-CGSTAB update is taken.) The BiCGSTAB2 algorithm can

107

be summarized:
1-D min 2-D min
Tutn — Tn+1¢n+1 — Tn+2¢n+2-

Unfortunately, in the implementation presented in [37], the two-dimensional
minimization steps of BICGSTAB2 are computed based on the Bi-CGSTAB step
immediately before them. For skew-symmetric A, this poses a similar breakdown
problem to the one mentioned above because the Bi-CGSTAB step requires a
division by wyy1, which will be zero in this case.

Note that BICGSTAB2 is mathematically equivalent to the BiCGSTAB() al-
gorithm, due to Sleijpen and Fokkema [53] in the case where [= 2, but the im-
plementation is different. BiCGSTAB(2) does not compute the intermediate Bi-
CGSTAB residual 7,14 = Tpp1 PrsaTo- Instead, it uses an intermediate basis vector,
AT, $pp170, to generate the auxiliary residual #,,.9 = T @pt270- This algorithm can

be summarized:

2-1) min

Amne
ans'n. n_73)+1 Tn¢n+2 — Tn+2¢n+2'

By not involving Tni1, BiCGSTAB(2) will not suffer the breakdown mentioned
above. However, note that it is still prone to breakdown in the BCG ¢, part.
We now show how to overcome this breakdown problem. Recall that CS-
CGSTAB already cures the BCG pivot breakdown in step n + 1, so all we need
to do now is to show how to modify CS-CGSTAB so that it will overcome the
T,.41 breakdowns as well. The idea is to note that CS-CGSTAB has access to the

AT, bnpqTo vector through the relationship &1 = Ondntr. We use it to compute

108

the auxiliary residual s,45 = Tp@npato tO yield :

Amnéns 2-D min
Tn¢n ? Tn¢n+2 ? Tn+2¢n+2'

The quantity s,,, is updated by (7.7) and the 2-dimensional minimization step

can be performed by first writing the residual

M
Ttz = Sni2 T R s

Y2

where R = [As,,, AZs,, J=l e v ,}» and then minimizing ||r.,2|| by solving

the gystem:

.
(7.22) RR|"| = —BTsup

Y2

In the case where A is skew-symmetric, the attempt to divide by vg = Wypp1Wni2
in the 2 x 2 step can now be performed without breakdown. In particular, if A =
— AT then v5 = —(Vnias Snt2)/ (Vns2s VUn4q) # 0 because the numerator vl Snt2 =
sT 4 A%8p40 > 0.

We can now form a variant of the CS-CGSTAB algorithm which follows the
former method in allowing 1 x 1 and 2 x 2 steps and differs only in the 2 X 2
step, performing instead the minimization over the 2 degrees of freedom described
above.

We use the same stepping strategy (see Section 7.1.1), but we adjust the ap-

proximation for ||1,42]| to get a tighter bound. In the norm

HVn+2H = (|6, (I — Wn+1A)(I - wn+2A)3n+2|l

109

we once again set w,,, = 0 to avoid computing A2s,,,, and additionally, we

minimize the resulting
”571.(1 - wn-i-lA)Sn—{-?-“'

This is solved by

Wotl = Pntr = (Tntas Spp2)] (bnszs tat2)s

where t,,9 = A8, is again updated without matrix-vector multiplications (7.18).

We incorporate this into the new variant, CS-CGSTAB2. This is a more stable
implementation which will not breakdown when A is skew-symmetric. Rather, in
this case, provided there are no pivot breakdowns, it will always take 2 x 2 steps
and will be equivalent to the BiCGSTAB(2) method. In general, the composite
step methods differ from the others because they are variable step methods. Note
that in CS-CGSTAB2, the composite step is used to skip over breakdowns in the
Tny1 Polynomial as well as ¢,,.,. However, if there was no ¢,4; breakdown, and we
took a 2 x 2 step in CS-CGSTAB2, then it is still possible that there could be pivot
breakdown due to ¢,.,. In principle, we can solve this by applying the composite
step idea to Bi-CGSTAB2 and taking a 3 X 3 step when we forsee possible pivot
breakdown because ¢,,,5 exists under our assumption of det(H(?) # 0. However,

we will not pursue this in this thesis.

110

7.3 Numerical Experiments

All experiments are run in MATLAB 4.0 on a SUN Sparc station with machine
precision about 10~1¢. In most cases, as expected, composite step methods behave
similarly to their non-composite step counterparts. In terms of the number of
iterations it takes to converge, composite step methods are never worse in almost
all cases, and in terms of the number of matrix-vector products performed, the
extra cost is minimal. Here, we present a few selected examples where composite
step does make a significant improvement.

Example 7.1. We begin the numerical experiments with a contrived example
to illustrate the superior numerical stability of composite step methods over those
without composite step. Let A be a modification of the matrix used in Sections

4.4 and 6.4, taken from [47):

A= ®IN/T«!:
-1 2

ie, Ais a N x N block diagonal with 2 x 2 blocks, and N = 40. By choos-
ingb=(1 0 1 0 ---)F and a zero initial guess, we set oy = ¢, and thus,
we can forsee numerical problems with BCG polynomial based methods such as
Bi-CGSTAB, BiCGSTAB2, and CGS when ¢ is small. Although these methods
converge in 2 steps in exact arithmetic when € # 0, in finite precision, convergence

gets increasingly unstable as € decreases. Table 7.3 shows the relative error in the

solution after 2 steps of BCG, CGS, and Bi-CGSTAB. Note that the loss of signif-

111

icant digits in BCG and Bi-CGSTAB is approximately proportional to O(e™!) and
the loss of digits in CGS is proportional to O{e~2). The accuracy of (CS-CGSTAB,
CS-CGSTAB2, and CSCGS, the composite step CGS algorithm [18] is insensitive

to ¢ and these three methods all converge in two steps with errors < 1018,

Table 7.3: Example 7.1

Rel. error in the soln. after 2 steps (N=40)

€ Bi-CGSTAB | BiCGSTAB2 | BiCGSTAB(2) CGS
10-¢ | 1.5 x10-12 | 8.6 x 10-13 2.5 x 1016 3.6 x 10-8
10-8 4.9 x 10—* 4.7 x 102 1.0 x 10—° 2.2 x 100
10-1z | 3.0 x 10-° 7.3 x 10 2.5 x 10—4 3.0 x 108

CS-CGSTAB, CS-CGSTAB2, and CSCGS all converge with errors < 10-18,

Example 7.2. Next we alter Example 7.1 slightly to show the advantage of
OS-CGESTAB?2 over CS-CGSTAB. Recall, CS-CGSTAB was developed to overcome
breakdowns in cases where A is (nearly) skew-symmetric. Hence, if we change the

last example so that

A= @ Inyas
-1 €

we see that as € gets small, CS-CGSTAB exhibits poor numerical results whereas

CS-CGSTAB2 converges in the first 2 x 2 step as in the Example 7.1. The results

112

are given in Table 7.4.

Table 7.4: Example 7.2

Rel. error in the soln. after 2 steps (N=40)

€ Bi-CGSTAB | BiCGSTAB2 | BICGSTAB(2) CGS CS-CGSTAB
10-¢ || 2.1 x 10-12 | 2.9 x 10— 2.9 x 10713 | 2.5 x10-8 | 2.3 x 10-13
10-8 # 2.0 x 10~ bd 1.0 x 10-8 1.0 x 109 | 7.6 x 1010
1012 | 1.2 x 10-* 2.7 x 101 1.0 x 10-12 1.3 x 108 bd

bd: Encountered breakdown

CS-CGSTAB?2 converged each time with error < 1016,

Example 7.3. To emphasize the point made in Example 7.2, we pick a ran-

dom skew-symmetric matrix with dimension N = 20 and a random right hand

cide. All the methods mentioned above either diverge or break down, except for

CS-CGSTAB2 and BiCGSTAB(2), which achieve residual tolerance 10~ in 24

iterations.

Example 7.4. We now show an example using a matrix which comes from

the Harwell-Boeing set of sparse test matrices [20]. It is a discretization of the

convection-diffusion equation:

L{w) = —Au + 100(wu, + yu,) — 100u

113

on the unit square for a 63 x 63 grid. We use a random right hand side, zero
initial guess, and no preconditioning. Figure 7.1 plots the true residual norm for
Bi-CGSTAB, BiCGSTAB(2), CS-CGSTAB, and CS-CGSTAB2 versus the number
of iterations taken, and Figure 7.2 shows the number of matrix-vector products.
We have chosen a right hand side which yields some numerical instability for Bi-
CGSTAB due to a near pivot breakdown around step 135 which results in conver-
gence stagnation. Taking composite steps in this case overcomes this problem. We
also see the advantage of the 2-dimensional minimization steps in the convergence

behavior of BiICGSTAB(2) and CS-CGSTAB2.

BICGSTAB -

log(residual normy)

10° b CS-CGSTAB2 , .

: k]
 BICGSTAB(2) ‘\ﬂ
10° | : -
10'10] 1 1 3 1 1 1
0 50 100 150 200 250 300 350 400

jteration number

Figure 7.1: CS-CGSTAB - 2D conv-diff (Example 7.4a)

114

The stepping strategy that we have described and implemented is conservative
in that a 2x 2 step is chosen whenever thereis a peak in the residual convergence. If
the result of the composite step is only a slight improvement, the extra cost it takes
to perform a 2 x 2 step would be wasted. However, in practice, this increase in cost
is relatively small. For example, in this particular problem, 96 of the steps taken
in CS-CCGSTARB are 2 x 2 steps and 47 2 x 2 steps are taken in CS-CGSTAB2. We
see that the composite step methods require only about 13% more matrix-vector

products in this example.

—-
o-

log(residual norm)

BICGSTAB(2)
' CS-CGSTAB2 e

1 1 i 1] 1 1 1
0 100 200 300 400 500 600 700 800 9800
mattix-vector multiples

Figure 7.2: CS-CGSTAB - 2D conv-diff (Example 7.4b)

115

CHAPTER 8

Best Approximation Results for Product Methods

Until recently, there has been very little theory known on the convergence of the
Biconjugate gradient algorithm or other related methods. When Bank and Chan
introduced CSBCG in [6], they also included a proof of a “best approximation”
result for BOG. It is based on an analysis by Aziz and Babuska [4] and is similar to
the analysis of the Petrov-Galerkin methods in finite element theory. Specifically, it
we let M, be any symmetric positive definite matrix and define the norm ||[v|||2 =
vtM,v, then Bank and Chan showed that the BCG error term P00 = g —¢f°C¢ =

dr(A)eg can be bounded as follows:

1) WOl < 4T/6), nt 6088 AMTD Ll

where I’ and § are constants independent of k determined from inequalities involv-
ing v € V; and w € Wy, where V;, and W), are the Krylov subspaces generated by

the Lanczos method at the k-th step (see Section 2.2):
[wT Av| < T[[o|ik]t]l
inf sup wlAv > 6, >0

ol =1 (el 1

Moreover, if we define the Lanczos tridiagonal matrix Ty, = WIAV® and its LU-

factorization T}, = LpD,Uy, and form M; = WU (DI D)Y2ULWT, it can be

116

shown [6] that ' = é = 1.

This result establishes convergence of BCG in the case where there are no
breakdowns because then M, is well-defined and symmetric positive definite. If
this were not the case, the tridiagonal matrix T) would be singular and such an
M, would not be positive definite. However, this result can be extended to cover
situations with breakdown. For example, assuming no Lanczos breakdowns, the
composite step approach does yield an M, matrix based on a factorization of T}
which may involve 2 x 2 blocks, and hence, the above result applies to the error g
corresponding to the well-defined iterates z; [5]. In principle, if we add to this a
look-ahead method to handle the Lanczos breakdowns, we can prove convergence
of BCG for cases where both breakdowns occur.

Note that in general, simple upper bounds for the term

i 1
: 2 -3
(8.2) ¢k:£i1(f0)=1 llgx(M¢ AM, *)2

are known only for special cases. For example, if we assume that the eigenvalues
of A are contained in an ellipse in the complex plane which does not contain the
origin, then, due to a result by Manteutfel [46], the quantity (8.2) can be bounded

by a value dependent on the foci of the ellipse.

117

8.1 A Convergence Proof for CGS

The product methods discussed earlier (CGS and Bi-CGSTAB) both involve
the BCG polynomial. Hence, we can use the result in (8.1) to establish bounds on

these methods as well. We first prove a lemma which will be used in the derivation

of both bounds for CGS and Bi-CGSTAB.

Lemma 1 For any matriz A € RN*N and vector v € RN,
1 _1
|Av[[}, < M7 AMTE ||2f[[v]]

Proof. By definition, |||}, = |47 wl,

and thus,

lAv|[l, = M3 Avl, = [[M? AM™F M% o],

< MY AM7E (M3 ol = |MZ AMF 5|0l O

We now use this to estimate a bound on the CGS method and show the squaring

effect on the convergence rate.

Theorem 1 Let €055 = ¢?(A)eg. Then

2
1 _1
Megastl <o, int, I6sCaaF ABE) el

Proof. Applying Lemma 1 to ||[e§%5|l]., we get

118

11629l = [1162(A)eolll
< lgu(ME AMTE Y|l ge(Adeol 1

= [lo(MZ AMT)|llIeBCY]],

A

o (ngf l6s (M7 AME m?) leolll. T

{0)=1

8.2 A Convergence Proof for Bi-CGSTAB

Next we éhow convergence of the Bi-CGSTAB method and how the convergence

rate of BCQ is decreased further by the effect of the steepest descent.

Theorem 2 Let eBiCGSTAB = 1.(A)¢y(A)eo. Also, Let A= M3 AM,;% , and
define S to be the symmetric part of A (ie, §=1 (A + AT)). Then if S is

positive definite,

i Minl$? VP [i
IHfif CESTAB|[], < ¢, (1 - m) (¢k:4}&£)zlil¢k(14)\|2) Hleolll.

Proof. First note that we can bound

k
: ' A1rnrz'1’t(‘s’)2 E
s < (-5

by applying the proof in Theorem 3.3 of (Eisenstat, Elman, and Schultz, {21]) to

the matriz A. Combining this fact with Lemma 1, we can establish the following

119

bound.

llegioasTaml, = mip llln(A)é(Aeolll
< mip (I(vtf AMCE)alllée(A)lll)

THE

k
Min(S)2)2
< 1— mm~ _ BOG .
B (A'm.a.a:('AT‘A)) ”lek IH

¢ a(i-22) (| mt IkCA) el 0

Recently, Barth and Manteuffel [8] have shown that the constant (1+T/6)in

< (mig (Al Uigw(Aelll

(8.1) can be improved to 1. In other words, eBCG is minimized over K, in the
Il - ||ls norm. Correspondingly, the constants ¢; and ¢; in Theorems 1 and 2 can

be improved to 1.

120

Conclusions

Tn this dissertation, we have considered several aspects of solving nonsymmetric
linear systems using Krylov subspace iterative methods. We have developed new
algorithms, observed their practical convergence behavior, and proved theorems of
convergence.

The new algorithms we have introduced can all be classified as product meth-
ods. Furthermore, they all share the good properties of being transpose-free and
using short recurrences to minimize work and storage. These new methods at-
tempt to stabilize and improve on existing methods by curing problems which
are inherited from the individual polynomials which form the residual polynomial
product.

We have shown 2 ways of applying the QMR technique to smooth the erratic
convergence behavior due to the BCG polynomial. We first squared the QMR
polynomial to get the QMRS algorithm. This is a transpose-free method that
advances 2 degrees of the Krylov subspace at each iteration with 3 matrix-vector
multiplications, an improvement over the 4 multiplications required in QMR and
BCG. Practically, QMRS is shown to be more stable than CGS and typically con-

verges at about the same rate as TFQMR. Note, however, that CGS and TFQMR

121

only require 2 matrix-vector products to gain 2 degrees in the Krylov subspace.
Hence, QMRS lies between BCG/QMR and CGS in terms of efficiency.

We have also derived two QMR. variants of Bi-CGSTAB. Our motivation for
these methods was to inherit any potential improvements on performance that
Bi-CGSTAB offers over CGS, while at the same time, to provide smoother con-
vergence behavior. We have shown numerically that this is indeed true for many
realistic problems. Although, in their present form, the two proposed methods still
suffer from some numerical problems, they have make efficient use of matrix-vector
multiplications and they demonstrate smooth convergence behavior.

In addition to QMR, we have dicussed other smoothing techniques. It was
shown how the MRS algorithm could be applied to the CSCGS algorithm and
numerical examples illustrate this smoothing effect.

We have also presented methods which handle breakdown problems inherited
from BCG. The composite step technique was originally introduced to cure the
pivot breakdown in BCG assuming there is no Lanczos breakdown. Our new
methods improve on the product methods CGS and Bi-CGSTAB by using the
composite step technique to increase numerical stability. These new methods re-
quire only minor modifications to the existing algorithms, overcome near and exact
pivot breakdowns, and smooth the residual without requiring any user specified
tolerance parameters,

Moreover, a variant of the composite step Bi-CGSTAB algorithm was intro-

duced which simultaneously cures additional breakdown in the underlying Bi-

122

CGSTAB process due to skew-symmetric A. Numerical experiments support the
improved convergence behavior of the composite step methods over their non-
composite step counterparts.

Finally, we have proven convergence rate estimates for the product methods
CCS and Bi-CGSTAB. We have also shown how these proofs also hold for the

composite step versions.

123

1]

Bibliography

W. ARNOLDI, The principle of minimized iterations in the solution of the

matriz eigenvalue problem, Quart. Appl. Math., 9(1851), pp. 17-29.

9. AsEBY, T. MANTEUFFEL, AND P. SAYLOR, A tazonomy for conjugate

gradient methods, SIAM J. Numer. Anal., 27(1990), pp. 1542-1568.

O. AXELSSON, A survey of preconditioned iterative methods for linear sys-

tems of algebraic equations, BIT 25(1985), pp. 166-187.

BABUSKA AND AzIZ, Part I, survey lectures on the mathematical founda-
tions of the finite element method, in The Mathematical Foundations of the
Finite Flement Method with Applications to Partial Differential Equations,

Academic Press, New York, 1972.

R. E. BaNK aND T. F. CHAN, An analysis of the composite step bi-

conjugate gradient algorithm for solving nonsymmetric systems, Numer.

Math., 66(1993), pp. 295-319.

R. E. BANK AND T. F. CHAN, A composite step bi-conjugate gradient al-

gorithm for solving nonsymmetric systems, UCLA CAM Tech. Report 93-21

(1993). To appear in Numerical Algorithms.

124

[7]

[10]

[11]

[12]

[13]

R. BARRETT, ET AL., Templates for the solution of linear systems: building

blocks for iterative methods, SIAM Publications, Philadelphia, 1994.

T. BARTH AND T. MANTEUFFEL, Variable metric conjugate gradient meth-
ods, Paper presented at the Colorado Conference on Iterative Methods,

Breckenridge, CO, 1994,

C. BREZINSKI AND H. SADOK, Awoiding breakdown in the CGS algorithm,

Numer. Alg, 1(1991), pp. 199-206.

(. BREZINSKI AND H. SADOK, Lanczos-type algorithms for solving systems

of linear equations, Applied Numerical Mathematics, 11(1993), pp. 443-473.

C. BREZINSKI AND M. REDIVO-ZAGLIA, Breakdowns in the computation of
orthogonal polynomials, Nonlinear Numerical Methods and Rational Approx-

imation, A. Cuyt ed., Kluwer, Dordrecht. To appear.

C. BREZINSKI AND M. REDIVO-ZAGLIA, Hybrid procedures for solving linear

systems, To appear in Numer. Math. (1993).

C. BREZINSKI AND M. REDIVO-ZAGLIA, Treatment of near-breakdown in

the CGS algorithm, To appear in Numer. Alg.

C. BREZINSKI AND M. REDIVO-ZAGLIA AND H. SADOK, A breakdown-free

Lanczos type algorithm for solving linear systems, Numer. Math. 63(1992),

pp- 29-38.

125

[15]

[18]

[19]

[20]

[21]

C. BREZINSKI AND M. REDIVO-ZAGLIA AND H. SADOK, Avoiding break-

down and near-breakdown in Lanczos type algorithms, Numer. Alg. 1(1991),

pp. 261-284.

T.F. Cuan, L. DE PinLis, AND H.A. VAN DER VORST, A transpose-free

squared Lanczos algorithm and application to solving nonsymmetric linear
systems, Technical Report CAM 91-17, Department of Mathematics, Uni-

versity of California, Los Angeles, CA, 1991.

T. F. Cuan, E. GarrorouLos, V. SiMonociNi, T. Szero, C. Towng,
QMRCGSTAB: A quasi-minimal residual variant of the Bi-CGSTAB algo-
rithm for nonsymmelric systems, SIAM J. Sci. Stat. Comput. 15(1993), pp.

338-347.

T. F. CHAN AND T. SZETO, A composite step conjugate gradients squared
algorithm for solving nonsymmetric linear systems, UCLA CAM Tech. Re-

port 93-27 (1993). To appear in Numerical Alg.

A. DRAUX, Polynémes orthognauz formels, Lect. Notes in Math., v. 974,

Springer Verlag, Berlin, 1983.

I. 8. DurF, R. G. GRIMES, AND J. G. LEWIS, Sparse matriz test problems,

ACM Trans. Math. Softw., 15(1989), pp. 1-14.

S. C. F1SENSTAT, H. C. ELMAN, AND M. H. Scuurrz, Variational iterative

methods for nonsymmetric systems of linear equations, STAM J. of Numer.

126

22]

[23]

[24]

[26]

[28]

Anal., 20(1983), pp. 345-357.

H. C. ELMAN, [terative methods for large sparse symmetric systems of linear

equations, Ph.D. Thesis, Yale Univ., New Haven, CT, 1932.

V. FABER AND T. MANTEUFFEL, Necessary and sufficient conditions for the
existence of a conjugate gradient method, SIAM J. Numer. Anal,, 21(1984),

pp. 352-362.

R. FLETCHER, Conjugate gradient methods for indefinite systems, in Numer-
ical Analysis Dundee 1975, G.A. Watson, ed., Lecture Notes in Mathematics

506, Springer, Berlin, 1976, pp. 73-89.

R. W. FREUND, Quasi-kernal polynomials amd convergence resulls for quasi-
minimal residual iterations, Numerical Methods in Approximation Theory,
Vol. 9, D. Braess and L. L. Schumaker, eds., Birkhéuser Verlag, Basel, 1992,

pp. 77-95.

R. W. FREUND, A transpose-free quasi-minimal residual algorithm for non-

Hermitian linear systems, SIAM J. Sci. Stat. Comput., 14(1993), pp. 470-482.

R. W. FREUND AND M.H. GUTKNECHT AND N. M. NACHTIGAL, An imple-

mentation of the look-ahead Lanczos algorithm for non-Hermitian matrices,

SIAM J. Sci. Comp., 13 (1992), pp. 137-158.

R. W. FREUND AND N. M. NACHTIGAL, An implementation of the QMR

method based on coupled two-term recurrences, RIACS Tech. Report 92.15,

127

[29]

[30]

(31]

[32]

June 1992. SIAM J. Sci. Stat. Comput.

R. W. FREUND AND N. M. NACHTIGAL, QMR: a quasi-minimal residual

method for non-Hermitian linear systems, Numerische Mathematik 60(1991),

pp. 315-339.

R. W. FREUND AND N. M. NACHTIGAL, A Look ahead TFQMER Method,
Presented at the Cornelius Lanczos International Centenary Conference,

Raleigh, NC, December 1993.

R. W. FREUND AND T. SzETO, A Quasi-minimal residual squared algorithm
for non-Hermitian linear systems, UCLA CAM Tech. Report 92-19 (1992).
Presented at the Copper Mountain Conference on lterative Methods, April

1992.

R.W. FREUND AND H. ZHA, Simplifications of the nonsymmetric Lanczos

process and a new algorithm for solving indefinite symmetric linear systems,
Technical Report, RIACS, NASA Ames Research Center, Moffett Field, CA,

1992.

J. R. GiLBERT, C. MOLER, AND R. SCHREIBER, Sparse matrices in MAT-
LAB: Design and implementation, SIAM J. Matrix Anal. Appl., 13 (Jan.

1992), pp. 333-356.

A. GREENBAUM, Accuracy of computed solutions from conjugate-gradient-

like methods, Proceedings for the International Symposium PCG’94 on Ma-

128

[35]

[36]

[37]

[38]

[40]

[41]

trix Analysis and Parallel Computing, Yokohama, Japan, March 1994.

M. H. GUTKNECHT, A completed theory of the unsymmetric Lanczos process
and related algorithms, Part I, SIAM J. Matrix Anal. Appl. 13(1992), pp.

594-639.

M. H. GUTKNECHT, The unsymmetric Lanczos algorithms and their rela-
tions to Pade approwimation, continued fraction and the QD algorithm, in

Proc. of the Copper Mt. Conf. on Iterative Methods, 1990.

M. H. GUTKNECHT, Variants of BiCGStab for matrices with complex spec-

trum, tech. rep., Eidgendssische Technische Hochschule, Zirich, Aug. 1991.

IPS Research Report 91-14.

L. HAGEMAN AND D. YOUNG, Applied Iterative Methods, Academic Press,

New York, 1981.

M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solv-

ing linear systems, J. Res. Nat. Bur. Stand., 49(1952), pp. 409-436.

K. C. JEA AND D. M. YOUNG, Generalized conjugate gradient acceleration
of nonsymmetrizable iteralive methods, Linear Algebra Appl, 34(1980), pp.

159-194.

W. JOUBERT, Generalized conjugate gradient and Lanczos methods for the
solution of nonsymmetric systems of linear equations, Ph.D. Thesis, The

University of Texas at Austin, Austin, TX (1990).

129

[42]

[43]

[44]

[45]

[46]

[47]

[48]

W. D. JOUBERT AND T. A. MANTEUFFEL, [terative methods for nonsym-

metric linear systems, in Iterative Methods for Large Linear Systems, D. R.

Kincaid and L. J. Hayes, eds., Academic Press, Boston, 1990, pp. 149-171.

C. LANCZOS, An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators, J. Res. Natl, Bur. Stand., 45

(1950), pp. 255-282.

C. LANCZOS, Solution of linear equations by minimized iterations, J. Res.

Natl. Bur. Stand. 49 (1952), pp. 33-53.

D. G. LUENBERGER, Hyperbolic Pairs in the Method of Conjugate Gradients,

STAM J. Appl. Math. 17(1969), pp.1263-1267.

T. MANTEUFPEL, An iterative method for solving nonsymmetric linear sys-

tems with dynamic estimation of parameters, Ph.D. Thesis, University of

Illinois, Urbana, 1975.

N. M. NACHTIGAL, S. C. REDDY, AND L. N. TREFETHEN, How fast are
nonsymmetric matrie iterations?, SIAM J. Matrix Anal. Appl., 13(1992), pp.

778-795.

B. N. PArLETT, D. R. TAYLOR, AND Z. A, Liu, A look-ahead Lanczos

algorithm for unsymmetric matrices, Math. Comp., 44(1985), pp.105-124.

Y. SaAD, A flexible inner-outer preconditioned GMRES algorithm, STAM J.

Sci. Comput., 14(1993), pp. 461-469.

130

[50]

[53]

[54]

[55]

Y. SAAD, ILUT: a dual threshhold incomplete LU factorization, Research
Report UMSI 92/38, University of Minnesota Supercomputer Institute, Min-

neapolis, MN, March 1992.

Y. SAAD, The Lanczos biorthogonalization algorithm and other oblique pro-
jection methods for solving large unsymmetric systems, SIAM J. of Numer.

Anal., 19(1982), pp. 485-506.

W. SCHONAUER, Scientific computing on vector computers, North-Holland,

Amsterdam, New York, Oxford, Tokyo (1987).

G. SLEUPEN AND D. FokkEMA, BICGSTAB(L) for linear equations in-
volving unsymmetric matrices with complex spectrum, ETNA, 1(1993), pp.

11-32.

P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear

systems, STAM J. Sci. Stat. Comput., 10{Jan 1989}, pp. 36-52.

H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging vari-
ant of bi-CG for the solution of nonsymmetric linear systems, STAM J. Sci.

Stat. Comput., 13(March 1992), pp. 631-644.

H. A. VAN DER VORST, The convergence behaviour of preconditioned CG
and CG-S in the presence of rounding errors, in Preconditioned Conjugate
Gradient Methods, O. Axelsson and L. Yu. Kolotilina (eds.), Lecture Notes

in Mathematics 1457, Springer Verlag, Berlin, 1990.

131

[57] R. VARGA, Matriz iterative analysis, Prentice-Hall Inc., Englewood Cliffs,

NJ, 1962.

[58] C. VUIK, A comparison of some GMRES-like methods, Tech. rept., Delft

University of Technology, Delft.

[59] H. F. WALKER, Implementation og the GMRES method using Householder

transformations, SIAM J. Sci. Stat. Comput., 9(1988), pp. 152-163.

[60] R. WEIss, Convergence behavior of generalized conjugate gradient methods,

Ph. D. thesis, University of Karlsruhe (1990).

[61] D. YoUNG, terative solution of large linear systems, Academic Press, New

York, 1971.

[62] L. ZHou AND H. F. WALKER, Residual smoothing techniques for iterative
methods, Tech. rep., Dept. of Mathematics and Statistics, Utah State Uni-

versity (1992).

132

