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Abstract

A system of partial differential equations that approximate the governing equations
for inviscid free surface flow subject to surface tension is presented. The approximation is
based on linearizing the velocity together with a small scale approximation of the pertur-
bation of the velocity. Two Dirichlet problems must be solved to form the approximate
system, after which it can be evolved without solving Dirichlet problems. The accuracy of
the solution is determined by how often the velocity term is linearized. This time-interval
is called AT. We show that the error in the solution of the approximate system at a fixed
time T is of the order O{AT?). We demonstrate numerically that the error is closely
correlated to the size of the normal velocity, and that there is a stability limit of the form
AT <C/ ([ﬁ, -N |°o),,,’ where % - N denotes the normal velocity and v = 2.6. Importantly,
C is independent of the resolution, so the time-step AT can be chosen independently of
the number of grid points, N. This is in contrast to the time-step when the original sys-
tem is integrated, where the stability limit is At < O(N—3/2) and four Dirichlet problems
have to be solved per At (for the four stage Runge-Kutta scheme). By numerical exper-
iments, we demonstrate that the approximate system solves the problem very accurately
and requires less than 10% of the CPU-time used by the original system.

Keywords: surface tension, free surface, jet, potential flow, Dirichlet problem, bound-
ary integral, pseudo—spectral method.
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1 Introduction

When surface tension is included in the potential low model of free surface dynamics,
the corresponding linearized problem gets eigenvalues with imaginary part proportional
to w2, where w is the spatial frequency. If an explicit time-integrator is used to integrate
the solution in time, the time step must for stability reasons be very small. A Dirichlet
problem must be solved for every evaluation of the time-derivatives, and this is found
to constitute the bulk of the computation. Despite the stiffness problem, these type of
equations have been simulated numerically by many investigators, see for example {1, 2].
To speed up the computation, we derive an approximate system in which the Dirichlet
problem can be solved less frequently. The idea behind the approximate system can
be applied to inviscid free surface problems in general, but in this paper we restrict
the presentation to the two-dimensional approximation of a slender non-axisymmetric
three-dimensional jet subject to surface tension, where the evolution of the flow in the
cross-section of the jet is governed by the two-dimensional Euler equations inside of the
free surface, cf. [3].

We assume the liquid to be inviscid and incompressible, and the velocity field to
be irrotational, so there exists a velocity potential. The velocity potential is governed
by Laplace’s equation in the interior of the jet subject to Bernoulli’s equation and the
kinematic condition on the free surface. The physical problem is scaled by the length
scale L such that the area of the scaled initial domain equals x, and by a time-scale

T = /pL®/7. Here, p is the density of the liquid and 7 is the surface tension. This choice
of time-scale makes the scaled surface tension equal to 1, i.e. the Weber number is set to
one. Henceforth, only the scaled problem will be considered.

Let = and y be the Cartesian coordinates in the cross-sectional plane of the jet, and
let ¢ be time. We assume that the liquid occupies the simply connected time-dependent
domain (t) with a smooth boundary I'(2). It is convenient to describe the motion in the
positively oriented Lagrangian coordinate 0 < a < 27, such that the boundary at time
t > 0 is given by z = X(a, 1), y = Y(e,t) and the velocity potential on the boundary is
¢ = ¢(c,t). The governing equations for ¢, X, ¥ on I'(t) are

1
b= 24— 0
Xt = U, (2)
Y, =, (3)
for ¢ > 0 subject to the 27-periodic initial conditions ¢(a,0) = go(ar), X(er,0) = X;(a)

and Y(«,0) = Yy(a). The curvature of the boundary is

k=0 XYoo — YoXoa), 0=1/{/X2+Y2, (4)

and the velocity components satisfy

u(e,t) = ¥ (X(e,t),Y(e,1)), (5)
U(a:t) = ¢y(X(a:t)=Y(a? t)): (6)
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where 1 = ¢(z,y) is the solution of

Ay =0, in 0(2), (7)
$p(X(a,t),Y(a,1)) = d(o1), 0< <2, (8)

The linearized motion of the related problem governing inviscid water waves subject
to surface tension was analyzed by [4]. By projecting the surface coordinates into the
local normal and tangential components, it was found that the linearized equations have
a tractable form which enabled the authors to prove well-posedness of the solution in a
Sobolev space of finite order. This work was extended by [5] to the discrete case, were
stability was proven also for the non-linear problem. It was found that the particular
type of discretization is very important in order for certain singular operators to cancel
to highest order. A similar result was found by [6] who considered the linearized stability
properties of different numerical schemes for a vortex sheet subject to surface tension
close to equilibrium. '

The focus of the present work is to reduce the great computational cost of integrating
the governing equations numerically, which is caused by the stiffness of the discrete system
due to surface tension. In section 2, we will carry out a simplified version of the general
linearization performed in [4] and [7] to show that because of surface tension, the linearized
equations have eigenvalues with imaginary part of the order O ((max, o{a, t)N)3/2), where
N is the number of grid points in the spatial discretization of the free surface. The
time step is therefore restricted by the stability constraint At < O ((max, o(a, t)N)~3/2).
Furthermore, the stability limit of the time-step can become increasingly restrictive with
time because ¢ depends on time, i.e. the Lagrangian grid points can cluster. The time-step
restriction together with the clustering of grid points make the time-integration expensive,
because the Dirichlet problem (7), (8) must be solved every time the right hand side of
(1}-(3) is evaluated. If a boundary integral formulation is applied, the cost of solving one
Dirichlet problem is of the order O(/N?) operations if direct summation is used or O{CN)
operations, where C is a large constant, if the fast multipole method {8] is used.

In the recent paper [9], a method was proposed to alleviate the stiffness of the more
general equations governing the motion of two immiscible ideal fluids subject to surface
tension. The governing equations were reformulated using the arclength and tangent-
angle variables instead of the Cartesian coordinates X and Y to describe the position
of the interface, and the vortex sheet strength was used instead of the velocity potential
to describe the velocity field. It is shown that the curvature-term becomes linear in
terms of these variables. This property together with a small-scale approximation of the
velocity enabled the authors to device a fast implicit time-integration method to solve the
reformulated equations in the case of zero density stratification between the fluids. In the
presence of a finite density stratification, an integral equation for the time derivative of
the vortex sheet strength must be solved. This extension of the method was not treated,
so the method can not be applied directly to solve the present problem, where the density
outside of the jet is assumed to be zero, which makes the density stratification substantial.

As in noted in [9], the tangential velocity of the grid points is only dictated by the
parameterization of the solution. It would therefore be possible to partially reduce the
stiffness of the equations by using a non-Lagrangian parameterization of the solution and
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prescribing a tangential velocity that for example distributes the grid points uniformly
with respect to arclength. This possibility has not been exploited in the present work.
In the present paper, we propose to approximate the governing equations such that
the resulting approximate system can be integrated much faster than the original system,
while still retaining a very accurate sclution. The underlying idea is to fake advantage
of the leading order structure of the linearized equations derived by [4] and [7]. The
approximate system is derived in the following way. Let T'and N denote the unit tangent

and normal vectors of the boundary. The velocity can be decomposed as

~ (a-T)YT + (@ M)A

1
HI

v

The tangential component of the velocity equals the derivative of the velocity potential
with respect to arclength, i.e. @ - T = o¢,. However, the computation of the normal
component % - N requires the solution of a Dirichlet problem, which we want to avoid,
The velocity % depends on ¢, X and Y. By linearizing @ around ¢(®, X(® and Y(® and
letting ¢ = ¢ + e/, X = X© 4 X', Y = YO + Y7, we get

7 = al% 4 ett' + O (?), (9)
Ot o du
i = ¢+ — X'+ =Y. 10
Y= tax Tay (10)
After some analysis, which we defer to section 3, we show that the tangential component
of the perturbation of the velocity is

i@ TO = 00 (¢ — u®X! —vOY7). (11)

We use the theory in [4] and [7] to motivate the approximation of the normal component
of the perturbation of the velocity: '

' NO ~ H(@ - TO), (12)

where the operator H has Fourier symbol isgn{w). In those papers, it is shown that the
error %'« N(® — H(#!'-T()) is a smoothing operator of the perturbations ¢/, X' and Y’. This
means that the contribution to the error is dominated by the low frequency components
of ¢/, X! and Y’ and that the contribution from the high frequency components tend
to zero as the frequency of the perturbation tends to infinity. The velocity is therefore
approximately
@ e g 4 TO(@ . TO) 4 e NO (i - NO).

Because the tangential component of the velocity is known exactly, we will only use the
above expression for the normal component of the velocity. We have T® - N = O(e) and
NO . N =1+ O(e?), so it is consistent with the linearization to take the approximate
velocity 4 &~ @ to be

21

=T(od.) + N (ﬁ(o) - N + eH(oON(g —u®X! — v(o)Ya’))) . {13)

21
[}
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In the approximate system we replace the exact velocity by the approximation (13). To
compensate for the smooth error in (13), we also introduce a time-dependent forcing which
will be derived in section 3. We arrive at

b= 5 (@ 45) 5+ (1= 16)G, (14)
Xt =u+ (t - to)sz ) (15)
Yi=0+ (t - to)Gen (16)

for t > t, subject to the initial conditions ¢(a,t,) = $O)(a), X(a,ty) = X©(a) and
Y(a,ty) = YO (a). We remark that (13) is evaluated by taking ed’ = é— 0, eX' =
X— X0 and ¥’ =Y - Y0,

Computing the velocity @) requires one Dirichlet problem to be solved and calculating
the forcing terms G}, 1 = 1,2, 3, requires the solution of another Dirichlet problem. Hence,
after two Dirichlet problems have been solved, the approximate system can be evolved
without solving Dirichlet problems. Tt should be noted that the stability restriction on
the approximative system is similar to the original system, so the explicit time-step limit
for (14), (15) and (16) is also of the order At < O ((max, o(a,t)N)~3/2). The significant
advantage of the approximate system is that the evaluation of the time-derivatives only
require the computation of spatial derivatives followed by the application of H. Both
of these tasks can be done very quickly by the pseudo spectral method which require
O(N log(N)) operations.

We start integrating the approximate system at ¢, = 0 where we take ¢(%) = ¢,, X(® =
Xo, YO = Y;. First we compute @(® and G;, 1 = 1,2, 3, to set up the approximate system.
The system is then integrated in time until ¢ = ¢, + AT, after which the linearization
of the velocity is redone around ¢©@(a) = ¢(a,ty + AT), XO(a) = X(a,t, + AT),
YO (a) = Y{e,t, + AT), and a new approximate system is formed. This procedure is
repeated for as long as the equations need to be integrated. An error is committed by
approximating the normal component of the velocity. We show in section 3 that this
error is of the order O(AT?3), which implies that the error at a fixed time T is of the order
O(AT?). We remark that the time-step between linearizing the velocity, AT, is different
from the explicit time-step At, which is used when the approximate system is integrated
in time from %, to £, + AT

In section 4, we reformulate the Dirichlet problem into a Fredholm integral equation of
the second kind for the dipole strength. Thereafter, only boundary values of the velocity
potential are explicitly needed in the computation. Once the dipole strength is known,
the velocity @ is readily computed by evaluating an integral. We proceed in section 5 by
discretizing both the original and the approximate system by the pseudo spectral method.
We will use the “alternating-point-trapezoidal” method to evaluate the discrete velocities.
This discretization has been shown by [5] and [6] to be essential for the stability of the
discrete system. The resulting systems of ODE’s are integrated in time by the fourth
order accurate Runge-Kutta scheme. In section 6, we perform numerical experiments on
both the original system and its approximate counterpart. We first investigate the role of
fillering and how the resolution affects the solution. Thereafter, we study the properties
of the approximate method. Some concluding remarks are made in section 7. '
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2 Analysis

The purpose of the analysis presented here is to estimate the eigenvalues of the linearized
operator with frozen coefficients. This information is necessary for estimating how large
the time step can be without violating the stability condition of the time integrator. For
simplicity, we only consider a special case. We refer to [4] and [7] for a derivation of the
linearized operator in the general case.

We begin by linearizing (1)~(3) around a solution ¢©(a,t), X©(a,t) and YO (e, ).
Denote the velocity components by

ul® = u[¢®), X, Y0, - (17)
20 = b[¢®, XO, Y©). (18)
Let ¢ = ¢ + e/, X = XO) 4 X' and Y = YO 4 €Y7, where 0 < ¢ < 1. We have
ufd, X, Y] = u® + eu' + O(e?), (19)
v, X, Y] = v + v’ + O(e?), (20)
with
1
- lir%— (u[c,b(o) + e, XO 4 X', YO + Y] — u(o)) ) (21)
e—0 ¢
1
v = lim = (0[$© + e¢/, XO + X, YO + V'] - 0. (22)
e—0 g

Neglecting the O(€?) terms yields the following linear problem for the perturbations:

¢ = uOhu' + (0! — &, (23)
X =, (24)
Y/ = v, (25)

The perturbation of the curvature is
W = (0O (VX0 - X Y0+ XY 0 - Vx()
~ 35O (g )2 (X! X + YY) | (26)

In this expression, &{0) is the curvature of the unperturbed boundary and the normaliza-
tion factor is

00 =1/ (x®)" + (¥©)". (27)

Because v and v are linear in ¢, it is clear that the perturbations of u and v can be
split according to

u[¢O 4 ed!, X O 4 X' YO 4 Y] = eul, X©, Y1)

+ u[d® XO 4 X' YO + V'] 4+ O(e2), (28)
v[¢® 4 e/, XO) + X! YO + €Y"] = ev[d, X©),y0)]

+v[¢®, XO) + X', YO 4 Y] + O(e?). (29)
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The first term on the right hand sides of (28) and (29) corresponds to a perturbation
of the boundary value only and the second term is the contribution from perturbing the
shape of the domain only. For the first term, we have u[¢/, X(©),Y0)] = (X ©) Y(0)
and v[¢!, X (@, Y] = I(X©),Y®), where 1! is the solution of

Apl =0, in O, (30)
PXO(a1), YO(a, 1)) = #(e, ), 0< a<2m, (31)

Here, {¥® corresponds to the domain interior to the boundary z = X®(a,t), y =
Y(a,t).

The second termn of the right hand sides of (28) and (29) can be written as u[¢(®), X (€} 4+
X, YO + Y] = (X O 4 X/, Y0 + €Y") and a corresponding expression for v, where
P! 15 the solution of

APl = 0, in £, (32)
P X (e, ), Y{e,t) = ¢Ha,t), 0 <o < 2m. (33)
Here f) corresponds to the domain interior to the perturbed boundary z = X(o,t),

y = Y(a,t).

In the general case, the term ! is difficult to analyze, because it is not frivial to
estimate how the normal derivative of 1)/ depends on the perturbation of the shape. To
circumvent this problem, we will restrict the analysis to the special case when

¢(0)(a, t)=C— %, C' = const., (34)
X a,t) = Rcosa, (35)
Y{a,t) = Rsina, (36)

which is a solution of (1)~(3). Now, ViI! = 0 and it is sufficient to study the contribution
from 1. ‘

Let (r, @) be polar coordinates, i.e. = rcos a, y = rsinc. The Dirichlet problem on
a circular domain with radius R,

Ap =0, 0<r<R, 0<a<?2n, (37)
$p=ev 0<r<R, 0<a<om, (38)

where w = 0, %1, £2,..., is solved by

(r,a) = (%) ¥ v, (39)

On the boundary r = R, we have W), = |w|eiw /R and b, = iwe™*, Therefore, the relation
between the inward normal and tangential derivatives becomes

A

by, = isgn(w)b,, (40)



where s is the arclength. This formula defines the Fourier symbol for the relation between

the inward normal and tangential derivative for general boundary data:

Yala) = H($;)(a).

(41)

Hence, by transforming the tangential and normal derivatives of ¢ to the z and y direc-

tions, we arrive at
Yl = 0O (XO - YOH)0cO¢, r=R,
P! = o® (YO + XOH) 0O/, r=R.
The system (23), (24), (25) now takes the form
# = = (0O (Y2, XO - X, YO + X YO - ¥ XO)
+360 (@) (X1 X + YY),
X! = ol (Xg}) ~ YO H) 604!,
Y, = o (YO + XOH) 04!,

Freezing the coeflicients and Fourier transforming the dependent variables yields

ggl &l
o X’f e A 1]
ot N X
]?'l 1;'!
where
{} '“""'(112(4)2 -|' buz'w —a13w2 + blgiw
A= (0@ ] biw 0 0
by iw 0 0

The coeflicients are

ayp = O'(O)YOSU),

ay3 = wg(U)XC(YU),

by, = 3,;(0)X§[0) - a(U)Yosg),
bz = 3OY 0O 4 (X (),
by = X — Y Oisgn(w),
by = YO + XOisgn(w).

The eigenvalues of A are the roots of det(A — AI) = 0, where

det(A - AI) = “‘AS —!— A3W(0—(G))4 ((—a12w2 + blziW)bzl + (—a13w2 + b13?:LU)b31) .
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One root is A; = 0 and after some algebra we find that the other two roots are the
solutions of
A2 = —(cOPw]? — 260 (6©)2w? + (¢ 20 ONw|w). - (50)

In our case, ot = 1/R, so ¢{®) = 0 and the remaining roots become purely imaginary,

2x(0) 1
e i{ (0} 3/2 —_—
Mgz = Fi{oDw|)?2, |1 + EONWL (51)

We will use (51) to estimate how large the time step can be without violating the
stability criterion of the time integration method. It is our experience from numerical
experiments that this expression yields a useful estimate of the spectrum even when the
cross-section is far from being circular and when the potential is far from being constant,
if the values of o(®(a) and «£©)¢«) that maximize the eigenvalues are used.

3 The approximate system

If the governing equations are integrated in time with the four stage Runge-Kutta scheme,
the right hand side of (1)-(3) must be evaluated four times per time step, and each
evaluation requires the solution of a Dirichlet problem. Even though the solution of the
Dirichlet problem changes very little between each time step, and iterative methods can be
constructed that only require a few iterations to find the solution, we have found that the
bulk of the computation consists of solving Dirichlet’s problem. In this section we derive
an approximate system which can be integrated much faster than the original system.
The approximation is based on linearizing the velocity terms in the governing equations
followed by approximating the solution of Dirichlet’s problem.

We will estimate the error in the solution of the approximate system in the Ly-norm,
which we define for 2r-periodic vector functions F = (F, Fy, F3)T and G = (G4, G4, G3)7T
according to

2r 3
Gl = (G, GW", (FrGha= [ 3 Fr(e)Gile) de. (52
i=1

We proceed by improving the analysis of the linearized velocity (10} to allow for a non-
constant ¢(®(a) and include effects from the term Vip!I, defined by (32), (33). As in [4]
and [7], we find it convenient to decompose % into its normal and tangential components.
Let the unperturbed inward unit normal vector be N(®) and the unperturbed unit tangent
vector be T, In terms of X(© and Y(©,

(0} ~Y(0)
T(O) — &0 X , NO® =g Y , (53)
Y © X0©

We easily get from (21} and (22),
— - 1 _ "
@ - TO = VpI(XO YO}, TO + liI% ~ (V@b”(X, YY) TO — . T(O)) (54)
e—0 ¢

B _ 1 _ .
@ NO = UpI(X©® Y©). NO 4 lim - (VWI(X, Y) NO —gO. N(O)) (55)

e-+0 g
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The gradient of 4! can be written as

I Ir
L

o _
VT = Js + on

(56)

with @/8s being the derivative with respect to arclength and J/dn being the inward
normal derivative. Straightforward algebra yields

_ X!
0 =00 — (@2 TO. |~ | 4 0(e), (57)
Y.f
and
T.T0) = 1.4 0(e), (58)
N0 = _egl®) N0 Y"‘ + O(e?). (59)
!

We now study the tangential component #’ - T(®), We have

_ Byl .
“« n
and because ! satisfies (33),
Sl
— 4. (61)

Js
Hence, (54) and (56) yield

@ - TO© = Vil . 7O 4 Jim 1 (0@ T - TO) + (a0 . NO + O(e)) N - T — o))
e—0 ¢ & Pe"

!
= g(0) (% — (@ . TO)TO 4 (u® . NO)FO) . ( X ))
Y!

fud 0'(0) ((’6:1 —_ u(O)X; - U(O)Yc;) . (62)

We remark that only geometrical arguments were used in the derivation of @-7'(%). Hence,
I and 17 being solutions of Laplace’s equation has no bearing on the form of ' : T'(0).
The normal component %' - N(© is more difficult to analyze, because it requires knowl-
edge of how the normal derivative of the solution of Dirichlet’s problem depends on the
shape of the domain 2. Without analysis, but recalling from (41) the exact relation
between the inward normal derivative and the tangential derivative when the domain is

circular, we will approximate @+ N©) by
@ NO x Hi' - TO) = H (o (¢!

¢4

u@X! —v@Y!)}, (63)



It can be shown that the error @ - N — H(@ - 7)) is a smoothing operator of ¢/, X’
and Y7, cf. [4] and [7]. The linearized velocity (10) is therefore approximately

' e T(O)(a' . T(U)) + N(U)(ﬁ’ ; ]V(o}).

Because the tangential component of the velocity is known exactly, we will only use the
above expression for the normal component of the velocity. We have 70 - N = O(e) and
NO . N =1+ O(e?), so it is consistent with the linearization to take the approximate
velocity u = i to be

|

In the approximate system we replace the exact velocity by the approximation (64). To
compensate for the smooth error in (64), we also introduce a time-dependent forcing which
we will present below. This results in the system (14)-(16).

We will derive the optimal form of the forcing G;, ¢ = 1,2,3, and estimate the error
in the solution of the approximate system by solving both the original and approximate
systems by asymptotic expansions in time. We start by considering the original system
(1)~(3) for ¢ > ¢, subject to the initial conditions

=it
Il
43

<

) = T(0gs) + N (@0 N + eH(cO(g}, - uO X, —vOY2))).  (64)

$la, 1) = $9(a), - (65)
X(aytg) = XO(a), (66)
Y (e, ty) = Y®(a). (67)

Fort: 0 <t—{; < 1, we make the Ansatz

Hat) = 60(@) + 32 1t — 1049 (e) + Ot ~ 1),
k=1

fan—y

X (e, t) = XO(a) + f} —(t = to)* X (a) + O((t ~ to)P+), (68)

’_‘?5"‘

Viet) = YOe) + igt—to Y 0(a) + O((t — to*).

The velocity satisfies (9) and by linearizing the curvature, we get

& = k0 4 ek’ + O(€?), (69)
Ok Ik
[ — ! [J
W= X+ =Y (70)

Hence, inserting (68) into both (9) and (69) yield

ou
i = ul® — W4 e x4 —YM) IRY
=1 +(t to) {8¢¢ BXX + BYY }+ O((t — 14)?), (71)
K = &0 4 (t —to) f?fiX(l) + a_y(z} +O((t—1 )?) (72)
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We determine the functions @), X*), Y(*) by inserting (68), (71} and (72) into the
original system (1)-(3) and identifying the terms with the same power in ¢ — ¢;. This
results in:

1
$0) = 3 (w2 4 (v@)2) — £©), (73)
X0 = 40, (74)
YO = ), (75)
The O ((t — t,)?) terms are
du du Ou
(2} = 4O —p() 4 —— X} 4 Y
¢ = {a¢¢ Tax X TavT }
dv dv dv Ok Ok
O M) 4 — X0 § —Y Wy — —— X (1) - Y1) 6
T {6¢¢ toaxt oy } ax ey (76)
Ju du Ju
X0@ = —g1) 4 — X1 4 Y1)
530"+ o X0+ 5pY (77)
dv dv dv
() = —¢(V) g — X @) 4 ——y ),
Y 3¢5¢ + 3XX + EYG (78)

For the approximate system, we make the corresponding Ansatz

Bat) = 60(a) + 32 1t — 1) H(@) + O((t ~ 1)),

k=1

R(et) = XO(a) 4 3 1t - 1) KW a) + O((t ~ toJrH), (79)

k=1
. P i .
Y{a,t) = YO )+ ) E(t — to)*Y B (a) + O((t — tp)P*h).
k=1
Proceeding in the same way as for the original system, the terms in the asymptotic
expansion for the solution of the approximate system become:

. 1
$u = o ()2 + (o)) — £©, (80)
X = ylo), (81)
Y = (0, (82)
The O ((t — t4)?) terms are
~ ot ot Ot
@ = 40 —g)  — X0 —YO)
é u {3¢¢ +3XX +3YY }
av o7 o0 ax Ok
0 —p®) 4 —— x4 YL . ——xO — vy
i {a¢¢ Tax* Yoy’ } ax g (89
o o Jit ot
@ = —pt) 3 —— X1} 4 —y@)
X a¢¢ + o X0+ 22V W 4 Gy, (84)
. 0t o) 09
Y® = —40) 4 — X (1) (1) X 85
530 Tax Xty T (85)
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_ By comparing the terms in the asymptotic expansions, we see that B = ¢, XO) =
X)) and Y = Y ), Furthermore, the O((t — t3)?) terms will be identical if we take the
forcing to be

Gl — u{ﬂ) du ¢u; + 3_.XU.J + ?—Y(” _ 8_¢m _ _a_:_)(u; — _a_:.yku
¢ Y

oX oY q’) oX ,
+ {0 { ¢¢(l) _a%x(l) + .g_;;y(l) - _.¢(1) - g-jiX(l) - g_;y(l)} , (86)
G, = 6¢¢(1) + "g"f X4 g_;y(l) - _;qs(l) - % XW - gﬁytz) (87)
Gy = 7¢(1) + ,(%EX(U g_;y(l) - _.59,5(1) — %X(l) — %Y(l) (88)

By this choice of forcing, the difference will satisfy (¢ — 6, X-X,Y-T =0t —t)).
We remark that the forcing terms are easily computed by numerical differentiation, i.e.,

¢¢(1) + g_X X0 4 g_yu) = lim ~ ( (6@ + g, XO 4 XM, YO 4 ey )] - u®)

and a corresponding expression for the v component of the velocity. In the practical
computation, € is taken to be a small positive number.

The approximate system will be integrated up to time ¢ = ¢, + AT, after which the
linearization of the velocity is redone and a new approximate system is formed. The error
in the approximate solution at time {, + AT can be estimated in the following way. Lets
denote the solution of the apprommate system at time t;+ AT by ¢(t0+AT ), X(to+AT)
and Y (¢, + AT). From the previous analysis, we have that the error in that solution is of
the order O(AT?3). Hence, the exact velocity at that time can be approximated by

u(to + AT) = @[§(to + AT), X(to + AT), Y (to + AT))]
W[ty + AT), X(to + AT), Yty + AT + O(AT®). (89)

In the same way, the curvature satisfies
K[X (to + AT), Y(to + AT)] = s[X (¢ + AT), Y (¢, + AT)] + O(AT®).
We also evaluate the approximate velocity
ity + ATY = d[d(ty + AT), X (t, + AT), ¥ (1, + AT)].

At time ¢, + AT, the time-derivative of the error therefore satisfies

(6= B = Slilta+ AT) — Llilta+ AT) ~ ATG, + O(ATY),  (50)
(X — X); = ulty + AT) —ii(ty + AT) - ATG, + O(AT?), - (91)
(Y = Y), = v(ty + AT) — 8(t, + AT) — ATG5 + O(AT3). (92)
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Hence, the difference between the third order terms in the asymptotic expansions fulfill

~ 1 1 _ 2 1., 2
43 — 3 = e (5 la(te + AT — 3 [ty + AT — ATGI) =Dy, (93)
XO KO = o (ulty + AT) — il + AT) - ATGy) i= Dy, (94)
. 1
V@) e = T (v(to + AT) — B(ty + AT) — ATG3) := Ds, (95)

as AT — 0. By neglecting the fourth order terms in the asymptotic expansions, the error
at time ¢y + AT approximately satisfies

AT3||D| ’ ’ b
”é”?.m—S:{J E=_-—(i), o=} X > ¢=| X ) D= D,
Y 14 Dy

If we assume || D||, to vary on a time-scale much slower than AT, we can use this estimate
to adaptively adjust next AT to keep the error in the approximate system on a constant

level. We enforce the relative error [[€],/||®]], < é by taking
& 1/3
3li2ll,
AT =813 | ——=1] . (96)
( 10112

To integrate the solution from time 0 to 7', the approximate system must be formed
Np = T/AT times. The local errors in each time interval will accumulate to a global

relative error at time 7', E(T) = ||®(T) — fi(T)Hz/Hi)(T)Hm which can be expected to be

of the order
ol |
E(T) = O(Ngé) = O | T§/3 ( I . 2) . (97)
3|l

To integrate the approximate system up to time T', Dirichlet’s problem must be solved 2Ny
times and the right hand side of the approximate system must be computed of the order
TO{(maxoN)3¥/2) times. The time-step in the explicit integration of the approximate
system is independent of & so the effort in solving the approximate system is of the order

_ 1/3
D
2T Cpé=1/3 (.;;l,l'_:_“i) + 4T C s(max o N )3/2, (98)

P

where Cy, denotes the cost of solving one Dirichlet problem and C is the cost of evaluating
the right hand side of the approximate system. It is our experience that the first term of
(98) dominates the second term. In order to half the error, § must decrease by a factor
1/4/8, which increases the é-dependent cost of computing the solution by a factor V2.
These estimates will be verified by the numerical examples in section 6.
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4 The Dirichlet problem

There are several efficient ways of numerically solving the Dirichlet problem (7), (8).

It would for instance be possible to employ a composite grid approach [10], but in the
rasant n‘“}\or:’ we 114'1]1:73 'I']_'no more r‘nm‘rpon]v naed ‘nnnnd:-n'v m’rpfrra] fF‘(‘hTﬂql]E" H ]] a,nd

pl\.rﬂ\ax.a.u ALY U TT W Au R T VL e e e e T e e s ===*a~
rewrite the Dirichlet problem into an integral equation. In the remainder of this section,
the time-dependence of ¢, X and Y will be suppressed to make the notation clearer.

In terms of the real-valued dipole strength (), the complex potential @ in the interior

of  can be written as

1 e p(o)
B(z) = — / L) (o) do 99
O = o | alel) da (99)
where # = z + 1y and z(¢/) = X(o') + 1Y (e’). The real-valued velocity potential is
¢ = Re®. Using the limit of (99) as z approaches I', we deduce that ¢ on the boundary
satisfies

Hlar) = %]J,( )—I—Re P ] Z(T%%Z(—Q)za(a’)da’. (100}

This is a Fredholm integral equation of the second kind. The integral equation (100)
for the dipole strength is not ideally suited for discretization, because the integrand is
singular at o' = a. We proceed by studying this singularity. Cauchy’s theorem yields

I a!) de! dz' '
PV. | af o =P.V.frz,mzmm'. (101)
Hence,
PV. fzw afl(fz(a ) de! = p{a)mi + PV. f% %‘))‘E—% o(a)de!.  (102)

Inserting (102) into (100) gives

$(a) = pla) + Re —PV/% #—TT—:%ZQ(a’)da’. (103)

By Taylor expansion we find

lim Re{w}-—;wza(a’)} = lim Re {g_;@_) + O — a)} =0.  (104)

ofer T

After utilizing this analytical limit, the integral (103) is straight forward to discretize.
By differentiating (99) with respect to z and integrating by parts, we obtain

o _ 1 /%m———"“(a') det, (105)

dz  2m 2oy~ 2
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and by taking the limit of (105) as z approaches I' we find that the velocity on the
boundary satisfies

u(a) — ivfa) = @) 4 -é-v}rmgp.v. [] _pal) g (106)

22, (o) z(a') — z(e)

Hence, instead of solving the Dirichlet problem (7), (8) and then differentiating the
velocity potential to get the velocity on the boundary, we first solve (103) for the dipole
strength p. Thereafter, the integral (106) is evaluated for the velocity on the boundary.

5 Discretizing the systems

We define a grid on the boundary by o; = (j — 1)k, § = 1,2,..., N, h = 2x /N and let
f; = f(o;) denote a grid function. Assume N to be even and define the discrete Fourier
transform of f by

Niz-1 N/2
floy) = f0 + Z fs(w sin(wa;) + zzlfc(w) cos(wey;), (107)
w=zl w=
where
1 N
fo(w) = R}'E_:f (108)
)
F; fla;) sinway), (109)
. 2 XN
felw) = N_Z f(e;) cos(way). (110)

Furthermore, let S, f; be the spectral approximation of df /da(e;), defined by

Nf2—-1 . Nf2-1 R
Sify= 3 whu)eos(uay) = 3 wfw)sinlwa;) (111)
w1 w=

Also note that the operator H applied to a grid function gives

Nf2-1 Nf2-1
= Y fiw)cos(woy)— > £.(w) sin(we;). (112)
w=1 w=1 .

We refer to [12] and [13] for the theory of quadrature rules for integral equations. To
discretize the integral equation (103) we apply the trapezoidal rule. Taking (104) into
account yields

b= s g SoRed ) 1IN (113
. Hj 27 Pt € i(zk _ ZJ) (Juk il R 3
K
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where z, = X(;) + 7Y (o). Note that this discretization is spectrally accurate, because
the integrand is periodic. The velocity integral (106) must be discretized with care to
achieve a discrete system that is stable in time. It was shown by [5] and {6] that the
“alternating-point-trapezoidal” method has this property. The discretization is given by

Spu; b N S
u; —iv; = _E&__*.__. ) ,h_'u"“__’ (114)
2Shz_7 me k=1 2 — 23
{7—k} odd

where we denote the discrete approximation of the velocity components by u; ~ u(a;)
and v; & v{e;). Similar to the trapezoidal rule, this formula is spectrally accurate when
it is applied to a periodic function, because it can be written as a linear combination of
the trapezoidal rule for grid sizes h and 24.

In order to compute the discrete velocity components (u;, v;) corresponding to a given
discrete potential ¢, we first solve the linear system (113} for the discrete dipole strength
tt;. Thereafter, the velocity components are calculated by evaluating (114). The dense
non-symmetric matrix in (113) depends on the shape of the domain, and will hence
change with time. It is therefore not economical to LU-decompose the matrix every
time the time-derivatives need to be evaluated. Instead we solve (113) by the iterative
method GMRES [14]. By using the solution from the previous time level as initial guess,
the iteration converges to roundoff level in a few iterations. We found by numerical
experiments that GMRES converged faster when (103) was discretized by the trapezoidal
rule (as in (113)) than when it was discretized by the midpoint rule. We have used
direct summation to evaluate the matrix-vector products in the GMRES iterations and
for computing the velocity. The operational count for these operations is of the order
@(N?). We note that for large NV, the cost of performing these tasks could be reduced to
O(CN), where C is a large constant, by using the fast multi-pole method [8].

We discretize the system (1)~(3) and the approximate system (14)-(16) by the pseudo
spectral method in space, i.e. spatial derivatives of dependent variables are computed by
(111) and products are formed pointwise. For the approximate system, H(f) is computed
by (112). Applied to the original system (1)-(3), this procedure yields a system of ODE’s
for ¢;(t), X;(t) and Yj(t),1 <j < N,? > 0. For the approximate system (14)—(16) we get
a system of ODE’s for qgj (t), X ;(t) and ffj(t) We will integrate these systems of ODE’s in
time by the fourth order accurate four stage Runge-Kutta scheme. It is well known that
this scheme is stable for problems with purely imaginary eigenvalues if At max |A| < Cay,
Cpe & 2.8, where At is the time step. We find max |A| by evaluating (51) for w = 7 /h,
which is the largest spatial frequency on a grid with grid size b = 27 /N.

6 Numerical experiments
We will perform numerical experiments for the family of initial data given by:

gola) = 0, 0<a<2n, (115)
Xola) = acosa, 0 < <2, (116)
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Figure 1: The spectrum of ¢ without filtering for initial data with AR = 1.5. The different
lines correspond to times: 1.00 (solid), 2.00 (dotted), 2.37 (dashed), 2.69 (long-dashed)
and 2.84 (dot-dashed).

1
Yo{a) = Esina, 0 <a<2nr. (117)

Hence, the initial velocity is zero and the initial cross section is elliptical with area w and
aspect ratio AR = a2, If a = 1, the solution of (1)~(3) is trivially given by ¢(e,t) = —t,
X{o,t) = cos @ and Y (e, t) = sin . The symmetry between the x and y directions makes
1t sufficient to study a > 1.

We begin by integrating the system (1)—~(3) to study its properties before we attempt
the approximate system (14)-(16). All computations presented below were performed
at Ca; = 2.5, in 64 bits precision. The Fourier transforms were computed by the FFT-
package for real-valued functions in the SLATEC library.

6.1 Stability and filtering of the discrete solution

We start with the case @ = v/1.5, i.e. AR = 1.5. We took N = 256 and integrated the
discrete version of (1)~(3) up to timet = 2.84, after which the solution blew up. To discuss
the instability it is instructive to study the time-evolution of [(w)]| = : max(|@,(w)], |$u{w)]).
Becanse of symmetries in the initial data, [qS(w)l = 0, for w = 1,3,5,.... Therefore, only
even frequencies will be presented in the graphs of the spectrum for th In figure 1 we
present |¢(w)]| as function of w at different times. The component of the Nyquist frequency
w = N/2 grows rapidly in time and it appears that once it has reached a critical level, the
components of the lower frequencies become polluted through aliasing and this makes the
solution blow up. We therefore introduce a filter by which the components of the Nyquist
frequency (qﬁc(N /2), X (N/2}, Y(N /2)) are set to zero after every time step; this filter
will be called the Nyquist filter. The time evolution of |¢( )| when the Nyquist filter is
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Figure 2: The spectrum of ¢ with Nyquist filtering for initial data with AR = 1.5. The
different lines correspond to times: 2.00 (solid), 4.00 (dotted), 6.00 (dashed), 8.00 (long-
dashed) and 9.62 (dot-dashed).

used is presented in figure 2. Clearly, the situation is improved because the solution can
be integrated much longer in time. However, the components of the higher frequencies,
which for a long time are at roundoff level, eventually start growing and make the solution
blow up at time t & 9.62. We conjecture that the blow-up is caused by aliasing effects.

Several filtering techniques for stabilizing the solution have been proposed in the lit-
erature. One remedy of the instability problem, which first was proposed by Krasny [15]
and more recently discussed by Shelley {16}, is to set every Fourier component of ¢, X and
Y smaller than e to zero after every time step; this filter will be referred to as the Krasny
filter. Naturally, ¢ should be some small number greater than the machine precision. Note
that when this filter is used, the highest frequency present in the solution will in general
be smaller than N/2, which is taken into account when the time step is computed. We
present the time-evolution of }g;(w)] with Krasny filtering at € = 10—% in figure 3. Now
the solution stays smooth for long times.

Our practical experience is that the Krasny filter stabilizes the solution if the resolution
is sufficiently good to allow the spectrum to decay below the e-level before w = N/2. If
this condition is not satisfied, the filter will not take any action and the components of the
high frequencies will start growing, which eventually destroys the solution. This behavior
makes the Krasny filter somewhat fragile, because it is difficult to estimate how fast the
spectrum will decay before the problem has been solved. To circumvent this problem we
propose a different filter, by which the Fourier components corresponding to frequencies
larger than w = N/3 are set to zero after every time step. The time step can therefore
be calculated with w = N/3. This filier will be denoted the N/3-filter. In table 1 we
compare solutions obtained with the N/3-filter to the solution computed with the Krasny
filter with € = 10-1¢ and N = 384. We conclude that the Krasny and N/3 filters have a
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Figure 3: The spectrum of ¢ with Krasny filtering at € = 10-'4 for initial data with
AR = 1.5 and N = 256. The different lines correspond to times: 2.00 (solid), 4.00

log | FFT(phi) |

(dotted), 6.00 (dashed), 8.00 (long-dashed) and 10.00 (dot-dashed).

Rel. Diff. | N | CPU [s]
8.85.10-3 | 64 64
1.17-10-% | 96 262
3.16 - 10-5 || 128 669
3.25-10-6 || 192 | 2696
5.11-10-7 | 256 | 7462
8.86-10-8 | 384 | 28459

Table 1: Relative difference measured in Ly-norm at time t = 5.0 between the solution
obtained with Krasny filtering at € = 10-1¢ and solutions obtained with the N/3 filter.
The initial data had AR = 2.0. Note the savings in CPU-time when the resolution is
decreased. The CPU-timings were done on a SUN IPX workstation.
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Figure 4: The spectrum of ¢ at time { = 5.00 for initial data with AR = 3.0 using the
N/3 filtering with different resolutions: N = 128 (solid), N = 192 (dotted), N = 256
(dashed), N = 384 (long-dashed). '

similar effect on the solution when the resolution is sufficiently good for the Krasny filter
to take any action.

To demonstrate how slowly the spectrum decays for a larger initial AR, we present the
spectrum at time t = 5.0 for the case with AR = 3.0 for different resolutions in figure 4.
The shape of the free surface as function of time for the same case with the resolution
N = 256 is presented in figure 5. This simulation required 9827 seconds of CPU-time on
a SUN IPX workstation.

6.2 Accuracy of the approximate system

From the last example in the previous section, it is clear that simulating only the first
oscillation of a jet with high initial aspect ratio, which calls for a large N to resolve the
solution, requires a substantial amount of CPU-time. In these cases we are interested in
speeding up the computation by replacing the original system by the approximate system.
One oscillation of the jet yields important information for engineering applications [3], and
we will therefore restrict our study to the time interval 0 < ¢ < 3, which approximately
corresponds to the first oscillation of the jet. Similar to the original system, a filter must
be introduced in the time-integration of the approximate system in order to achieve a
smooth solution. We will for this purpose use the N/3 filter.

We begin by studying how the error in the approximate system depends on the time-
interval between linearizing the velocity, AT. In table 2, we present the relative error at
time ¢ = 3.0 for the case AR = 3.0 with N = 256. The solution of the original system
with the same resolution was taken as reference solution. From this example we see that
the error is approximately proportional to AT2. Also note that the estimated relative
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Figure 5: A rendered image of the free surface as function of time. The initial cross-section
with AR = 3.0 is in the lower left corner. Time increases diagonally upwards and reaches
t = 5.0 in the upper right corner. Note the chain-like appearance of the free surface which

is observed in slender three-dimensional jets [3].

AT Est. Error | Rel. Error | CPU [s] | Ny | AT/At
1.0-10-2 || 5.61-10-% | 1.77-102 61.1 | 300 5.03
5.0-103 || 1.36-10-3 { 4.25-10~* 103.5 { 600 2.52
2.5-103 || 3.38-10-* | 1.04-10~* 194.1 | 1200 1.28

Table 2: Results from integrating the approximate system with a fixed time-interval AT
between linearizing the velocity. Note that the error is approximately proportional to
AT?. In this example, AR = 3.0 and N = 256. The CPU-timings refer to one processor

on a CRAY YMP. The original system required 610.7 seconds of CPU time.
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error . _
_ R ATD(E),
est = 3
=1 312 (4l
consistently over-predicts the actual relative error by a factor ~ 3. To indicate how much

CPU-time is saved by using the approximate system, we also present the average number
of explicit time-steps per AT, defined by

AT 1 & AT
At Np o At(t)

(118)

Twice the AT/At ratio gives a rather good estimate of how much faster it is to integrate
the approximate system compared to the original system, because two Dirichlet problems
are solved every time the velocity term is linearized and four Dirichlet problem are solved
per explicit time-step when the original system is integrated.

The solutions of the approximate system are very accurate. For example, spending
about 10% of the CPU-time resulted in an error of 0.177%. It is likely that the modeling
errors caused by neglecting physical phenomena as viscosity and vorticity are much larger
than this.

According to (93)-(95), the error in the approximation satisfies DAT3/3 + O(AT4).
To show that D is essentially independent of AT we present in figure 6 the Ly-norm of
D as function of time for AT = 0.01 and AT = 0.0025. Again, the initial data had
AR = 3.0 and the resolution was N = 256. Because the approximation is based on
simplifying the normal component of the velocity, the error in the approximation can be
suspected to depend on the properties of that quantity. To enable a close comparison,
we also present the max-norm of the normal velocity in figure 6. We conclude that there
is a clear correlation in time between the normal velocity and the error term D. From
this conclusion, we are lead to investigate how the size of the normal velocity affects
the stability of the time-integration. In particular, we are interested in how large AT
can be before the time-integration goes unstable. We therefore took initial data with
increasing AR, which correspond to an increasing normal velocity, and increased AT
until the solution would blow up. The largest AT where the solution did not blow up as
function of the maximum norm of the normal velocity can be found in figure 7. In these
computations, AR was in the range 1.5-3.5 and the resolution was in the range 128-512.
We found that N = 128 only provided adequate resolution for AR < 2.5 and N = 256
was only good for AR < 3.0. The resolution N = 384 was adequate to resolve all AR and
the N = 512 resolution was used to verify the N = 384 computations. The data-points
fall on an almost straight line with slope ~ —2.6 in the log-log graph, so we are lead to
the estimate

C
AT <

S T
where C is independent of N. Therefore, as long as AT satisfies (119), it can be chosen
to meet accuracy restrictions instead of stability restrictions.

We note that ||D||, varies by an order of magnitude in figure 6. From the error estimate
(118), we see that a large portion of the error is committed when || D]|; is large. To better

~ & 2.6, (119)
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Figure 6: Top graph: The L;-norm of the error term D as function of time for AT =
0.01 (solid) and AT = 0.0025 (dotted). Bottom graph: The max-norm of the normal
component of the velocity as functions of time. In both graphs the aspect ratio was
AR = 3.0 and N = 256.
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Figure 7: The maximum AT as function of the maximum norm of the normal velocity
on a log-log scale. The initial data had AR = 1.5 — 3.5. The resolution was in the range
N = 128 — 512 where N = 128 are circles, N = 256 are triangles, N = 384 are pluses,
and N = 512 are denoted by X’s. Note that AT is essentially independent of N.
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6 Est. Error | Rel. Error | CPU [s] | Ny | AT/A¢
12510~ || 2.28.10-2 | 7.73-10-3 41.2 } 173

oo
o
o~

'G‘J
«w
(%]

442 .10-% ) 1.01 -10-% | 3.45 102 49.1 1 220

1.56 -10~5 || 4.77-10-3 | 1.64 -10-3 60.0 | 299 5.09
5.52-10-6 || 2.34.106-3 | 8.09-10 76.6 1 418 3.63
1.95-10-¢ || 1.15-10-3 | 4.00 - 104 101.8 | 588 2.58

Table 3: Results from integrating the approximate system with a fixed 6. The CPU-
timings refer to one processor on a CRAY YMP. In this case, AR = 3.0 and N = 256.
The original system required 610.7 seconds of CPU-time.

optimize the computational resources, we will employ the adaptive time-step control (96).
In table 3, we compare the solution of the approximate systemn with the solution of the
original system at time ¢ = 3.0. In this case, AR = 3.0 and N = 256. In this table, the
estimated relative error (118) is compared to the actual relative error, where the solution
of the original system with the same resolution was taken as reference solution. Note that
(97) predicts that the relative error should half when § is decreased by a factor 1/ /3, Our
numerical results confirm this estimate. Also note that the estimated error is consistently
over-predicting the actual error by a factor = 3.

By comparing the number of linearizations, N, to the CPU-time in table 3, we see
that the CPU-time/Ny ratio decreases as Ny increases. This indicates that the CPU-time
is not only spent setting up the approximate system, but also used for integrating the
approximate system. Therefore, the CPU-time/Ny ratio is larger when N7y is smaller.
The estimate {98) predicts that Ny would increase by a factor /2 when 6 is decreased by
a factor 1/+/8. In the present example, Ny increases slightly slower than that.

To study how the resolution affects the solution of the approximate system, we doubled
the number of grid points to N = 512. The result is presented in table 4. In this case the
reference solution was taken to be the solution of the original system with N = 512. It can
be seen that the relative error is essentially the same as for N = 256. This is explained
by the fact that the relative difference between the solutions of the original systems with
N = 256 and N = 512, respectively, is only 6.22 - 10-5. The relative errors reported in
tables 3 and 4 are therefore dominated by errors committed by simplifying the velocity
in the approximate system.

The estimate (98) indicates that the cost of solving the approximate system would
increase by a factor between 4 and 44/2 when N is doubled, because Cp increases by a
factor 4, C'4 increases by a factor close to 2 and the number of time-steps for integrating
the approximate system increases by a factor 24/2. This estimate is verified by comparing
the CPU-timings of table 3 and 4. This should be compared to the cost of solving the
original system, which increases by a factor 84/2 when N is doubled, because the cost of
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& Est. Error | Rel. Error | CPU [s] | Np | AT/At

1.25-101 || 2.45.10-2 | 8.72-10-3 189.2 | 184 23.86
4,42 .10-% | 1.03-10-2 | 3.46 - 16-® 205.4 | 224 19.24

1.56 -10-5 || 4.79-10-3 | 1.66 - 103 250.1 | 300 14.34
5.52-10~6 || 2.35-10-3 | 8.15-10 317.0 | 419 10.25
1.95-10-6 | 1.15-10-3 | 4.02 .10 408.6 | 589 7.28

Table 4: Results from integrating the approximate system with a fixed 6. The CPU-
timings refer to one processor on a CRAY YMP. In this case, AR = 3.0 and N = 512.
The original system required 6218.8 seconds of CPU-time.

solving a Dirichlet problem increases by a factor 4 and the number of time-steps increases
by a factor 2/2. The CPU-timings for the original system also confirm this estimate. For
this reason the relative saving in CPU-time by using the approximate system increases
when the resolution increases. For example, at this resolution, we only have to spend 3%
of the CPU-time required by the original system to achieve a solution with the relative
error 0.34%.

We conclude by using the approximate system to simulate the complicated dynamics
starting from the initial data with AR = 5.0. In figure 8, we show the time-evolution
of the cross-sections of the jet. This simulation was done with the resolution N = 1536
and AT = 1.0 - 103, It required 7,322 seconds of CPU-time on one processor on a
CRAY YMP. The average AT'/At ratio was 7.68, which indicates that it would have
taken approximately 15 times longer to compute this solution if the original system had
been used. The error estimate (118) predicted that the relative error at time ¢ = 1.25 was
9.0- 104,

7 Conclusions

We have presented a system of partial differential equations that approximate the govern-
ing equations for inviscid free surface flows subject to surface tension. The approximation
is based on repeated linearization of the velocity term together with a small scale approxi-
mation of the perturbation of the velocity. Two Dirichlet problems must be solved to form
the approximate system, after which it can be evolved without solving Dirichlet problems.
The accuracy of the solution of the approximate system is determined by how often the
velocity term is linearized. This time-interval is denoted AT. We have shown that the
error in the solution of the approximate system at a fixed time 7' is of the order O(AT?).
We have exemplified the use of the approximate system by integrating the equations gov-
erning a slender non-axisymmetric three-dimensional jet subject to surface tension, where
the evolution of the cross-section of the jet is governed by the two-dimensional Euler
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Figure 8: Time-evolution of the cross-sections of the jet with initial aspect ratio AR = 5.0.
Top graph: t=0.00 to t=0.65 with spacing 0.05. Bottom graph: t=0.70 to t=1.25 with
spacing 0.05. Here, t==0.70 is solid, t=0.75 is dotted, t=0.80 is dashed, t=0.85 is long-
dashed, t=0.90 is dot-dashed, t=0.95 is solid, t=1.00 is dotted, t=1.05 is dashed, t=1.10
is long-dashed, t=1.15 is dot-dashed, t==1.20 is solid, and t=1.25 is dotted.
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is closely correlated to the size of the normal velocity, and that there is a stability limit
of the form AT < C/ ([ﬂ ‘N |°o)fr, where % - N denotes the normal velocity and v =~ 2.6.
Importantly, C is independent of the resolution. Hence, the time-step AT can be chosen
independently of the number of grid points, N. This is in contrast to the time-step when
the original system is integrated, where the stability limit is At < O(N-3/2) and four
Dirichlet problems have to be solved per At (for the four stage Runge-Kutta scheme).
Therefore, the relative saving of CPU-time by using the approximate system increases
when the resolution increases. For example, in the case with elliptical initial cross-section
with aspect ratio 3.0 and 256 grid points, we compared the solution of the original and
approximate systems at time ¢ = 3, which approximately corresponds to one oscillation
of the jet. Spending 8% of the CPU-time necessary to solve the original system yielded
an error in the solution of 0.34%; spending 12.5% of the CPU-time gave the error 0.08%.
When the resolution was doubled to 512 grid points we only needed to spend 3% of the
CPU-time to achive the error 0.34% and 5% of the CPU-time to get the error 0.08%.
We conclude that the approximate system yields a powerful tool for simulating free sur-
face problems with surface tension, especially when the spatial grid size must be small to
accurately resolve the solution.
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