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Abstract

In this paper we describe techniques to represent data which originate from discretization
of functions in unstructured meshes in terms of their local scale components. To do so
we consider a nested sequence of discretization which corresponds to increasing level of
resolution, and define the scales as the “difference in information” between any two successive
levels. We obtain data compression by eliminating scale-coefficients which are sufficiently
small. This capability for data compression can be used to reduce the cost of numerical
schemes by solving for the more compact representation of the numerical solution in terms

of its significant scale-coefficients.



1 Introduction

Fourier analysis, which provides a way to represent square-integrable functions in terms
of their sinusoidal scale-components, has contributed greatly to all fields of science. The
main drawback of Fourier analysis is in its globality - a single irregularity in the function
dominates the behavior of the scale-coefficients and prevents us from getting immediate
information about the behavior of the function elsewhere.

The recent development of the theory of wavelets (see [21] and [20]) was a great step
towards local scale decomposition, and has already had great impact on several fields of
science. In numerical analysis representation by compactly supported wavelets (see [8] and
[7]) is used to reduce the cost of many numerical solution algorithms (see [4] ). The main
drawback of the theory of wavelets is that it decomposes any square integrable function into
scale-components which are translates and dilates of a single function. Consequently there
are conceptual difficulties in extending wavelets to bounded domains and general geometries.

In {10, 11] we introduced the concept of “nested discretization” which enables us to
represent data that originates from unstructured grids in bounded domains in terms of its
scale decomposition. This framework is a generalization of the theory of wavelets in the
sense that under conditions of uniformity its natural result is wavelets.

The main application of this new capability is to the numerical solution of partial dif-
ferential equations in complex geometries, e.g. the solution of the equations of compressible
gas around an aeroplane. As we have demonstrated in a series of articles on multiresolution
schemes for the solution of hyperbolic conservation laws in Cartesian grids (see [13, 14] and
[5, 6]), there is a lot to be gained by formulating the time-evolution of the problem in terms
of the more compact representation of the solution by its significant scale-coefficients. This
technique is an attractive alternative to the methodology of adaptive grids and it enables us
to dynamically adjust the local level of resolution to the variation of the solution.

Unstructured meshes have been used primarily for two purposes: (1) To have a faithful
description of the boundary in order to accurately impose the boundary conditions which
determine the solution. (2) To serve as an implementation of adaptive grid ideas. Unfor-
tunately the computation of numerical solutions on unstructured grids is considerably more
expensive than that on Cartesian grids. Since we can accomplish the adaptivity part by using
multiresolution schemes on uniform grids, what remains is the use of unstructured meshes to
describe the geometry of the boundary. In the future we plan to use a relatively thin layer of

unstuctured mesh around the aeroplane, and to switch to a more regular grid further away.
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In a forthcoming paper [3] we shall present preliminary results on multiresolution schemes
for hyperbolic conservation laws on unstructured grids.

In the present paper we describe multiresolution representation (MR} schemes for data
which is obtained by discretization of functions in unstructured meshes, by either taking
point values at the “nodes” or by taking averages over the “cells” of the mesh. We pay
special attention to the description of the boundary of the domain in the process of coars-

ening/refinement which is associated with generating the various levels of resolution.



9  General framework for multiresolution representation

In this section we describe the abstract general framework for multiresolution representation
of data. We consider discrete data which is associated with a nested sequence of discretization
{D,}L_, and show how to design schemes for its multiresolution representation. Later we
shall apply this general framework to data which corresponds to discretization of functions

in unstructured grids.

Definition. We say that a sequence of linear operators {D .}, is a nested sequence of

discretization if

(i)
D F SOV dimVE =, (2.1a)

(if)
Df =0=D, 1 f=0 (2.1b)

Here F is a space of mappings and V¥ is a linear space of dimension Ji.

In the following we show how to obtain multiresolution representation of any discrete
data vl = D f, where the scale-decomposition corresponds to the levels of resolution which
are introduced in (2.1). This is a very general framework which allows for discretizations
corresponding to unstructured grids in several space dimensions.

First we show that a nested sequence of discretization comes equipped with a decimation

operator D¥~! which is a linear mapping from V¥ = D (F ) onto Vk=1 =D, _,(F)

Di=1p yk 20 ke, (2.20)

This decimation operator is defined as follows: For any v in V¥ there is at least one f € F
such that D, f = v; the decimation of v is Dy f € VA1, e,

v e Vka v ="Df, Dﬁ_iv = Dk—1f- (2.25)

It follows from (2.1b) that DE! is well-defined by (2.2b), i.e. its definition is independent
of the particular f. To see that let us take f; and f; in F such that

Dify =v="Dyfa,
then by (2.1b)
0=Difi —Dpfo= Dk(f1 — fa) = 0= Dipalfi— f2) =Drafi - Dy_1fy
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which proves our claim.

i

Given vL € VE we can evaluate {v¥}2-] by repeated decimation
k=0 !

vt = DiloF, k=1L,..., L {2.3)
Since (2.2b) implies that
DEHYDyf) = Dyyf forany feF (2.4)

we get, for any f € F for which vl = Dy f, that v¥ = D f for all k in (2.3). We would like
to stress the point that this decimation is done without explicit knowledge of f.
Since by (2.1a) V¥ = Dy(F), it follows that Dy has a right-inverse (at least one) which

we denote by Ry:
Rk : Vk — f, DRRA = Ik) (25)

where I, denotes the identity operator in V*. Since (Ryv*) € F is an approximation to any
f € F for which D,.f = v*, we refer to R, as a reconstruction of Dy.

Next we show that any sequence of corresponding reconstruction operators {R;}1_, de-
fines a MR scheme for discrete data v¥ in VL. Starting from v*~1 in (2.3) we can get an

approximation to v* by
'Uk ~ Dk(Rk_}'Uk'_l). (2.60',)

We denote
Pt =t DyRyy, PR VET S VE (2.6b)

and refer to it as prediction operator. It follows immediately from taking f = Ry vk-1in
(2.4) and using (2.5) that P} is a right-inverse of the decimation Dyt

DEYPE = Ly (2.6¢)
We observe that the prediction error e*
ek = vk — 1'::&"'_11)’“‘1 = (I — P,f_lD’,:”l)vk (2.7a)

satisfies the relation
DE-lek = Di-1yk — (Di—lpﬁ_l)vk—l — b=l k=1 =g
and therefore it is in the null space of the decimation operator

ef e N(DF 1) = {v| veV* Di~'v=0}L (2.7b)



It follows from (2.2a) that

dimN(DE') = J, — iy (2.8a)
“and therefore the prediction error e*, which is described in terms of J; components in V&, can
be represented by (J,—Ji_; ) scale-coeflicients d = { df}j;‘]"‘l . Specifically, let { ,u;? }j;;""“’
be any basis of N(DF™1),
N(D’}:'—l) = span{u;?};-]i?n‘_l , | (2.80)
and let dF denote the coordinates of e in this basis

Jr=Jk-1

b= > d;?,uf =: B, d*, dF =: Gé*. (2.9a)
J=1

Here G, denotes the operator which assigns to ¥ € N (DF1) its coordinates df in the basis

{u }jf_,.;J'““i; observe that E,G, is the identity operator in N(D;™), i.e.

E.Ge* = eF for any e¥ € N(DF1). (2.95)

Next we show that there is a one-to-one correspondence between v* and {d¥,vk=1}: Given

pk we evaluate \
vl = Di7lok

& = Gy(I,— Pk Di Pk
given v#-1 and d¥ we recover v* by
Pk vkl 4 Bdt = P DTk BGy(I, — PE DT vk
= P;f_lDﬁ_}‘Uk +- (I;ﬁ - Pf_lDi_l)Uk
=k,
Applying the above for k = L,...,1 we get that

ol EL {dl, L v =t D (2.10)

we refer to 9,7 as the multiresolution representation (MR) of v

The direct MR transform 9, = M - vl is given by the algorithm

DOk=L,...,1
ph=1 == Dy 1ok (2.11)
dk = Gy (I, ~ Pk D" Yok =2 GPvk
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The inverse MR transform vl = M1 . 8§, is given by

J DOk=1,...,L
(2.12)
l vk = Pk vh=1 4+ Epdb.

We remark that in multigrid terminology DF™! is “restriction” and Pf_, is “prolongation.”
In signal processing D=1 plays the role of “low-pass filter” while GP, which is defined in
(2.11), plays the role of “high-pass filter.”

In order to apply this multiresolution representation to real-life problems for purposes
of analysis and data compression, we have to make sure that the direct MR transform and
its inverse are stable with respect to perturbations. In {11} we present stability analysis for
MR schemes and derive a sufficient condition which seems to be “close” to necessary; this
condition also implies existence of a multiresolution basis for functions in F. In appendix A
we review some elements of this analysis and relate them to the particular examples of the
present paper.

In the following we describe techniques to generate a nested sequence of discretization
which corresponds to unstructured meshes in R™, and present specific algorithms for R
The main application of this methodology is to the numerical solution of PDEs in complex
geometries. Our basic approach to this application is that “the user” should provide a
mesh and an appropriate numerical method, and we assume that he is satisfied with the
quality of these numerical results; furthermore, we assume that the solution is overresolved
in large parts of the computational domain (this may be due to propagation in time of
existing regions of large variation, or due to the natural laziness of a “user”...). Our task
is to provide a MR scheme which will enable us to calculate these same results, within a
user-supplied tolerance for error but in a much faster way, by performing the computation in
the suitable local level of resolution. To do so we apply a coarsening procedure to the given
mesh to generate a nested sequence of discretization, and find an appropriate sequence of
reconstruction operators. Once this is accomplished we use the machinery of this section to
obtain multiresolution representation of data in the user-supplied mesh. We remark that the
preliminary results of applying this program to hyperbolic conservation laws are encouraging
(see [13, 14], [5, 6],[3]).

A more ambitious program is to endow the MR scheme with the capability to increse the
level of resolution above that of the user-supplied mesh if the analysis of the scale coefficients
indicate the need to do so due to development of large variation on a smaller scale (of course
the user has to supply a limit on the smallest scale that he is willing to pay for). At
present we are not doing that, and therefore the main interest in this paper is in developing

coarsening procedures that result in a sequence of nested discretization; however we shall
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‘also consider the question of refinement. We would like to point out again that the main use
of unstructured grids is for the geometry of the problem, and thus in both coarsening and
refinement one has to pay special attention to the boundaries, and make sure that they are
appropriately resolved.

In this preliminary report we present some numerical experiments of data compression
in unstructured meshes, and compare them to similar experiments with MR schemes for
uniform tensor-product grids (which are known to be stable). These experiments indicate
that, inspite of the strong nonuniformity in our unstructured meshes, the compression ratio

and the compression error are of the same order as those of the uniform tensor-product grids.



-3 . MR schemes for pointvalue discretization
Consider bounded functions f € F
f:QCcR" — R, F = B(Q), (3.1)
where €0 is a bounded domain, take any sequence
Xk = {wf}fﬁo, k€ Q, (3.2a)
and define v* = D, f by
’Uf = (Dpf)i= f(-’ﬂf)a vk = {Uf-“}ijio- (3.2b)

We refer to (3.2) as discretization by pointvalue. Note that here the index starts from 72 = 0
and thus there are J,, + 1 elements in X*.

The sequence of discretization {Dy} in (3.2) is nested if, and only if, for all &

Xkt ¢ X*, (3.3)

decimation in this case amounts to removing from vk components vk = f(a¥) for 2§ ¢ X*-1.
Note that the decimation operator DY is defined directly from the sequence {D,}.

Let Z,(z; v*) denote any interpolation of {vf} at the corresponding nodes {z¥}, i.e.
Ti(akvb) = vk forall zFe X%, (3.4a)
and observe that
DL (- vF) = vk (3.4b)

The above relation shows that reconstruction in this case amounts to a selection of an
interpolation technique in (3.4a). Given v*~! we approximate vk by (2.6a), and get the

prediction error e (2.7a)
ek = vf —Tp_;(af;ob"1)  for all zk € X*; (3.5)

using multigrid terminology this prediction can be expressed by saying that we use injection
of the values corresponding to z¥ which are in X*k=1_ and interpolation for those which are
not in X*-1. Observe that the prediction error ef = 0 for all ¢ such that z¥ € X*-1. We

define the scale-coefficients d* = {d%} as the prediction error in X* — X*-1 ie,

dh = efj for all mfj ¢ XH 1 (3.6a)



where 3, for j = 1,...,(J — Jp-y) is some ordering of the points in X+ — X*-1

CAINED (P G (3.6)

Example 3.1. Nonuniform partition of [0,1]

Let us consider continuous functions f in the interval [0,1]}
feF=000,1],
and let XL be an arbitrary partition of [0, 1]

XU = {«F o zl =0, 3 =1, J,=2VJ, (3.7a)

Where the sequence above is strictly increasing and Jy is some infeger. We define the grids

{:r.:’“}*_.a, k=1L —-1,...,1 by the coarsening

.'Ek 1333;" iZO,...,Jk__l —_ Jk/Z, (3.7b)

24?

in which we delete from X* all the points with odd indices (The only reason that we remove
every other point is to simplify the notations). Let us consider now the discrete values in

(3.2b); clearly v*~1 is obtained from v* by the decimation

o1 = (DY), = o,

i=0,...,ka1. (376)

In this case the direct multiresolution representation (MR) transform v% = 9y in (2.11)

can be expressed by

DOk=L,...,1
vi =k, =0, Jh (3.8)

dk"_’vk ~ Iy 1(

2j-1 k), i =100, e

23 1?

Similarly the inverse MR transform $p — v% can be expressed by

DO k=1,...,L
vgt.:vf_l, t=0,...,Jdp1 (3.9)
23 1 _,,.Ikml(ng 11Uk 1)+dk .7': 1}"'7ka1) :

We refer to d* as the scale-coefficients of the k-th level of resolution. For the piecewise-
linear interpolation

T — zk
Ik((ll;'l)k) = ’Uf_l + ﬁ(vf - 'U:.'c ), for .'2’):.;“_1 <z< :I:f (310)
i1
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we get for any f for which v = D; f that

di(f) = ~(h;_)(h;) - flab;_yr 25, 1 Zaibs (3.11a)

where f[z;,z,, 3] is the second divided difference of fand B} =: af —zk . Henceif f (z) is

twice differentiable in {22 1,257 then

d(f) = ——(hQJ7 D(RE)S(E)  for some £ € (k= 1,k (3.11b)

If, on the other hand, f is discontinuous at a point, then the scale-coeflicients df( f) at this
location are proportional to the size of the jump and remain large independent of refinement.
We can obtain data compression by setting to zero all scale coefficients which fall below

a prescribed tolerance. Let us denote

(3.12a)

a2
ol T
I

dk i |d] > &,

and
gb= M-t {dP,...,d",v°}. (3.120)

Since the piecewise-linear interpolation is hierarchic (see appendix A) we get the following

bound on the compression error:

L
oJa% vl — kz:: (3.13a)
Given any € > (0 we can take
&g = Qk—L-1g (313b)
and thus ensure by (3.13a} that
max |vF — o7 <. (3.13¢)
o<i<dL

We remark that spline interpolation and spectral collocation are generally hierarchic and
therefore the corresponding MR schemes are automatically stable (see {12]). However for
the application that we have in mind, and for many others, we need a local interpolation
method . For this purpose we use the following piecewise-polynomial interpolation: Let SF
denote a stencil of r consecutive points of X# which includes z¥ and z¥ , and let pE(z; vF)
denote the unique polynomial of degree (r — 1) which interpolates v¥ at the points of this

stencil . We define the piecewise-polynomial interpolation Z#(a; vk} by

Tk(z;0*) = pf:."(:z:;'vk) for ot <=z < zk . (3.14)



Up to now we have not specified the stencil SF of r consecutive points of X* that we assign
to [mf,wf+1]. Clearly if we choose SF independently of the data v¥ then the most accurate
choice is that of a centered stencil (away from the boundaries), i.e. for r = 2s we take

Sk={ab ,...,2k ) for s—1<:1<Jp—s, (3.15a)

and near the boundaries

Sk={ak,...,zk} for 0<i<s—1
(3.150)
S{“z{w’jk_r_l_},...,:c’}k} for J,—s<i<Jp.

In [9] we presented a data-dependent piecewise-polynomial interpolation technique which
avoids the Gibbs-phenomenon by an adaptive selection of stencil SF in (314) ; we refer to
this technique as Essentially Non-Oscillatory (ENQ} interpolation. The basic idea of ENO
interpolation is to assign to [z¥, 2% ;] which is in the smooth part of the sampled function,
a stencil S¥ = {z%,... ’m'ﬁ]-?-r——l} with i = 3o(¢), which is likewise in the smooth part of the
function (provided that this is possible, i.e. that discontinuities are well separated and are
far enough from the boundaries). This is done by choosing &F to be the stencil for which
the interpolation polynomial p#{z;v*) in (3.14) is the "smoothest” among all candidate-

stencils, i.c. those of r consecutive points of X* (starting with «¥ ) which contain both z¥

and 2%, e.g. by taking 44(¢) to be the index for which
Jdr—1

: k(e pk

min| -7} (x; vF)

is attained among all candidate-stencils.

Example 3.2. Tensor-product grids in [0, 1]?

We consider continuous functions f
f:0,1]x[0,1] — R (3.16a)

which are discretized on the tensor-product grid

Xk = {(ak,28)} ], (3.160)
by
fk =1 {f,{fj xk.,—_ﬁ ) f;fj = f( i‘camf): (3160)

where {wf}i\;{‘o are the one-dimensional gridpoints in (3.7); note that here we replaced J
by N, since we reserve J for the dimension of the vector space V¥ in (2.1), i.e. Jp =

(N, +1)2. Although this case is covered by the general framework in (2.10)-(2.12), it is more
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 convenient to describe the tensor-product extension of the one-dimensional MR scheme by
using matrix notation. For this purpose we represent the two-dimensional array in (3.16¢)
as the (Nj, +1) x (N, + 1) matrix A%, and use the general algorithm of appendix B which
describes tensor-product extensions of one-dimensional MR schemes for the input AL,

We remark that the tensor-product algorithm inherits its stability from the one-dimensional
MR scheme, and that existence of a MR basis for one-dimensional functions goes over to
the corresponding two-dimensional ones. In this paper we shall use the tensor-product MR
schemes for a uniform grid with the piecewise-polynomial interpolation (3.14)-(3.15) as our
“yard stick” in order to measure the performence of the MR schemes for unstructured meshes
in similar circumstances.

We remark that one can easily extend the tensor-product MR scheme in appendix B to
the grid

Xk = {(a,y5)}iteo

where {y¥} is a different partition of [0, 1] (see [16]).

Example 3.3. Triangulation in R?

As a result of the success of Finite Element Method (FEM) for the numerical solution
of PDEs, we have many triangulation techniques (some of them are packaged as computer
codes) to construct a mesh of desired resolution with a good description of the boundary
for complex geometries, and also corresponding interpolation methods for the nodes. Let us
denote the triangles in such a mesh by TF € ©, 1 <1 < n,, and denote by X* the set of
vertices in these triangles; we refer to T% =: {TF}, as the triangulation of §2. Observe that
Qk = U, TF C Q is a polygon and that J0* is a piecewise-linear approximation to 952.

In our particular application we are interested in local approximations. For this purpose
we use, as in example 3.1, the following piecewise-polynomial interpolation: Let SF be a
stencil of s = r(r 4 1)/2 points of X* which is assigned to the triangle 7% € T* and includes
its vertices . Let p¥(z; D, f) denote the unique polynomial of degree (r — 1) for r > 2 which
interpolates f{z) at the points of the stencil §f, and define

Ti(z; Do f) = pi(w; Dy f) for z e T} (3.17)

Clearly this technique is exact for data of polynomial functions of degree less or equal r —1.
Observe however that unlike 1D, 7, is not necessarily continuous on the boundary of TF; in
this case we take F to be the space B(Q) with the sup norm, rather than Co(82).

For r = 2 the 3 points of S¥ are necessarily the vertices of T%, and pi(z; Dif) is the

piecewise-linear function which interpolates f at these three points. Observe that in this
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case {I,(x; Dif)} is a sequence of continuous functions which forms an hierarchic sequence
of approximation in C°(Q2).

For r > 2 we have several reasonable choices of stencils; as in example 3.1 one can use
this freedom to adapt the interpolation to the nature of the data by choosing the stencil in
which the data is smoothest, and thus avoid the Gibbs’ phenomenon (see [1] and {15]).

In subsection 5.1.3 we describe a simple strategy to select a “centered” stencil of 6 vertices
for piecewise-quadratic interpolation (r = 3).

Our main problem is to design procedures for coarsening and refinement for which the
vertices of 7#-1 are contained in those of 7*. Observe that in multigrid methods this is not
a requirement but a desirable option. The design of such procedures is the topic of section
5.2,
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4 MR schemes for cell-average discretization
Consider absolutely integrable functions f € F
FiOCR"—R, F=LQ) (4.1a)
where ) is a compact set, and let C¥ = {Cf}f__’il be a set of cells such that
Qb= Uk CECQ, CEOCk=0 for i#], (4.10)
We define the cell-average discretization of f by

(Def); Cklf(:‘* o)da,  |CH = [ de. (4.1¢)

Next let us consider a refinement sequence {C¥}L_,, in which C* is formed from C*! by

dividing each cell C}™! into, say ¢, disjoint cells {CkYicr

U, CF = CF. (4.20)

Alternatively we can consider (4.2a) to be a coarsening procedure in which we agglomerate
every g cells of C* into a larger cell of C+~1; the only reason that we take here a fixed ¢ is to
simplify the notations. In any case the sequence of discretization {Dy}l_ 1s nested and it

follows from the additivity of the integral that
1
(Dk 1f) |C"‘ 1] E IOkI(Dkf) =1 (Dimlpkf)i (4‘2b)

£=1

which directly defines the decimation operator in (2.2). Let R; denote any reconstruction

from cell-averages, linear or not, and let ¢k denote the prediction error in (2.7a), then
D= 1ek—0:>Z|C"|ek =0 (4.3)

This relation shows that we can define the scale coefficients ¢* by taking (¢ — 1) properly
chosen linear combinations of the ¢ prediction errors {efe }4_, in each cell CF=1 . These linear
combinations should be chosen so that together with (4.3) they constitute an invertible
system of ¢ linear equations for the prediction errors {ef }i-y in the cell CF1 . (see e.g. [16]

for such combinations in representation of matrices).
Example 4.1. Nonuniform partition of [0,1]

Let us consider absolutely integrable functions f in [0,1]
feF=1LY0,1],

14



and let

koo [(Th k— (pk gk
Cr = {C] Vi, Ch=(ak,,2b), (4.4a)
where {«f} are the gridpoints of Xk in (3.7); observe that

O+ = Ck__UCE, 4.4
i 2:—1 21

Let v* = D, f denote the cell-averages in (4.1¢); vF~! is obtained from v* by the decimation
(4.2b), i.e.

i ICk 1|(|Oz—1|”21 +1C5 vk), i=1,.. et (4.5)

v

It follows from (4.3) that the prediction error ef satisfies the relation

ICk_leb,  +|Ckles; =0 for i= ooy Jiy (4.6a)
Therefore, if we define
1 :
d;?-—- ZIC’F‘I|(IGJ Jes s |C’fj§e"§j) for j=1,..0,J51 (4.65)
J

we can recover the prediction error ef by

{ L= a0k 108 (w50
4.6¢
ko= —dt-1CE_L |/ICE

The direct MR transform 0y = M - vE is given by the algorithm

[ DO k=1L,...,1
| o = b (Chalobiy + IOk =1 i @
NGkt~ [ (Rero*D@M/ICE, =1y iy
L 27—1
The inverse MR transform oL = M1 0y, is given by
(DO k=1,...,L
DOizl,...,Jk_l
] o k—1 k| (k=1 (4.8)
Vgimr = [&3 /C’k (Rp_yv*1)(z)dz 4 d|CF 1]
?A— 24—1
L v = (ICF ™" = 1Ok o5y ) 1G5
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Observe that the last statement of (4.8) is obtained from (4.5).

In [17] we showed that any interpolation method in example 3.1 gives rise to a corre-
sponding method for reconstruction from cell-averages by the following “reconstruction via
primitive function” technique: Given cell-averages vk = D, f we calculate the point values

of the “primitive function”
FE=F(ab), F@)= [ fdy
by
0

Ft=0, Ff= Zl Chok, 1<i<J, (4.9a)
J:

and define p
(ReoH) (&) = ~-Tu(a; F*), (.90

where I*(x; F¥) is any interpolation of the values F° k= {FF }/5, at the grid points of X* in
(3.7). For example, if we take the piecewise-linear interpolation (3.10), we get that Rvk is

the piecewise-constant reconstruction

(Rpv*)(z) =vf  for z€CF (4.10)

Example 4.2, Tensor-product meshes in [0,1]?

We consider absolutely integrable functions f
f:[0,1]x[0,1] — R (4.11a)

which are discretized on the tensor-product mesh

Ck = {CF x CHY%, (4.11b)
by
s [N _ 1
fF= {f;fj}i,f-—q ) fffj = mfcffcff(mh x,)dzydz, (4.11¢)

where {Cf}ﬁv__ﬁ are the one-dimensional cells in (4.4a); note that here we replaced Ji by
N,, since we reserve J;, for the dimension of the vector space V¥ in (2.1), i.e. J, = (N)™
Although this case is covered by the general framework in (2.10)-(2.12), it is more convenient
to describe the tensor-product extension of the one-dimensional MR scheme by using the
matrix notation of appendix B. Therefore we represent the two-dimensional array in (4.11c)
by the N, x N, matrix A¥, and use the general algorithm of appendix B to describe the

tensor-product MR scheme for the input AL,
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We remark that, as in the corresponding example 3.3, the cells in (4.11b) can be defined
as a tensor-product of different partitions in the two space variables.
Example 4.3. Unstructured meshes in B™ .

Using agglomeration as a coarsening technique may result in cells which are general
polygons. Such a technique is described in section 5.2. In the following we describe a
piecewise-polynomial reconstruction technique which is suitable for our purpose (see [15]):

Let us denote by SF a stencil of s(r} cells in C* which includes C¥, i.e.
sk={ck YD,  Ckesk (4.124)

here s(r) is the number of coefficients in a polynomial of degree (r—1) in B™. Let p¥(z; Dy f )
denote the unique polynomial of degree (r — 1) which attains the averages (Dif);,, in SE, ie.

the one which satisfies the following system of s(r) linear equations for its s(r) coefficients:

1
'IC_;chOgg pi(z; Dpf)de = (Dif )iy, m=1,..058(r), (4.12b)

and define
(Rkaf)(Cﬂ) = pf(ﬂ'}; Dkf) for z & Cr:k (4.12(})

Clearly (4.12) defines a reconstruction of D f which is exact for polynomial functions of

degree less or equal (r — 1), and thus is r-th order accurate. Such a polynomial exists if
1. s(r) =7v(r 4+ 1)/2,
9. a Vandermonde type condition on S is satisfied.

For a general discussion on this kind of polynomial approximation and its computation, see
[1] and [15]. In the following, we always assume that the stencils we construct are admissible.
Tn practice, there is no particular restriction, see [1].

Note that for r = 1 in (4.12) we have s{r) = 1 and we get the piecewise-constant

reconstruction

(RiDef)(@) = 2_(Pefixcr (@), (4.13)

]

where x(z) denotes the characteristic function of the set C,

{1 zeC
Xo(e) = {D otherwise (4.19)

In [15) we present an hierarchial algorithm for the selection of a “centered” stencil, which
is applicable even to completely unstructured meshes C* in B™, In this context the “centered”
PP p y

stencil is defined as the one which minimizes the recomstruction error for the one-higher
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degree polynomials (i.e. degree r). This algorithm is of “crystal growth” type: starting
with the cell C¥ we begin to add successively, one cell at a time, to the cluster of cells that
we have at the beginning of each step. The cell which is being added.is selected from the
set of all side-neighbors of the existing cluster by the requirement that i will minimize the
reconstruction error of suitably chosen monomials.

In [15] we also present an adaptive “crystal growth” algorithm which is designed to
assign a stencil S¥ from the smooth part of f (z), if available, to all cells C} which are
themselves in the smooth part of f(z). This way a Gibbs-like phenomenon is avoided, and
the resulting approximation is r-th order accurate everywhere, except at cells which contain
a discontinuity. This is accomplished by selecting the cell from the set of side-neighbors
which minimizes the derivatives of the so-defined reconstruction.

We refer the reader to [1] for details of special ENO reconstruction techniques for trian-
gulated meshes. Following the same principles, we present in section 5.2 a simple technique
to compute a “central” stencil, that works on triangulated meshes. This central stencil is
then used to define the polynomial p(z; Dy f) of (4.12a) in section 6.

We remark that if we generate the nested sequence of {C*}L_; by refinement of a frian-
gulated mesh C°, then all the meshes may be triangulations and then we can use special
strategies for assignment of stencils. As in example 3.3 we find that there are some re-
finement methods that have a built-in convenient assignment of stencils for the purpose of
reconstruction. In the case of cell-average discretization these are typically of the “dual
mesh” type: e.g. one can start with a covering by hexagons, each containing 6 triangles,
and then divide each triangle into 4 by connecting the midpoints of its sides as before. This
results in a new system of smaller hexagons (4 times as many). To each triangle of 7% we
assign the 6 triangles of the hexagon to which it belongs - this is a convenient assignment,

of stencil for 3-rd order accurate reconstruction from cell-averages.
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5 Implementation

In this section we show how to apply the general framework presented above to two kinds
of representation of functions on anstructured meshes : point values and average valucs. In
both cases, we describe the discretization operator and the reconstruction operator.

We start with notations: Let € be the computational domain, and assume that it is
bounded. The set  is approximated by a polygon {}¥ which is triangulated ; let 7% denote
the triangulation and let XL = {M;}1<ics, denote its nodes. As before we denote by k=1L
ihe finest level of resolution in the sequence and by k = 0 is the coarsest. In general we shall

cefer to the number of nodes by n, and to the number of triangles by n; .

5.1 Discretization by point values

In order to define a nested sequence of discretization {Dihr<ker as In section 3, one has to
define a sequence of nested sets {X*}1cpqr, XF71 C X k. In constructing these sets we have
to make sure that each of the sets X* has enough points on the boundary of § so that the
approximation to 9§ is adequate for the J-th level of resolution. The purpose of this section
is to describe : 1- two ways of constructing the sets X¥, 2- the stencil assignement to each

of the triangles T} which is used to define the interpolation polynomial in (3.17).

5.1.1 Coarsening

We start from a given fine triangulation, and have to construct coarser and coarser triangu-
lations. To do so we have adopted the coarsening procedure of [18] which we review in the
following. We start with the triangulation TL and eliminate points of XF to obtain X%;
then we produce a triangulation 72~ for which XI-! are the nodes, and repeat this cycle
till we get to the coarsest level. In order to have better control of the shape of the boundary
we make the convention that the points along the boundary 90k are listed first in the array
X* in, say, counterclockwise order, and that we also keep an ordered list of the boundary

segments of 80%. One eliminates points by the following method :

Boundary : one starts with 2! which is a houndary point and marks all of its neighbors.
This point will also be the first point of XL—1. Then, following the boundary, one looks
for the first unmarked point, adds it to X2t and marks all of its neighbors. Once the
list of boundary points in X% has been exhausted, one goes to the next step in which
we eliminate points from the interior. In the example of Figure 1, point 13 is eliminated

because it is a neighbor of point 1; observe that 12 is also eliminated because it is a
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Initial mesh Coarsened mesh

Figure 1:

neighbor of 11. The points 14, 15 and 16 are eliminated because they are neighbors of

a point on the boundary that remains in XI-1 pamely {1,3,5,7,9,11} .

Interior points : One adds to XZ-1 the first not yet marked point of XL, and mark all of
its neighbors. Then one proceeds the same way until the list XL has been exhausted.
In the example of Figure 1, the final set XZ~1 is then {1,3,5,7,9,11,17} .

The boundary points are listed first in order to have a better control of the geometry of
the “coarsened” approximation of . Following f18], one may impose some additional
constraints on the process of elimination, for example to keep certain points of the boundary
of OF in XL-1, because otherwise the geometry of the problem could be changed.

Next we prepare an ordered list of the boundary segments of 90L-1 and proceed to
generate a triangulation 771 of the set X1=1. Here, as in [18], the triangulation 751 is
obtained from the Delaunay triangulation of a square large enough to contain X%-1, Using
our list of segment elements in dQL~1 we modify this triangulation, if needed, so that these
boundary segments are sides of the triangles. Once this is done we can identify the exterior
of 00-1 and remove it. This way we get, a triangulation 7L~ which is consistent with 7% in
the following sense: the boundary points of TL-1 are also boundary points of 7% and no
boundary point of 72! is an interior point of 7.

When we want L levels of mesh, one repeats the above algorithm L —1 times . It 1s
difficult to know in advance the number of points that each level will have. The elimination
procedure depends strongly on the ordering of the nodes of the fine mesh in the array XL, In

general it is desirable to eliminate points away from the boundary by shells. Experimentally,
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one can see that if the fine mesh has n, nodes, then X2—1 has between % and %* nodes, and

SO O1.

5.1.2 Refinement

Another way of computing a sequence of nested subsets of XL is to proceed in the reverse
way : define first a coarse mesh, then add nodes in a regular way. This approach is especially
simple if the domain () is itself a polygon. A simple way of adding nodes is the following:
Consider a triangle T with vertices A, B, C. We define the barycentric coordinates of the
point M by the scalars Ay, Ap, Ag which satisfy the following two equations:

[ ] AA+AB+AC':]‘S
L ] AAA+ABB+AGO:M.

These coordinates are first order polynomials of the coordinates of M. A point M is an
interior point if and only if its barycentric coordinates are positive, Let us consider the set

of points M;; inside T' which are defined in terms of their barycentric coordinates by :

L As(My) = = (5.1)

Ay(M;;) = =T

i

n+1
here n is an integer number, 7 and j satisfy 0 <4,5 <n+1 and 0 < ¢4 7 < n. This defines
a set of (n + 1)(n + 2)/2 points. The triangulation is obtained from these points as shown

in Figure 2 for n = 2.

AN

Figure 2:
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5.1.3 Interpolation

For the purpose of multiresolution representation one needs a right-inverse to D;. Here it
is the Lagrange interpolation which is uniquely defined once we provide the stencils 8 in
(3.17). In order to simplify the presentation, we only describe what can be done for a third
order interpolation. At the end of this paragraph, we indicate how this can be extended to
more general situations.

In order to define the stencils, we have chosen a rather heuristic approach. We consider
a triangulation 7 that may be any of the triangulations we have defined in the previous

paragraph, and let T' be one of its triangles, as in Figure 3.

An c

Ay

T

As
Figure 3:

We first assume that T' is an interior triangle, i.e. none of its edges are on the boundary.
Then there exists a triangle on the other side of each side of T', namely Ty, Ty, T; (see Figure
3), which we refer to as side-neighbors. The set of all the vertices of T', T, Ty, T3 has 6
elements. In general, this set is is not geometrically degencrate, i.e. there is a unique solution
to the Lagrange interpolation problem. It would not be the case if these points were on a
conic.

Now, if T is on the boundary, we may make a similar construction, in general. If T'1s a
triangle that plays the same role as 73, T, or T above, then we may take the stencil made by
these six points as a stencil for T'. If no such construction is possible, it means that T is in a
sharp angle of the triangulation and other heuristics must be found. For example: T has at
least one neighbor which itself has at least one neighbor, etc. Proceeding this way, one can
find six vertices that may be candidates for stencils. We remark that this situation is rarely

encountered in a fine mesh, and its occurence can serve as a ctiterion for over-coarsening.
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This method of constructing stencils can be generalized to higher degree polynomials, for
example see [1].

If one constructs {T*}E_ from a given coarse triangulation 7 by the refinement in (5.1),
then there is an obvious and convenient way to assign stencils. At any level, a triangle T
is obtained from a “coarser” triangle T' where T has been subdivided into four smaller
triangles, among which is T', see Figure 3. Then, obviously, the stencil made of the node
of T" and the three mid-points of its three edges is an admissible stencil. Observe that this
assignment of stencil is particularly efficient since the same stencil is used for all the points
of T" (and not T only as above) and that there are closed formulas that gives the Lagrange
interpolation of any function in 77 : if Ay, A,, As are the barycentric coordinates of T, if
we denotes by fi, fo, f5 the values of f at the nodes of T' and by fy,, fiz and fy3 those at
the mid points (with obvious notations), then the Lagrange interpolation polynomial is well

known :

3
P=YfiM(1-20)+ D fathibe (5.2)

i=1 midpoints
Obviously, this method can be generalized to higher orders of accuracy: For r-th order
approximation we take a subdivision mesh as above with n = r — 1. It is well known that
close formulas of the type of (5.2) exists, and make the procedure very efficient. Moreover,
unlike the first method of interpolation, we get here an hierarchial sequence of approximation

which automatically leads to a stable MR scheme (see appendix A).

(a) (b)

Figure 4: (a) : convex boundary, (b) : concave boundary

In all cases, the stencil one gets is used to have an approximation in 7. Depending on the
local concavity of the boundary, it is possible for some points of 7* to be in the exterior of the

coarser triangulation 7#-1, see Figure 4; note that this does not contradict the requirement
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of nestedness. In this case, we predict the corresponding values by extrapolation from the

closest triangle in 751

5.2 Discretization by cell average

In this section, we assume that we are given a partition of {} by disjoint cells CF = {C{J}f;i

such that
O = u,olcQ, CEnCl=0 for i#j, (5.3)

In order to generate this fine partition we can start with a triangulation 7% of 1 and
define cells in the following three ways : (1) The triangles of 71; (2) the dual mesh (i.e. the
Voronoi partition) or (3) the set of cells which is used in Finite Elements methods : For any
point vertex M of 7% consider all the triangles that have M as a vertex ; then for any of
these triangles connect the midpoints of the two edges that share M and the centroid of the
triangle. The area between these lines and M is collected into a cell which is identified with
the point vertex M.

Fach of these choices has its advantages and drawbacks. The choice (1) of triangles
enables us to have cells with a small and constant number of sides. However, for n, nodes,
the mesh has ~ 3n, triangles, and this ratio is even worse in 3D; consequently, the resulting
memory cost may be high. The choice (3) of “Finite Element” cells enables us to refine the
mesh in a reasonable way, if needed, but on the other hand, the number of sides of a cell is
not known a priori. The choice (2) of cells based on the Voronoi diagram of the mesh offers
an attractive comprornise.

One may also consider other choices of cells, in particular if we do not use a partition
based on a triangulation but a partition with various kinds of elements : squares, triangles,
etc.

The decimation and prediction operators are defined in section 4. We provide here a
description of : 1- the coarsening/refinement algorithm that we have used and 2- a procedure

to assign the stencil S¥ to the cell C¥ ; then the reconstruction is defined by (4.12). operator.

5.2.1 Coarsening

In order to define a set of nested discretizations, we follow ideas which were applied in
Multigrid techniques on unstructured meshes, in particular by Lallemand et al. {19] and then
by others, e.g. [22]. The partitions C* = {C’f‘},ﬁl are defined by successive agglomeration

of cells. To describe this process we need the following notation: Let C denote a sequence
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of cells which includes C; ; we denote by I,(C) the set of indices, including ¢, of all the
side-neighbors of C; in C. We start with the given fine level C¥, and assume that we have
already defined C™ for k <m < L. We proceed now to define Ck-1 a5 follows.

First cell : We consider {C}}ser, (ci); these are the cells in C* which share a common side
with C¥. We define
cH1= J Ck

1
Leh (Ck)
Then we remove all the cells CF with £ € [ (C*) from C*, and denote the new sequence

by C*.

Other cells : Assume that {CF, .-+, CF'} have been defined, take the first cell in C* and
denote its index in C* by j . We define

o= U o

LeT;(CH)
and remove all the cells with indices in [ j(ék) from C* ; we rename the new set as Ck,

Once the list of elements of C¥ has been exhausted, the set of coarsened cells so obtained
constitutes Ck~1. We continue this process until we get to the coarsest level k& = 0.

Tt is useful to notice that, as in the previous case, the structure of the coarsened cells
depend a lot on the ordering of C¥. In particular, it is possible that a “coarsened” cell C¥
for some level k > 1 may be made of only one “finer” cell CJ{“ of the previous level. We do
not want this situation, because the analysis on this cell do not provide any information.
The same argument shows that the number of “finer” cells that have been agglomerated to
make a “coarser” cell is not controlled.

In [22] some heuristics, based on the effective problem one wants to solve, are presented
to control the number of cells that are agglomerated to make one coarser cell. Here, we have
chosen a more primitive method. If a “coarse” cell is too small, then it is agglomerated to
one of its neighbours. We choose the one that is made of the least number of “fine” elements.
Similarly, if a cell becomes too large, one stops the agglomeration process.

As in the case of point value discretization, another method to construct a sequence of
nested discretization may also be devised. Instead of going from the fine level to the coarse
one, we can proceed in the opposite direction. Let n be an integer, and 7, a triangulation of
a domain 0. This domain is assumed to have a polygonal boundary. For each of its triangles
T, we consider the n(n +1)/2 — 3 points of barycentric coordinates
2 J
Aa(Mig) =~ Bp(My) ==

7
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" as in subsection 5.1.2, see Figure 2. We can make (n — 1)? new triangles. By proceeding
inductively this way, we construct a sequence of set of triangles ; here the cells are triangles.
The corresponding coarsening procedure is simple : for each level, one considers the set of

triangles generated by a triangle T of the next coarser level.

5.2.2 Reconstruction

For any level k, we take the reconstruction to be the piecewise polynomial function in (4.12).
The only remaining thing to do is to to describe the assignment of the stencil S¥ for the
cell C*. For the sake of clarity, we give the details of the case r = 3 which corresponds to
piecewise-quadratic reconstruction, though a more general discussion can be given.

We follow the procedure of subsection 5.1.2. For that, we identify each of the cells C¥
with a point which we take to be the centroid of C} (even though it may not belong to C¥).
For this set of points we construct a triangulation 77, here a Delaunay mesh. It is clear that
some constraints, coming from the geometry of the problem have to be added. The most
obvious constraint is that two cells that are not close {because they are separated by a hole)
should not be connected, see Figure 5. We decide that a triangle is inadmissible if its centroid

does not belong to the fine triangulation 7%, For example, in Figure 5 the exact domain is

Figure 5:

inside the dotted line. The partition is made of the cells which are bounded by the thick
lines. The corresponding triangulation of these cells is represented by the thin lines. The
triangles Ty and T, are not accepted because their centroid is outside of the computational
domain, while Ty is accepted. Another constraint is that the accepted triangles should not be

too flat. This case may be encountered at an almost flat boundary. The boundary triangles
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are tested as follows : we consider all the boundary points of 7. For any of these points
we consider the triangles having it as vertex. We compute the average ratio (’;‘)mJ of its
circumcircle and its inner circle. If this ratio for a boundary triangle is too far from the

average one,

hip
(h/p)

we remove this triangle. We have chosen ¢ = 0.1.

11— | > é

This choice of stencil is so that this reconstruction procedure is not hierarchical in general.
On the other hand, the refinement procedure of the previous section enable to construct a
hierarchical reconstruction sequence. If we want a reconstruction with piecewise polynomial
of degree (r — 1), the reconstruction will be hierarchical provided the triangles are divided
into m? smaller triangles with m? > r(r+1)/2. We give an example where r = 3 and m = 3,

see Figure 6 (note that any triangle may be mapped onto the standard triangle of Figure 6).

Figure 6:

We have 10 points and 9 triangles denoted 1,---,9. By symmetry, it 1s necessary to
describe stencils for triangles 1, 2 and 3 only. Among the many choice, we favor those giving

the smallest support, namely :
o for 1 and 2, we take S; = {1,2,3,4,6,8},
o for 3, we take S, = {2,3,4,6,7,8}.

It is easy to check that they are admissible by computing the determinants

k
Tk ke S

or 82-

One finds —2 for Sy and 4/9 for S,. It is interesting to notice that some combinations are

not admissible, for example {1,2,3,4,6,7}.
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6 Numerical results

We have performed two kinds of numerical tests : for the point value discretization, we have
tested the two methods of sections 3 and 4 ; for the cell average discretization, only the general
method has been tested. In this case, we also compare our results with a multiresolution
scheme where centered tensor product stencils and a regular grid diadic Cartesian grid is

used.
As described in section 2, the method involve three steps : decoding, truncation and

encoding. The data v¥ on the fine level are represented as :
Mol = (00, -+, db1)T

where 90 is the representation of v on the coarsest level, and d' are scale coefficients. In the

truncation step , we truncate the scale coefficients according to

— { 0 if |d£| < €y

dﬁ else.

Sz

-

In the numerical experiments to follow, we take ¢, to be
s for point values, ¢, = ¢,

o for cell averages,

€k = OChia
with «,, defined by :
oy, = max { ;] where CF = | | C¥+1}
BT ckeck ICH P jeIk i

that is the maximumn ratio of the area between a cell of level k and all the cells of level

k + 1 that have been agglomerated in it. For Cartesian grid, we take o = 2.

We define the compression factor p to be
No + |{(i,1) such that |d{] > e}|

7

We have performed numerical tests on two functions :

1. fy(z,y) = cos2r(z? +y?) in [0,1]%,
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2. f,, shown on Figure 7, is defined in {—1,1]2 by

if z<cos(ny), fulz,y)= u\/——:c YD,
if = > %COSU‘I’y}, folz,y) = u_m\.b,y)—}-cﬁs {(27y)

where 14 is

£r2)

if r < -1 uy(z,y) = —rsin(3

3

1f?">'§,

ui{z,y) = 2r — 1 + §sin (37r) where 7= z + tan (¢)y.

if ir] < 1, ug(ez,y) = [sin (277)]

Figure 7: {a) :Isolines of fy, (b) : zoom of the left upper corner of the mesh.

6.1 Point value discretization

In a first example, the mesh has been obtained by refining 4 times a coarse mesh according
to the procedure of subsection 5.1.2, with n = 2. It has 56 633 nodes and 112 384 triangles.
The maximum radius of the triangles is p ~ 9 10-3 ~ 1/156 and J;, = 2402, We use 3
levels. The results are displayed in Table 1. For comparison sake, we show in Table 2 results
which are obtained from a Cartesian regular grid. From the approximation error point of
view, we should consider the maximal radius. In this respect we have to compare to a grid

of 156 % 156. From the point of view of number of elements, we have to compare to a grid
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[Fuanction | ¢ | g [error (I=) |
7. [ 102 |57.43 | 1.28 102
10-3 | 25.08 | 1.59 10-3
10-4 | 5.85 | 1.84 104
fy 10-2 | 11.75 | 1.b4 10-2
10-3 ; 7.96 | 1.63 10-3
10-4 | 3.45 | 1.71 104

Table 1: Results for the refined grid

Function 64 x 64 128 x 128 256 x 256
€ u Jerror (L) p [error (L) || g | error (L) |
fi 10-2 || 7.37 | 1.85 102 || 29.04 [ 3.37 10-2 | 115.3 | 4.33 10-2
10-3 § 1.94 { 2.0 10-3 7.06 | 2.64 10-3 || 28.02 | 3.09 10-3
10-4 || 1.11 | 1.28 104 | 1.83 | 1.95 104 6.9 2.12 104
7. ] 10-2 [ 255 | 2.34 102 || 5.57 | 3.70 10-2 | 11.81 | 4.6 102
10-3 | 1.26 | 1.27 10-3 3.10 | 1.61 103 7.96 | 2.54 10—3
10-4 || 1.08 | 9.75 10-5 || 1.28 | 1.50 10-* || 3.51 | 1.80 10—*

Table 2: Results for Cartesian grids, pointvalue discretization
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of 240 x 240. Therefore we should compare these results to the entries for 128 x 128 and
256 x 256 in Table 2.

In a second example, we use a random mesh, The mesh generator ensure a certain
regularity : the ratio of the circumcircle and the inner circle are controled. Here 3 levels are
used, respectively with 12 526, 2 992, 706 nodes and 24 650, 5 782 and 1 310 triangles. The
results are displayed in Table 3. The maximum radius of the triangles of the finest level is

~ 1.8 10~2 ~ 1/55 and .J;, = 1102. From the approximation error point of view, we consider

[Function [ e | p | error (L) l

7, 10-2 | 16.03 | 5.03 102
10-3 | 5.43 | 1.76 10-2
104 | 1.50 | 1.77 104

s 10-2 | 4.22 | 1.23 10~
10-2 | 2.43 | 2.29 10-3
10-4 | 1.17 | 1.36 104

Table 3: Results for the coarsening procedure

the maximal radius and therefore we have to compare to a grid of 55 x 55. From the point
of view of number of elements, we have to compare to a grid of 110 x 110. Therefore we
should compare these results to the entries for 64 x 64 and 128 x 128 in Table 2.

These two examples, and many other that are not presented here indicate that the mul-
tiresolution analysis is stable. Furthermore, the MR scheme for the unstructured grid seems

to be caparable in performance to corresponding Cartesian grids.

6.2 Cell-average discretization

In a first set of experiments, we have compared the compression and relative error for the
functions f; and f, on [—1,1]? our general agglomeration method to corresponding MR
schemes for cell-average discretization on Cartesian grids. We start with a fine mesh which
is generated from the triangulation of the previous example, by Finite element cells which
are describe as choice (3) in section 5.2.1, therefore the number of cells is the same as the
pumber of nodes in the triangulation, namely J;, = 12 526. It corresponds to Jp, = 1102, The
size of the maximal cell is of the order of 1/50. Using 5 levels, the process of agglomeration
generates successively 1 980, 322, 57 and 11 cells. As in the previous example, this should be
compared with Cartesian grids between 64x64 to 128x128. The results are displayed in Table

4 (agglomeration procedure) and 5 (regular analysis). As we can see, the compression factors
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[ Function | ¢ [ u | emror (L) [‘error (L) |

1, 10-2 [ 16.45 | 7.7510-2 | 5.37 10-3
10-3 | 4.05 | 3.06 10-3 | 4.46 10-4
10-4 | 1.15 | 2.98 10~ | 1.61 10-°
2 10-2 | 2.85 | 4.83 10-2 | 2.56 10-3
10-3 | 1.71 | 2.97 10-3 | 3.42 10-4
10-4 | 1.02 ] 2.92 10~ | 3.110-°

Table 4: Results for the agglomeration procedure

Function 64 x 64 128 x 128

€ u | error (L) [error (L) || g [ error (L) | error (L1)

fi 102 [7.60 ] 89102 [ 1.7510-3 | 21.79 | 6.57 10—° | 1.14 10-3
10-3 §12.32 | 1.11 10-3 | 2.29 104 || 6.97 } 8.99 10—* | 1.75 104

10-4 || 1.29 | 9.20 10-5 | 1.66 10-5 | 2.23 | 1.09 10—* | 2.19 10-5

T 102 | 245 | 113102 | 1.81 103 | 474 | 1.07 10~ | 1.49 10~
10-8 |l 1.38 | 7.39 10-¢ | 0.95 10— | 3.00 | 1.16 10-3 | 1.92 10—4

10-4 | 1.09 | 6.27 10-5 | 0,92 10-5 || 1.52 | 8.86 10—° | 1.12 10-5

Table 5: Results for cartesian grid, cell average discretization
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are very similar for both method. The Figure 8 shows the multiresolution representation of
f, (on a 512 x 512 mesh), and ¢ = 10-2. It should be red according to (B.10), Appendix B.

oef
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0.2}
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0.2k

4P

0.6
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4 3 ! s h L
-1 04 -6 04 D2 )

Figure 8: Multiresolution representation of f; on a 512 X 512 mesh

The encoding/decoding procedure, for the agglomeration procedure) is illustrated on
Figure 9. We analyse the same function, on the same mesh, with only 3 levels this times.
The fist line of figure (noted (a)) represent the effect of the decimation operator. One starts
form the representation of f; on the fine level, then decimates and gets the figures medium-
(a) and coarse-(a). The errors between two consecutive levels are plotted on the second
line. For example, the first (b)-picture represents the (truncated) error between the (a)-fine
plot and what is reconstructed from the (a)-medium plot. The third line represents what
is obtained by reconstruction and correction with the truncated errors from the coarsest
representation of f,, plotted on coarse-{c) and coarse-{a).

In a second set of experiments, we show all the avantages of using an unstructured
mesh : the geometrical flexibility. The same functions are analysed on a domain similar to
a smiling face. Four levels are used. The mesh has 12 962 cells, the agglomerated meshes
have 2 122, 369 and 68 cells. On Figure 10, we show the cells of the coarsest level. Some
figures concerning f, are given. The Figure 11 show the encoded function on the first line.
The coarsest level is plotted on the right, and the finest on the left. On the second line of
Figure 11, we show the trunctated errors. Last, on Table 6, we give the compression factor

and I! error for this particular domain.
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Fine level Medium level Coarse level

Figure 9: Encoding/Decoding procedure : (a) Decimation, (b) truncated errors,
(a)+(b)=Decoding, (c) Encoding
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Figure 10: Agglomerated cells, 3rd level

[function | e | p [ error (L) | error (L) |
T | 10-2 | 1367 221102 | L.11 10~
10-3 | 3.31 | 8.67 10~¢ | 1.04 10—
10-41{ 1.17 | 7.05 105 | 3.37 10—

7, 10-2 | 2.65 | 2.1510-% | 6.48 10~
10-3 | 1.50 | 9.17 10-4 | 6.61 10-5
10~ | 1.02 | 6.97 10-5 | 5.27 10~7

Table 6: Results for the agglomeration prdcedure on the domain with holes.
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Figure 11: Reconstructed function and scale coefficients
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7 Conclusions

In this preliminary report, we have demonstrated the feasibility of designing MR schemes
unstructured meshes.

The main ingredient which is needed to accomplish this task is a reliable procedure to
generate a nested sequence of discretization either by coarsening a given fine mesh, or by
refining a given coarse mesh. The procedures that we used in this preliminary report are
far from being a final product, and they were used in order to explore the considerations
associated with this problem.

Although the only theory which we can apply at this stage to the analysis of stability
of the data compression algorithms is for hierachic approximations, cur numerical results
indicate that the compression error is proportional to the tolerance e with a constant which
is of order 1, even for randomly generated meshes. The compression ratio however depends
strongly on the “quality” of the mesh : since the scale coefficients are really approximation
errors, their size depends both on the regularity of the function and the regularity of the
grid.

We conclude that the main effect of lack of regularity of the mesh is on the rate of

compression and it does not seriously affect the compression error.
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A Stability analysis and existence of MR bases.

We assume that the sequence {R, D)},
(RyDy): F = F, (A.la)

is a sequence of (discrete) approximation in the Banach space F, i.e. that for any f € F

(i)
1R: DRl < CAILSI (A.1b)

(it)
[RiDef — fll =0 as k—oo. (A.lc)

Using the principle of uniform boundedness we conclude that there exists a constant Cy
such that for all &
Ck < Cy. (A.1d)

If (A.la) is a nested sequence of discretization, we get that the direct MR transform

(2.11) is stable with respect to perturbations in the input data vl and that

(6(d¥))y, = 6(eM) ]k < Ca(l + Cn)6(@P)e
(A.2a)
160 < Cald(v)lL -

where §(-) denotes the perturbation, and the discrete norms above are defined as follows:

]'Uklk = HRk”k“ 3 (A-Qb)

(d¥) = | Epd®|; . (A.2c)

In the case of point value discretization we consider the sequence {Z*(z; D, f)}2, in the

Banach space which consists of continuous functions in Q with the maximum norm

11l = lleo =2 max{f(z)]. (4.3)

The conditions (A.1b) and (A.1c), which are required of a sequence of approximation in this

space, state that for any f which is continuous in {2

max [Z¥(a; Dy f)] < CF - max|f(2)], (A4a)
and
klim max |T*(z; D,.f) — f(z)] = 0. (A.4b)
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The “natural” function space for cell-average discretization is F = Ly({), and there
(A.1b)-(A.1c) take the following form:

s, e P | ..-Yjﬁlrn.-z “E T £ AP
J RPN @z < O (17 (z)ld, (4.50)
lim [ (RDuf)(@) = f@)lde =0 (A5)

In [11] we investigate the stability of the inverse MR transform (2.12) and the related
question of existence of MR bases for mappings in . In the following we present a summary

of the results:

Case 1.
We assume that {(R; D)}, is an hierarchic sequence of approximation, i.e. in addition
to (A.1) it satisfies the following for all & > 0

(RiD) Ry = Rop—1; (A.6a)
note that another way to express (A.6a) is
R P =R (A.6D)

Tn this case we show in [11] that the inverse MR transform is stable with respect to pertur-

bations .
18(v")r < [8(v°)]o + l;(ﬂd"'))k ) (A.7)
and that for for any f € F
oo Jr—Jdy-1
f=RoDof + ; ; diapk (A.8a)

where the coeflicients d;r' = d?( f) are the scale coeficients in (2.11)
(f) = Gueh(f) = GDW(T — Rii D). (A.85)

The functions of the MR basis of F are obtained by reconstruction of the basis (2.8b) of the

null space of the decimation operator
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Case 2.
We assume that {R;D,}52, is a sequence of approximation which is not hierarchic, but
is o-contractive, i.e. that there exist 0 < ¢ < 1, a constant Cs and a convergent series

320, Ay < oo of positive numbers such that for all £ > 0 and any f € F
(A.9a) ort(RiDif) € a+ (1 + Calry) - oil(f)

where
oo f) = || - Re+1’De+1)Rersz“- (A.95)

In this case we show in [11] that the following limit exists

. L
RIDLS =1 Jim I, . (ReDy)- £, (A.10)

that {RHD,} is a hierarchic sequence of approximation, and that its MR scheme is exactly
the same as that of {{(R;D;)}. Hence we can use the results of case 1 to conclude that
the MR scheme is stable with respect to perturbations, and that the compression error is
bounded by (A.2a) provided that the discrete norms in (A.2b)-(A.2c) are defined with the
hierarchic form R¥. Furthermore, any f € F has the expansion (A.8a}, where R, is replaced

by R¥ and
L

i,b;“ =: lim [[(R,Dy) Rept. {A.11)

L—

=k

Observe that the functionals o, vanish if the sequence is hierarchic, and thus their size
measures the deviation of the sequence from being hierarchic. For more details we refer the
reader to [11] and the references cited there.

We remark that wherever condition (A.9) has been verified, this was done with “hard”
analysis; nevertheless, the design problem seems to be “soft”. Although there are known
examples of divergence of the above limit, most “natural” approximations give rise to stable

MR schemes (as is evident from the experiments in this paper and others not reported here).
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B MR schemes for tensor-product meshes in [0,1]2

Tn this appendix we consider the N; x Ny matrices A% which are defined by either (3.16c)
or (4.11c), and describe the tensor-product MR scheme for AL,

Let us denote the matrix representation of the various one-dimensional operators by

D£M1 — (D)Nk_l XNy

P]f_.j = (P)kaNk_l
(B.1)

GP = Gl - Pf_lpf’:_l) — (GP),_ xn, = G — PD)

Ey — (E)kam_l-

These matrix representations are obtained by taking v* and d* to be column-vectors, e.g.
Ny
vf~t = (DitoF); = ED,-J-U;."‘, 1<t < Ny
3=1

for simplicity we drop the index &.
Starting with AL we decimate to get
Akl = DAFD*| k=1L,...,1; (B.2)
here (-)* denotes the transpose. Given A¥! we get an approximation to A* by
Ak g P AkR—1 P
and observe that the prediciton error matriz e®

ek = Ak — PAk-1 P> (B.3a)

satisfies
De*D* = (. (B.3b)

The dimension of the null space of the decimation operators here is
Ji = Jo1 = (2Ne_g)? — (Nper)? = 3(Nga)?

and we store the scale-coefficients d* in three N,_; x Nj_; matrices A%, A%, Ak,

Using the matrix identity
I=PD+ EGP, GP = G(I - PD), (B.4)
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we show that if we take A* and A*-1 from the sequence (B.2) and define

Ak = GPAKGPY,  Ak=DAKGPY,  Ak=GPARD (B.5)

then A* can be recovered from A*-1 and the above by

Ak = PAR-1P* 4 EAYE* + PAEE" + EALP*. (B.6)
This follows immediately from the identity
A* = (PD+ EGPYAK(PD + EGP)* = P(DA*D*)P*
+ E[GPA(GP)*)E* + PIDAHGP )| E* + E(GP A*D*) P*.
We conclude from (B.5)-(B.6) that AL has a multiresolution representation A,
H A 3 3
AL Ay = ({a) (B0 yOR (B.7)
where the direct MR transform is given by
DO k=1L,...,1
Ak=1 = DAk D* (B.8)

Ak = GDAK(GD), Ak = DAHGP)s, Ak =GPAD,

and the inverse MR transform is

DO k=1,...,L
(B.9)
Ak = PAk=1P*x 4 EAFE* 4+ PAER* 4 EALP*,

We display the results of data compression by writing Ay in (B.7) as the matrix

(B.10)

al | A

and mark each entry which is larger in absolute value than the prescribed tolerance by a

black dot.
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