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1 Introduction

In this talk we shall describe numerical methods which were devised for the purpose
of computing small scale behavior without either fully resolving the whole solution
or explicitly tracking certain singular parts of it. Techniques developed for this
purpose include: shock-capturing, front-capturing and multiscale analysis. Areas
in which these methods have recently proven useful include: image processing,
computer vision, differential geometry, as well as more traditional fields of physics
and engineering.

Shock capturing methods were devised for the numerical solution of nonlinear
conservation laws. At the 1990 meeting of the ICM, Ami Harten [16] gave an
overview of recent developments in that area, culminating in the construction of
essentially nonoscillatory (ENO) schemes [17], [18]. We shall describe some of the
ideas and results relating to this subject in section III.

L.I. Rudin, in his Ph.D. thesis [36] noted that the ideas and techniques from
the theory of hyperbolic conservation laws and their numerical solution are relevant
to the field of image processing. Images have features such as edges, lines, and
textures and shock capturing is therefore an appropriate tool. Later developments
[38], [39], {26], [27], [35] indicate that subscale capturing contains a great number
of relevant tools for both image and video processing, as well as computer vision.
We shall discuss this in section IV,

In 1987, together with J.A. Sethian {31} we devised a new numerical procedure
for capturing fronts and applied it to curves and surfaces whose speeds depend on
local curvature. The method uses a fixed (Eulerian) grid and finds the front as



particular level set (moving with time) of a scalar function. The method applies
to a very general class of problems.

The technique handles topological merging and breaking, works in any num-
ber of space dimensions, does not require that the moving surface be written as
a function, captures sharp gradients and cusps in the front, and is relatively easy
to program. Theoretical justification, involving the concept of viscosity solutions,
has been given in [13], [7}.

Many applications and extensions have recently been found, We shall describe
the method and some applications in section II. We also note that the motion of
multiple junctions using related ideas has been studied in [28]. A particularly novel
application and extension {(done with E. Harabetian) is to the numerical study of
unstable fronts — e.g. vortex sheets, in {15}. This will also be described in section
IL The level set formulation allows for the capturing of the front with minimal
regularization because the zero level set of a continuous function can become quite
complicated, even though the function itself is easy to compute.

Our last example of subscale capturing involves wavelet based algorithms for
linear initial value problems. Using ideas of Beylkin, Coifman, Rokhlin, {2], we have
with B. Engquist, S. Zhong, and A. Jiang [11], [19] devised very fast algorithms
for evaluating the solution of linear initial value problems with time independent
coefficients, ‘This will be described in section V.

2 The Level Set Method for Capturing Moving Fronts

In a variety of physical phenomena, one wishes to follow the motion of a front whose
speed is a function of the local geometry and an underlying fiow field. Generally the
location of the interface or front affects the flow field. Typically there have been
two types of numerical algorithms employed in the solution of such problems.
The first parameterizes the moving front by some variable and discretizes this
parameterization into a set of marker points. The positions of these marker points
are updated according to approximations of the equations of motion. For large
complex motion, several problems occur. First, marker particles come together in
regions where the curvature builds, causing numerical instability unless regridding
is used. The regridding mechanism often dominates the real effects. Moreover the
sumerical methods tend to become quite stiff in these regions — see e.g. [41].
Secondly, such methods suffer from topological problems: e.g. when two regions
merge or a single region splits, ad-hoc technologies are required.

Other algorithms commonly employed fall under the category of “volume of
fluid” techniques which track the motion of the interior region e.g. [29], [3]. These
are somewhat more adaptable to topological changes than the tracking methods
but still lack the ability to easily compute geometrical quantities such as curvature
of the front.

Both methods are difficult to implement in three space dimensional problems.
Our idea, as first developed with J.A. Sethian in [31] is as follows. Given a region {2
in R? or R® (which could be multiply connected), and whose boundary is moving



with time, we construct an auxiliary function @(Z,t) which is Lipschitz continuous
and has the property

p(F,1)>0 & £ attimet (2.1)
p(#, 1) <0 < ZeQ° attimel (2.2)
p(Z,0)=0 <& z¢e6Q attimet (2.3)

On any level set of ¢ we have
i+ Ve=0 (2.4)

where @ = {&(t), #(2)), the motion of the front and the set ¢ = 0 characterizes o0
at time 2,

Generally, if the normal velocity @ # is a given function, f, of the geometry,
the level set motion is governed by

p1+ |Velf = 0. (2.5)
Typically (in 2 dimensions) f is a function of the curvature of the front,
Ff=1fley="f (V- (%)). In this case we can replace (2.4) by an equation

involving ¢ only
pr+ [Volf (V- (E-('?-—)) =0 (2.6)
t Vel ' '

Our algorithm is merely to extend (2.6) to be valid throughout space and just
pick out the zero level set as the front at all later times. Equations of this type, for
£(0) < 0, have been analyzed in [13], [7} using the theory of viscosity solutions,
In addition to well-posedness, it was shown that modulo a few exceptions, the
level set method works. This means that the zero level set agrees with the classical
motion for smooth, noninteracting curves. Moreover, the asymptotic behavior of
certain fronts arising in reaction diffusion equations leads to this motion as the
small parameter goes to zero {12}.

In many applications involving multiphase flow in fluid dynamics the interface
between any two regions can be represented by judiciously using delta functions as
source terms in the equations of motion. This is true in particular for computing
rising air bubbles in water, falling water drops in air, and in numerous other
applications — see e.g. [46],[5]. In fact surface tension often plays a role and this
quantity is just proportional to curvature, here easy to compute. Thus an Eulerian
framework is easily set up, using the level set approach, allowing phenomena such
as merging of water drops, resulting in surface tension driven oscillations, and
drops hitting the base and deforming [46}.

A key requirement here and elsewhere is that the level set function ¢ stay
well behaved, i.e. 0 < ¢ < |[Ve| € C for fixed constants (except for isolated points).
In fact it would be desirable to set

V| =1 (2.7)

with the additional criteria (2.1, 2.2, 2.3). In other words, we wish to replace (at
least near §) ¢ by d, signed distance to the boundary.



We can do this as described in [46], through reinitialization after every dis-
crete update of the system, in a very fast way by obtaining the viscosity solution
of

dy + (|Vd] - 1)H(p) =0 (2.8)

for 7 > 0, in fact as 7 | oo, with d(%,0) = p(z,t). Here H(i) is any smooth
monotone function of ¢ with H(0) = 0.

ENO schemes for Hamilton-Jacobi equations, as defined in {31},[32] may be
used to solve this. By the method of characteristics it is clear that, near 641, which
is the zero level set of ¢, the steady state is achieved very quickly. We thus have
a fast method of computing signed distance to an arbitrary set of closed curves in
R? or surfaces in R

Another example of the use of this method in fluid dynamics involves area
(or volume) preserving motion by mean curvature. This represents the simplified
motion of foam and can be modelled simply by finding the zero level set of

e = Vel (V- (1—%) - rc) (2.9)

where k is the average curvature of the interface. This last can be easily computed

T (v (35)) #0)1vel
ThLo@vel

The distance reinitialization is used and the method easily yields merging and
topological breaking, see {20}. More realistic models involving volume preserving
acceleration by mean curvature are being developed and analyzed with the same
group of people.

Another interesting example concerns Stefan problems. Eaxlier work was done
using the level set formulation [42]. Our formulation seems to be quite simple and
flexible. We solve for the temperature (in 2 or 3 dimensions)

(2.10)

Ko

T, = V-k&Z)VT (2.11)
k(z) = k f2eQ (2.12)
k(z) = kg if £eQ° (2.13)

T = 0 for&edQ (2.14)

and the boundary of §2 moves with normal velocity

L . _[eT
Ui o= [-—é};] ¢y + e3K (215)

where & = curvature of the front.
We solve this using ¢, the level set function, with reinitialization, by using

wr+ i Veo=0 (2.16)



for u defined semi-numerically as

7 = o [AzALALT, AyALALT] (2.17)
Ve Vo
v a7 (38)] wo
for Ay, A_ the usual undivided difference operators. The first term on the right
is O(Az, Ay) except at the front.

We solve (2.11) by using the piecewise constant values kq or kg except when
the discrete operators above cross the level set ¢ = 0. At such points we merely
interpolate using the distance function to find the z and/or y value at which T' = 0.
We thus can get a one sided arbitrary high order approximation to AxTz, and/or
AyTyy there. This is also used in (2.17). The results appear to be state of the
art for this simple method. This is joint work with S, Chen, B. Merriman, and P.
Smereka [6].

Next, with E. Harabetian [15] we consider an extension of the level set method
where the normal velocity need not be intrinsic (solely geometry or position based)
and for which the problem written in Lagrangian (moving) coordinate is Hadamard
ill-posed. The main observation is that our approach provides an automatic regu-
larization. There appear to be at least two reasons for this. The first is topological:
a level set of a function cannot change its winding number — certain topological
shapes based on the curve crossing itsell are impossible. The second is analytical:
the linearized problem is well-posed in the direction of propagation normal to the
level set in this formulation; however it is ill-posed overall.

We shall describe the method in RZ. The three dimensional extension is
relatively straightforward. Our two paradigms will be: (1) the initial value problem
for the Canchy-Riemann equations and (2) the motion of a vortex sheet in two
dimensional, incompressible, inviscid fluid flow.

Our general problem is to move a curve T'g : (zo(s), yo{s)), where s need not
be arclength, through a system of partial differential equations

Lt . i3] o
( v ) = ( o ) = (2, ¥, s, Ys) (2.18)
with initial conditions

( 3((533 ) = ( 2253 ) 0<s< L (2.19)

and periodic boundary conditions

2(0,t) = z(L,t) (2.20)
¥(0,1) y(Ly1).

Here T'p(s) (which might be multiply connected) divides R? into an inside
and outside ¢, Also, v could depend on higher order derivatives (which it does
in the curvature dependent case) or it could be nonlocal (as in the vortex sheet
case).



In addition to the level set function ¢, we define a conjugate function ¥z, u,1)

with
¥(=(0,8), ¥(0,5),0) =5 (2.21)
and .
V- (V) = pety — @yt #0 at t =0o0n I, (2.22)
We require an additional important condition on the conjugate function v
P(z(s, 1), y(s,t),t) =5 fort > 0. {2.23)

Differentiating both equation (2.3) and (2.23) leads us to two equations on
T(s,t)

pr + T Ve=0 (2.24)

¥, + V=0 (2.25)

Tt remains to define z,, y, in terms of Vi and V4 within the arguments of v

in (2.24), (2.25). We do this by differentiating (2.23) and (2.3) with respect to s,
which leads us to

Us P

(%) =1e- oo [ (2.26)

We replace (25, 3,) by this expression in the arguments of v in (2.24),(2.25),
extend this to all space, and arrive at our formulation

1—; 2 —‘Py 90-‘3 , e .
oot (’y’(w~(w)*)’ (Vso'(vtb)*)) Ve=0 (220

_ — Py Po
P 4 v(ﬂf Y, , *)-Vd):(). 2.28
VT V) (Ve (V) (229)
At every time step ¢ is reinitialized to be signed distance. We also reinitialize
W as follows. As described in [46], we can construct % initially so that V- V¢ =0
on and near T, i.e. we generate an orthonormal coordinate system.
We reinitialize 4 to have this property by solving to steady state near I’

V{p-VJ)_

By + H{p) ol =0 (2.29)

where H is defined as in (2.8).
An interesting example is the Cauchy-Riemann system
5= 4 (2.30)
m = —¥.

The level set formulation is to find the set ¢ = 0 where

Vel?

ot ey (VO (@3
(Vo) (V) _

P+ o) v %b)*_o (2.32)



with the reinitialization described above. This formulation appears to stabilize the
problem. Justification is given in [15].

In special cases when the velocity v is purely normal to T" we have an alter-
native formulation to (2.27),{2.28). The system (2.16) can be rewritten

Ty = GYs (2.33)
Yy o= —gas (2.34)

for g = gz, y, 2, ¥,). H weset f = /22 + y2, (the arclength), then T is moving
normal to itself with velocity fg. Differentiating f with respect to ¢ gives us a
system of two equations @ and f (rather than ¢ and 1) in which curvature of level
sets appears in a transparent way:

or + 9f-[Vp|=0 (2.35)
T 230)

(for the Cauchy Riemann equations, g = 1).

The second equation is almost a Riccati equation for the arclength f. Ill-
posedness is reflected in the blow up of f or of f -+ 0, depending on the sign of
the curvature &,

An ill-posed problem of great physical interest is the motion of a vortex sheet
in the incompressible Euler equations. We have a velocity vector field ¥ which is

incompressible
V.t=0 (2.37)

and which satisfies
Vx¥=w (2.38)

where the vorticity w(z,y, 0} is a singular distribution which can be written, using
the level set function @

wlz,y,0) = R(s) = R(z(s,0),y(5,0)) (2.39)

is the strength along the initial vortex sheet (2(s, 0}, (s, 0)).
The vorticity moves according to the

wy+ 7 Vw =0 (2.40)

Rather than evolving the vortex sheet by the well-known Birkhofi-Rott equa-
tion (see e.g. [23]), we shall use our new formulation

Ve (V)
A (2.41)

and the full problem is thus (2.24),(2.25) with

R(s,t) =

5= (0 ) (AT () ) (2.42)



using reinitialization (which is crucial here).

We were able to compute the roll-up of a vortex sheet past the time of
singularity as computed by Krasny in [23]. We do not do any explicit filtering in
the Fourier frequencies, nor do we use blobs to smooth out the fiow as in [23]. We
note that the tangential velocity is discontinuous, so the level curves of ¥ tend to
break at the vortex sheet. This is kept manageable by the constant reinitialization
of 1.

Finally we mention that complicated motion of multiple junctions can be
rather simply implemented by using as many level set functions as there are regions
— see [28]. Also, in the special case of mean curvature motion, the simple heat
equation together with a projection may be used [28].

3 Shock Capturing Methods

There is a vast literature on this subjection, also see [16] for a recent review article
at the 1990 ICM. The fundamental problem is that the solution to the initial
value problem for a system of hyperbolic conservation Jaws generally develops
discontinuities (shocks) in finite time, no matter how smooth the initial data is.
Weak solutions must be computed. The goal is to develop numerical methods
which “capture” shocks automatically. Reasonable design principles are:

(1) Conservation form (defines shock capturing - see [14], [25]).

(2) No spurious overshoots, wiggles near discontinuities, yet sharp discrete
shock profiles.

(3) High accuracy in smooth regions of the flow.

(4) Correct physical solution, i.e. satisfaction of the entropy conditions in
the convergent limit [24].

Conventional methods had trouble with combining (1) and (8). It should be
noted that wiggles can pollute the solution causing e.g. negative densities and
pressures and other instabilities.

We have developed with Harten, Engquist and Chakravarthy {18], [17] and
later simplified with Shu [44], [45] a class of shock capturing algorithms designed
to satisfy (1-4).

These methods are called essentially nonoscillatory (ENO) schemes. They
resemble their predecessors — total variation diminishing (TVD) schemes in that
the stencil is adaptive, however the total variation of the solution of the approx-
imation to a one space dimensional scalar model might increase, but only at a
rate O((grid size)?), for p the order of the method, up to discontinuities, and the
order of accuracy can be made arbitrary in regions of smoothness. TVD schemes
traditionally degenerate to first order at isolated extrema (see [40] for extensions
up to second order).



The basic idea is to extend Godunov’s [14] ingenious idea past first order
accuracy. This was first done up to second order accuracy by van Leer f47]. A
key step, and the only one we have time to describe here, is the construction of
a piecewise polynomial of degree m, which interpolates discrete data w given at
grid z;. In each cell dj = {(z)z; < z < #j41} we construct a polynomial of degree
m which interpolates w(z} at m + 1 successive points {z;} including z; and z;41.

The idea is to avoid creating oscillations by choosing the points using the
“smoothest” values of w. (This is a highly nonlinear choice, as it must be). One
way of doing this is to use the Newton interpolating polynomials and the associated
coefficients. We start with a linear interpolant in each cell

01,541 = wlzs] + (& — g5)wlzj, 2541] (3.1)
using the Newton coefficients

wlz;] = wlz:) (3.2)

wfz, .., zipr] = (Livk — :E,')_l(w{.’!!;.'.h oy 2p)— wle, . o &E-1]) (33)

We get two candidates for g5 5,13 which interpolate w at z;, z;41 and either
Tj-1, or Tj4a

Gajrt = Qi+t (@ = 25) (@ —zjan)[wlesog, 25, 2541] or wlzg, 2541, 2]l (3.4)

Since we are trying to minimize oscillations by taking information from regions of
smoothness, we pick the coefficient which is smaller in magnitude, We store this
choice and proceed inductively up to degree m. The result is a method which is
exact for piecewise polynomials of degree < m and which is nonoscillatory (i.e.
essentially monotone) across jumps. See [17] for further discussions.

Other choices are possible, in fact it seems advantageous to minimize trun-
cation error by biasing the choice of stencil towards the center — see [43], [33].

4 Image Processing

In his 1987 Ph.D. thesis, L. Rudin [36] made the connection between various tasks
in image processing and the numerical solution of nonlinear partial differential
equations whose solutions develop steep gradients. Images are characterized by
edges and other singularities, thus the techniques used in shock capturing are
relevant here. There are now many examples of this connection. We shall discuss
only a few here.

We extend the notion of “shock filter” described first in [36] to enhance images
which were first blurred by a mild smoothing process. Consider the (apparently
ill-posed) initial value problem

u = —|Vul|F[(D%*-Vu, Vu)] (4.1)
u(z,1,0) = uo(z,¥) (4.2)



where F(A) is an increasing function with F(0) = 0.

Here, ug(2, ) is the blurry image to be processed. Intuitively if, for example,
F(A) is the sign function, then the process involves propagating data towards
blurred out edges, (zeros of the edge detector ((D*u)Vu, Vu))). The apparent ill-
posedness is take care of by the choice of finite difference approximation, which
has the effect of turning off the motion at isolated extrema. See [30] for a further
discussion of this. We note here that the resulting motion satisfies a local maximum
principle and, in one space dimension, preserves the total variation of the original
image.

An important extension of these ideas come in the development of a total
variation based restoration algorithm [38],[39]. We are given a blurry noisy image

wo(z,y) = (Au)(z, y) + (2, ) (4.3)

where A is a linear integral operator and # is additive noise. Also ug is the observed
intensity function while u is the image to be restored. The method is quite general
- A needs only to be a compact operator.

We minimize the total variation

minimize / \/u2 + uldady (4.4)
o

subject to constraints on u involving the mean and variance of the noise

/ udzdy = f wodedy (4.5)
it 2
/(Au — ugp)?dedy = o?. (4.6)

We use the gradient projection method of Rosen [34], which in this case
becomes the interesting “constrained” time dependent partial differential equation

w=V. (%‘i—') — M (Au — o) (4.7)

for t > 0, (z,y) ¢ @ with boundary conditions

Z_Z =0 on 60 (4.8)
and u(z, y,0) given so that (4.5), (4.6) are satisfied.

The Lagrange multiplier is chosen so as to preserve (4.6), (the constraint
(4.5) is automatic).

The method generalizes to: multiplicative and other types of noise, and to
localized constraints (suggested and implemented by L. Rudin). Theoretical jus-
tification and results on multiplicative noise are presented in [26]. The important
observation is that noisy edges can be recovered to be crisp (reminiscent of shock
capturing) without smearing or oscillations. See [38],[39],[26] for successful restora-
tion of images using this approach and {9] for applications to different inverse prob-
lems. From a geometric point of view, (4.7) represents the motion of each level set
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of 1 normal to itself with normal velocity equal to its curvature divided by the
magnitude of the gradient of u. The constraint term just acts to project the motion
back so that (4.6) is satisfied. We note here that Alvarez-Guichard-Lions-Morel,
in a very important paper [1] demonstrate that the axioms of multiscale analysis
lead inexorably to motion by mean curvature and variants, as in [31]. This sort
of motion is also important in computer vision and shape recognition — see e.g.
[4],[21].

The notions of subscale resolution also appear in segmentation, {22} declut-
tering {37], reconstruction of shapes-from-shading, {35}, [27], etc.

5 Fast Wavelet Based Algorithms for Linear Initial
Value Problems

This is joint work with B. Engquist and S. Zhong [11] based on results in [2]. We
are interested in the fast numerical solution of a system of evolution equations

ug+ L{z, 8 )u = f(z), ze QCR%, t>0 (5.1)
u(z,0) = uo(a)
+ boundary conditions.

Here L(x, Z) is a lincar differential operator.
We shall take an explicit discretization

uf = u(zs,tn), tn = nAt (6.2)
z; = (hAey,. .., JalAzg)

u"tl = A" 4+ F (5.3)
u = g

ug, I € RNd, At = const (Az)".

The u” vector contains all u} at time level t,.

The matrix A is (N x N?) with the number of nonzero elements in each row
or column bounded by a constant.

Each time step requires O{ N¥) arithmetic operations. The overall complexity
for ¢ = 0(1) is O(N¥+7) = (number of unknowns).

We proposed a general approach to speed up this calculation which works
extraordinarily well for parabolic equations and is quite promising for hyperbolic
equations,

We solve the discretization:

u = AMug + » _ A'F. (5.4)

We compute the solution for F = 0 in logon steps (n = 2™, m = integer).

Repeatedly square A
A A% AT

11



(This is why the equation needs to have time independent coefficients).
Unfortunately, the later squarings involve almost dense matrices so the overall
complexity is O(N3dlog N), which is worse than the straightforward approach.
Observation based on [2): For the representation of A in a wavelet basis, all
of the powers of A" may be approximated by uniformly sparse matriees, and the
algorithm using repeated squaring is advantageous.

Algorithm:
B SAS~1
C =1
C = TRUNC(C+ BC\¢)
B = TRUNC(BB,¢)
u" = S™HBSu® + CSF)
S fast wavelet transform

dy; = ag; if Jag| > ¢

TRUNC(A,¢) { 2 (5.5)

iy = 0, if faiil < e
If € = 0 we get the usual operator (up to similarity).

For a fixed accuracy predetermined, the computational complexity to com-
pute a one dimensional hyperbolic equation can be reduced from O(N 2) to O(N{log N)?)
with small constant.

For parabolic d-dimensional an explicit calculation with standard complexity
O(N9+?) can be reduced to O(N%(log N)*).

Extensions to periodic in time sources f(z,t) are easy.

Together with A. Jiang [19) we have shown the following: if we wish to eval-
uate the solution only in the neighborhood of one point # = £* at t = t", the
complexity decreases tremendously, e.g. for one dimensional parabolic equation it
becomes O(log® N) as opposed to O(N(log® N)).

For a general multidimensional parabolic equation, the complexity is again
only O(log® N')).

For a d dimensional hyperbolic system the complexity is O(N (2d-2}1op% N).

This is advantageous for dimension d = 1,2. We expect to do better using more
localized basis functions of Coifman and Meyer — see {8}, and using a nonlinear
partial differential equation based replacement for ray tracing — see [10].
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