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ABSTRACT

Domain decomposition preconditioners are constructed for general two and three
dimensional non-symmetric parabolic problems on unstructured meshes. Our conver-
gence theory needs fairly weak assumptions concerning the smoothness of the given
data and the regularity of the continuous solutions, say only H'-regularity in space,
and does not require that the coarse mesh and the subdomain size be small enough.
In each preconditioning step, all local subdomain problems are symmetric positive defi-
nite, only the small-scale coarse mesh problem is non-symmetric. The coarse mesh need
not be nested to the fine mesh and the coarse domain Qf need not match the original
domain Q, and neither of the coarse and fine meshes are required to be quasi-uniform.
The subdomains are allowed to be of arbitrary shape.

1 Introduction

This paper is to develop efficient domain decomposition algorithms for solving the linear
systems of equations which arise from the finite element discretizations of second-order
parabolic initial and boundary value problems on unstructured meshes.

The domain decomposition algorithms and theory for second-order parabolic prob-
lems have been well developed for structured meshes, see (7], [8], [9], [15], [17], and
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the references therein for symmetric parabolic problems in 2D; and [2], {13], [14] for
non-symmetric parabolic problems in 2D and 3D.

In this paper, we will consider both two and three dimensional non-symmetric
parabolic problems of more general form than those mentioned above. The domain de-
composition algorithms and the convergence theory will be developed for these parabolic
problems on unstructured meshes. Qur convergence theory does not require that the
coarse mesh and the subdomain size be small enough, and we need fairly weak assump-
tions concerning the smoothness of the given data and the regularity of the continuous
solutions, say only H'-regularity in space. The coarse mesh need not be nested to
the fine mesh, and neither need to be quasi-uniform. The subdomains are allowed to
be of arbitrary shape. Moreover, in each preconditioning step, all local subdomain
problems are symmetric positive definite, only the small-scale coarse mesh problem is
non-symmetric, and this idea is initially motivated by the work [21].

Let € be a bounded domain in B¢ and n = (ny,- ., mg) the unit outer normal of
the boundary 9. We shall deal with parabolic problems of the following general form:

%-{-Luﬂf in 0 x (0,7, (1.1)
where , ] )
d du ou
Lu_.-; -55{; ﬂij%;"rbiu]-l-;ci-a?i-l-du (1.2)

with (a;;(x,1)) symmetric, uniformly positive definite on £ x [0,7}, and the functions
b;(z,1), ci(z, t) and d(z, 1) continuous on Q% [0,T)]. The initial and boundary conditions
are

u(w,0) = up(z) on £ (1.3)

and .
> [Z a{j% 4 bl oy +au=g ondQx(0,T) (1.4)
J

i=1 j=t

We always assume a(z,t) > 0 on Q % [0,7]. Thus (1.4) includes Newmnann boundary
condition as a special case. The results of this paper can be generalized to the Dirichlet
and mixed boundary conditions by using the techniques introduced in our previous work
[3] [4]. There for the elliptic problems, we have developed the theory and algorithms
for domain decompositions on unstructured meshes.

Throughout the paper, we use ||-|lmq and |-ln o to denote the norm and semi-norm
of the usual Sobolev space H™(§2) for any integer m > 0. In addition, I+ {lm,rq and
I lmrn will denote the norm and semi-norm of the spaces wWmr(Q) for any integer
m > 0 and real number 7 > 1. The capital (' denotes generic positive constants which
are independent of the mesh parameters h, H and the time step 7.



2 Finite elements and domain decompositions

We will use finite element methods to discretize the parabolic problem (1.1)—~(1.4).
Suppose we are given a family of triangulations {7"} on £, consisting of simplices.
We will not discuss the effects of approximating Q0 but always assume in the paper
that the triangulations {7%} of Q are exact. So we have Q= QF = Upernt. Let
h=h=max,ers by, by = diam 7, h = mingern hr, pr = the radius of the largest ball
inscribed in 7. Then we say T is shape regularif it satisfies

h,
sup max — < g 2.1
hp TeTH Pr T o ( )

and we say T" is quasi-uniform if it is shape regular and satisfies

h<vh, (2.2)

with o, and -y fixed positive constants, see Ciarlet [5]. In the paper, we will only assume
that the elements are shape regular, but not necessarily quasi-uniform.

Let V* be a piecewise linear finite element subspace of H Q) defined on 7" with
its basis denoted by {¢!},, and O; =supp ¢b. Later on we will use the following
simple facts: if 7" is shape regular, there exist a positive constant (' and an integer
v, both depending only on oy appearing in (2.1) and independent of h, so that, for
i=1,2,-,m,

diamQ; < Ch,, ¥ 7C Oy, (2.3)
card {r € T" 7 C O;} <. (2.4)

Because of the ill-conditioning of the finite element stiffness matrix A obtained from
the discretization of the parabolic problems, our goal is to construct a good precon-
ditioner M for A by domain decomposition methods to be used with Krylov subspace
methods, cf. {11].

As usual, we decompose the domain §1 into p nonoverlapping subdomains Q; such
that = UP_,8;, then extend each subdomain ; to a larger 2 such that the distance
between OSY; and 8§ is bounded from below by §; > 0. We denote the minimum of
all §; by 6. We assume that At does not cut through any element 7 € T*. Tor the
subdomains meeting the boundary, we cut off the part of §2f which is outside of Q. No
other assumptions will be made on {Q;} in this paper except that any point z € €
belongs only to a finite number of subdomains {§2)}. This means that we allow each
; to be of quite different size and of quite different shape from other subdomains. We
define the subspaces of V" corresponding to the subdomains {§¥},i=1,2,---,p by

VP = {v, € V* v, = 0on (Q\ QU e\ (9an o))} (2.5)

For interior subdomains,

Vb= Vo HY(S). (2.6)
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Figure 1: Tine grid { and coarse gird QF

To construct optimal preconditioners, we introduce a coarse grid 7 which forms
only a shape regular triangulation of ! and covers §} completely, that is, £2 C O but
otherwise has nothing to do with 7%, i.e., none of the nodes of 79 need to be nodes of
T, Therefore, we can also use quite regular coarse grids, cf. Figure 1, which in some
cases allow very efficient solvers for the coarse mesh problems.

Let H be the maximum diameter of the elements of 77, and QF = Upnernth.

By V¥ we denote a subspace of H (0¥ consisting of piecewise polynomials defined
on TH. We note that V¥ need not necessarily be piecewise linear; for example, it may
be bilinear (2-D) and trilinear (3-D) elements or higher order elements. Thus we do not
necessarily have the usual condition: VH c V!, See Figure 2.1.

In order to overcome the difficulty that Vv ¢ V', in both the theory and the
algorithms, we need a mapping Z,, from VH to V*. For the coarse space to be effective,
this mapping must possess the properties of If *_stability and L? optimal approximation,
sec Chan-Zou [4], Mandel [16]. So we make the following assumptions on the mapping
I,: for any u € VH,

(A1): |Tpuln € Cluliam,
(A2): He — Ih“”o,n <Ch |’“|1,nH-

In our previous work [3] [4], we introduced several operators Z;, which fulfill assumptions
(A1) and (A2). In particular, the standard finite element interpolation operator I,
and the Clément’s local L2-like projection operator Ry are two such choices.

Further, we assume that there exists an operator Ry : H (QH) — V# which satisfies
that for any u € H(Q),

(A3): [Ryulian € Cluliam,



(A4): [lu - RH“Ho,nH <CH |’“|1,nH~

There are a few options for such operators Ry, e.g. Clément’s local L?-like projection
operator and Scott and Zhang’s local operator, cf. [3] [4] for details.

3 Self-adjoint cases

To deal with the non-selfadjoint parabolic problems, we need some results from the
selfadjoint case. So in this section we first consider self-adjoint parabolic problems, that
is, we agsume b; = ¢; for i = 1,---,din (1.2). For any u,v € '), define

d du Ov 4 dv  du
blu,v) = Z fna”(m)a—%—zgﬂ: da:«l—Z; /n by(x) (u%:-]— »3?:'0) dz

1,7=1
+ /d(:::)m:d..’n+/ alz)uvds, (3.1)
0 a1

where and in the sequel we drop the dependence of the functions a;j, b;, d and a on
the time t, since we are mainly interested in solving the corresponding elliptic equations
at each fixed time step. We see that there are positive constants (', C5, Cs depending
only on the coeflicients such that

Culjull o — Collulifn < by, u) < Callull} q, ¥ u € H'(). (3.2)

After discretizing the variational problem corresponding to the system (1.1)-(1.4)
by using some finite difference schemes i1 time and the finite element space V* in space,
the resulting linear system may be formulated as follows

G,(’Lt,h,’l‘)h) — (f; 'Uh), v ,vh € Vh. (33)

The stiffness matrix of (3.3) is denoted by A = (a(¢l, ¢¥) W21 with a(-, ) defined
below
a(w, v) = (u, v) + 7 by, v). (3.4)

Here T is the time step. It is known that (3.3) allows usual time discretizations, for
example, implicit Euler scheme and Crank-Nicolson scheme.

In order to find an optimal preconditioner M for the matrix A, we employ the
overlapping domain decomposition method and then use the PCG method to solve the
problem (3.3) with the preconditioner M. Let (-,) be the usual I*-inner product in
R" and the corresponding norm | - i| = (-,-)/% We denote (A-,-), which defines an
inner product on R, by (-, )4 and its induced-norm by |{- ||4. Let u* be the kth PCG
iteration with the initial guess u®. It is well known that [12]

= < 2 (\/W____«,_%) fu=wlla

5}



where k(M A) is the condition number of M A.

Based on the finite element spaces ¥;* and VH given in the last section, we derive
the two level overlapping Schwarz methods for nonnested grids.

For each subspace Vi*, we define the H'-projection operators PV V1L
i < p such that for any b € VB, Pt € V* satisfies

al P, v) = a{ut, ), Yo € Vit (3.5)

Next we define the coarse grid projection-like operator. Let Z,, be any linear operator
which maps V¥ into a subspace T,V of V*, eg. T, may be chosen as the standard
finite element interpolation operator II,, or the locally defined operator Ry, see Section 5
for more details.

We define P, = Z, Pz V* — V& with Py : V" — VH defined on the original coarse
space by

a(PHuh,'uH) = a(u“,Ith), wt e vh vt e VI (3.6)

Here the subspace Vi = T,V# c V*,

Remark 3.1 We note here that for the left-hand side in (3.6), a(ug,vy) for any
Upr, Vg € VH  is not an integral over original domain §, but the one over the coarse
domain QF | i.e, replacing Q0 in the definition of a(, Y by QF. Thus in the sequel we
always assume that the coefficient functions a5, b, ¢, are continuously extended onto
QF . And later on, we will use || - {loq and ||+ lla,an to denole the energy norms af-,+)
over 0 and ¥, respectively.

The additive Schwarz algerithm is to use the Conjugate Gradient Iteration to solve
the following operator equation

P P
Put= B+ Pt =G =08+ ) o 3.7
i=1

i=1
where gt, 1 =1, -, p satisfies
a‘(g?’ ’U,') = (f) ’Uz')? Vo € v:'ha (3'8)
but §¥ is defined as Z,gp with gy {ulfilling

(L(QH,'U) - (f}Ih'D): Vve VH~ (39)

We now derive the matrix representation of the operator P. Using this both the
additive and multiplicative Schwarz preconditioners may be written down. We will often
use 1! to denote the finite element function and u to denote the vector of coefficients
of that finite element function, that is w® = 3 updy.

Let {¢?}7, be the standard nodal basis functions of V, and {¢;}7L; C {¢f}izs be
the nodal basis functions of V*, i = 1,2, -+, p. For each i, we define a matrix extension

operator BT as follows: For any u} € Vi, we denote by 1; the coefficient vector of ul



in the basis {¢};}7L,, and we define that RTu; to be the coefficient vector of ul in the
basis {¢f}iz1.

Let {9}, be the basis functions of VH | then {Z,9 }[~, are the basis functions
of V. We define a matrix extension operator RY as follows: For any ub € Vg, we
denote by 1, the coefficient vector of uf in the basis {Z,pF Yy, define BT uo to be the
coefficient vector of uf in the basis {¢t¥7=1. Then RHy,; = Tuvf (q;) where g; is the
nodal vertex of gbf,-‘. When Z, = II; then Ry, is simiply given by ¢ (g;).

It is straightforward to derive, cf. [3] [4] that for any u" € V*, the matrix represen-
tation of Pul is ,

M Auw = RTA7 RyAu+ > RY A7 R Au, (3.10)
i=1
where A; = R;AR] for 1 £ ¢ < p are the stiffness matrices corresponding to the
subspaces V", but Ay the stiffness matrix corresponding to the original coarse space
VH,

These may be thought of as an overlapping block Jacobi method with the addition of
a coarse grid correction. The multiplicative Schwarz method is the Gauss-Seidel version
of the additive algorithm. We write down the symmetrized version:

M, = (I-(I-BTA7'RA)...(I- By AR, AT - RYAZ Ry A)
(I- RTA;'R,A)...(T — RT AT RiA) AT (3.11)

In practice the application of the multiplicative Schwarz preconditioner is done directly
as a block Gauss-Seidel iteration, not as is given in (3.11).

We give the convergence results for the additive algorithm, similar results may be
obtained for the multiplicative algorithm using the techniques in [10} or [20].

It is easy to check that

w{(M A) = k(P).
More exactly, the minimal and maximal eigenvalues of M A are given by
L (AMAwu) a{ PP, ut)
Ao MA) = B 0y T W alu o) (3-12)
and B
B (AM Au,u) a{ Pu”,u®
Amax(MA) . 13;}3{ (A'LL, 'U.) B Iﬁi)g a(u", ’bl.h) ’ (3‘13)

We have the following bounds for the condition number k(M A) which will be improved
greatly and localized in Section 5t

Theorem 3.1 Suppose that both {riangulations Th and TH are shape regular, but not
necessarily quasi-uniform. Then we have

w(M A) < C(1+ H/6) (3.14)



First we show

Lemma 3.1 We have
/\max(MA) S C (3’15)

Proof. For any u* € V*, it is quite routine to prove that
P
ST a(Pat, uwt) < C a(u",ut), (3.16)
i=1
while from (3.6) we see that
a( Pyut, Pyut) = a(Z, Pyu", ut), (3.17)
thus by Cauchy-Schwarz’s inequality and the assumption (A1)- (A2) and (3.2),
1Bt |12 ar < el 120 Prvlla < Cllellan || Pare |fa 001
Le., || Pru]|ear < Cllut|lan, which leads to the following
af Pyu®, ") = a( P, Pyut) € Calu?,w"),

this, together with (3.16) and (3.13) implies Lemma 3.1. J
To estimate the lower bound of k(M A), we first give a partition lemma for the finite
element space V"
ViV Ve Y (3.18)
with Vi defined as previously by Vi = L, V7.

Lemma 3.2 Let  C R4(d = 2,3). We assume that both triangulations T" and T#
are shape regular, but not necessarily quasi-uniform. Then for any u € V*, there exist

w, € Vb, i=0,1,-+-,p such that uw =} fou and
P
S lullia<C(1+ HI6Y|lull} 0, ¥ w € V™. (3.19)
i==0

Proof. The proof follows [3] [4]. Since we will need some of the details in Section 5,
we now give a complete proof here.

Let € is an open domain in R? large enough such that & CC §. Then we know, cf.
Stein [19], that there exists a linear extension operator E: HY(Q) — H() such that

Eulq = v and
||E“H1,ﬂ < Cilully (3.20)



For any u € V*, we choose 4, = I, Ry Eu. Then from the assumptions (A1)-(A4) we
obtain

luollie = [[TReEu/la < ClIReEull ox
< CllBullyar < CllEullia < Cllullie (3.21)
and
[l — wllon < 1Ew—RyEulloq+ IRy Bu — TyRg Eullon
S ”EU - RHE'UJH()JQH + Ch IRHEull,ﬂH (3.22)
S CH lEuh’QH + Ch 'E’Unll)nﬁ _<_ CH |Eu[1’§1 ﬁ CH I’U;ll’n.

Tt is known, cf. [1], that there exists a partition {6,}°_, of unity for Q related to the
subdomains {0/} such that 3%_, 6;(2) =1 on Q and for i =1,2,--+,p,

supp 9,; C Q.: U 39., 0 S 9,; S 1 and HVG,AHLm(n..) S 06:1. (323)

Now for any u € V", let vy = I,Ry Eu € V" be chosen as above, and u; = I1,0;(u— 1)
with 11, being the standard interpolation of V*. Obviously, u; € Vi* and

w= g+ Uy + o+ Uy (3.24)

Let 7 be any element belonging to 2}, with /i, being its diameter and 8, the average of
6, on element 7. Then from (3.23) and the fact that u — up € V*, we get:

lugft, < N0, T, (w — ug)[F,» + 2T, (8 — G )(w —uo)lT s
< 2u- ’woﬁ,r + 2|Hh(9k - Hk)(u - uo)ﬁ,r-

By using the local inverse inequality which requires only the shape regularity of T we
obtain:

IA

2|u— uulir + C R, (8 — 4. (u— ﬂo)“%,r
2

hZ
< 2u—ueli.+ C'th—(Sg |lv — o3+
k

‘uklir

AN

1
2fu = uafl + C gl — ol
k
By taking the sum over 7 € Q) we have
1
fugldar < 20w —toliay +C 3%”“ — ugll5ar (3.25)

Noticing the assumption made previously that any point 2 € £ belongs only to a finite
number of subdomains {2}, it follows from (3.21), (3.22) and (3.25) that

? 1
Sl < C (ju— wlf + mllu—wlls) < C(1+ H/6)[uli. (3.26)

k=1



Analogously, we derive that

3 2 h? 2
Sollulloe, S C |1+ = [l l5,
k=1

which completes the proof of (3.19). U
By making use of above Lemma 3.2, we can get the lower bound estimate for the
condition number k(M A}):

Lemma 3.3 We have
Amin{ M A) > C(1+ H/ﬁ)”z. (8.27)

Proof. For any u;, € V4, by Lemma 3.2 there exist elements u; € V}*,i=0,1,--+,psuch
that u = 31—y u; and

P H 2
Slinllta <0 (147 Ul Yeer™ (3.28)
i=0
Thus, from (3.28), (3.2) and (3.4) we have

Zb(uhui)

i=0

A

C(1+ H/6)|lulll

I

C(1+ H/8)* (b(up,up) + Hunlls.n) » (3.29)

this combining the definition of a(:, -} in (3.4} gives that

P

Z a‘(ui: 'u‘i)

i1=0

r P
S Hualls 0+ 7> bus ui)
i=0

i=0

C(1+ H/6Y (junllin+ T b1, 4a))
C (1 + H/8) a(up, w)- (3.30)

1A

i

It follows from (3.17) that

P
a(Put,ut)y = a(IhPHu",u")+Za(Piuh,uh)

i=i

P
| Pru™|2 on + ST Pt |15 - (3.31)
1=1

Now by Cauchy-Schwarz inequality, the definition of P;, (3.30} and (3.31), we obtain
P P
a(ut,u) = a(uh,d w)= a(uh, T Ruut) + ) alu”,ui)
i=0 i=1

10



."
= a(Pyu’, Rty + Z al P, )

i=1

» 1/2 » 1/2
(Z [Pt len + HPuﬂhllﬁ,nf-r) (Z Iutlan + HRH“'hHi,nH)
{ i=1

i=t

AN

i - 9
< C (1 + F) ”'( Puha“h i& H"'h”n,ﬂa

which, together with (3.12) completes the proof of Lemma 3.3. [

4 Non-selfadjoint cases

Now we consider the general non-selfadjoint parabolic problem (1.1)-(1.4), that is, we
remove the restriction b; = ¢ (1= 1,2) made in Jast section for selfadjoint cases. For
any u,v € H'(§Q), we define

' : du @
a(w,v) = /1 woda -+ T /ﬂ Z “"J'(m)%%dm
JS . . Ty G&;

ij=l

+7 (f d(®)uw rln:-{-/ n'(:t:)u.v(ls) (4.1)
0 an

and
[(, ) / d (1() du .(‘)(')’U,)l_ ( )
p(u, 1) = ; ?_:l g uwu—ami + ¢l —_0.’!:,;?) . 4.2

It is easy to see thal H 7 min_ g d(z) > —%, then there exist positive constants Cy, Cy
depending only on the coefficients wijy by ey d and a gitch that

1 I ¢ o 9 2 2
glluiloa+Cor Vullia < {ullPa < Ca (lullia+ 7liVulloa) , Ve € () (43)

where |ju}l, o and the following [|1tj] o om are energy norms defined on  and QF, respec-
tively, refer to Remark 3.1.

Further, by using (4.3} and Cauchy-Schwarz inequality, we see that there exists a
positive constant Cy depending only on the coefficients such that for any u,v € "),

d ;
L L du
7 b, )| = 73 /“Z <|b;(3:)u] jr2 57"| + |e(m) r% (’)7'-' |'v\> de < Co ¥ |Jullagllvllan
\ iz AR ) e
(4.4)
We denote
o{u,v) = alw,v)+ 7w, v), 4,0 € () (4.5)

which is the resultant bilinear form by discretizing the parabolic system (1.1)-(1.4) by
asual difference schemes in time and finite clement methods in space,

11



The finite clement problem we solve is: Find wt € V* such that
c(u ") = (f,o"), Vo € v (4.6)

We next constreut a preconditioner for the stiffness matrix F. Let F, A and B denote
the stiffness matrices related Lo the bilincar forms e(-, ), @+, ) and (-, ), respectively,
that is,

E = (e(et,81)) }

and Eq and A, denote the non-symmetric and symmetric coarse stiffness matrices over

A= (b)) o B=(ehed) @D

subspace V7, e

m m
Fo = (eof ), Ao= (el o])), ., (4.8)
Obviously, matrices A, Ay are both symmetric and positive definite. As in last section,
we shall denote hy A; the stilfness matrix over the subspaces Vi with respect to the
symmetric bilinear form a{-, ).
With these preparations, we define the precon ditioner for the stiffness matrix E by

;l
M= RYET Ry + Y REAT'R;, (4.9)

i=1
where R (i = 0,1,--+,p) are delined as in the previous section,

Remark 4.1 With the preconditioner M defined by (4.9) for the non-symmetric stiff-
ness malriz I3, only the coarse problem (57 ') is still @ non-symmelric system, but all
subdomain solvers (A7') wre symmelric posilive definate. This is important for practical
applicalions.

Tustead of solving the finite element problem (4.6), we solve the following precon-
ditioned system by the generalized minimal residual (GMRES) method, cf. Saad and
Schultz [18]:

MEw =g, (4.10)

with g a given vector in R”, GMRES starts with an initial approximation solution
w0 € R™ and an initial residual 0 = g — M Bu’. At the mth iteration, a correction
vector w™ is computed in the Krylov subspace

K (¢%) = span{r®, M E1°, - (M By et} (4.11)

which minimizes the residual, min,ee, ooy |lg = M E{u® + w)|[4 with [] - [|4 being the
norm of R induced by the inner product (A-,+). The mth iteration is then given by
u™ = u® a0, let

M En MEu
ﬂl = ntiil .glf_..__._“:)ﬂ- and ﬂl = max ” 1 HA
ng0 (. 1) 4 wzo  |uf|a

(4.12)

12



It is known that if 3, > 0, GRMES method converges, and at the mth iteration the
residual is bounded as

oy M2
o, ﬁ_
llg — M Eu"lis < (1 S5 1l (4.13)

Now we state our main theorem of this section which gives the bounds of the con-
vergence rate of the preconditioned GMRES method:

Theorem 4.1 There exists a constant Cy > 0 independent of h, H and T such that for
any T < Cy, we have

(e, M D) 4 ‘ s
e > .
T e P ya< C(r+1/8)77 (4.14)
M Eu
max MJ—IJ]_A— < (4.15)

o |julls

For proving the theorem, we first introduce a symmetric projection operator P, =
I, Py :Vh — vl = Z,V" with Py defined by

al Py, vy = a(n”, Iyoy ), e N T (4.16)
and a nonsymmetric projection operator (Jo = T,Qp V= Vi with @y defined by
r.—:(Q”'rt,"',v,.,) = e(u", Tyopn ), W e VYoo, e VL (4.17)

In the sequel, we always associate any vector v € R™ with a finite element function
o € VP by the vealtion o' = Y[, ndf. And for any matrix D € R***, we use || D]|4
to denote the matrix norm :

i D]l
[lufla

With the above notations, we first give a lemma used later for proving Theorem 4.1

D)4 = max (4.18)
Lemma 4.1 If 7 < 1/(16C3) with Cy appearing in (4.4), then for any uwh e VP,

HQH'”"'Ha.Q” S C ““h”a,ﬂ (41‘9)

and for any w € R", lelw = A~ B, we have

Hawlla < Cs T/ ”“”A- (4-20)



Proof. Taking vy = Qu” in (4.17) gives
”Qrﬂ"h”ﬁ,n*' = f’r(“h»IhQIﬂLh) -7 b(QH“h} Quu'y+7 b(uh,IhQH“h)- (4.21)
Using the definition (4.16) and the same way as in proving Lemma 3.1, we get
| Pyt |am < C 1l fla00 (4.22)
Thus from (4.16), (4.22) and Cauchy-Schwarz, inequality it {ollows that

ﬂr(?l’h‘,IhQi.r"'h) = ”‘(PH“haQH“h) < HPH“‘hHa,HH HQHuhHa,ﬂH

I . .
‘4‘||Q.n"“hl|5,nn + C ||l s (4.23)

AN

while from (4.4) and assumptions (A1) and (A2) we deduce that

r i@t Quh)| < Cor Qe e, (4.24)
le(“h'thQH”’h)( < C:jT]/2H“h”u,nHQH“h”a,nf'f
. ‘ i
< g“@tﬂfﬁni,n”+C§T|1“hl‘z,ﬂ- (4.25)

Now (4.19) follows from (4.23)-(4.25) and 7 < 1/(16CF).
Tor the proof of (4,20}, we sce by the choice of 1w that

(Aw,w) = (Bu,w) = bluh, w),
thus combining (4.4) shows
wlld < Car ™2 [lullaflelis

this implies (4.20). O
Proof of Theorem 4. 1. We fivsl prove (4.15). The preconditioner M may be rewritten
as the sum
M=M+ M,
with ,
M= RIAT R, Mo= RI L7 Ry — Ry A Rg.
i=0

By Lemma 3.1 and Lemma 3.3 of Section 3, we know that
Amin( AT AY 2 C (14 11/8)72, (M All4 = Amox (M A) < C (4.26)

We sce ) )
MEuw=MAu+7MBu+ Mylou. (4.27)



The first two terms can he bounded casily by (4.26) and (4.20) that
187 An| 4 < |1M Allx ulla < Clulia, (4.28)

and
M Bulj, < 7 ||MAYL||A7 Bulla < C 72 lul] 4 (4.29)

For the third term, ME = R By RoE — RY A7 Ry E. By direct computations, the
madtrix expressions for 7, Pyut and Z,Quu" are:

RT A7 ' RoAu, Ry Ey' RyEw, (4.30)

respectively, cf. Section 3. Using these expressions, (4.19), {4.22), and assumptions
(A1) and (A2) leads fo
WRTE;' RoFullh = (ARSES Rolu, Rg Eg' RoBu)
= "’(IhQI-I“hsIhQH'U’h) <C HQ!!“’IH?x,ﬂ” < Cllulli, (4.31)

and

l|]?.[TA5' Ry EuHA < HRUTAQ‘ ReAul|ja+ 7 ||R(TA§1R0A (A‘]Bu)HA
a(T, Py '“'hth Py ’”)h')llg +7 ”-(I.';inh»IhPHTUk)UZ
<0 ”P.'.r'”fh“n,ﬂ” +C7 HPHwh”a,nH <C H“Hm (4-32)

thus (4.15) follows from (4.27)—(41.32).
To prove {4.14), we first know by (4.27)

(M Bu,u)y = (M A, w)y+ 7 (M Bu,u)s + (MoFu, w) s (4.33)
The first two terms can be cstimated by using (4.26) and (4.20) :
(A Awyu)p > C(1+ HJ6) 7 (u 1) a (4.34)
and
T ‘(ﬂ}ﬂu,uh‘ < T{MA|ANAT Bull4 [lula < C Y (u,u) 4 (4.35)

Now we need only Lo bound the term (MoFu,u),. We obtain by using (4.30), (4.16)
and (4.17) that

(MoEu,w)y, = (AR ET RoLu,n) - (ART A7' RoAu,u) — 7 (ARg Ay BoBu, u)
= a(Z,Quu" u") — a(Z, Py wt )y — 1 (ARG A7 RoAu, A~ Bu)
= @(Z,Q " "y — a(T, Py u' uhy — 7 a T, Py, w). (4.36)



From the definitions of @y and Py, we get
(L, Qput,u") = a(Qut, Pyut) = e(Q ", Pruty — b(Q yut, Pyut)

= €(Tlfh.,I'll )H Tl’.h) -7 b(QU 'U.h, P”'U:h)
u(u"’,l’,, Py u“) 4T b(u"' Iy PHuh) -7 b(QHuh, PHu")

li

(4.37)
therefore, we sce from (4.36) and (4.37) that
(MoFu,u)y =7 bu T, Pyu’) — T b(Qut, Pyu”) — 7 a(Z), Pyu, w*). (4.38)
By means of (4.4), (4.19), (4.20), (4.22) and assumptions (A1) and (A2) we derive
T ’b(n"',_’[,,, ’”-u'")‘ < e oo 1 Zn Pru g < Cri? (u,u)s  (4.39)
T Ib(Q”u", )”’U.h)’ < Cyr 1@ lasn || P |loar < Cr(u,u)s, (4.40)
and
T 1”'(111 Pyt “’h)l < 7l a0 Pt llag
< O 1wl ulan € C 7% (u, 1) 4. (4.41)
So we obtain by (4.38)—(4.41) that
(Mo B, u),) < C 7' ()4 (4.42)

Evidently, (4.14) follows now [rom (4.33)-(4.35) and (4.42), this completes the proof of
Theorem 4.1,

5 TImprovement for bounds of condition numbers

In this section, we shall briefly discuss how to improve the bounds of condition numbers
of the Schwartz algorithms addressed in Sections 3 and 4. We consider only the case
7, = M, similar results hold true for the case Z, = Ry. All the notations here are the
same as in previous sections,

For simplicity, let V7 be any Lagrangian finite element space consisting of piecewise
polynomials of degree < ¢. Let {9}, be the basis functions of V¥, {¢ff}%, be the
corresponding nodes and O; = supp P!’ the supporting sets, We define a local L*like

projection operator Ry : LE(Q1) — VT as follows

i

Ryu = Z Q;u(qi"ypl', Vue LAH(Q™), (5.1)
i=1

16



where @, u € P,(0;) satisfics

/ Qupde = / updue, ¥ p € PlO;). (5.2)
o JO;
We introduce three more notations:

h, = max h By = U.tieai g 711, Hp = max H,. 5.3
3 T”C(Q;‘, Ty [ THNO, £ ’ k THéBk T ( )

We assume

(A5): Any point € 2 belongs only to a finite number of subdomains {2/}, and also
to a finite number of {13, }.

(AB): hy <pH,fovk=12"--p, and ji is a mesh independent positive constant.
With above proparations, we get
Lemma 5.1 Fork =1,2,---,p and s = 0,1, the following estimates holds:
v — Ryrutle . < C Hl g, YU E oo (5.4)
with 5, = Ugren, 0,.
Proof. By combining a known result, ef. Clément [6],

o~ Rygtilyn <C IS ulion ¥ 77 C T (5.5)

igHert

with the same propertics as (2.3) and (2.4) for T/ and the definition of By, we obtain
(5.4).

For the standard finite clement interpolation operator T1,, we have

Lemma 5.2 Fork=1,2,--,pands=0,1,

]'H, e “ nlt "‘"Qll.- S C hi,m‘q |“’|l,ﬂk7 V U® e ‘[H. (5.6)

Preof. Let 7" € T" andu € V hwe know, cf. Clarlet [5], for r >3 and s = 0,1 that

= Myl € CRO=DRZOBD (5.7)
this implies
S ju-Thulfa ¢ P20 ST O] (5.8)
riveeHoga rhnrfze
cheol rhoo
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Now apply the Cauchy incquality
Z“ibi < (ng)llq(z SRk
i i i

to the right hand side with p = »/2 > 1 and 11; + % = 1, and the local finite element
inverse inequality, we get

Y 1/q ifp
Z lw—Tuls 0 < Ch;’.{l—sj( Z hidw?—lmq) ( E ‘“'?,Jr'r")
rhrrH 2o sharHze rhncH A8 '
rheal rhool hea
21—x) 1-2fr 2/r
<o 2 ) (T i)
stz e e
whon), rheol
Y 2/
< en0 (Sl )
ek za
r”JCBk
ﬁ C hi“w-’:}[]f(}—?/r) (I[f(?'/r—l) Z |“’|?,T”") . (59)
FHaeH! ge
rHiea,

Taking the sum for 7% C Q} implies (5.6). U
We state now our main results:

Theorem 5.1 Suppose thal both lriangulalions Th and TY are shape regular, not nec-
essarily quesi-uniform. Let A be the stiffness maltriz of Section § and M be its additive
Schwarz preconditioner defined in (3.10). Then we have

[]k *
K(MAY<C (1 + max ~——) . (5.10)

1<i<p Oy

Proof. By checking the procedures of proving Theorem 3.1, it suffices to derive a new
hound in (3.19) for the decomposition n = Sk for any u € VE, Let ug = IRy Eu
be chosen the same as there. We obtain for s = 0,1 by using Lernmas 5.1 and 5.2 that

”T{. — 'H’OH-V.QL S H Fu— T\).” E’”’”s,ﬂi_ + HRHETL — HhRHEuHs,ﬂL

S H]_’}’!L - R’H E“H#,nk -+ C' h}l{‘—s IRHEull,B;,-
< CHY | Buly s, + C ™ [Rar Buly s, (5.11)

In the same way as proving (3.19) by using (5.11) and the properties of Ry and E,
we derive that for any u € V" there exist clements wuy, € VE, k= 0,1,--+,p such that
=Y h_qt and

;l?

r ) ) " . 1
Slhulfin € ¢l <0 3 (lo-lia + gl vl

k=1 k=1 k=1

13



o - H: o ok
s C kz-_m:] ((l + —3?’) IEH‘I-I.,SJ.- + (1 "1‘ 6_2) lR_”EHIin)
< ¢ (14 max 2 e (5.12
< C 1+ max - Hulls q 12}

Then (5.10) follows immediately from above.

Obviously, by means of Therorem 4.1 we can obtain the same improvement for the

results of Section 4 for non-selfadjoint parabolic problems.

Remark 5.1 From (5.10) we can sec that if the overlapping 8, of the subdomain (1 is e
fraction of the size I, (note: this is a completely local requirement), then the condition
number is completely independent of the fine mesh size b, coarse mesh size H and time
step T.
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