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Abstract

* In this paper we review recent developments in techniques to represent data in terms of
their local scale components. These techniques enable us to obtain data compression by elim-
inating scale-coeflicients which are sufficiently small. This capability for data compression
can also be used to reduce the cost of many numerical solution algorithms. The purpose of
this paper is to promote the use of multiresolution representation schemes which are based

on cell-average discretization as the “Standard Method” for data compression.



1. Introduction

Fourier analysis, which provides a way to represent square-integrable functions in terms
of their sinusoidal scale-components, has contributed greatly to all fields of science. The
main drawback of Fourier analysis is in its globality — a single irregularity in the function
dominates the behavior of the scale-coefficients and prevents us from getting immediate
information about the behavior of the function elsewhere.

The recent development of the theory of wavelets (see [Me] and [Ma]) was a great step
towards local scale decomposition, and has already had great impact on several fields of
science. In numerical analysis representation by compactly supported wavelets (see [Da] and
[CDI]) is used to reduce the cost of many numerical solution algorithms by either applying it
to the numerical solution operator to obtain an approximate sparse form (see [BCR}), or by
applying it to the numerical solution itself to obtain an approximate reduced representation
in order to solve for less quantities (see [H4-5]). The main drawback of the theory of wavelets
is that it attempts to decompose any square integrable function into scale-components which
are translates and dilates of a single function. Consequently there are conceptual difficuliies
in extending wavelets to bounded domains and general geometries. Farthermore, the uni-
formity of the underlying wavelet approximation makes it impossible to obtain an adaptive

“(data-dependent) multiresolution representation which fits the approximation to the local
nature of the data. The only adaptivity which is possible within the theory of wavelets is
through redundant “dictionaries.”

In a series of works [H1-3} we have studied the question of how to represent discrete data
which originates from unstructured grids in bounded domains in terms of scale decompo-
sition. Combining ideas from multigrid methods, numerical solution of conservation laws,
hierarchial bases of finite element spaces, subdivision schemes of Computer-Aided Design
and of course — the theory of wavelets, we came up with the more general concept of “nested
sequence of discretization.” We say that a sequence of linear operators {D;}$2 is a nested

sequence of discretization if
(i)
Dy, F 2B vk dimVE = J,, (1.1a)

(i)
I)Af m= ) =y Dk—].f =0 (1.1b)

Here F is a space of mappings and V¥ is a linear space of dimension Jj.



Given any discrete data vl = D,f we show in [H2-3] that it has a multiresolution
representation, i.e., a one-to-one correspondence between the given data and its scale-
decomposition:

vl EL gk d 00 =, (1.2a)

The &-th scale-coeflicients ¢* = {d? j;"fj‘

D.f and Dy_,f ', and v°® = Dyf is the discretization of f on the coarsest level. Observe that

~! represent the “difference in information” between

the number of components in ¢ is the same as that of v© because

L
> (k= dpa) + Jo = Jp (1.20)

k=1

A nested sequence of discretization comes equipped with a decimation operator
D=1 vk 2 yket (1.3)
which is defined by assigning to v* = D, f € V¥ the value of D,_, f € V#-1 e
Dﬁ—l(Dkf) =: Dy /. (1.3b)

To see that the decimation operator is well defined by the above observe that (1.1a) implies
that
VE=Dy(F), V=D, ((F)

and that if v* = D, f; = D,f, , then it follows [rom the nestedness (1.1b) that D,_1f; =
Di—1 [, because

0=Dpfy — Ppfo = Dp(fi — fo) = 0=Dy_y(fi = fo) = Dicifi = D fos

thus the definition D,’:_-‘v“ = Di_1f 1s independent of the particular f . We refer to the

assignment of f € F to v* € V* such that v* = D, f as reconstruction, and denote it by R,
7\’% . Vk -y f, DkRk = Ik’ (14:)

where I, is the identity operator in V* ; note that Ry is a right-inverse of D,. We would
like to point out that the reconstruction need not be a linear operator, i.e. it may depend
on the data vk.

Given any v- € VI we evaluate {v¢}520 by repeated decimation
vb~l = Dbtk k=L, 1 (1.5)
Starting from v*-! in (1.5) we approximae v* by
vk 2 Dy (Ryqv*1),
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and denote
P)':“—l = DkRk—l . Vk_l - Vk. (16@)

Pk, the prediction operator, is a right-inverse of the decimation Dﬁ_l

DEIPE =1 y; (1.60)

To see that take f = Ry_;v* 1 in (1.3b) and use (1.4). We observe that the prediction error
k
e

e]":Uk—Pk

vt = (I = B DRk (1.7a)

satisfies the relation
DE-lek = DE-lyk — (DE=1 P Job=! = ph=! _pk=1 =
and therefore it is in the null space of the decimation operator
ek e N(DF1) = {v] veVFk Di-ly =0} (1.70)

It follows from {1.3a) that

dimN (DY) = J, — T4y (1.8q)
and therefore the prediction error e¥, which is described in terms of J;, components in V#, can
be represented in N(DF™1) by (J,~ Jy_;) coefficients &% = d;f}j_i'{“r”‘l ,which we consider as
a representation of the k-th scale. To be specific, let {,u;?'}‘o]'“mj‘“‘1 be any basis of N (D),

i=1
N(DY) = .span{;t?}ji?jk_l , (1.8b)
and let d* denote the coordinates of ¢* in this basis
Je—Jh—3
eh = N dipk =1 Bydb,  dk =2 Gheb, (1.9a)
our

Here G, denotes the operator which assigns to e € (D71} its coordinates df in the basis

{uk };-]f,_'IJ"'“l; observe that E G is the identity operator in A(DF1), i.e.

E,Grek = ek for any &* € N(DE1), (1.95)

Using the above definition of scale-coeflicients we obtain the multiresolution representa-
tion (MR) in (1.2a). The direct MR transform & = M - v¥ is given by the algorithm

DOk=1,..,1
U (1.10)
&k = Gy(I, — P} Dok =: GDyb
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The inverse MR transform v’ = M-1.49 is given by

DO k=1,...,L
(1.11)
vk = PP okt B db.

In order to apply this multiresolution representation to real-life problems for purposes
of analysis and data compression, we have to make sure that the direct MR transform and
its inverse are stable with respect to perturbations. In [H3] we present stability analysis for
MR schemes and derive a sufficient condition which seems to be “close” to necessary; this
condition also implies existence of a multiresolution basis for mappings in F. In appendix A
we review some elements of this analysis and relate them to the particular examples of the
present paper.

We remark that in multigrid terminology Df ™' is “restriction” and P¥_ is “prolongation.”
In signal processing D}~ plays the role of “low-pass filter” while G'P, which is defined in
(1.10), plays the role of “high-pass filter.” This framework is a generalization of the theory
of wavelets in the sense that under conditions of uniformity its natural result is wavelets.

The selection of a nested sequence of discretization in (1.1a) constitutes a setting for
the multiresolution representation (1.1b), i.e. it determines the operators Df:’l, (7, and E,.
Once this is done, any choice of corresponding reconstruction operators {R,}Z_, defines a MR,
scheme for discrete data v¥ in VI by taking P}, = DRy, in the transforms (1.10)-(1.11).
This opens up a tremendous number of possibilities for the design of MR schemes, where
the primary considerationis the selection of an appropriate discretization, In this paper we
claim that if we had to choose one of the many discretizations as a setting for the “standard
data compression” scheme, then the best choice is that of cell-average discretization.

The considerations in selecting a particular discretization are : (1)Simplicity and flexi-
bility; (2)Information contents; (3)Suitability to applications.

In section 2 we show how to construct a nested sequence of cell-average discretization
in any compact set in any number of space-dimensions. In section 3 we consider the one-
dimensional case and show that any known method of interpolation gives rise to a cor-
responding technique for reconstruction from cell-averages. Thus the only competition to
cell-average discretization with respect to simplicity and fHexibility comes from discretization
by point values (see [AH]) ; however, cell-average discretization carries more information
than point-value discretization.

In section 6 we demonstrate the difference in information contents between these two
discretizations by describing the subcell reconstruction technique by which a discontinuous

piecewise-polynomial function can be recovered exactly from its cell-averages; this is not

true for point-value discretization. In [H1] we consider discretizations by weighted-averages
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and conclude that there are no major differences in regions of smoothness, but there are
differences in the information about irregularities of the sampled function, which can be
recovered from higher moments of the data. Thus “hat-averages” contain more information
than cell-averages, and one can exactly recover discontinuities as well as distributions in
piecewise-polynomial functions from their “hat-averages” {see [ADH]). In this respect “spec-
tral discretization”, e.g. taking the first J, Fourier coefficients, has the most information.
However, cell-average discretization clearly wins over higher-moment discretizations in terms
of simplicity and flexibility.

In section 4 we describe the relation between the biorthogonal wavelets of [CDF] and our
formulation. We show that biorthogonal wavelets can be thought of as the “uniform constant-
coefficient” case of our framework which corresponds to a choice of some weighted-average
discretization in IR. We study the case which corresponds to cell-average discretization and
show that the corresponding biorthogonal wavelets are the hierarchial form of piecewise-
polynomial reconstruction. The “competition” between Daubechies’ orthonormal wavelets
[Da] to the biorthogonal wavelets of [CDF] is generally settled in favor of the latter, because
in many applications the orthogonality doesn’t buy you much, and it costs quite a bit.

In section 5 we present stability analysis of data compression algorithms, which is based
on the results of [H3] and summarized in appendix A. We also present our ideas on error-
control algorithms which enable us to prescribe an upper bound on the compression error,
and provides a meaningful and stable way to apply adaptive techniques. Because of the
simplicity of cell-average discretization we can actually prescribe a strategy for truncation
of scale-coeflicients and prove our contention about error control.

In section 7 we present some numerical experiments and discuss some aspects of suitability

of the discretization to various applications.



2. MR schemes for cell-average discretization.

Consider absolutely integrable functions f € F
fQcCc R — R, F o= L}§) (2.1a)
where {2 is a compact set, and let C* = {c} 1%, be a set of cells such that
QF = Uk b €O, dndi=0 for i 4], (2.10)

We define the cell-average discretization by
(Puf)i= A|] 2)de,  |cH| ka dz, (2.1¢)

and cons1der a reflinement sequence {C* in which % is formed from C*-! by dividing

Fo
each cell £~ into, say ¢, disjoint cells {c‘éf}w,

U, = o, (2.1d)

Alternatively we can consider (2.1d) to be a coarsening procedure in which we agglomerate
every ¢ cells of C* into a larger cell of C'%-1; the only reason that we take here a fixed ¢ is
* to simplify the notations. It follows from the additivity of the integral that

(Dk 1f |k1|;/ dq——

g

E A (2.2a)

This shows that condition (1.1b) is satisfied, and provides the definition of the decimation

operator in {1.3)
1

ot = (Dl = T 2.20)
Let e* denote the prediction error in (1.7a), then
g
Ditek = 0= ) ek |ef = 0. (2.3)
=1

This relation shows that we can define the scale coefficients d* by taking (¢ — 1) properly
chosen linear combinations of the ¢ prediction errors {ef }7_; in each cell cf7! . These linear
combinations should be chosen so that together with (2.3) they constitute an invertible
system of ¢ linear equations for the prediction errors {ef }ey in the cell 1 (see e.g. [HY]
for such combinations in representation of matrices).

Using agglomeration as a coarsening technique may result in cells which are general

polygons. In the following we describe a piecewise-polynomial reconstruction technique



which is suitable for this purpose (see [HC]}: Let us denote by SF a stencil of s(r) cells in
C* which includes ¢, i.e.

Sk = {cf o o e Sk (2.4a)
here s(r) is the number of coeflicients in a polynomial of degree (r 1) in B™. Let pf(z; Dy f)
denote the unique polynomial of degree (r —1) which attains the averages (D, f);,, in S¥, i.e.

the one which satisfies the following system of s(r) linear equations for its s(r) coefficients:

1
Tf Pf’(m; D]‘_f)(ll: = (Dkf)i'nﬂ m = 1’ Tty S(T)’ (245)

]Cim! C:‘m
and define
(RiDuf)(2) = P& Duf) for a € (2.40)

Clearly (2.4) defines a reconstruction of D, f which is exact for polynomial functions of degree
less or equal (r — 1}, and thus is r-th order accurate.
Note that for r = 1 in (2.4) we have s(r) = 1 and we get the piecewise-constant recon-

struction

(Rkp;hf)(‘ﬂ) = Z(,Dkf).ixc?(:ﬂ), (25(1,)

t

where x_(x) denotes the characteristic function of the set C,

1 zed
Az} = : 2.5
X”(I) {{) otherwise ' (2.50)

In [HC] we present an hierarchial algorithm for the selection of a “centered” stencil,
which is applicable even to completely unstructured meshes C% in R™. In this context the
“centered” stencil is defined as the one which minimizes the reconstruction error for the
one-higher degree polynomials {i.e. degree ). This algorithm is of “crystal growth” type:
starting with the cell ¢/ we begin to add successively, one cell at a time, to the cluster of cells
that we have at the beginning of each step. The cell which is being added is selected from
the set of all side-neighbors of the existing cluster by the requirment that it will minimize
the reconstruction error of suitably chosen monomials.

In [HIC] we also present an adaptive “crystal growth” algorithm which is designed to
assign a stencil S from the smooth part of f(x), if available, to all cells ¢} which are
themselves in the smooth part of f(z). This way a Gibbs-like phenomenon is avoided, and
the resulting approximation is r-th order accurate everywhere, except at cells which contain
a discontinuity. This is accomplished by sclecting the cell from the set of side-neighbors
which minimizes the derivatives of the so-defined reconstruction. We refer to this adaptive
technique as Essentially Non-Oscillatory (ENQO) reconstuction, and we shall describe a one-

dimensional version of it in section € of this paper.
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We refer the reader to [Ab] for details of special ENO reconstruction techniques for

triangulated meshes.
3. MR schemes in [0,1].

In this section we take in (2.1) @ = [0,1] and let X~ be an arbitrary partition of [0, 1]
Xt = { L}1 =09 'I’{)L =0, ng =1, Jp = 2LJ0 (3.1(1,)

where the sequence ahove is strictly increasing and J; is some integer. We define the grids
Xk = {:c’“}i_o, k=1—1,...,1 by the coarsening

k=1 — ok
i T T

i:{]?“'sjk—l = Jk/?’: (3.1())

T

in which we delete from X* all the points with odd indices (The only reason that we remove

every other point is to simplify the notations). We cousider the covering of [0, 1] by cells
Ck = {c,"‘}! oo = (2, e, (3.2a)

where {2#} are the gridpoints of X* in (3.1); observe that

(3.2b)

Let vk = D, f denote the cell-averages in (2.1c); v#~1 is obtained from v* by the decimation

(2.2b), i.e
i :
vf~l = ]c‘f‘—"|(| Aok lebvg), =10 Dy (3.3)

From (1.7b) we get that the prediction error e* satisfies the relation

jeb ek A ldklek =0 for 1=1,..., k4. (3.4a)

Therefore, if we define df = G e¥ in {1.9a) by

d;? = tC’?_1|( 03‘5_116354 - |c;‘j|ef§j) for j=1,...,Jp1 (3.48)
i

we recover the prediction error by e* = £ d* which is defined as follows:

h—1
ek =k 5L
2i—1 i 2k
(3.4¢)
lf !
ek = —df . S
2 i 2|



The direct MR transform ¢ = M - v is given in this case by the algorithm
(DO k=1,...,1

{ vf_i__” |l- lg(I(’Zz ]IUEz 1+|C |’U ) z.‘_‘}a"wjk—l (35)

2ch; :
k _ 1 " [+ Ly —
dj - |c;_.'—-1| [Uéjml_(P£H1Uk—1)2j—l]: J —‘1>"~7Jk—1

"
The inverse MR transform v¥ = M~-1.{ is given by

DOk=1,....L

DOi=1,...,Ju1

o) (3.6)
vk = (PFvR = 1)gq + d5 71 gk

ek, _ [7%

of; = (e oi ™" — by lvf,_ )/ Ik,

Observe that the last statement of (3.6) is obtained from (3.3), and it is the “inverse” of the

first step in algorithm (3.5).
In [HEOC] we showed that any interpolation method gives rise to a corresponding method
for reconstruction from cell-averages by the following “reconstruction via primitive function”

technique: Given cell-averages vF = D, f we calculate the point values of the “primitive

function”
Pt = P(at), ff )y
by .
FE=0, FF=3%" kol 1<i< g, (3.74)
j:l
and define d
(T’; U‘L’)( ) = TIL(.'L F;”) (3?1))

where Z,(z; F'*) is any interpolation of the values FF = {Ff};’;e at the grid points of X* in
(3.2).
The prediction operator {1.6a) can be expressed in terms of the interpolation of the

primitive values by

1

(P[f_lvk - 1)‘21’—'1 = [IL 1( 24— I)Fk 1) }1}1—31] (38)

ai|

The piecewise-polynomial reconstruction in {2.4) can be obtained via (3.7) from the

following piecewise-polynomial interpolation: Let SF denote a stencil of r consecutive cells
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of C* which includes ¢f and let ¢f(z; F'*) denote the unique polynomial of degree » which
interpolates F* at the r + 1 endpoints of the cells in this stencil . We define the piecewise-

polynomial reconstruction (R,v*)(a) by

(Rypv*)(z) = ph(a;v?) =: N ¢¥(a; 1Y) for z € cf; (3.9)

observe that pf{wz;v*) is of polynomial degree (r —1). For r = 1 we have Sf = {¢}} and
-q¥(x; F'¥) is the linear interpolation

ok

X €
qF(a; 19 = i S (FE -
mz —.’L'! i

FE) Jor &b <z <ok (3.10a)

in this case R v* is the plecewise-constant reconstruction
(Ryvri(a) = vf  for wzech. (3.100)

Up to now we have not specified the stencil S¥ of r consecutive cells of C* that we assign
to cf. Clearly if we choose S§F independently of the data v* then the most accurate choice is

that of a centered stencil (away from the boundaries), i.e. for r = 2s + 1 we take

Sk = {ck }ofor s+1<i<J—s, (3.11a)

qe—g?t 2 1—|—3

and near the boundaries
Sk={ck,...,ck} for 1<:i<s

(3.11b)

é" = {c

Jp—r417 0 ’Cf”i,,.} for Jy—s+1<:<J;

When the grid X* is uniform we get a particula.rly simple expression for the prediction
P =DyRy_; in (3.10)-(3.11) . For the centered stencil (3.11a) we get that the evaluation

of the predicted value requives only s multiplications:

(P£_1UkM1)2z 1 'U Zr)’f 1_;.31 - UA 1)3 (312‘1)

where
poem 3 ey = —1/8
(3.120)
po= b=y = —22/128, v, = 3/128.
In Figures 1 and 2 we show the subdivision limit of the piecewise-polynomial reconstruc-
tion for r = 3. This is done by applying the inverse MR transform with L = 7 levels and
Jo=8tod=1{0,...,0,9%} ,where (5%}, = &, ; for j = 1,..., Jy , to obtain an approximation

to
L

@? = lim JT(R¢Dy) - (Ron?), (3.13¢)

L—oo =0
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and to © = {0,...,0,72,0} to obtain an approximation to
L
‘E/);.l = Llim H(Rfo) ' (Rlﬂ.}) (3131))
T ey

(see appendix A). The subscripts a,b,c,d in Figures 1 and 2 stand for ¢ = 1,2,3,4, respec-
tively. The limit functions for ¢ = 5,6,7,8 can be obtained from the former ones by an
appropriate reflection,

In the next section we shall relate these limit functions to biorthogonal wavelets.
4. Biorthogonal wavelets

In this section we derive the MR schemes which correspond to the bases of biorthogonal
wavelets in {CDF]. These MR schemes are obtained from nested discretization of functions
in L} (R) by taking weighted-averages on a nested dyadic sequence of uniform grids of £,

as follows:

(D) = ! fm flz)w (Jﬂ; Bk) dz, —oo <1 < oo, (4.1a)

hk [

where w € L2(R) is a weight-funcntion

oo
f w(z)dz = 1 (4.10)
—oa

of compact support and

£k = ihy, —co <i< 00, by =27Fhy, {(4.1¢)

In [H2] we show that if w(z) is a solution of a dilation equation

wlz)y =2 Z a,w(2x — £). (4.2a)

=0

with coefficients that satisfy

; Gyp = ; gy = 1/2, (4.26)
then {D,} is a nested sequence of operators and its decimation operator is given by
(Dt Zagvzz (4.2¢)
In [Da} and [H3] it is shown that {uk}e2
(#f)i = (~1)"* oy, —oo <i<oo (4.3)
is a basis of the null space of the decimation operator N(DF™1) in (1.8b).
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In order to have a “wavelet basis” of L2(R)} which consists of dilates and translates of a

single function, we consider reconstruction of the form

(Ryw)(x Z'v " (“’ _ mk) (4.4a)

where @(z) is a solution of the dilation equation
=Y Bpp(2z — £) (4.40)
£

which is normalized by
/go(m)w(:n)d;:: = 1. (4.4¢c)

In [H2] we show that the coeflicients {f,} have to satisly the following relations

Z alfﬁﬂ—l—?m = Um,0 (4505)
£

SA-DHE1F, =0 for ¢g=0,...,(r=1), r>1 (4.56)

4
Relation (4.5a) is derived from the requirement that Ry, in (4.4a) is indeed a reconstruction of
the discretization (4.1), i.e. that DR, = I, . Relation (4.5b) is derived from the requirement
that the reconstruction is exact for polynomial functions p of degree less or equal (r — 1),
i.e. that RyDyp=p, deg(p)<(r—1).

It is easy to see that the corresponding prediction operator P} =Dy R,_, is given by
U)t - Z[jilw'lmvm (46)
ki)

and that the reconstruction R is hierarchial (see (A.4a) in appendix A). In this case we
show in [H3] that for any f e F

L oo
RiDuf = RoDof + 3 3 dik, (4.7a)
k=1 j=—oc
where

and d% = d%(f) are the scale coeflicients in (1.10} :
&(f) = Cuet(f) = Dyl — Re s Dys ). (4.7¢)

Consequetly {1/);“}Jk is a wavelet basis of any Banach space F in which {(R, D)}, is a

sequence of approximation {see appendix A).
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Following the guidelines of the present paper, we first select a sequence of nested -dis-
cretization and thus create a setting for MR schemes; in the framework of this section this
amounts to a choice of coefficients {a,} subject to conditions (4.2b). Once this is done

relations (4.5) become a system of linear equations for the coeflicients {f,}. For

1
Ofc = 5(5&{} + (5‘&__41) (4:.8(1)

we get
w(z) =

which is square integrable, and the discretization {4.1a) becomes the cell-average discretiza-

{1 1<z<0 (4.80)

0 otherwise

tion (2.1c) in the uniform grid (4.1c). It is easy to verify that if we take 2r nonzero coefficients
{B:},21, then we get r linear equations from {4.5a), and another set of r linear equations
from (4.5b). The solution for this system of 2r equations is unique and the resulting predic-
tion operator (4.6) is identical to that of the centered stencil in (3.12a). We conclude that
the two MR schemes are the same in the case of uniform grids in R, and that the reconstruc-
tion (4.4a) of the biorthogonal wavelets is the hierarchial form of the piecewise polynomial

L — 4), where ¢(x)

reconstruction in (3.9) (see appendix A). Thus in Figure 1d ¢f(z) = (&

is the solution of the dilation equation (4.4b), and in Figure 2d j(z) = (- — 4), where
¥(z) is the “mother wavelet function” in the expausion (4.7). The boundary limit functions
in Figures 1 and 2 show how to augment the scaling functions and wavelets of the infinite
domain in order to get a “wavelet basis” for the interval [0,1].

In [ADH]} we take w(z) in (4.1b) to be the “hat-function” and show how to derive MR
schemes in this case.
Remark 4.1. Daubechies’ orthonormal wavelets are obtained from the above formulation
by adding the requirement 8, = 2, which couples the systems of equations for {a,} and
{8,}, and then the biortogonality condition (4.5a) becomes a nonlincar orthogonality con-
dition. Observe that as we change the order of accuracy r , we necessarily change {a;}
and consequently the nature of the discretization. In this respect Daubechies’ orthonormal
wavelets deviate from our set up in which the discretization is fixed, and we change the order
of the reconstruction if desired. Also observe that we did not use the notion of orthogonality
or biortogonality in our formulation. The latter is an antomatic consequence of the relation

D, R, = I, and it does not impose an independent requirement.

5. Data compression and error control .

In this section we consider strategies for data compression and apriori bounds on the

COIIlpI‘GSSiOIl error.
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We can obtain data compression by setting to zero all scale coefficients which fall below
a prescribed tolerance. Let us denote
0 i Ml < e,
dk = tv‘(d;?'; €) =: 3 (5.1a)

d¥ if |d¥] > &,

and refer to this operation as truncation. This type of data compression is used primarily
to reduce the “dimensionality” of the data. Another aspect of data compression is to reduce
the digital representation of the data for purposes of storage or transmission. In this case
we use “quantization” which we model by

« d*
d*¥ = qu(d¥;e,) =: 2¢,, - ROUND [—3] , (5.16)
3 M 25)’&

where ROUND | - ] denotes the integer which is obtained by rounding of the number. For
example if |d%| < 256 and g, = 4 then we can represent |d¥| by an integer which is not larger
than 32 and commit a maximal error of 4. Observe that ]d;"] < gy = qu((l;?';ek) = 0 and

that in both cases

[dh —tr(dhiey)] < ey, (5.2a)
|y — qu(di e )] < ey (5.2b)

Let
oL = M-V {dE, ., dE 00, (5.3a)

denote the “decompressed” data; then, under the circmstances which are described in ap-

pendix A, we typically get the following bound on the compression error

L
L <0 > e (5.3b);

k=1

I,“")L —

here | - | is the discrete norm which is defined in (A.2b} in appendix A and ' is a constant
independent of L . Tt should be noted that we assume here that M—1 is a linear operator.

Given any ¢ > 0 we can take for example
e, = {1 —q)¢t%e forsome 0<q<l, (5.4a)
in which case we get from (5.3hb) that
5k — o], < C e (5.4b).

Only in very simple situations we can choose a sequence of tolerances g;, which ensures that
for a prescribed ¢
max |vf — B85 < e. (5.5)
0y, i t
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Thus the typical situation in this set up is that we can specify the rate of compression, but
we cannot specify an upper bound on the compression error.

In the following we describe a technique which enables us to specify a desired level of
accuracy in the decompressed signal, independent of the particular form of the prediction
operator; most importantly it also applies to nonlinear (adaptive) prediction methods. This
is accomplished by using a modification of the encoding algorithm (1.10)} which keeps track
of the cumulative compression error in the predetermined decoding procedure (1.11) and
compresses accordingly. Asis to be expected , we cannot specify compression rate at the same
time. This algorithm applies to both the truncation (5.1a) and the quantization (5.1b}, and
we denote their operation by the generic name cm(d¥; ¢,.), where em stands for compression.

We denote our error control encoding by M, and describe its operation on the input v?
by

b, = M, vl = {d,... ", v0). (5.6)

First we apply successive decimation to the input v

DOk=1L,...,1
(5.7a)

ph—1 = Di:—l ok

These values of v* are used in the following to monitor and control the accumulation of the

compression error; Set

B9 = oV (5.70)
DOk=1,...,L
P = PE gk
) (5.7¢)
d* = em[G(vF — vP); e,
| 5k = oP + B, db.
Clearly, if we apply the decoding M1 :
DOk=1,...,L
ol = Pk pk-l (5.8a)
’Uk = ’UP —|— Ek(lk
to the encoded data ¢, we get that
M-t AdE, .. d ) = BE (5.8b)



where §L is the quantity which is computed in (5.7¢) for k& = L. Our task is now to find G,
and g, such that (5.5) holds.

Next we apply this program to the case of cell-average discretization in a uniform grid of
[0, 1]; here because of the simplicity of the expressions we can precisely monitor the cumula-
tive compression error in the decoding algorithm and show how to control it. For simplicity
we consider compression by truncation (5.1a). The predetirmined decoding procedure is

(3.6), which we now rewrite in the form
DOk=1,...,L

DOi=1,... 0,

21ﬁ1 (PA l_l)2i—1 (5.9)
U‘Zki—‘l = vﬁi 1 + d:u

ko o_. 9k-1 Lk
L Vg = 2v; Voiq

The modified encoding procedure is described algorithmically by the following:

(i) Apply decimation to the input v”
DO k=1,...,1

DOGi=1,...,Ju, (5.100)

‘Ut{cml - %( 21—1 _;-‘vgz)
(ii) Set
e (5.100)
(iii) Calculate

vy = (Ph, 05 )y

) R (5.10¢)
(l;‘ = t?‘(vgj_l UZ 1 ('Uj_ _Uj_ );Ek)

vé} 1—1); 1-{~d"‘




 in order to rewrite the expression for d¥ in (5.7b) as

1 .
— g P _ ; e
[Cu(eh — 7Y = 10, 8 ,) = (ol — ol = ok, = of, — (02
Let us denote the cumulative compression error by
[
EF = vf — 9
and the prediction error
P gk P
Coi-1 T Va1 T V00
With this notation we get from (5.10¢) that
k k—1.
821“1 27 1 _tT( *gj 1:5!;)1
k
( 24—1 + 8 ) J 1'

Subtracting (5.11c) from (5.11d) we get

1 ]
( — &k Y=EF1 P 4 t?‘(ezpj__l - 8;"‘*1;51;)'

231 J 251

Let us now examine the two possibilities in (5.12):

|€;¢_1 | > Eg = (5;‘7 1

231 “82””“0:}8531

k—1
_]2_(8.‘.. _gk 1)_ f’ _e’gPJ )
|gj’ 1—€2j 1’<Ek:>

%(8'» + &K

271

)= &5

2

From (5.13) we get the following inequalities

1

(I 1|—|—l<ff}L ) —max(|5k + &,

23—11?

|5§‘J - Sé‘;,._ll) < ‘2max(]8f‘1|,6k).

Recalling that £° = 0 we get from (5.14a)

k
16410 SNEF oo + ek -0 < D
£=1
Recalling that here |¢*| = kh, = Lh,_; we get from (5.14b
g ) 2 g‘

€4l = Ry S 16 = Thyoy S5t (KL |+ 1ELD)

A

by, 123"1 1nax([£;‘“l|,sk).

17

— £k _ okl
gl = &5,

(5.11a)

(5.116)

(5.11¢)

(5.11d)

(5.12)

(5.13a)

(5.13b)

(5.14a)

(5.14b)

(5.15a)

(5.15b)



It follows from (5.15) that
L
1E800 < D€y (5.16a)
=1

and if we choose {e,}l_, such that for all £ > 2

-1
Ee> D Em (5.16b)
=1
then the £;-error is
1Ml < s (5160

Given ¢ it makes good sense to choose the tolerance-levels g to be

1
gp = (1 —q)g" % forsome 0<g< o) (5.17a)
in this case we get
o = 5l = 1€7]0 < 5, (5.178)
ot = 5Ml, = 1", < (1 = 0)e. (5.17¢)

6. ENO reconstruction and subcell resolution

In [HEOC] we presented a data-dependent piecewise-polynomial reconstruction technique
which avoids the Gibbs-phenomenon by an adaptive selection of stencil §¥ in (3.9) ; we refer
to this technique as Essentially Non-Oscillatory (ENO) reconstruction. The basic idea of
ENO reconstruction is to assign to a cell ¢ which is in the smooth part of the sampled
function, a stencil S} = {cf,....ck |} with 1y =1o(¢), which is likewise in the smooth part
of the function (provided that this is possible ,i.e. that discontinuities are well separated and
are far enough from the boundaries). This is done by choosing S¥ to be the stencil for which
the reconstruction polynomial p#(z;0*) in (3.9) is the "smoothest” among all candidate-
stencils, i.e. those of r consecutive cells of C¥ (starting with ¢} ) which contain the cell ck

,e.g. by taking i4(z) to be the index for which

d'r -1

daxr

(6.1)

min

tin | (@5 0Y)

is attained among all candidate-stencils. This enables us to get a good approximation ev-
erywhere except in the cells which contain a discontinuity.
Next we show that cell-average discretization enables us to get a good approximation even

in cells which contain discontinuity by using “subcell resolution” (see [H6]). Let Z(x; F'¥)
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- denote the piecewise-polynomial interpolation of the primitive function in (3.9). Since it has

formal order of accuracy r + 1 , we get in regions of smoothness of f that
Ly(w; F*y = Fz) + O((hy )+ FEHI) (6.20)

e (Rav¥)(&) = £ 1w F¥) = £F(z) + O((e | FE+])

(6.26)

= f(2) + O ) LF O

Assume now that f(x) has (p — 1) continuous derivatives and that f()(z) is discontinuous
but bounded. It is clear from relations (6.2) that the maximal accuracy that can be achieved
from either point-values or cell-averages is O(h?||f)|]): Using cell-averages we gain one order
of smoothness in the primitive function {3.5a) but we lose it in the differentiation (3.5b).
Consequently there is no advantage in using cell-averages rather than point-values of f(x)
for smooth data.

There is a significant advantage however in using cell-averages rather than pointvalues
of f when f(z) is discontinuous in a finite number of points . To see that let us assume that
f(z) is discontinuous at z, € (mf_‘,:rzf) and that in [a,z,) U {z40], 0 <a<azy;< b1, f
has at least r continuous derivatives. Let 7L and IR denote interpolation of either f(z) or
F(z) at grid points in [a,z4) and (x4, b, respectively. We note that F'(x) is continuous in
[a, ], but has a discontinuous derivative at z ;. Consequently, if F(z) is properly resolved on
the k-th grid ZE(z; F'*) and T#(x; F'¥) will intersect at some point &, € ¢¥. From (6.2) we
get that this intersection point is a good approximation to the location of the discontinuity

within the cell c;‘.' , 1.e.
&g —xg = O((hy)[LFO])).- (6.3)

On the other hand, having knowledge of point-values {f(z¥)} in {q, 8], there is nothing much
we can say about the location of the discontinuity within the cell cf.

We describe now how to use the subcell-resolution technique of [H6] in the prediction
(3.8) in order to get an accurate prediction in a cell cj-"“1 which contains a discontinuity. Let
,) , and let Z0(x; F5-1) and T8(a; F6-1)

denote the ENO interpolation in the neighboring cells c;f"_"} and cf;} on the left and right,

[k imati ok
us denote by F_, our approximation to F (.?:23._

respectively, and define
D(x) = IR(x; [*-1) — Th{z; FA-1). (6.4a)

Since D(&,)} = 0 we assume that

D(x*-1) - D(b-1) < 0. (6.4b)
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F2kj_1 is now computed as follows

Th(ef, s IR if D(wh_)- D(zk1) <o
i = (6.5)
IR (k43 F41)  otherwise

It is easy to see that if f(z) is a plecewise-polynomial function

Prlz) a<z<ay
fla)y = (6.6a)
Pplz) za<x<b

with
deg(Fp) <7 —1, deg(Pg)<r—1, (6.6b)

then
P, = Pk ), (6.60)

i.e. the procedure {6.5) is exact . More generally, if f(z) has p continuous derivatives to the

left and the right of the discontinuity, we get that
FE_ = Flab_ )+ O((hP @), p= min(p,r); (6.7)

Remark 6.1. If we know that f{x) has ¢ — 1 continuous derivatives and a discontinuity of

the ¢-th derivative in <igg < :n ~! we can extend the subcell resolution technique of
d» g 1 d q

(6.4) - (6.5) to this case as follows: £ F( '} has a discontinuous first derivative at x4 If it
is sufficiently resolved on the grid, we expect £= I (z; F¥-1) and A% 1 (w; F*=1) to intersect
at &4 in c"c 1

&g —xg = O(h7). (6.8a)

It follows therefore that if we replace D(z) in (6.4) by

v (4
R k-1 L k-1
(E:LQI (r, F ) i (.L F ) (6.81))

D{z) = o

we get a subcell-resolution technique which is exact for the corresponding piecewise-polynomial
problem (6.6); this implies {6.7}).

Remark 6.2. Extrapolating the analysis of the information contents in cell-averages vs.
point-values, we get that weighted-averages with respect to the hat-function contain infor-
mation that will enable us to obtain subcell resolution of §-distributions; this may be useful

for compression of digital images and propagation of singularities (see [ADH]).
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7. Numerical experiments and conclusions.

In Figure 3 and Table 1 we present results of data compression for the MR schemes which

are desribed in this paper. We generate the discrete data v for Jy, = 512 by

1
Uf’:fj(,ff’), ff‘:—l-l—(‘l—:j)hb, hLZQ/JL, Eﬂl,,JL, (71)
where
—msin(‘?z—""m?) -~ <z < —%
fe)=1  jsinmn)] ki< (7.2

2z — 1 sin(3rz)/6 L <z<l
This input data is displayed in Figure 3a by drawing a circle around the points (¢¥,v¥} for
t=1,...,J.

The MR schemes are used with 6 levels of resolution, i.e. L = 6 and J;, = 8. The
scale coefficients are truncated by (5.1a) with ¢ = 107 and ¢ = ! in (5.4a}). The result
of this truncation is displayed in the z — % plane by drawing a circle around ({ff , k), where
Er=—-14+(— )y, by =25"Ehy for each d;';' which is above the tolerance ¢.

In Figure 3b we show the data compression of the MR scheme which is based on
Daubechies’ orthonormal wavelets with » =5, i.e. five vanishing moments.

In Figure 3¢ we show the results corresponding to the biorthogonal wavelets of [CDF]
with r = 5. In both Figures 3b and 3c we used periodic extension at the boundaries.

In Figure 3d we show the results of the piecewise-polynomial reconsrtuction (3.11)(3.12)
with r == 5 | where we used one-sided stencils near the boundaries.

In Figures 3e and 3f we used the error control algorithm (5.10) with the same choice of
{e;} as above. In Figure 3e we show the results of the ENO reconstruction with r = 6 .
The particular technique that we used here is described in {HEOC]; it is the one-dimensional
version of the “crystal-growth” algorithm in [HC].

In Figure 3f we append this ENO reconstruction with subcell resolution (6.5). The subcell
resolution is applied to cells ¢k for which 8% | NSk | = f, i.e. where the selection of ENO
stencils “shies away” from ¢,

The corresponding rates of compression and compression errors are listed in Table 1 .
We would like to make the following observations regarding these numerical results:

(1) The compression error is about the same for all the MR schemes in this experiment.

(2) The “smooth part” of the data is resolved to the prescribed tolerance at level 3;
thus the significant scale-coefficients of levels 4 to 6 are the “signatures” of the various

prediction operators of the two discontinuities in the function (7.2} and the discontinuity in
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the derivative. In the case of wavelets where we used periodic extension, we also get the
“signature” of the discontinuity which is so introduced at the boundaries.

(3) Biorthogonal wavelets perform better than orthonormal wavelets; their “signature”
is narrower because of the smaller stencil and it is symmetric. We remark that the lack
of symmetry in the coefficients of Daubechies’ orthonormal wavelets increses the number of
operations in various applications (see [HY], [H7] and [GKK]).

(4) As to be expected, the piecewise-polynomial reconstruction in Figure 3d is identical
to the biorthogonal wavelets in the interior; the only improvement is the removal of the
“signature” of the boundary discontinuity which is accomplished by using one-sided stencils
near the boundaries.

(5) Since the main difference between the various MR schemes in this experiment is
in their “signature” of discontinuities, there is a considerable improvement in using the
ENO reconstruction, because then the signature is typically 1 point. This signature can be
completely eliminated at times by using subcel} resolution (after all the only information in
a discontinuity is its location). Observe that the particular version of ENO reconstruction
that is used here misses a bit at the discontinuous derivative which is located at @ = 0. This
can be fixed by using special procedures which are described in [Do] ; see also Remark 6.1.

Next we repeat the numerical experiments in Figure 3 for two-dimensional data corre-

sponding to a tensor-product of the grid in (7.1). We generate the discrete data fZ by
JE = LERER),  1<4,j <512 (7.3)

where the function f,(z,y), which is defined in [—1,1]?, is the following two-dimensional

“variation” on fy{z)} in (7.2} :

.u_\/m(;n,y) if @< 1cos(ny)
fz(»”:f/) = (74&)
u_r\/m,—z(n:,y) +cos 2my) i x> 1cos(my),

where Uy 19

—rsin (51?) ifr < -1
ug(z,y) =< |sin (27r)] if r| <1 (7.4b)

2r — 1+ tsin(3nr) ifr>1
and

r =z + tan (¢)y. (7.4¢)

-‘We display this function in-terms of its isolines in Figure 4a.
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The MR schemes are used with I = 6 levels of resolution, i.e. the coarsest level is an
8 x 8 matrix.

In Figure 4b we show the data compression of the MR scheme which is based on
Daubechies’ orthonormal wavelets with » = 3 | i.e. three vanishing moments.

In Figure 4c we show the results corresponding to the biorthogonal wavelets of [CDF]
with » = 3. In both Figures 4b and 4c we used periodic extension at the boundaries.

In Figure 4d we show the results of the piecewise-polynomial reconsrtuction (3.11)-(3.12)
with r = 3 , where we used one-sided stencils near the boundaries.

The results in Figures 4b — 4e where obtained with a tensor-product extension of the

corresponding one-dimensional MR scheme which is described in appendix B. As in the one-
1
2
(5.4a). The result of this truncation is displayed in the form which is described in (B.10).

dimensional case the scale coefficients are truncated by (5.1a) with e = 107° and ¢ = 1 in

In Figures 4e and 4f we used a tensor-product extension of the error control algorithm
{5.10) with the same choice of {£,} as above; this algorithm is described in appendix C.

In Figure 4e we show the results of the ENO reconstruction with r = 6 . In Figure
4f we append this ENO reconstruction with subcell resolution (6.5) which is applied in its
one-dimensional form.

The corresponding rates of compression and compression errors are listed in Table 2 .
We would like to make the following ohservations regarding these numerical results:

(1) Comparing these results to their one-dimensional counterpart we see that the com-
pression error is somewhat larger, but of the same order. The compression ratio is larger —
this is of course data dependent, but nevertheless “typical”.

(2) The order of “efficiency” between the various MR schemes remains as in the one-
dimensional case, and the differences are somewhat magnified. We used here r = 3 for
the non-adaptive schemes because it gives better results than r = 5 ; e.g. using r = 5 for
Daubechies’ orthonormal wavelets yields a compression ratio of 7.79 with maximal error of
1.226 x 10-3 .

(3) The addition of subcell resolution to the ENO reconstruction improves the compres-
sion, but only slightly. We can get a more significant improvement if we use a genuinely
two-dimensional extension of the algorithm in (6.5).

We would like to remark that one can use the error control algorithm also with the
non-adaptive MR schemes in Figures 4b — 4d , in which case we always get an improvement.

In Figure 5 we demonstrate the geometrical flexibility of using cell-average discretization
by showing the results of data compression in a domain which is carved in the form of a
smiling face from {—1,1]2. The finest mesh has 12,962 cells and the input data is the cell-

averages of fo(z,y) in (7.4); this data is displayed in terms of isolines as the left plot in Figure
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5b; to the right of this plot we show the result of its decimation on the next two coarser
- levels of resolution, which are obtained by successive agglomeration. These levels contain
2,122 and 369 cells, respectively; the cells of the coarsest level are shown in Figure 5a. In
this calculation we used a piecewise-polynomial reconstruction with r = 3, and truncated
scale-coefficients with £ = 10-2, In Figure 5¢ we display this truncation by marking the
- coarser-level cells in which one of the prediction errors in (2.3) is larger than the tolerance.
The compression ratio in this experiment is 2.65 , the maximal error is 2,15 x 1072 and
the Ll-error is 6.48 x 10-1. In [AH], from which these results are taken, we show that the
performance of this MR scheme is comparable to corresponding tensor-product schemes in
similar circumstances. We refer the reader to [AH] for more details.

In building the case to promote the use of cell-average discretization we have not yet
discussed the issue of suitability to applications. As we have mentioned earlier, for smooth
input data the performance of all MR schemes is about the same, and then pointwise dis-
cretization is usually the best choice because of its simplicity. However, when the input data
is only piecewise-smooth there is a clear advantage to using cell-average discretization - this
is true in the numerical solution of hyperbolic conservation laws where the solution typi-
cally contains shock waves (see [H4-5]), and in the solution of integral equations where the
kernel is usually integrably singular (see [BCR],[BY],[H7] and[GKK]). Another important
feature of cell-average discretization is that if the input data contains noise or local high-
frequency components, then these are averaged out in the coarser levels. This enables us to
to develop techniques to reduce noise (see [Mi]) and to design special techniques to handle
piecewise-smooth data which carries some local high frquency components (see [DH]).

These characteristics of cell-average discretization make it ideal for the purpose of image
compression, where the coarser levels of discretization behave like those of piecewise-smooth
functions. Furthermore, the strategy of truncation in (5.4a) and (5.17a) dictates increase in
accuracy as we go to larger cells. This is suitable to the averaging properties of the human
eye and makes the decompressed image look “pleasant”; in some respects this works like
cosmetic retouching, e.g. in compressing an image of a face it may eliminate freckles, but at

the same time keep the larger features sharp.

Acknowledgements.

Many thanks to my collaborators Remi Abgrall, Paco Arandiga, Barna Bihari, Rosa Donat
and Ttai Yad-Shalom.

This research was supported in UCLA by Grants ONR-N00014-92-J-1890 and NSF-DMS91-
03104.

24



Appendix A. Stability analysis and existence of MR bases.

We assume that sequence {(R;D;)}2,,

(RiDy): F = F (A.la)

is a sequence of (discrete) approximation in the Banach space JF, i.e. that for any f € F

(i)
R Di SNl < CHI (A.16)

(i)
IRD =TIl =0 as k— oo (A.lc)
Using the principle of uniform boundedness we conclude that there exists a constant C,

such that for all %
Cﬁ < Cy. (A.1d)

If (A.la) is a nested sequence of discretization, we get that the direct MR transform

(2.11) is stable with respect to perturbations in the input data v%, and that

(8(dk)),, = 16(eF)lp < Ca(l+ C I8
{A.2q)
|6(v0) | < Culé(vH)]y, -

where 8(-) denotes the perturbation, and the discrete norms above are defined as follows:
[0F]), = [|Rev*|| 5 (A.20)

(d*) = | Bpdtly . (A.2¢c)

The “natural” function space for cell-average discretization is F = L;(Q2), and there
(A.1b)-(A.1lc) take the following form:

[ IRDefY@)ldo < €Y [ 17@)lde, (A.3q)

lm [ |(RuDy/)(w) = f(e)lde = 0. (A.30)

In [H3] we investigate the stability of the inverse MR transform (2.12) and the related
question of existence of MR bases for mappings in 7. In the following we present a summary

of the results:



Case 1.
We assume that {{R,D;)}s2,, is an hierarchic sequence of approximation, i.e. in-addition
to (A.1) it satisfies the following for all £ >0

(R PRy = Ry (A.4a)
note that another way to express (A.4a) is
RiPE =Ry (A.4D)

In this case we show in [H3| that the inverse MR transform is stable with respect to

perturbations
L
[6(vE) | < 16(e°)lo + > (6(d))s (4.5)
k=1

and that for for any f ¢ F

oo Jr—dio

F=ReDof+>. >, d;"qu , | (A.6a)
k=1 i=1

where the coefficients d¥ = @5(f) are the scale coefficients in (1.10)
() = Gyeh(f) = GPy(I = Ryt D) - (A.6b)

The functions of the MR basis of F are obtained by reconstruction of the basis (1.8b) of the

null space of the decimation operator

T/);“' = Rkﬁf‘ (A.6c)

Case 2.

We assume that {R, Dy}, is a sequence of approximation which is o-contractive, i.e.
that there exist 0 < ¢ < 1 and a convergent series 3552 A, < oo of positive numbers such
that for all ¥ > 0 and any f € F

Ot (ReDpSY S q- T+ A - o) 5 (A.Ta)

where
oo(f) =1 {{ = Ry Df+])R£D£f||' (A.75)

In this case we show in [H3] that the following limit exists

. . L
RID,S = 1}2130 ngk(')'?,c'Df) - f, (A.8)
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that {(RIFDy)} is a hicrarchic sequence of approximation, and that its MR scheme is exactly
the same as that of {(R,D,)}. Hence we can use the results of case 1 to conclude that the MR,
scheme is stable with respect to perturbations, and that the compression error is bounded by
(A.2a) where now the discrete norms in {A.2b)-(A.2¢) are defined with the hierarchic form

RE. Furthermore, any f € F has the expansion (A.6a), where Ry is replaced by RY and
L
k=t lim JT(ReDe) - (Runsf). (A.9)
=k

Remark A.1.

Let {n¥}i%, denote any basis of the linear space V* in (1.1)

t=]
VE = span{nt}, (A.10a)
and denote .
f = RIpk = Llim T[(ReDy) - (Rynk). (A.100)
T =k
In {H2-3] we show that
k=1 =3 (PE )i vk (A.10¢)

where 15}5?_1 is the matrix representation of the original prediction operator (1.6a). The
sequence {pF} is related to {}} in (A.9) by
'I/);" = Z('Ek)i,j(!of? (A.I].)

i

where £, is the matrix representation of the operator B* in (1.9a).
Note that when P,f_l

from a single function ¢(z) which is the solution of the dilation equation (4.4b). From this

is the Toplitz-like matrix in (4.6) , then all p¥(z) are generated

point of view {T/J; } in (A.9) can be thought of as “generalized wavelets”.

Remark A.2,

Observe that the functionals o, vanish if the sequence is hierarchic, and thus their size
measures the deviation of the sequence from being hierarchic. We remark that wherever
condition (A.7) has been verified, this was done with “hard” analysis; nevertheless, the
design problem seems to be “soft”. Although there are known examples of divergence of the
above limit, most “natural” approximations give rise to stable MR schemes (as is evident

from the experiments in this paper and others not reported here).
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Appendix B. Matrix form of tensor-product MR Schemes.

‘In this appendix we show how to use tensor product extension of one-dimensional. op-
erators in {0,1] in order to obtain MR schemes for data which is obtained from absolutely
integrable functions f

f:00,1}x[0,1] — R

which are discretized on the tensor-product mesh

Ck — {C X Ck}‘z_j =1
by
) 1
= {ffj} ii=1 > f;:j = W/& ]c*: f(zy, 2y)dz, d,y
H 4 v U
where {ck}tﬂ are the one-dimensional cells in (3.2a); note that here we replaced J, by Ny,
since we reserve J, for the dimension of the vector space V¥ in (1.1), ie. J, = (N,)
Although this case is covered by the general framework , it is more convenient to describe
the tensor-product extension of the one-dimensional MR scheme by using matrix notation.
Therefore we represent the two-dimensional array {f" } k. as the N, X N;, matrix A* and
describe the tensor-product MR scheme for the input-matrix A”.
Let us denote the matrix representation of the various one-dimensional operators by
k-1
Dk - (D)N};_] XN;;
Plf—l - (P)NkXNk—l
: (B.1)
k-
GE = Gl - P;f_;Dk 1) - (GD)Nk_lxNk = G(I — PD)

Ek ( )N.I‘XNR 1’

These matrix representations are obtained by taking v* and d* to be column-vectors, e.g.
Vil = (DETok); ZDU 1<i< Ny

for simplicity we drop the index k.

Starting with AL we decimate to get
A1 = DAk D*, k=1L,...,1; (B.2)
here ()* denotes the transpose. Given A*~1 we get an approximation to A* by
P LR PAk—'i P
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and observe that the prediciton error matriz ¥
ek - Ak _ PAk—lP*

satisfies

De* D* = (.

The dimension of the null space of the decimation operators here is
o= dpey = CNe)? = (N )P = 3(N )

and we store the scale-coefficients d* in three N._y x N._, matrices A% Ak Ak,
k-1 k-1 11 Sgs Sy

Using the matrix identity
I=PD+EGP, GP =G -PD),
we show that if we take A* and A*-1 from the sequence (B.2) and define
Ak = GP AR GP ), Ak = DAF(GP), Ak =GP ARD*
then A* can be recovered from A%1 and the above by
AF = PAR1P* + EAYE* + PARE* + EALP~,
This follows immediately from the identity

Ab = (PD+ EGP)AM(PD + EGP)* = P(DA*D*)P*
+ E[GPAMGPY|E* + P{DAKGP)*|E* + E(GP A*D*) P,

We conclude from (B.5)-(B.6) that A" has a multiresolution representation Aps,
AL T . L1? 1 ? 0
A — AJ\J =3 ({Am-}’m.:l P {Am’}m.:l N A ) N

where the direct MR transform is given by
DO k=1L,...,1
Ak-1 = DAR D+
Ak = GPAMGP), Ak = DAMGD)*, Al = GPAFD~,

and the inverse MR transform is

DO k=1,...,L
Ak = PAR-1 P + EARE* + PAEE* + EAEP+.
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We display the results of data compression by writing A,, in (B.7) as the matrix

(B.10)

Al oA

and mark each entry which is larger in absolute value than the prescribed tolerance by a

black dot.
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- Appendix C. Error-control algorithms for tensor-product grids.

In this appendix we describe our error-control algorithm for a rectangular grid. For this
purpose let us introduce two FORTRAN-like subroutines:

(1) Let DECLID(U,J, W) describe the one-dimensional decimation in (5.10a), i.e. its
input is an array U of size 2J, and its output is the array W of size J which is computed as

follows:

DOi=1,...,J
(C.1)

W, = Uy q + Uy)

2

(2) Let ERRCONID(U, J, V, D, W, ¢) describe the one-dimensional error-control in (5.10¢),
i.e. it operates on the array U of size J and its output is D of size J (the scale-coefficients)
and W of size 2J ; here V is the “control” which is also of size 2.J. We denote by P the

one-dimensional prediction operator.

DOj=1,...,]
v =(F- 0)2;‘»4
D; =tr(Vajoy — 0P = (V; - ﬁj)Q £) (C.2)

sz_1 = 'UP + DJ

Wy = 20, — Way;_s.

Next we describe the encoding procedure for a Jy, x J, array f& = { fi Lj} :

(i) Apply decimation to the input f~

DOk=1L,. .. 1

POi=1,...,J,
CALL DECID(f¥ ,Juy, Ji7?)
END DO
(C.3a)
DO =1,... 0y
CALL DECID(F* 2, J,_y, 7))
END DO

| END DO

(i) Set
0 Jo (C.3b)



(iii) Calculate
(DO k=1L,...,1

DOi=1,...,J,4

M ol L ol L
CALL ERRCONID(JET!, Jpr, i %, (A8, i P veps)
END DO

< DOj=1,...,J0, (C.3¢)
b

L - x
CALL ERR‘CONID(J( . ,22j—17']k—11fk: 2i—17 (Aé) . ,j:fk. ?25,'_115‘!;)

nfyen L - ~
CALL BERRCONID(F 2, Jiy, & o0 (AR) L 5, o oe)
END DO

| END DO

Observe that as in appendix B, the scale-coefficients are stored in three J;_; x J;_4

matrices A¥, A% AL In the numerical experiments of this paper we used
Ek——-% =E&p = 2}.:-]_.-—1&-- (0.4)

The significant scale-coeflicients are displayed in Figures 4e — 4f as in {B.10).

To describe the decoding algorithm we introduce the subroutine RECOVERID(U, J, D, W)
for the one-dimensional algorithm (5.9). Tt operates on the array U of size J and its output
is W of size 2J ; here D is the array of scale-coefficients, which is of size J.Again we denote
by P the one-dimensional prediction operator. The operation of RECOVERID(U, J, D, W)

is as follows:
(DO j=1,...,J
P = (P D)y

VVEj—l = ‘Up -+ DJ

Wy =20, — Wy, _y.

To apply the decoding we

(1) Set

fo=f0 (C.6a)
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(i} Calculate
( DO k: L’.__}i

DOi:l""’Jk-—l

CALL RECOVBRIDE o (8, 7
END DO
4 DOj:l,...,th1 (C.Gb)

k-1

CALL RECOVERID(f" %1, Juors (AR) . 5, % 50 )

CALL RECOVERID(/ 5 Jica, (88) . % )
END DO

. END DO
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Table 1: Data compression of one-dimensional input.

I Method | Order r || Compression | Lo —error | Li—error | L,~error |
Orthonormal wavelets 5 4.163 3.524 x 104 { 1.081 x 10-5 | 3.574 x 105
Biorthogonal wavelets 5 4,923 7.659 x 10-% § 1.114 x 10-5 | 2.141 x 10-5
Piecewise-polynomial & 5.626 2.967 x 104 | 1.455 x 10-5 | 2.824 x 10-5

ENO reconstruction 6 9.143 2.525 x 10-1 | 2.002 x 10-5 | 3.514 x 10-5
ENO +Subcell resol. 6 10.039 2.525 x 10-% 1 2,088 x 10-5 | 3.611 x 10-%

Table 2: Data compression of two-dimensional input.

| r Method | Order r H Compression | Lo, = error | Ly —error I L, — error ]
Orthonormal wavelets 3 9.46 1.264 x 103 | 5.882 x 10-° | 8,716 x 10-°
Biorthogonal wavelets 3 10.67 9.717 % 10—4 | 5.889 x 105 | 8.225 x 10-5
Piecewise-polynomial 3 12.09 9,717 x 104 | 5.933 x 105 | 8.255 x 108
ENO reconstruction 6 37.03 3.542 x 103 | 3.122 x 1075 | 6.190 x 10—°
ENO +Subcell resol. 6 41.83 1.042 x 10-3 § 3.043 x 10— | 5.794 x 10-%
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(e) ENO reconstruction.

Figure 4. Data compression of 2-D array .
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