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Abstract

We prove long time diffusive behavior (homogenization) for convection-diffusion
in a turbulent flow that it incompressible and has a stationary and square integrable
stream matrix. Simple shear flow examples show that this result is sharp for flows

that have stationary stream matrices.
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1 Introduction

Let u(x), with V..u(x) = 0, be an incompressible velocity field in R4, d > 2, and let p(t,x)
be the density of an additive carried by the flow and dispersing diffusively. It satisfies the



convection-diffusion equation

%—g-u-V"n.:rJ‘A,.ﬂ7 (1.1)

with p(0,x) = py(x) and where o is the molecular diffusivity. The density p is non negative

and we may assume that [ ps(x)dx = 1 in which case (1.1) is the Fokker-Plank equation

for a diffusing particle satisfying the stochastic differential equation
dx(t) = u(x(t))dt + vV20dw(t), (1.2)

with x(0) = x,; and where w(t) is the d-dimensional Brownian motion process. A natural
question to ask, and the one we consider here, is what happens to the density p, or the
process x(f), after a long time. This is particularly interesting when the velocity field
has a repetitive structure as, for example, when it is a periodic, an almost periodic or a
stationary random function with mean zero. We expect then an overall diffusive behavior
with an effective diffusion constant. In this paper we give sharp conditions on u for this
to be the case.

To state our main result we introduce the stream matrix ¥(x) such that
V- ¥(x) = —u(x), (1.3)

which is a skew symmetric matrix and always exists, because u is incompressible and has
mean zero, but may not be stationary. We assume throughout this paper that the velocity
field comes from a stationary stream matrix ¥ which is square integrable and (1.3) is meant
in the weak sense. In the periodic case there always exists a periodic stream matrix. In
the almost periodic or stationary random case the stream matrix exists but may not be
almost periodic or stationary, respectively. In two dimensions the matrix ¥ has the form

¥(x) = 0 ) (1.4)

$(x) 0

where 1/(x) is the usual stream function. In three dimensions, ¥ has the form

0 -3 1
¥(x)= Ps 0 -9 |- (1.5)
a7 ) 0



where (x) = (¥, (x), ¥:(x), ¥a(x)) is the vector potential of the flow u so that V- ¥ =
V x 1 = —u. In terms of the stream matrix ¥, the convection diffusion equation (1.1) can

be put into divergence form

dp(t,x)
ot

where I is the identity matrix. Note that the coefficient matrix o + ¥ of this parabolic

=V-[(el + \Il(x))Vp(t,x)], (1.6)

equation is not symmetric. Since we are interested in long time behavior we rescale space

and time and let
pa(t,x) = p(n’t, nx)
with 7 a large parameter tending to infinity. The scaled density p, satisfies the diffusion

equation

?_&‘B({;.’.‘.l = V- (o] + ¥(nx))Vpu(t,x)], (1.7)

whose coefficients are rapidly oscillating. The initial condition is p,(0,%) = po(z) € L*(R?),
which is assumed to be independent of the parameter n.

The main tesult in homogenization (periodic, almost periodic or random) [18] tells us
that if the statior;a,ry stream matrix ¥(x) is uniformly bounded and ergodic then there exists
a constant effective diffusivity matrix o°// such that if p satisfies the effective diffusion

equation

Bﬁ(t,x) _ : eff azﬁ(tax)
a 2 Bz;0; (1.8)

ij=1

with p(0,x) = pp(x) then p, — p as n tends to infinity

lim sup / lon(t, %) — p(t, x)|%dx = 0 (1.9)
R

fN— o0 GStST
for any T' < oo and with probability one. However, when the stream matrix ¥(x) is
stationary and ergodic but unbounded then it is not clear that a diffusion approximation

holds. The purpose of this paper is to prove the following theorem.

Theorem 1 Suppose that the stream matriz V(x) is stationary and ergodic, that the diffu-
sivity o is positive and that p is in L*(R*). Then there ezists a constant effective diffusivity
matriz 087 and the random density p, converges in the sense of (1.9) to p satisfying (1.8)
if and only if

(¥()|*) < o0 (1.10)
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where () denotes ezpectation.

The effective diffusivity matrix o®/ f ig determined from the solution of a cell problem,
as in the case of periodic coeflicients {4], which is described in detail in section 3.4, It is
not symmetric in general but in the above theorem only its symmetric part enters.

To put this theorem in its proper context and to explain its significance we provide
several remarks. First, the diffusion equation (1.7) is not well defined when the stream

function is unbounded so part of the theorem is to make sense of (1.7). We work entirely

with time independent problems through the Laplace transform of (1.7)
pa(%,A) = fom eMp (1, x)dE, A>0 (1.11)
which satisfies
— V(o] + ¥(nx))V,(x, )] + Ap.(x, A) = po(x), (1.12)

for x € R?. Convergence of g, in L?, with probability one, to the Laplace transform of p
for each A > 0 implies (1.9). In this paper we will actually work with (1.12) over a bounded
open set @ in R* with Dirichlet boundary conditions and A = 0. All essential calculations
are the same! for these two problems. Dropping the hat, the Dirichlet problem has the

weak form

[T+ 2090 Vo(xix = [ po(x)(x)ax (1.13)

for every test function ¢ in Cg°(©). One of the first steps in our proof is to define (1.13)
when W is not in L® but in L? in the sense of (1.10). The case of uniformly bounded
coefficients that are also uniformly elliptic is covered by the usual homogenization results
[18], whether they are symmetric or not. The case with bounded coefficients in the discrete
setting( namely, random walks in random environments) was obtained by Kozlov [12] using
martingale central limit theorems. In the discrete setting, the boundedness assumption is
reflected in the uniform ellipticity of the transition probabilities.

Why is the L? condition (1.10) necessary and sufficient for diffusive behavior? There are

shear-flow examples in two dimensions for which condition (1.10}) is clearly necessary and

1They are more involved for the boundary value problem because of the singular boundary layers in

the large n limit,



sufficient as can be seen from explicit computations. The examples are due to Matheron
and De Marsily [14], who noted the significance of condition (1.10), and were studied
extensively by Avellaneda and Majda [1]. This is all in the context of stationary stream
matrices. In general, the stream matrix will have stationary increments (since the flow u is
stationary) but will not be stationary. For nonstationary ¥ nondiffusive behavior is to be
expected although there are no mathematical results to substantiate such behavior. Given
the shear flow examples, and in the context of stationary stream matrices, it is therefore
enough to show that (1.10) implies diffusive behavior. Previous attempts to extend the
L homogenization results to unbounded coefficients required conditions like {J¥{F) < oo
withp=2+¢, €>0ford=2o0rp=dford > 3 which are not sharp, [2], [3], or
certain additional regularity and growth conditions that are hard to verify [16]. The sharp
result proven here relies essentially on the minimax variational principles used in [8] for
the small o (large Peclet number) analysis of the effective diffusivity. Similar variational
principles were used to obtain bounds for complex dielectrics by Gibianski, Cherkaev and
Milton [15]. A special form of the variational principles was also noted by Avellaneda and
Majda {2] but it was not used.

Before review’ing the shear flow examples we note that along with the basic Theorem
1 we have a convergence theorem for the Dirichlet problem (1.13), as already mentioned,

and the following.

Theorem 2 Let QS{') be the probability measures on continuous paths starting at x for
the process generated by the stochastic differential equation (1.2) with the scaling x() —
nx(n?t). Under the hypotheses of Theorem 1 the measures Q&") converge weakly to the
Brownian motion measure with infinitesimal covariance matriz 26°//, in measure relative

1o the law of the stationary flow field u and for each finite x € Re.

The convergence of the finite dimensional distributions follows immediately from The-
orem 1. The tightness of the measures is proved in section 7 (cf. Theorem 7.1).

Let us briefly review the shear flow examples [14] which show that the L? condition
(1.10) is sharp.

In two dimensions let x = (2,%) and u(x) = (u(y),0). Then the convection diffusion



equation (1.1) becomes

B, n0e 1[0 )
a5, =3 603 Yoy ) (114)

where we have set ¢ = 1/2 for simplicity, and the stochastic differential equation (1.2)

becomes

dz(t) = —u(y(t))dt + dw,(t) (1.15)
dy(t) = dw(1)

where w, (%) and w,(t) are independent Brownian motions on R?, independent also of the

random horizontal velocity u(y). Assuming that z(0) = 0 and y(0) = 0 and letting

(w(w)u(0)) = REw) = [ MRk (1.16)

be the covariance R and power spectral density R of u we have

t ot o0 .
(E{=*(t)}) =t + f ] f E{e*00)-v0DN) R(k)dkds, ds, (1.17)
0 J0 Jv—oo
t pt poc 2 R
=t+4 f f / e~ T3l R(kYdkds, ds,
0 JO J—0
E{y*(t)} =t

Here E{} denotes expectation with respect to the Brownian motions and we have assumed
for simplicity that there exists a continuous power spectral density R. From (1.17) we find

easily that

(E{z*(t)}) —t+f 4R(K) [————( e-’“’*”)] dk (1.18)

so that

4R(k)

(E{a:z(t)} ) — 1 +f (1.19)

at ¢ tends to infinity, provided the integral is finite. It is also easy to see that the integral
in (1.19) is finite if and only if the process [* u(s)ds is stationary and square integrable.
This is the shear flow version of condition (1.10). If on the other hand the integral in (1.19)
is not finite, when typically R(0) # 0, then after a simple computation we have

8\/:5

(B0 — o k() (1.20)
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This means that we do not have diffusive behavior in the horizontal direction since the
mean square displacement behaves like t3/? for £ large. Note that R(0) # 0 means that
there will be no stationary stream function for the shear flow. The large scale (k small)
fluctuations in the horizontal velocity are strong enough to produce superdiffusive behavior
in the mean square horizontal particle displacement.

In several dimensions the square integrability condition can be made more explicit by
using the spectral representation of the flow u, which is stationary, divergence free and
square integrable. There exists a process @(x) with orthogonal increments such that with

probability one

u(x) = ]R e =di(x) (1.21)

where dii(k) = dii{—«), since u is real, and

(dity (K) T () = Ry ()il (1.22)

(U + V)0 (1) = Rog0) = [ %y ()

k-di(k) =0 (by incompressibility)
qu(x) = Rgp("'x) 3 qu(n) = ‘qu('“n) y Pg= 1, ad

We assume here that the spectral measure of the covariance has a continuous density
R,,(k) with respect to Lebesgue measure, The stream matrix ¥ satisfying (1.3) has the

spectral representation

¥,,(x) = fR Kiar l” [~ ik di, (k) + ifydity ()] (1.23)
provided it is square integrable
(9(IF) = (5 () B = 2% L. f:j:) dr: < 00, (1.24)
Since the flow u is square integrable we have
(u(x)) = Epj fR By (w)an < oo. (1.25)

If, for example, the flow u has a spectral density that satisfies for some constant ¢

- C
; Ryp(k) < W (1.26)



in the neighborhood of the origin and a < d — 2 then Theorem 1 tells us that we have
diffusive behavior. In three dimensions having a bounded power spectral density at the
origin will suffice but in two and one dimensions it will not. Note that in dimensions three
or more Theorem 1 is natural and what one wants physically. Note also that the L™
condition on the stream matrix ¥ that the usnal homogenization results demand is quite
unnatural, In two dimensions the power spectral density must vanish at the origin if we
are to have diffusive behavior and for shear flows, as we saw above, nondiffusive behavior
is more typical. This is reminiscent of wave localization which occurs typically in low
dimensions, if the random fluctuations are not large.

When the diffusion equation (1.1) is put into divergence form (1.6) the large time or
homogenization asymptotic analysis is not sensitive to the dimension of the underlying
space because we do not use Sobolev inequalities or other dimension-sensitive tools. In
Theorems 1 and 2 dimension dependence enters only through the passage from the flow u
to the stream matrix ¥. The most natural way to relate these two quantities is the spectral
representation (1.23) for which L? is the natural setting. That is another reason why it is
important to have homogenization valid with just the L? condition (1.10). However, the
main reason that we have looked at homogenization with unbounded coefficients so care-
fully is the minimax variational principles that we use and the mathematical technology
around them. They are a powerful tool that may well be the key to unraveling multidi-
mensional non-diffusive behavior (¢f. [7]). They have already proven to be invaluable in
the large Peclet number (small ) analysis of the effective diffusivity for two dimensional
periodic and random flows with bounded stream functions {8}, [9]. It is important to note
also that diffusion in random media is a big subject where many diverse issues arise. For
example, we do not discuss here flows with nonzero mean or flows that are not incom-
pressible. If the random fluctuations about the nonzero mean are small and in addition
to stationarity we have some mixing then a few results are known [11], even with o = 0.
Ii the mean velocity is zero and the fluctuations are neither incompressible nor gradient
fields then diffusive behavior has been proven for dimensions d > 3 and for small fluc-
tuations (small Peclet number)[5]. The analytical methods for both of these cases differ
substantially from those used in homogenization, and in this paper.

Since homogenization with unbounded coefficients is considered here for random in-



compressible flows it is natural to ask about problems with symmetric coefficient matrix in
(1.7) that is unbounded. This is considered in detail in another paper. It illustrates nicely

the use of variational principles, which in the symmetric case are well known.

2 Outline of the paper

Since the convection-diffusion equation (1.12) (or (1.13)) has a symmetric part (V - o6V)
and a skew symmetric part (V - ¥, V), where ¥,(x) = ¥(nx), it is natural to separate
the symmetric part ((4.5) for the cell problem, (4.29) for the Dirichlet problem) and the
skew symmetric part ({4.6) for the cell problem, (4.30) for the Dirichlet problem) of the
solution by adding and subtracting fo it the solution of the adjoint problem (4.27)-(4.28
or (4.2) for the cell problem). This is the motivation of the symmetrization procedure of
Section 4 which applies to both the Dirichlet and the cell problem. This way, the equations
can be written as a symmetric but non-definite system which are the Euler equations of a
min-max variational principle (4.21), (4.39). Once the Euler equation corresponding to the
min or the max is solved, the min-max principle is turned into a maximum (4.43), (4.49)
or minimum principle (4.42}, (4.46). This is done in Section 4, following a brief review in
Section 3 of the analytical framework for stationary processes that was used in (18] and
elsewhere.

The formulation of the minimum principle further motivates the definition of the Hilbert
spaces Ho(¥,,O) (3.10) or H,(¥) (3.28) in which the convection diffusion problems have
a natural weak formulation. A key observation here is that the L%-stationarity of ¥ is a
necessary and sufficient condition for these spaces to contain all the functions with essen-
tially bounded derivatives{Lemma 5.1). Therefore, under this assumption the existence
and uniqueness questions become standard in the new spaces (Theorem 5.1, 5.2 and 5.4).
This is the case for both the Dirichlet and the cell problems.

In Section 5 we address the n — oo or homogenization limit. We would like to represent
the exact solutions approximately in H}(O)} by functions of the form (6.9) and (6.10)
suggested by the multiple scales expansions (cf. Theorem 6.1, 6.2). The idea of the

proof is to first show the attainability, within arbitrary error, of the min-max principle
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by trial functions of a specific form ((6.11) for the minimum principle, (6.12) for the
maximum principle}. The gap between the upper bound and the lower bound provided
by the minimum and maximum principles respectively is closed by the density lemma 6.2.
This is basically the content of Theorem 6.3 in Section 6.1.

Because of the local ellipticity (¢ = 1 > 0), the approximation within arbitrarily
small error of the exact solutions by (6.11)-(6.12) in Hg(O) follows from the preceding
convergence of functionals ( Theorem 6.3). Since the limiting form of the approximations
(6.11)-(6.12) is (6.9)-(6.10), again by the density lemma, the strong convergence Theorems
6.1- 6.2 are natural consequences of Theorem 6.3.

Since ¥ is unbounded there are no Nash estimates (cf. [17]) available. We have to
obtain the tightness of the probability measures from sharp L™ resolvent estimates. This
is done in Section 7 by noting that the L? estimates of Corollary 6.2 can be strengthened
by averaging over the ensemble of fluid flows.

Let us also comment on some of the technical issues in this approach, which comprise
much of Section 6 and 8.

To use the miinimum and the maximum principles, which are nonlocal, we have to
evaluate accurately the projection operator I'y (3.9) acting on a fast oscillatory function.
This amounts to solving in terms of approximate correctors in H(Q) the Poisson equations
with large and rapidly oscillating source terms. This is the content of Lemmas 8.3 and 8.5.
An additional difficulty which has to do with the boundary layers of the Dirichlet problem
for large n enters and is handled by choosing the cut-off functions a,(x) carefully. The
resolvent estimates needed for Theorem 1, 2 and 7.1 are easier to obtain when the domain
of interest is RY.

It is natural to ask why we do not use (6.9)-(6.10) directly as trial functions? The
answer is, as explained in Section 6.1, that they may not be admissible (that is, belong
to Hy(¥,,0)) unless ¥ is uniformly bounded. Therefore, it is essential to use the trial
functions with essentially bounded derivatives and since only the minimal L? assumption
is imposed on ¥, some additional strong sublinear growth estimates (Lemma 8.2 and 6.1)
for the trial functions are necessary for the proofs of Lemmas 8.3 and 8.5. Even when (6.9)-
(6.10) do belong to Hy(¥,,, ), the arguments of the proofs of Lemma 8.3 and 8.5 would not

work because of the lack of strong sublinear growth estimates for the exact correctors. This

11



illustrates the natural complementarity between the kind of estimates needed for the trial
functions to make the variational framework work and the kind of assumptions imposed
on W: if the latter is uniformly bounded, then the former can be square integrable; if the

latter is only square integrable, then the former has to be uniformly bounded.

3 Abstract framework

We begin with a brief review of the framework of stationary processes that is used in

homogenization [18].

3.1 Random stationary stream matrix

Let (2, F, P) be a probability space and let ¥(x,w) be a strictly stationary random skew-

symmetric matrix of x € R? such that each element ¥;; is a L? function
(|‘If;_,-(x,-)[2) < o0, Vi, J, (3.1)

where {-) denotes the average or integral with respect to the measure P. By strict station-
arity we mean that the joint distribution of ¥;;(x;,w), ¥;;(X2,w), ..., ¥;(x,,w) for any
points X;, Xy, ..., X, € R? and that of ¥;;(x; + £,w), ¥;;(xy + £,w), ..., ¥;;(x, + {,w) for
any £ € R? is the same, so the averages in (3.1) are independent of x. Without loss of gen-
erality (see Doob, [6]), we may assume that there is a group of transformations 75, x € R?
from £ into ) that is one to one and preserves the measure P. That is, 1,7y = Ty and
P(7xA) = P(A) for any A € F. We may also suppose that there is a measurable matrix
function ¥(w) on £ satisfying (0.1) such that

Y(x,w)=F(r,w), xX€ER', weQ.

We assume the group of transformations 7, is ergodic with respect to the probability
measure P.
The random stationary divergence free velocity u which we consider in this paper is
given by
—u(x,w) = V- ¥(x,w). (3.2)

12



In dimension two and three, the stream matrix ¥ has the familiar form such as (1.4) and

(1.5) respectively

3.2 Hilbert spaces of stationary functions

The group of transformations 7, acting on Q induces a group of operators on the Hilbert

space of real-valued functions H = L*($}, 7, P) with inner product
(f,9)= (/5 = fnp(dw)f(w)a(w) , fiew

Here {-) stands fovr integration over { with respect to P, [, P(dw)-. The group of operators
T, on H is given by
(T f)w)= f(r_w), x€R

Since 7, is measure preserving, the operators T, form a unitary group. Therefore they
have closed densely defined infinitesimal generators V; in each direction i = 1,2,...,d

with domain D; C H. Then,

x=0
with differentiation defined in the sense of convergence in H for elements of D;. The closed
subset of H
d
Hl = ﬂ p,‘
i=1

becomes a Hilbert space with the inner product
(5,90 = (Fa)+ (Vi ¥g)
= [ P(a) @) 3@ + 3 [ Pldw) ¥:f(w) Vi)
Q 7 Ja

The hypothesis that the action of the translation group 7, is ergodic on ) takes the
following form in H: the only functions in M that are invariant under T, are the constant
functions.

Let H,(R% ™M) be the space of all stationary random processes f(x,w) on R, such
that / P(dw)f*(x,w) = const. < co. Clearly H,(R% H) is in one-to-one correspondence
with 7'? since it is simply the space of all translates of #, that is, f(x,w) € H(R%H) iff

13



f(x,w) = T f(w), f(w) € M. Similarly, we may identify H* with the set of mean square
differentiable, stationary processes H1{ R?; H). In particular, if f € H}, then its derivatives

are also a stationary processes and

Vistow) = LB = Gpx,0)

with equality holding dx x P almost everywhere. Thus, we have H}(R*; H) = H,(R*H").
We define also the Hilbert spaces H, and H, which correspond to gradient fields and

curl fields, respectively,
H, ={Fw)eH,i=1,..,d|VF=V;FVij=1,.4d

weakly and [, Fi(w) P(dw) = 0}

H, ={Gw)eH,i=1,..,d| %6 =0
weakly and [, é,—(w) Pldw) = 0}

3.3 Weak formulation of boundary value problem

Consider the inhomogeneous boundary value problem (1.13) with the fast oscillatory stream

matrix ¥, (x,w) = ¥(nx,w) :

V- I+9¥,)Vp,=s+V:8, in O, (3.3)
pn =0, on 90O, (3.4)

for inhomogeneous terms s € L%((), S € (L*(0))?, where O is a bounded, smooth domain
in R?. This is a little more general than (1.13) and, as before, n is a large parameter that
eventually we let tend to infinity.

If the stream matrix is bounded
ess—supwen@l < 00, (3.5)
then there exists a unique p,, € H}(O) such that

fodx (I+9,)Vp, -v¢+/odx (s¢—S-Vé) =0 (3.6)

14



for all ¢ € H}(®). The proof follows from the the Lax-Milgram Lemma on the space
H}{(O). If we let ¢ = p, and integrate by parts, we obtain

fo dx Vp, - Vpa < |8l130y + S|z (3.7)

using the Schwarz inequality.
For unbounded stream matrices, the marix I+ ¥, defines an unbounded bilinear form,
so the Lax-Milgram Lemma does not work on H}(O) right away. To motivate the intro-

duction of the right spaces for this problem we first write (3.3) in the integral form
Vpn + Do¥,Vp, = V(Ag) 's+ T8 (3.8)

where the projection operator

Py = V(Ae) V- (3.9)

projects square integrable fields to square integrable fields that are gradients of functions
with zero Dirichlet dataon 8O and (A,)~! is the inverse of the Laplacian with zero Dirichlet
data on 8. By the classical Calderon-Zygmond estimate, T is a bounded operator from
LP to L7, for all p > 0.

The natural space associated with (3.8) is

Hy(¥,,0) = {g € H}(0); T,¥,Vyg € (L*(0))"} (3.10)
endowed with the norm

gll%. = [Valiaoy + ITo¥. Velixo (3.11)

Note that the definition of Hy(¥,,©) incorporates only partial information of ¥,Vyg. For
example, we have no knowledge about the square integrability of ¥, Vg for g € Hy(V,,0).
As will be further explained in Section 6, this poses a severe difficulty for the standard
homogenization methods such as {18] or Tartar’s argument [19], but can be handled nicely
by the variational methods.
Clearly, Ho(¥,,©) C H}(O) and Ho(¥,,0) = H}(O), if ¥ is bounded. We show in
Section 5 that
C&(0) C Hy(¥,,0),¥n >0, (3.12)

15



for almost all w, if the stream matrix is square integrable. The square integrability condi-
tion is the minimum required for Hy(¥,,, ©) to contain C§*(0).
The problem now is to seck p, € Ho(¥,, O), rather than Hg(O), such that
] dx (Vpn -V +To¥, Vp, - Vo) + j dx (s6—S V)= 0 (3.13)
f) o

for all ¢ € H3(O). At this stage, the integrals in (3.13) at least make sense for ¢ € HHO)
" and p, € Hy(¥,, ). But there is no energy estimate that puts p, in Ho(¥,,O) since the
term with ¥, drops out of the energy identity. We will address the questions of existence

and uniqueness in Section 4 using the variational methods developed in [8].

3.4 Abstract cell problem and the effective diffusivity

Assuming that ¥(x,w) is uniformly bounded and stochastically continuous, Papanicolaou

and Varadhan [18]} showed that
(pn(x7 )) = Py Hé(O) weakly (314)

in the limit » — oo. Here p is the solution of a deterministic variational problem with

constant coefficients o¢//

fdx ae”Vp-Vq5+f dx (s¢—S- V) = 0 (3.15)
(] o

for ¥¢ € HE(O). The matrix 0*// = [0f/’] is called the effective diffusivity and is deter-
mined by solving the abstract cell problem: Find two stationary random fields E;(x,w)

and D;(x,w) € (H}(R*H)),i=1,....d, such that

D,(x,w) = (I + ¥(x,w)) (Eix,w) + €') (3.16)
V x Ei(x,w) =0 (3.17)

V. Di(x,w) =0 (3.18)

(Bi(x,)) =0 (3.19)

where {e'} is an orthonormal set of vectors in R? and
off! = (Di(x,7)- &), ii=1,.d (3.20)
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The connection between this cell problem and homogenization as in Theorem 1 comes
about by the usual multiple scale arguments and is formally the same in the random as in
the periodic case [4, 18].

When \Il(x,w) is strictly stationary as defined in Section 3.1, the abstract cell problem
(3.16)-(3.19) becomes

Di(w) = (I + ¥(w) ) (Ei(w) + ¢) (3.21)
VxEi(w)=0 (3.22)

V. .Diw)=0 (3.23)
(Ei(-))=0 (3.24)

whose variational form is to find E; € H,,i=1,...,d, such that
j P(do) (1+F(w)) (Bi(w)+e) - Fw) =0 (3.25)
o
for all F(w) € H,, and
oil! = fn P(dw) (I +9(w) ) (Ei(w) te) e, hi=1,d (3.26)

By Lax-Milgram lemma (3.25) has a unique solution for bounded .
For unbounded stream matrices ¥, the abstract cell problem can be put into a form

parallel to (3.13), namely, to find E; € HQ(E’), i =1,...,d, such that
/ P(do) (1 + F()) (Buw) +¢) -Fl) =0 (3.27)
0
for all F(w) € H,, where the space H,(¥) is defined as
H,(¥) = {G € H,; TTEG € (H)"}. (3.28)

Here
= VA~V
with ¥ = (61, ...,ﬁd) and A = V.V is the projection operator that takes vector fields in H?
to curl free fields in H,. Since ’HH(‘AI'!) is defined through the projection T, the same remark
following the definition (3.10) applies, namely, we do not know if ¥G e M4 VG € 'Hg(il).
The existence and uniqueness of (3.27), as well as the existence of effective diffusivity,

will be addressed in Section 4.
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4 Variational principles

L3

The main step in the derivation of variational principles is the symmetrization procedure
that transforms the original problem and its adjoint into a symmetric, but nondefinite
system which are the Euler equations of a min-max principle. For the derivations in this
section we assume that the stream matrix ¥ is uniformly bounded so all the calculations
make sense in the usual way. For unbounded but square integrable ¥ we take the sym-
metrized system as starting point of the analysis and establish existence and uniqueness
in appropriate spaces, then work our way back to the original problems. This is done in

Section 5.

4.1 Symmetrization and min-max variational principle

4.1.1 Symmetrization of abstract cell problem

Following closely [8], we denote the intensity and flux fields of the abstract cell problem
(3.21)-(3.24) with the superscript + and those of the adjoint problem with the superscript
-, Thus

Df = (1 + ¥(w)EL (4.1)
Dy = (I -¥)E (4.2)
VxEL=VxE;=0 (4.3)
V-DL=V.Dg=0. (4.4)

Define now the sum and difference fields

B, = (B +B5), (4.5)
B = 382 - £5), (46)
B, = 505 +B5), (47)
By = 5(B% - B3), (48)
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which are related to each other by

The effective diffusivity is defined by
a.if!(ei,ej) - o.e.ff(ei’ej) =/ P(dw)f):', el
a
and we define also
07 (eF, &) = / P(dw) Dz - &
a
with the mean field conditions
jP(dw)E:.- =e, /P(dw)i:;,- =e .
! a
It is easy to see that
o1 (e, e) = o (e, ) = 031 (e), &)
because
ot (ed &) = / P(dw) (1-¥) & B}
= [ P(a)E; - (1+9) BL
Q
- f P(dw) e - D,
a
= o$/I (e, ).
In other words, o.if ! is the adjoint of a§//. Thus,
o/l (ef,e) = %aiff(e‘,ej) + —;—aiﬁ(ej,e")
which in turn equals
o~ 1 o~
3 [ Pa)Ds B+ 5 [ Py B
f C N el =
= = + -1 . {Et -
=3 JI Pldw) (B} +DB3) - (B% + B5)
- Dt - D-). (& -E-
7 /ﬁ P(do) (BY - D) - (B - E5)
= [ P(@)By By - [ P(a)By - B,
Q o
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(4.13)

(4.14)
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and the mean field conditions (4.15) become

[ PanE, =55,
3 . & 1ol (4.19)
P(dw)E; =
a 2
In view of (4.9) and (4.10), (4.18) is equivalent to
. -1 -9 E; E
oM (&, &) = f P(dw) N y (4.20)
o I E; E;;
which admits a min-max variational characterization
o -1 -¥ F F
o (e &)= inf sup f Pldw)| D] @en
o YxF=o Cxfi=0 1l ¥ I i F

(Fy={ei+e9)/2 (Fly=(ei—ai}/2
since (4.12) are the Euler equations of (4.20). This is the min-max variational principle
for the symmetrized cell problem that we will be using to extend the theory to unbounded
coeflicients.

The effective diffusivity o*// is not symmetric in general. But if, for example, the
probability distribution P(dw) is invariant under the transformation ¥ — —¥, then o*//
can be shown to be symmetric from (4.16) since 057/ (&', /) = a*// (e, ') = o//(&/,€).
The last equality is due to the invariance of P with respect to change in sign for v, [8].

Note that only the symmetric part of the effective tensor ¢/ appears in the final
homogenized equation in Theorem 1. There is an identity for the symmetric part which

will be useful later.
1 . . o o ~
5 {ae”(e’,e’) + o/ (e’,e’)} = (E; - E;; — 2VELE,; — Ej; - E};), Vi, j. (4.22)

Its derivation is straight forward. Using the definitions (4.5)-(4.6) and multiplying out the

expressions the right hand side is equal to
(B By + By By - (By By - B Ep 4 BLOBL -BLOEp))
= ((Bp + UBY) B + (5 - 9E;) -B5 -9 (S -BL -E-ED)) 42
after cancelling terms like E} <K and B - E. This reduces further to

%((ﬁ:‘, + {f.ﬁ;ﬁ.) ey + %((ﬁ; - \'I?ﬁ;“.-) -ef) (4.24)
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because of (4.1)-{4.4) and the skew symmetry of ¥. Now observe that the first term of
(4.24) is just 05!/ (&f,’) and the second term 0% (ef,e’). The identity (4.22) then follows

immediately from (4.16).

4.1.2 Symmetrization of boundary value problem

Consider the inhomogeneous boundary value problem (3.3)-(3.4) and its adjoint, denoted

with superscripts +, —, respectively:

V- (I+¥,)Vp: =s4+V-8, in O (4.25)
ot =0, on 40, (4.26)
V-(I-%9,)Vp, =s+V-8, in O, (4.27)
pn =10, on 00. (4.28)

in a bounded dorhain ©. Let p,, g}, be the sum and difference
1 -
po = 5(p% +pz) (4.29)
1
pu = 5(pF —P2): (4.30)

In terms of p,, p, , we put (4.25)-(4.28) into symmetrized form by adding and subtracting
(4.25) and (4.27)

V-Vp, +V-¥.Vp,=3+V-8, in O, (4.31)
V. Vp,+V ¥, Vp, =0, in O, (4.32)
Pn = p:. - 0, on 00 (433)
or, equivalently
I -, Vg, 0

(V,V)- Pl = in 0O, (4.34)

v, I Von s+V:S
Pn=pPa =0, on 80. (4.35)

Equations (4.31)-(4.32) are formal and should be understood in the weak sense
f dx Vp, - Vé+ / dx ¥, Vph - Vo= / dx (S -V — s4) (4.36)
o o o

/ dx Vp, - V¢+/ dx ¥, Vp,-V¢=0 (4.37)
o o
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for all ¢ € HL(O) (recall that ¥ is assumed to be bounded in this section).
Clearly (4.34)-(4.35) ate the Euler equations of the quadratic functional

1 -I =¥, \A Vo
Io(s+V-8) = —O—f dx : +2(spn—S-Vpn), (4.38)
101 Jo ¥, I Vpa Von
that is, p, and pf, are a critical point of the min-max variational principle
¥, Vg’ A\

1 -1 -
J,(s+V:S)= inf sup -——jd.’x . g +2(sg—S-Vg)
sloo=0 grlao=0 |0 Jo v, 1]\ vy Vg
(4.39)

This is the variational characterization that we will use to extend the theory to unbounded

coeflicients.

4.2 Nonlocal (minimum and maximum) variational principles

We can get minimum {maximum) principles by eliminating the supremum (infimum) from
the min-max variational principles (4.21) and (4.39). The resulting variational principles
are nonlocal in nature because the solutions of the supremum (infimum) involve projection

operators.

4.2.1 Abstract cell problem

The Euler equation for the supremum in (4.21) is
V.F+V.IF=0. (4.40)
Using the projection operator
IF'=VA'V. (4.41)
that takes square integrable vector fields to curl free ones in H,, we write the solution of
(4.40) in the form ¥ = —~T'UF and substituting it in (4.21)

0t(ehe) =il oy [ Plw) (F-F-20F F -F.F)
. 23

(Fi=(ei+ed)f2 S ~
=inf exren f P(dw)(F - F + PIF . T§F (4.42)
(Fi=(ef4od)/2 JO2

~UF - (' - &) - [252))
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Note that (4.42) is nonlocal because of the projection operator T

Similarly, we can eliminate the infimum in (4.21) and derive a nonlocal maximum
principle

ol (el,ef) =sup oyt j P(dw)(-F - F - DO F . I F
H)

(Fy=toi~a3)/2 O o (4.43)
+UF - (¢ +&f) + |4 )
4.2.2 Boundary value problem
The Euler equation for the supremum in (4.39) is
A¢+V-¥,Vg=0, in O, (4.44)
g =0, on 00 (4.45)

Solving with the help of the projection operator I'y defined by (3.9) we have Vg' =
_T,¥, Vg from (4.44), (4.45) and substituting this into the min-max principle (4.39),

we obtain the minimum principle

J(s+V.8)= nt o / dx (Vg-Vg+To¥,Vg-To¥,Vg+2sg — 25 Vg) (4.46)

which is nonlocal. Similarly, we can eliminate the infimum in (4.39) by solving
Ag+V ¥, Vg =s4+7V-8, in O, (447)
g=0, on 00 (4.48)
and obtain a nonlocal maximum principle. There is an extra difficulty in (4.47) due to
the interaction of the oscillation in V¥, Vg’ and the macroscopic source term s+ V- S,

which will be handled in Sections 8.4 and 8.5. Therefore, it is a bit clumsy to express this

maximum principle in terms of g’ as, for example, in

Ju(8+V:8)= sup

lo']dx( Vg Vg = To¥, Vg - To¥, Vg — 25A71V - ¥, Vg
2'lso=0

+28 . T,9,Vg' + sA™ts —TyS - TyS). (4.49)
The most economic form is

Jo(s+V:-8)= sup I(,)Ifdx (Vg-Vg—-2¥,Vg-Vg' —Vg' Vg’ +2s¢g-25. Vy)
¢'leo=0
(4.50)
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where the supremum is subject to (4.47)-(4.48).
One can explore the duality between the the gradient fields(M, ) and the curl fields
(M.) and deduce the dual min-max principles both for the cell problem (cf. [8]) and the

boundary value problem. They are not used in this paper however.

5 Existence, uniqueness and a priori estimates

5.1 Existence

For a bounded stream matrix ¥, the symmetrized Dirichlet problem leads to the system
(4.36)-(4.37). In this section, we show that (4.36)-(4.37) are also solvable for unbounded
but square integrable matrices ¥,

As noted before, the natural function spaces are Hy(¥,, 0) defined in (3.10), with the
norm || || defined in (3.11). For the variational framework, it does not matter whether ¥
is bounded or unbounded as long as the Hilbert spaces Hy(¥,,0) contain all the smooth
functions and for this square integrability is the minimum assumption. We state it as a

lemma,
Lemma 5.1 If |¥|Lsq) < 00, then

C(O) C Ho(¥,,,0), Vn (5.1)
for almost all w € 2.

Let us assume the validity of this lemma and prove it after stating the existence theo-

rem. In terms of*the norm || - ||¢, the functional (4.46) is simply

Jo(s+V . 8)= . +2sg—28-Vg). (5.2)

. 1
2 IO!(Eiyllw
The Euler equation of (5.2) is

f dx Vp- v¢»+/ dx (~¥,To¥,Vp)- Ve = / dx (S -V — s¢) (5.3)
o o [«}

for ¥ € Hyo(¥,,0). Now the right hand side of (5.3) defines a bounded linear functional
on Ho(¥,,0) for S,s € L? and the left hand side is the bilinear form associated with
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the norm || - [|e,, S0 existence and uniqueness are guaranteed by the Riesz representation
theorem.

We note that p' also belongs to Hy(¥,,, O) since

Vo' = -T,¥,Vp e L}(O) (5.4)
T,U, Vo = ~Vp+ VA7 (s+V-8) e L¥0). (5.5)

Thus we have shown, granted the validity of Lemma 5.1,

Theorem 5.1 If N’lm(ﬂ) < oo, then there exist unique p,,ph € Ho(¥,,0) such that
(4.36), (4.37) hold for all p € Hy(¥,,0), for almost allw € Q.

So once we have the natural spaces Hy(¥,, ), existence and uniqueness are standard.

Proof of Lemma 5.1: Since |¥|? is integrable with respect to P(dw), we have

! ___.....1 n—oo |4
l—@—ljodx [, (x,0) = a7 jﬂo dy|¥12(x,0) "= |8 2oy (5.6)

for almost all w, by ergodicity of P. That is, for almost all fixed w € {2, given & > 0, there

exists no(w, §) such that, for n > ny{w, §)
[ dx 107 < 1011 ¥ + 8 (5.7)
o

and this estimate for |‘I’n[i=(o) is uniform in n, for almost all fixed w € §. Clearly ¥, V¢ €
(L2(0))4, for all p € CF(O), hence To¥, Ve € (L¥0))". A simple L? estimate shows
that

ITo¥,. Vel reoy < ¥ Velrxo) < sup Vel ¥nlza) (5.8)

So C$(0) C Hy(¥,,,0) C H}(O) and the Lemma is proved.
We now show that the space of test functions ¢ in Theorem 5.1 can be enlarged from

Hy(¥,,0) to HY(O):

Theorem 5.2 If |ﬁ’|L=(n) < o0, then there exist unique p,,pp € Ho(V,,0) such that
(4.96), (4.37) hold for all ¢ € H3(O), for almost allw € 8.

Proof: This theorem is an immediate consequence of Theorem 5.1, Lemma 5.1 and these

facts:

(i) C5°(0) is dense in H(O)
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dx 0, V5 V= | dx 0,94, 1,94 = [ dxF 0,94, V9 (5.9)
Jo Jo Jo " ’
and similarly
f dx ‘I’,,Vp,,-VqS:f dx To¥, Vp, - Vé (5.10)
(o] (o)

(iii) To¥, Vg, T, Vp, € L*(0). So, if (4.36), (4.37) hold for ¢ € C5°(O), then they
also hold for ¢ € H(O).
The existence result of the original (before symmetrization) Dirichlet boundary value

problem follows from Theorem 5.2:
Corollary 5.1 Assume {J¥|?) < co. There ezist unique p},p; € Ho(¥,,, 0) such that
dx Vpt - vqs+fodx v, Vpl Vo= fo dx (S Vo — f) (5.11)
dx Voo - V- fo dx U, Vps V= jo dx (S-Vé— f9) (5.12)
for all ¢ € HL(O), for almost all w € Q.
Proof: By taking
P = put P (5.13)
Pn = Pn—Pn (5.14)

and adding and subtracting (4.36), (4.37) the Theorem follows.

5.2 Uniform estimates

Here we derive some n—uniform estimates for the solutions of (4.36)-(4.37) in Theorem 5.2.
These uniform estimates come naturally as byproducts of the new Hilbert space Ho(¥,, 0)
formulation. We do not need them in the convergence proof and we present them here for

completeness.

Theorem 5.3 Assume I‘i’le(n) < oo. Let pn,pl be the solution of the system (4.36),
(4.37) and p},p; the the solution of (5.11), (5.12), respectively. We have

lealle, < Cllslzae) + [Slreo)) (5.15)
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Henlle, < Cllsloaey + |SlLao)) (5.16)
et lle, < C(lslLso) + ISlLa(0)) (5.17)
llom e, < Cllslxo)y + IS]za(oy) (5.18)

for some constant C depending only on the domain O.
Proof: For atbitrary § > 0, g € H}(O)
2 L 2 L
U;)(S +V- S)g‘ < 8lglZaoy + Flsliso) + 61V lizo) + §ISliae) (5.19)
< (c+ D8IV lxr + 3(IslExor + ISIExor) (5.20)

where ¢ is the constant associated with the Poincare inequality, depending only on the

domain . Thus,

louli. = [[(Vou- Vpu+ To¥aVp, - To¥,Vp.) (5.21)
< |Ou(s + V- 8) + (c + VeV pulinoy + 5(Isliae) + Slhaey)  (5:22)
Consequently,
(1 = (c+ 1))V palizo) + [To¥nVpnlizo)
<1017,(s+ V- 8) + 5((Isltxior + ISTEace)

i
< g((lsliﬂ(m + [Slis0)) (5.23)

since

J(s+V-8)<0 (5.24)

by taking the trial function g = 0 in (5.2). Let & = gk, so that 1 —(c+1)§ = 3. We

obtain
loally. < 4(c+ 1)(IslZao) + 1SIEae))- (5.25)
From the identities
U, = ~To¥,Vp,, To¥,Vph = —Vp, + VA; (s + V -S) (5.26)
we also have
lipall%, < (8(c+ 1)+ 2)((Isliao) + ISIZxo)); (5.27)
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after applying the energy estimate to VAz!(s+ V - 8). Since Pt = pu + Por P = Pn — Phs
it follows from (5.25), (5.27) that

ledl3, < C(|slZyoy + I1Sliae)) (5.28)

lom Iz, < C((sl2a@) + 1STia0)), (5.29)

for some constant C' depending only on the domain. This completes the proof.

5.3 Cell problem and correctors

The effective diffusivity is defined by the cell problem. In this section we study the existence
of the intensity and flux fields and give bounds for their norm. The method is completely
analogous to that for the Dirichlet problems in Section 5.1, with some minor changes,
such as replacing the projection operator Ty (3.9) by T (4.41). We work in the variational
framework on the the space of H,(¥) defined in (3.28) and this makes the questions of
existence and uniqueness standard.

We state the existence theorem and provide a brief explanation with details omitted.

Theorem 5.4 Assume (¥?) < 0o, There ezists unigue By — (E;),El — (By) € H,(¥)
such that

jﬂ P(dw)E,; - F + /n P(dw)VE}; - F=0 (5.30)
[ﬂ P(dw)BY - F + /ﬂ P(dw)¥E, - F =0 (5.31)
(B = & ;ej (5.32)
(Ejj) = E%ﬁ (5.33)

forall ¥ € H,(2),4,5=1,....d

Proof: The mean field conditions (5.32), (5.33) play the role of the inhomogeneous
terms s + V- S in (5.30), (6.31), in the form

. § ] . i_ei
mv-w(e;e’) and —v-w(e . ) (5.34)
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respectively. The L? integrability of ¥ then implies existence and uniqueness as in Theo-
rem 5.2,

The system (5.30)-(5.33) are Euler equations for the min-max principle

o -1 -¥ F F’
afff..——cr‘”(e‘,e’): i%f sup < _ ' >, L,j=1--+d
VxE=D | Fl=o
(Py=24e (#-'v):"';"‘ I F F

(5.35)
which defines the effective diffusivity o*// = (crff ). Note that 0 < Uff f<o0,iyj=1,...,d
because of the integrability condition, |¥] 13(y < 00 as can be seen by taking as trial fields

The field I:B,-J- can also be characterized as the minimizer of the minimum principle
offf = o*(e',ef) = inf {(F-F)+(PTF.-TIF)}, (5.36)

vxF=0
1
(Fy=2ifed

The direct and adjoint intensity fields come from }73?_,'; = ﬁ,-j + E:-J-,'i,j =1-..d, and s0 we

have existence and uniqueness for them.

Theorem 5.5 The intensity fields 'E?; € H,(¥),i,j = 1---d solve uniquely the cell prob-

lems
/ P(dw)(I + §)E} - F =0 (5.37)
a
f P(dw)(I - ¥)E; - F =0 (5.38)
Q
forall Fe M, 4,j=1--d
We also have the a priori bounds
Theorem 5.6 There is a constant C such that fori,j=1,...,d
IBislle < Cl¥lramy (5.39)
IEills < Clﬁ’lm(n} (5.40)
1Bl < Cl¥paay (5.41)
HEG s < C1¥lLaay (5.42)
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In the theory of homogenization [4], [18], a prominent role is played by the correctors

x},x; which are defined, up to constant, by
Vxf(x,w) = Bf (x,0), Vxj(x,w)=Ej(x,w). (5.43)
Let us fix the constant by setting
xF(0,w) =0, x7(0,w)=0.
The symmetrized correctors are
1 + - Kl 1 + -
xi =504 +x7) x5 =304 =x7) (5.44)

and satisfy
Vy;(x,w) = E;(x,w), Vx;j(x,w)= Ej(x,w). (5.45)

The correctors are square integrable but not stationary in general. However, they sat-
isfy certain sublinear growth condition for large |x| which play an essential role in the

convergence proof and are analyzed in detail in Sections 8.1 and 8.2,

6 Convergence

We shall establish in this section the main result of this paper which is the strong conver-

gence theorem of homogenization in the case of L? skew symmetric coeflicients,

Theorem 6.1 Assume that the stream matriz is square integrable {|¥]?) < oo and let

xi = Lxf(nx,w), x77 = 2x7 (nx,w) and similarly xi,x be the scaled correctors with

the unscaled ones defined by (5.43) and (5.44). Then

fodx (V (p,.mﬁ—z:x{;(x,u)agif))) — 0 (6.1)
fodx (V (pﬁ, —Zx:;"(x,w)gg-g—))) —0 (6.2)

as n — 00, for almost all w, where p satisfies the homogenized problem

v. (_;_ (aeff + Uem) Vﬁ) =s+V-8, in O (6.3)
p=0, on 00 (6.4)

30



We also have the following corollary of Theorem 6.1 :

[ (v (p: 5 Zxﬂx,w)agg))) -0 (6.5)
[ x (v (p; —p- zx;f(x,w)ég(:%)) -0 (6.9)

as n — o0, for abmost all w, where p is again the solution of (6.3),(6.4).

Theorems 6.1, 6.2 are also valid when (6.1}, (6.2), (6.5) and (6.6) are averaged over w.
We will show below that / dx (xH)? = 0, / dx (x2?)? = 0,4 = 1,...,d, with proba-
o o
bility one. Therefore, we have the following corollary of Theorem 6.2

Corollary 6.1 Assume that (|U]?) < co. Then

[ax (ot =0 =0 (6.7)

[ G0 o9

as n — 00, for almost all w.

For the proof we use the minimum and maximum principles to obtain upper and lower
bounds, respectively, for the functionals with suitably constructed trial functions which
prove convergence of the functionals. The strong convergence results then follow from the
convergence of functionals in view of the ellipticity of the problem.

To obtain minimum or maximum principles, the partial Euler equations (4.44,4.45)
and (4.47,4.48) have to be solved for selected trial functions asymptotically as n — oo.
This amounts to solving the Poisson equation with rapidly oscillatory right hand side.
This is the most technical part of the paper, partly because of the singular behavior near
the boundary of the domain which requires careful cut-off arguments. 1t is presented in

Sections 8.4 and 8.5.
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6.1 Convergence of functionals

As in the usual homogenization [4],[18] with the multiple scale expansion, we would like

to show that the solutions of the inhomogeneous Dirichlet problems have the form
pr(x) = p+ ) —x* (nx) 5 ~an(x) (6.9)
3 i
— _ 1 ap
Pr (X) =p + z EX (nx)'é;an(x) (610)
7 i
in the H}(O) sense or, in the symmetrized form,
_ 1, dp
Pa(X) X B+ 3 = (nx) 5 —an(x) (6.11)
3 §
o) = 3 Ly nx) Lo, ). (6.12)
» F n (9:1:_1 n

Here xt,x7,%,x"? are the correctors defined by (5.43, 5.44), p is the exact solution of
the homogenized problem (6.3,6.4) and a,(x) is a suitable cut-off function that makes
(6.9)-(6.12) satisfy the Dirichlet boundary conditions. The precise way of doing the cut-off
is technically important and one of the essential elements of Section 8.4 and 8.5.

The difficulty with (6.11)-(6.12) is that we do not know if the expansions are admissible.
Is the right hand side of (6.11), (6.12) in Hy(¥,,0)? The square integrability of

FO {‘I'n Z VX’(”")%%%(X)} + I‘0 {‘I’n E %XJ(HX)V [aﬁf’:an(x)} } (6’13)

is questionable because we do not know that if ¥, 5. Vx! or ¥,¥’ is square integrable.
The estimates we obtained in Section 5 are not enough to ensure that we stay in the right
spaces, This is also the difficulty encountered in Tartar’s proof [19] when applied to this
case.

One of the advantages of the variational framework is that we do not have to work with
the exact solutions for which we have insufficient knowledge because we can always resort
to nice trial functions which approximate the exact solutions.

To make the right hand side of (6.11)-{6.12) admissible for the maximum and minimum

principles, let

() = p 4 32 3 (1) 5 x) (6.14)
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| i)
L(x) =3 f(nx)éwijan(x) (6.15)
7
where p € C2(0) and fi(x) and g (x) satisfy
F(0)=0, ¢gi(0)=0 (6.16)

and have essentially bounded derivatives

F/F = Vfi L™
, y (6.17)
G = Vg’ e€l™=
To verify that
hnsl:: € Hn(‘I'm,O) (618)
we need the following lemma
Lemma 6.1 If Vf = F is essentially bounded and (F) = 0 then
lim sup fi(x,w) =0, for almostall w. (6.19)

n-—oo ®eD

Here f,(x,w) = L f(nx,w), with f(0,w)=10.

We note that the normalization f(0,w) = 0 is essential for the resuit to hold. The proof is
given in Section 8.2.

This Lemma eliminates the difficulties that we have with the integrability of terms of
the form (6.13) when ¥ in only L*-stationarity and not in L. Tt then follows that (6.14),
(6.15) are admissible. To approximate (6.11) and (6.12) we need also a density lemma for

the space of essentially bounded, curl-free fields
B = {F € H,|F is essentially bounded}. (6.20)

Lemma 6.2 The space B is dense in ’Hy(\‘f'), so that the class of essentially bounded fields
is the appropriate trial field space for the variational principle ({.21) of the cell problem.

It is easy to see by the argument of the proof of Lemma 5.1 that
B C M, (V). (6.21)

It is also clear that
IF e Y = (L¥(Q, 7, P))? (6.22)
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for all bounded F € B. The proof of Lemma 6.2 is given in Section 8.3.
We now show that the functional J,(s + V - S) can be bounded with arbitrarily small

error from above and below with trial functions of the form (6.14), (6.15), respectively.

Theorem 6.3 Assume that {|U]?) < 0o. Given ¢ > 0 there exists 6 > 0 such that for all

essentially bounded ¥, G7 satisfying

IIF +e —E;llg <6 (6.23)
167 — Ejllg < (6:24)
we have
My oodu(s + V- 5)
. P E (i 2T — o0 (e L B LR R LR 222
<o fd D (e F) (4 B) <08 (o B) B FF) ey
+2p(s4+ V- 8)
<lm, . .Ju(s+V:8) +e
(6.25)
and
lim, . odn(s+V:8)
W AN R AT BN e A e R e S I o A T
peérv‘of(o)l(’)lf S (64 @) - (9 + @) 28 (¢ + &) &7 -G &Y) g2 e
+2p(s+V - 8}
> Iim, o/ (s+V-8S)
(6.26)

for almost all w, where E;;, Ej; are defined in (4.5)-(4.6) and Fi, ¥ are related through
the Poisson equation (4.40) (in the form (8.38)-(8.39)), and G/, G are similarly related
through a Poisson equation (in the form(8.74)-(8.75)). In particular, from the density
lemma 6.2 we have
lim J,(s+V-8)= inf _1,j dx (21/2 en+ e,fn) Op dp 4 2p(s 4V -S)
n=voo pece(0) |0| Jo — dx; 6

(6.27)

for almost all w. -

We remark that the theorem is valid also when all the expressions are averaged over w

with respect to P.
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Before getting into the proof, let us explain the notation we will use. We denote by

fix,w), fI (x,w), g (x,w), 97 (x,w), § = 1,...,d, non-stationary random functions whose

gradients
Vi (x,w) = Fi(x,w) = T, F(w) (6.28)
Vi (x,w)=Fi(x,w)= T, 77 (w) (6.29)
Vo (x,w) = G (x,w) = T, G/ (w) (6.30)
Vi (x,w) = G (x,w) = T,G7(w) (6.31)

are in H,(£2), the space of L2, stationary, gradient fields with zero mean.

The scaled functions fi(x,w), £ (x,w), g(x,w), g1 (x,w), are defined by
. 1 .. ' 1 .
fi(x,w) = —njf’ (nx,w), fl(x,w)= ;f (nx,w) (6.32)

. 1 ; iy 1
gi(x,w)= ;Zg’ (nx,w), gi(x,w)= Eg’(nx,w). (6.33)

and are uniquely determined up to constant. The normalization constant is essential in

determining the gight trial functions.

6.1.1 Upper bound

For the minimum principle of section 4.2.2, consider the trial function

ho(x,w) = p(x) + zfg(x,w)agif)an(x) (6.34)

where f/ satisfies (6.17) and a,(x) is the cut-off function defined in the Section 8.4, 8.5.
We show in Lemma 8.3 that

dp(x)

h;(x,w)zz 13 (x,w) o tn(X). (6.35)

solves the Poisson problem for the minimum principle asymptotically in the norm of 4, HOY,
under the assumptions of Lemma 8.3 and if F/ (), F(w),j = 1, ..., d, satisfy (8.38)-(8.39)
with f7(x,w) safisfying the normalization (8.41).
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Thus h,(x,w), hh(X,w) are a legitimate pair of trial functions for the minimum principle
of section 4.2.2 ip the asymptotic sense as n — oo. Substituting (6.34), (6.35) into the

minimum principle and collecting similar terms we get

1
T (s+V-8)< I_O'Tfo dx (Vh, - Vhy — 20, Vh, - VK, — VH, - VHy +2h,(s+ V- 8)) + o(1)

1 , : . , . . '

<oy /L o (Z (€ +Vf) - (& + V) =20, (¢ + Vi) - V1
9p 9p

VI V) G (s 4V S)) +o(1) (6.36)

in view of (8.43), (8.42) and (8.66). Passing to the limit in (6.36) gives

ﬁmsupJn(s+V-S)<ioifdx > > ((¢+F)- (¢ + ) ~ 20 (¢ + F) - F7

n—o0Q

oo, T 2p(s + V- 8) (6.37)

Minimizing the right side of (6.37) over F i=1,...,d,, bearing in mind the density lemma
(6.2) and the identity (4.22), we obtain

11— 00 i

1 dp 0p
- . — i 4ottty L .
limsup J,(s+ V-8) < 0] /odx (g 1/2 (O’.J + 0 ) 9z; s +20(s+V S))
(6.38)
where we use the variational definition of the effective diffusivity (Section 4.2.1). Note that

only its symmetric part appears on the right side.

6.1.2 Lower bound

To get lower bounds, we use the maximum principle of section 4.2.2. Consider the trial

function !, defined by (6.15). As stated in Lemma 8.5, I, defined by
N
L{x)=p+ Zg;’l(x)—aﬁan, (6.39)
7 j

with Vgf = G4 and Vg = G, satisfies (8.74)-(8.75) and g satisfies the normalization
(8.78).
Thus I, 1, are a legitimate pair of trial functions for the maximum principle of section

4.2.2 in the asymptotic sense as n — oo. Substituting I, ,/, and passing to the limit, using
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the ergodicity, gives

BEminf J (s +V S) > ,1,. [ dx 3 ({e ( } 20 ( é') G/
fn—00 iU| Jo ‘:;‘ \ 7 N i

i s\ 00 Op

—xt .G
G". &%) 5e. 75 T2+ V) (6.40)

where p(x) satisfies
E(ej+éj)-5%-Vp=s+V-S, in O (6.41)
7 i

p=0, ondO. (6.42)

Maximizing the right side of (6.40) over G, j=1,..,4d,and using the density lemma and
the identity (4.22), we obtain

. 1 dp Op
, — b eff gttty L 20 .
lim inf Jo(s4+V-8) > 0] [vdx (i,j 1/2 (au + 0} ) 9z, s +2p(s+ V S)) (6.43)

with the help, of the density lemma 6.2. Note that for the corresponding G/,j=1,..,d,

we have
(¢ +G) - =172 (o’ + oif"). (6.44)

Therefore, (6.43) is equivalent to

Op 9p
eff efff —t v.
hmme ((s+V-8)) 2 mm |O]-/ dx (E 1/2( +o ) 3s, Bz, +2p(s+V-8)

(6.45)
because of (6.41). In view of (6.38), we then conclude that
lim J,((s+V-S)) :minu-l—j i [S12 (o +o5) L2 g5 4 v.5)
oo T P IO] Po) 0 K i a:ﬂ, 3
(6.46)

This completes the proof of Theorem 6.3.

6.2 Strong convergence

In this section we complete the proof of Theorem 6.1- 6.2, stated in the beginning of
Section 6, using Theorem 6.3. Because of the variational structure, the convergence of

functionals established in the preceding section is very close to the proof of Theorem 6.1.

37



Define the differences

r, = Vp, - Vh,

r, = Vg, — Vh,.

(6.47)

(6.48)

where p,,, p', are the solutions of the system of symmetrized inhomogeneous boundary value
PrsP g y

problems and h,, A, are given by (6.34), (6.35). Then
j dx (v, T, + 1 Th)
o
=f dx (Vpn Voo + Vo, Vo)
o
+ f dx (Vhy - Vh, + VA, - VAL)
o
—2 f dx (Vp, - Vh, + V- VA.)
o
But, since p,, is the solution of the symmetrized boundary value problem
V- (I-¥%T¥,)Vp,=s+V-S, in O
Pn =0, on O

we have

f dx (Vg -Vp,+T,¥,Vg:-T1¥,Vp,) = —j dx g(s+V+8)
o o
for all ¢ € H{(O), which implies, according to Lemma 8.3,
f dx (Vh, - Vp, + VH, - Vi) ~ -] dx ha(s+ V -S).
o o
Thus
f dx (r, T, 41y, 13)
@]
Nf dx (Vpn-Vp, + Vg, - Vpr)
[¢]
+ f dx (Vhy - Vhy + VR, - Vi)
o

+2f dx ho(s+ V- S)
o)

which in the limit can be made as small as one please according to Theorem 6.3.

(6.49)

(6.50)
(6.51)

(6.52)

(6.53)

(6.54)

We recall that the way we prove Theorem 6.3 is to first let n — oo, and then minimize

over essentially bounded F¥ and maximize over essentially bounded F** for the upper and
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lower bounds respectively. With this observation in mind, we summarize what we have
shown up to this-point. We have shown that given ¢ > 0, there exists § > 0 such that for
all essentially bounded ¥, (w), 7 =1,...,d, satisfying

|F/ - Ejllg < 6 (6.55)
we have
Em sup] dx (r, rp+r,-r;)<e (6.56)
n—oo ()

Here ﬁﬁ, § =1,...,d, are the solutions of the symmetrized cell problems.

From this it follows easily that

/odx (V (hn—p-—Zx{,(x,w)?ggm}-)) <eb (6.57)
fodx (V (hﬁ, - Ex:f(x,w)—a-géf—))) <cé (6.58)

3

for some constant ¢, provided (6.55) holds. This proves the strong convergence theorem.

7 Probabilistic convergence theorem: compactness of the pro-

cesses

In this section we prove that the processes x,(-) defined by (1.2) satisfy the tightness

condition

lim T Prob {supscicisr [x,() = Xa(£)] > 6} =0 (7.1)

for each § > 0 and T < oo. The unboundedness of ¥ makes the use of the Nash estimates,
or generalizations [17], impossible. Thus, the compactness of the processes x,(t) is no
longer straightforward. We reduce the estimate of the probability in (7.1) to a resolvent
estimate which we can study using variational methods except that in this case we need an
L*, rather than ‘L%, estimate. This comes when we average over the ensemble of flows u.
So we no longer have convergence with probability one, as in Theorem 1, but convergence

in measure with respect to the flows (cf. Theorem 7.1).
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It is enough fpr (7.1) to obtain the estimate

R
];:‘?& "”}gg Prob {supy, s |%a{2) — x(0)]> 4} =0 (7.2)

for each § > 0. To prove (7.2) it suffices to obtain for each component z;(s) an estimate
of the form
1o

}ﬁfo‘ hllfgc Prob {supg,cpne [2:(s) — 2:(0)} = 6n} = 0 (7.3)

for each § > 0. Let 7, be the time it takes for z,(t) to reach level L assuming z;(0) = 0.
Then (7.3) reduces to

S e

%{% —1111?0 Prob {rs, < hn’} =10 (7.4)

for each & > 0. From the Tchebyshev inequality
Prob {s, < hn?} < e E {e""eon ], (7.5)

Therefore, (7.4) can be deduced from

ImE e e} < M(a,8), (7.6)
for each @ > 0, and
iI;i;e“hM(a,ﬁ) = o(h) (7.7)

as h — 0 for each 6 > 0.

Let £ be the generator of the processes

L=V {(cl+¥,(x))V ] (7.8)
and consider the solution of
ap, — Lpy =0 (7.9)
for z; < L with
pa =0,for zy=-00, p,=1 for 5, =1L (7.10)

Write x = (z1,x") with x! = (23,...,24). and let

/ P(dw)po((0, %), L,w) = 8a(L), (7.11)

which does not depend on x', by stationarity. To get (7.7) we need an estimate for

8,2, (6n) as n — oo,
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Since averaging with respect to w allows us to use stationarity, starting from zero and

going to L is equivalent to starting from —L and geing to level 0. Therefore, we may

consider
apy, — Lp, =0, z; <0 (7.12)
P =0, for zy=—00, p,=1, for 2, =0 (7.13)
and let
[ P@)patx, L) = 0u(a1) (7.14)

We will study the asymptotic behavior of 8,-2, (—6n) as n — oo.

The idea is to show that the averaged moment-generating functions 8,-s, (—én) of the
exit time for the processes x,, is very close to that of Brownian motion for which we have
the estimate (7.7). With slight modifications, it is routine to check that strong convergence

holds. In particular,

4]
i % fQ dx* f_ _da, jﬂ P(do) (puora(n, @) = pa(x)) = 0 (7.15)

as n — oo. Here p,(x) is the moment generating function of the exit time for Brownian
motion with variance coefficient 4(c*// +¢°//1), The techniques developed in the previous
sections apply equally well here, with some modifications needed to account for the o

dependence and the semi-infinite domain {x|z, < 0}. Therefore,

/ um dz1 (Op-24(nzy) — M{a,2,))* — 0, (7.16)

as n — 00, where M(a,z,) is the moment-generating function of the exit time for the
one-dimensional Brownian motion starting at z,. Here we use the w-average version of
homogenization theorems as noted in the remark after the statements of Theorem 6.1and
6.2. However, from (7.6} and (7.7) we see that what is needed here is not the L?(dz,)
convergence but convergence pointwise in z;. But both 6,-2,(nz,) and M(a,z,) are

monotone so L?(dz;) convergence actually implies uniform convergence
sup (6p-20(n2y) ~ M(2t,2,))" — 0 (7.17)
£y SO

as n — oo. From the Laplace transform of the heat equation on the semi-infinite line, we

know that as a — o0

M(a, 8) = O(\/ae™*V®). (7.18)
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for some positive constant ¢. The tightness condition (7.1) then follows from

Y

1
. ah - —cy1fh
(l;nzf[’}e M{a,8)= O(+e )s (7.19)

as h — 0, for some positive constant ¢;, by taking @ = ﬁi—, for some positive but sufficiently
small constant ¢, = ¢y(¢,8). We have thus proven Theorem 2 of the Introduction, which

we restate here.

Theorem 7.1 The family x,,(2) of stochastic processes defined by (1.2) is uniformly tight
in measure with respect to the ensemble of media P(dw) and therefore we have weak con-
vergence to Brounian motion in the space of continuous functions in R?, in measure with

respect to P(dw).

8 The proofs of some technical lemmas

8.1 L2?-sublinear growth of random functions with L?-derivatives

The main result of this section is the proof of the almost sure L*-sublinear growth esti-
mate of Lemma 8.2 which is the strengthened version of the standard L*-sublinear growth
estimate stated in the following lemma 8.1. Lemma 8.2 is needed for the proof of Lemma

6.1, 8.3 and 8.5.

Lemma 8.1 Let B € M,. There ezists a uniquely defined process f(x,w) € Hy (R%; L*(Q)),

it is not stationary, f(0,w)= 0 and
Vi(x,w) = F(x,w) = F(r_w). (8.1)
For any compact subset K C R?, we have
1 2
lim SI;Ip( [Ef(nx,w)] y=0. (8.2)
Proof: This proof follows Papanicolaou and Varadhan[18]. Define f(x,w) by
eix-k -1

fx0) = [ (=) U(@)F() (83)
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where U(dk) is the spectral resolution of the unitary group {I}, i.e.,

T, = f ¢ x17(dk).
ke RE

The process f(x,w) is not stationary because it is not of the form f(x,w) =

(8.4)

T f(w). It

is easy to see that f(0,w) = 0 and Vf(x,w) = F(x,w) and, as a consequence, it is in

H (R% L*(£)). It remains to show (8.2). We have the identity

/P(dw)( f(nx, u.:))2
= /R ., -1

Ry (dk) = fn P(d)U (k)T (), ()

where

is the power spectral measure of F;(x,w) = F;(n,w). From the estimate

1 & ;
P _Zl ki Ry dk)<§:R,,(dk)
=

[ P () < [ |15

we obtain

elmt k

(11

(8.5)

(8.6)

(8.7)

(8.8)

(8.9)

By ergodicity and (F) = 0, it follows that R;({0}) = 0. The Lebesque convergence theorem

then yields the result.
Let

B

fu(x,w) = = f(nx,w).

Then (8.2) implies that
([ ax 2y =0
K
as n — 00, Consider also
fa(x,w) = ful(x,0) ~ an(w)
where a,(w) = 17 fx 4% fa(x,w). It is easy to see that (8.11) implies that
dx (f2)’) — 0
([ dx () -
as m — 00, since

(aﬁ)s(!-%—lfxdx =0
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as n — 00.
The constant a,(w) is essential for the proof of the following strengthened version of

(8.13) that the convergence holds without the average {-).

Lemma 8.2 For P almost allw € §)

] dx (fi)*— 0, as n— oo, (8.15)
K

Proof: Without loss of generality, we may assume K = {|x| < a}, for some a > 0. From

the definition (8.12), we have
Vfi(x,w) = F(nx,w) € LL(R%) (8.16)

for almost all w € Q. Furthermore, given § > 0, there exists ny(w,§) such that, for

n > ng(w, §)
1
Jk]

for almost all w € £, by ergodicity. The uniform estimate (8.17) and the mean zero

fK dx (V1) < [Blpay + 6 (8.17)

property [; dx fi = 0imply that {f,} is precompact in the strong L? sense. Consider any
convergent subsequence, still denoted by {f;}. There exists a function g(x,w) € L*(K)
such that

[ dx (-9 =0 (8.18)

a8 n — oo, for almost all w.

On the other hand, (8.13) implies that the sequence of positive random variables
{fi dx (f1)*} cohverges to zero in probability with respect to P and in particular there
exists a subsequence {fj dx (fi;)?} converging to zero for P almost all w € Q. Thus

g(x,w) = 0, for almost all w. This proves the lemma.

8.2 [L>=-sublinear growth of random functions with L*-derivatives

In this section we prove Lemma 6.1 which is essential in our estimates for the Poisson
problems in Section 8.4 and 8.5. Note that, contrary to the constant a,(w), a different

normalization has beern taken in Lemma 6.1.
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Proof of Lemma 6.1: In view of boundedness of the domain O and Vf,(x,0) =

F(nx,w), the pointwise convergence to zero
lim fi(x,w)=0, ¥xeO (8.19)

implies the uniform convergence (6.19). It remains to prove (8.19) and this is done by
contradiction,

Suppose (8.19) fails at a point x, € O. We select a convergent subsequence, still
denoted by f,(x,,w) such that

fa(xow) = a, #0. (8.20)

By the boundedness of F and the normalization f,(0,w) = 0 it follows that there exists a

& > 0 and ng > 0 such that for all » > ny, we have

Valx,w) = o] € 0,/3, for |x—x,|<é (8.21)

[fa(x,w)l S 0,/3,  for [x[<§ (8:22)

Now consider the cylinder set ¢ of radius 4, with ©X, as its axis. By ergodicity and the

Zero mean property (f‘) = 0, we have

TéTIf dx F(nx,w)— 0, for almost all w (8.23)
o

But, from (8.21)-(8.22), it follows that 7 [,/ dx V fu(x,w) has a nonzero component in
the direction of 6X,, which is larger than

awlBé—-lt
s > (8.24)

Here BZ~! is the d— 1 dimensional ball of radius 6. Thus, e, = 0 and the proof is complete.

8.3 Density lemma

Proof of Lemma 6.2: We decompose the space Hg(ff;) into the closure of B and its

orthogonal complement A

H,(¥)=Ba A (8.25)
with respect to the norm || - ||g of H,('"I"). For every A € A, we have A L B, that is,
(A-F)+ (TTA . T¥F)=0, VFeB (8.26)
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or, equivalently,

(I-¥TH)A -Fy=0, YFeB. (8.27)
This implies that
(I—UT¥)A =0, for almost all w, (8.28)
which in turn implies that
A=0 (8.29)

in view of the positive-definiteness of the operator I — UTI'¥. This completes the proof.

8.4 Poisson problem for upper bound

Without loss of generality, let the domain O be the square |z;| < 1, ¢ = 1,...,,d. Consider

the inhomogeneous boundary value problem

Ag,(x,w)+V - ¥, F, =0, nO (8.30)
g =0, on 8O. (8.31)

where the inhomogeneous term F, (x,w) has the form
. b .
Fo(x,w) = 3 V(an(x) f,{(x,w)a—a?(x)) +Vp(x), in O. (8.32)
] 2

Here p(x) € C(O) and fi(x,w),j = 1,...,d are non-stationary random functions whose

gradients are

(VA)x,0) = B (nx,0) = TP () € Hy(9). (8.33)

We take the gradients f‘i,i =1,...,d, to be essentially bounded, The cut-off function is

an(x) = f{lv( F Ly (834)
with (s) € C*(R) such that
0<(s) <1 (8.35)
1(s) = boll22 (8.36)
0, {s|<1.
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and 7, is a decreasing sequence of positive numbers with a rate that will be determined
later and depends on fi(x,w),j = 1,...,d. We denote the set {x | @, (x) =1} by O'.
We shall show how to solve (8.30), (8.31) in terms of f(x,w),i = 1,...,d, whose

gradients
(VEN(x,w) = Fi(nx,w) = T F (W) € H,(Q) (8.37)
satisfy
V-Fi+V . 9(F +e)=0, (8.38)
F=0 . (8.39)

We impose the normalization conditions

£i(0,0) =0 (8.40)
/ dx fi(x,w) =0, (8.41)
[
so that, by Lemmas 8.2 and 6.1,
[ ax (g =0, (8.42)
o]
sup(fi)*(x,w) — 0, (8.43)
xe0

in the limit n — oo, with probability one.

We prove

Lemma 8.3 Let z, be defined by

2,0) = 0,(30) — 52 £ x,0) D0 ), (8.44)

assume that {J¥]?) < oo, ¥ ¢ Hy(Q),5 = 1,...,d, is essentially bounded and the normal-
ization condilions (8.40), (8.41) hold. Then

/ dx (Vo) =0, as n— oo, (8.45)
o
for almost all w.

Proof of Lemma 8.3:
Under the same assumptions of Lemma 8.3, we first prove a Lemma which implies that

z, tends to zero in the L%-norm in the limit n — oo.
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Lemma 8.4 For almost all w
] dx g2 — 0 (8.46)
()
as n-— 0o,

Proof of Lemma 8.4: The energy estimate for (8.30,8.31) gives

/ dx (vgﬂ)2 = '"f dx ¥.F,.-Vg,
o o
< IwnFulL’(O)lvgnlL"(O)
< (l‘if'lu(n) + 8)IVnlLa o) (8.47)

for any given § > 0 and n > n,(6,w), by ergodicity. Hence

[Vgnlraoy < € (8.48)
where ¢ is a constant independent of n. This implies that {g,} is precompact in the strong
L? sense. Multiplying (8.30) by any test function ¢ € C§°(0) and integrating by parts
gives

/odx V- Vi + /o dx U,F, - Vé =0 (8.49)

The second integral vanishes in the limit. It follows that {Vg,} converges weakly to zero.
Thus, by the strong compactness, {g,} converges strongly to zero.

We return now to the proof of Lemma 8.3 and note that Lemma 8.4 and (8.42) imply

that
f dx 22— 0 (8.50)
o

as n — co. From equations {8.30), (8.38) it follows that
. 0
Az, = -V ¥, (V (Zf,{gf;&,,) +Vp) ZAf a,, ZVf,, ( ; ,,)
dp
~Y V£V
RC ( )

=-V.¥, ZVf,J, 0, -V ¥, Zfiv(a—”— )
2P

oz;

+V- ¥ Z (Vi+e) 5 ZVf,, (

v,.Vp

v
) -2V (59 (g5))
=-V.-9,Vp(l-a,)-V-¥, Zﬁ,v (—wan) an (g;%an)

- ZV (f,sv (%’?an)) (8.51)

J
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The major terms V- ¥, 3, Vf;,’;a—i‘i:a,,, V-¥,Vpand 3, Af7 gf;an nearly cancel because
of (8.38) and the residual is V - ¥,Vp(1 — a,,}. Multiplying (8.51) by z,, integrating by

parts and using the Schwartz inequality gives

]dx (Vz,)?
o
-—/dx‘ll Vp(l-a,) Vz, ,_/ dx ¥,.Vp-V(1-a,)z,

/dx\I! ZVf’ ( an) 2y — jdx‘I' Zf’ (—man) -Vz,
+ [ ax N ( o) an — [ dx Zf,,’v( %) Vi
gjodx +fodx

: 8p
S v id
+ | dx |¥, E_,- Vv fi Vam,-a"z" +f dx

o
fdx

dx|ZVf' a” Va2,
jdx
< ( | dx (2.Vp(1 —aﬂ))z) ( [ o (Vzn)z)m

(f dx (V,Vp- V(l—an)) w ( o )

V. Vp(l—a,) Vz,

V. Vp- V(1 -ay,)z,

; dp
2 'V J_m.v
Y, fn :E- Qi 2y,

v, Ef,{ Ve Va,

+ [ ax (9,3 fs;v-g‘lan-w,,
; %

N ap
IV ——
+ f dx E_,- anvamjanzn

wVa,,

m 3,0
it
+ f dx E,- f"vc')a: @,
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1/2

y 3,0 2 . 1/2
+ o_dx ;an vé"z";an (./;) dx zn)
dp 0 v
£ P A 2
4| [ ax (Z,-:Vf“ e Va,,) ( jo b z,,)
o\ 172
.. ap 5 1/2
J —
+ ( [ ix (Zj:fn Vaxj“") (fo dx (Vz,) )

o\ 1/2

3 1/2
+ dx (sz“J?’)‘—ij an) (./o\o' dx (Vzn)z) (8.52)

There are no boundary contributions because of the boundary condition for z, and the
cut-off function a,.

We note that the Poincare inequality for z, in O\ O gives

f dx 22 < ¢;72 ] dx (Vz,)
o\ oo
< eyr2 / dx (Vz)?, (8.53)
o
since @\ ¢ is a strip of width 7, near 80 and z, vanishes on 80. The estimate (8.53)

holds for all H'(©)-functions with zero Dirichlet data and the constant ¢; depends on the

domain @. For the cutoff function we have the estimates

2

Va,| < =, (8.54)
fo dx (Va,)® < % (8.55)

We now use (8.53), (8.54) and (8.55) whenever the integral [, dx z; occurs, Lemma 8.3
then follows from (8.50) and

f dx 2 = 0, (8.56)
o\o!
/ dx (V) =0, j=1,.,d (8.57)
o\o!
1y 2
/ dx (Vf,,’) -0, j=1,..,d (8.58)
o\o!
/ dx (9,V 1)’ =0 (8.59)
o\o!

50



—l-f dx (fi)? =0, §=1,..d, (8.60)

1 fsun(m?\ (f dx wz\ 50, §=1,umd (8.61)
n \xEO

for almost all w. The estimate (8.61) is used for the integrals whose integrands involve
V. fi

The estimates (8.56)-(8.59) are immediate consequences of the ergodicity, since 7,, — 0.

To get {8.60) and (8.61), we first note that

/ dx V2 < (| +6 (8.62)
fo)

for any § > 0, for n sufficiently large. So we must now choose a proper cut-off rate 7,,. Let
= max{ [ ax (1, sup(fiY, i = 1, (5.69)
a xeQ
We know from (8.43), (8.42) that
7, — 0, as n— oo, with probability ore. (8.64)
The desired result (8.45) and Lemma 8.3 follow from

7m—0, —=—0, asn— oo. (8.65)
when we let 7, = ni./ 4

Once Lemma 8.3 is proved, the cut-off function «, can be omitted in the limit as

n -+ 00, We have

fo dx (Vz.)* =0, (8.66)

where

3P(XJ

2 (%, w) = ga(X,w) — an( X,w) =g (8.67)

because

2
/ dx (Zw‘ 3”(1-a,,)) (8.68)
e Op ’
fodx (an va—%u-an)) — 0, (8.69)
fo dx (Z f;f%v%) -0, (8.70)
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as n — 00, for almost all w.
We note that Lemma 8.3 is also valid if the left side of (8.45) is averaged over w. This

can be seen by applying the Lebesque dominated convergence theorem.

8.5 Poisson problem for lower bound

We again assume, without loss of generality, that the domain O is the square |z;] < 1, i =
1,..,d.

The Poisson problem in this case is

Ag(x,}+V-¥,F, =s+V:8 in0QO (8.71)
gn =0, ond0. (8.72)

where the inhomogeneous term Fj(x,w) has the form

Fi(x,w)=Vp+ ZV(an(x)f,’f (x,w)gf;(x)) + Vp(x), in O. (8.73)

Here p(x) € C(0), a, is a cutoff function to be determined later and f,(x,w) satisfy
(8.37). The abstract problems whose solutions we use to solve (8.71) is to determine F*

such that

V.F4+V.¥Fi=0, i=1,...d (8.74)

(Fy=0, i=1,..,4d (8.75)

and the F¥(x,w) can be written as gradients of nonstationary random functions f*(x,w).

Let the rescaled random functions be, as before,

, 1 .
fi(x,w) = —f (mx,0). (8.76)
and similarly for f,7(x,w). They are determined up to constant which we fix so that

£ (0,w)=0 (8.77)
j; dx fi(x,w)=0. (8.78)
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By Lemma 8.2 and 6.1,

[ ax (£ Y(x,0) = 0, (8.79)
I (8.79)
sup(f)*(x,w) = 0, (8.80)
xEQ

in the limit n — oo.

We prove

Lemma 8.5 Assume that (|¥]2) < co. Let F¥ € H,(R),7 =1, ..., d, be essentially bounded
and let the normalization conditions (8.77), (8.78) hold, Then

f dx (Vzn)2 -0, as n— oo, (8.81)
o
for almost all w, where
£, 06,0) = 100) = p = T Ao ) ) (852)

Here p satisfies

Z(ej+f"')-§3—Vp=s+V-S, in O (8.83)

i ¥

p=0, ond0O. (8.84)

Proof:

First we observe that, as in the energy estimate (8.47) of Lemma 8.4,
IVgnlrao) < e (8.85)

where ¢ is a constant independent of n. Thus g; € Hj(O). From the equations {8.71),
(8.74) it follows that

Azn=s+V-S--(V v, ZVf,, ootV T, Zf,gv(a” ))—(EAf,{—é?a
Zj i )
Ly (20 : dp
+Ap+¥v_f;l V(amja,,)+;v (fJV (6% ,,)))
% i

_ EV ( (maﬂ)) (8.86)

Zj
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The leading order O(n)-terms V- ¥, 5°. V iz 3 0n and 35, A fige 32;(n cancel because of
(8.74). Multiplying this identity by z, and integrating makes the O(1)-terms nearly zero
in view of (8.83) and (8.85), since

OVp
fdx (3+V S—-Ap-— EVf‘ B:r:ja“) Zn

fdx e’+Fj)—ej—Vf,’;)-%zpzn
i

. OV
-i-de ;v'f,{ : F2;;1’(1—(;!,,).:,, (8.87)

The first integral vanishes in the limit n — oo by ergodicity and the L? integrability of
Fi(x,w). With (8.87) in mind, integrating by parts and using Schwartz inequality yield

the estimate

1/2

< (_/c:,dx ;((e"-l-if‘f) —ef —Vf-’) (GVP) ) (/ dx zn)m
2\ /2 1/2
./0\0‘ (ZVfJ BVP) (jo\w 2,2,) /
| [ ax (wn;f;’vgf;an) ]
( 1/2
\ (L\af dx (Vz,) )
( 9 2\ 2 1/2
+ /o dx (2 fg,v-a—%an) ( fo dx (VZ,,)z)
2\ /2 1/2
./‘;dx (Zﬁ‘% an) ] (./0\0' dx (Vz,,)z) / (8.88)

j dx (Vz,)’
o
o\ 172
1/2
( / dx (Vz,,)g)
@)
oro \')
JJJ-
| [ ax (wa aijan) }
\ /
Lemma 8.5 then follows from the ergodicity of F¥(x,w),

;1-3- j; dx (f1)* -0, (8.89)
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and
1 (iup( f,‘,i)ﬂ(x,-)) ( [ ax wg) 0, j=1yud. (8.90)
Ta €0 o

for almost all w. As in the proof of Lemma 8.3, we have to choose the cutoff rate 7,, to

satisfy (8.89) and (8.90). This completes the proof.
As with (8.66), we have

] dx (Vz.)* =0, (8.91)
o

where

Zn(X,w) = go(x,w) — p — Z f;';(x,w)%-f—). (8.92)

This says that the effect of the cut-off functions is negligible.
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