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Abstract

The performance of the recently introduced block-size reduction block-ILU
factorization preconditioning is studied in the case of block-tridiagonal finite
element matrices arising from the discretization of the 2D Navier equations of
elasticity. Conforming triangle finite elements are used for discretization of the
differential problem. For the model problem, an estimate of the relative condi-
tion number is derived. The efficiency of this incomplete factorization is based
on the Sherman-Morrison—Woodbury formula, and of particular importance,
this factorization exists for symmetric and positive definite block-tridiagonal
matrices that are not necessarily M—matrices, The convergence rate of the
preconditioner is controlled by the block—size reduction parameter. The pre-
sented numerical tests illustrate a strategy for coarse grid size selection which
leads to efficient iteration algorithmns for large scale problems, even near the
incompressible limit.

1 Introduction

Consider a block-tridiagonal symmetric positive definite matrix

Apn Asg 0
Ay Ay A
A= ", ., . ,
An—l,’n—2 Anﬂl,nu—l An—— In
0 An,n—l Ann

where the blocks A;; are assumed sparse of order 7; Xn;. Several block-ILU techniques
for such matrices have already been proposed in the literature (see e.g., Axelsson
[1], Axelsson, Brinkkemper and I'in [2}, Axelsson, Polman {5}, Concus, Golub and



Meurant [11], Meurant [15]). In general, these methods work very well for block-
tridiagonal matrices arising in discretization of 2D, second order elliptic problems. It
is also known, that the block-ILU methods are robust and allow for good vectorization
of the algorithms [3], [15]. However, the above methods require the matrices to
satisfy the mazimum principle (to be M-matrices), which does not hold for the FEM
discretization of elliptic problems in many cases. Such a requirement does not hold in
general for matrices obtained after discretization of coupled elliptic systems and/or
for higher degree piecewise polynomials for the finite element spaces. '

We study in this paper the performance of the block-size reduction block-ILU
factorization (recently introduced by Chan and Vassilevski [9]), applied to precon-
ditioning linear algebraic systems of equations arising from the 2D elasticity finite
element discretizations. The block-size reduction block-ILU factorization is well de-
fined in a very general case, and in particular, it is well defined for positive definite
block-tridiagonal matrices, which need not necessarily be M-matrices. We consider
the coupled system of the Navier equations of elasticity, as a test problem, to demon-
strate the more general abilities of this new block-ILU factorization technique. And
one of the goals that we achieve here is to demonstrate that the method indeed
works as fine as for the scalar elliptic case. And for the scalar case (see Chan and
Vassilevski [9]) it has been demounstrated that the method is competitive with other
types of block-factorization methods.

There are a lot of works dealing with preconditioning iterative solution methods
for the Navier equations of elasticity. Here we will briefly comment on some of the
used approaches. In an earlier paper, Axelsson and Gustafsson [4] have implemented
modified point-ILU factorization for this problem. As the coupled system does not
lead to an M-matrix, they construct their preconditioners based on the point—ILU
factorization of the displacement decoupled block-diagonal part of the original matrix.
This approach is based on Korn’s inequality, and the convergence deteriorates when -
the Poisson ratio tends to % The displacement decomposition remains up to now
one of the most robust approaches (see also, e.g., [12], [7]). In contrast to these
preconditioning methods, we stress that in the present paper we consider a block-ILU
factorization based on the original matrix of the coupled elasticity system (and not
just on its block-diagonal part). This we view as an advantage since this results in a
more robust method in general.

There are also some recent papers, where the multigrid (see, e.g., {13}, [16]) method
is implemented for the elasticity problem. In particular, Brenner [8] has proved an
optimal order convergence rate of the full multigrid method applied to the noncon-
forming mixed discretization of the problem. It is proved also in [14] an uniform (on
the Poisson ratio) upper bound of the constant in the strengthened C.B.S. inequality
for FEM 2D elasticity equations. It follows from this estimate, that the algebraic
multilevel method as introduced by Axelsson and Vassilevski [6] has an optimal con-
vergence rate. However the optimality of both these methods, their computational
cost is significantly high for the almost incompressible case (when the Poisson ra-
tio is near to the case v = %) The preconditioner studied in the present paper is
not optimal. It has a convergence rate depending upon the Poisson ratio. However,
by a proper choice of the coarse grid parameter we get an efficient algorithm not



only for moderate values of the Poisson ratio, but even for values near the almost
incompressible case.

The remainder of the paper is organized as follows. Some background facts about
the Navier equations of elasticity and their FEM approximation are presented in §2.
The block-size reduction block-ILU algorithm is described in §3. In §4 we give a
model analysis of the relative condition number of the studied preconditioner. A
set of numerical tests illustrating the performance of the resulting preconditioned
conjugate gradient algorithm are presented in the last section §5.

2 FEM approximation of the Navier equations of
elasticity

We consider in this paper the plain strain problem of elasticity (the plane stress
problem is a subclass from the mathematical point of view) in the weak formulation -
of the Navier system of equations. The unknown displacements w® = (u,v) satisfy
the following variational equations:

Find (u,v) € HY x HY, such that

a{u, @) +ew2(v, @) = fi,
v(i, o) € HY x HY, (1)
e (u, V) + o{v,7) = fa,

where HY = {w € H,(Q) : w|r, = 0}, and the related bilinear forms are defined by

the formulas:

[ (98w  (1—)0g 8y
a(¢’¢)mfs1(8x6m+ 2 ayay)

_ [ (A =0)0g0¢Y I OY
b(qb,v,b)_fﬂ( 2 8x6m+6‘y8y)ﬂ

612(1:0?@5) :621(¢:¢) f ( gqbg;’b +( 5 )gig/i)) Q

Here 7 = v /(1 — v) € (0,1) stands for the modified Poisson ratio (v € (0,0.5) is the
Poisson ratio). The notion almost incompressible is used for the case # = 1—§ , where
§ is a small positive number. Note that if # = 1 (the material is incompressible), the
problem (1) is ill-posed.

Now, let w be a square mesh, and let £ be a polygonal domain, triangulated by
right isosceles triangles T’ € 7 obtained by a diagonal bisection of the square cells of
w.



Let W = W? x W), where W) € H} is the finite element space of conforming
piecewise linear functions with nodal Lagrangian basis {¢;}\.; corresponding to the
triangulation 7. Then the finite element approximation (u”,v*) of the problem (1) is
determined as follows:

Find u® = zg:l uich;, P = Eﬁr_:l v;¢;, such that

a‘(uh: 05!) + €19 (vh! é’) = flii:\
Vi=1,...,N: (2)
en (uh, @) +0(v*, i) = fas.

Equations (2) are equivalent to the linear system
Amh = Qa

where A is the stiffness matrix and w, is the vector of the nodal unknowns {u;}&,
and {v;}¥,. Following the usual FEM procedure we assemble the global stiffness
matrix A by the element stiffness matrix Ap,

3—v =2 ~l+4v 140 =140 -2
-2 2 0 —20 0 2v
-1+ 0 1—-v -1+v 1=-v 0} (3)
149 20 -1+4+9 3-—v —-14+0 -2
-1+v 0 1-9v ~-14+9 1-vw 0
—-20 20 0 2 0 2

This element stiffness matrix corresponds to the triangle T' with vertices P, P, and
P; with respective coordinates (0,0), (1,0) and (0,1). The ordering of the unknowns
is as fOI]-OWS) [U(Pl)a 'H:(Pg), TL(P3), v(Pl)a U(P2)) ’U(Pg)].

Finally, we consider the structure of the stiffness matrix A in the case of the model
problem in § = (0,1) x (0,1} with homogeneous Dirichlet boundary conditions. If
a column by column (row by row) ordering of the nodes is used, then the matrix A
admits a block—tridiagonal structure, explicitly presented by the formulas:

Ap =

A = tridiag(Aii-1, Aig, Aii),

where
D FE 0
E D E
A= )
E D FE
0 E D
F G 0 F 0
F G G F
Aji1 = , Aiiy1 = ,
' G G F
0 F 0 G F



and where D, E, F and G are 2 X 2 scalar matrices depending on the problem param-
eter 7, namely

_[12—-4p 2420 _f 2420 -1-7
D‘(2+2:7 12—45)’ E‘(—1-a —4 )
_[ -4 -1-v _[o 1+
F_(-ml—i) —2+2:7)’ G_(H—i) 0 )

3 Block-ILU method for positive definite block-
tridiagonal matrices

The weak statement (2) corresponding to the finite element formulation leads to
a symmetric positive definite block system and therefore is amenable to iterative
solution by block schemes. In this section we present in some detail the block-ILU
method proposed in Chan and Vassilevski [9], with the specific parameters that we
choose for the present problem.

The method is defined for any given block—tridiagonal matrix A with positive
definite symmetric part. Note that this is a much larger class than the class of M-
matrices for which the more classical block-ILU methods (cf. Concus, Golub and
Meurant [11], Axelsson and Polman [5]) have been proven to exist.

Consider the block tridiagonal matrix

An A 0
An Ap Ags
A st Y "

An—l,nw2 An—-l,n—l An-—l,n
0 An,nml Ann

The block—entries of A are assumed sparse.

The block-ILU factorization matrix C is defined as follows. Let {R;} denote a set
of restriction matrices that transform vectors of the size of the block A, to a lower
dimensional vector space of a small and fixed size m. Then we perform the following
approximate factorization algorithm.

Definition 1 (Block-ILU factorization)

(i) Set

Z]_ = All and let Z], = R{Z}Rl;

(ii) Fori =2,...,n
Zi = Aﬁ - Ai,iﬁl Rf;r_l Z’-:_llRi—lAi—l,i,

and let )
Z; = RYZ;R;
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Then the block—ILU factorization matrix is defined as

A 0
Ay Zy
C = ) "
Ap_1n-2 Zna
\ 0 Atn.-in—l Zn /
(4)
I Z71A4 0 .
1 Z7' Ag
5 ..
1 Z';—:EIAnm-l,n
f I

This algorithm requires the exact inverses of the reduced blocks Z; which are of
relatively small size m x m, and that size we can control. In [9] it is shown that the
above algorithm is well-defined for block-tridiagonal matrices with positive definite
symimetric part and for any choice of full rank restriction matrices. The restriction

matrices in the present paper (used in section 5) are defined for any i = 1,2,...,m,
as T
o
q:
R;=] . )
GEN
where q, £ = 1,...,m are the first m eigenvectors of the n X n matrix
2 -1 0
-1 2 -1
T = N
-1 2 —1
0 -1 2
That is,

Y sin Bim A
Rl n+1)),.

Note that R; can be viewed as a projection on the space spanned by the first m
smooth {low oscillating) modes.

The block—ILU factorization matrix C is used in a preconditioned conjugate gra-
dient (PCG) method for solving systems with the original matrix A. Since at every
iteration step in the PCG method we have to solve a system of the form C'v = w for
a residual vector w, it is clear that those solutions are based on the standard forward
and backward recurrences using the factored form in (4). These recurrences involve
solution of systems with the block matrices Z; and matrix vector products with the



sparse matrices A;;.1 and A;_;;. For the solution of the systems with blocks Z; we
use the following Sherman—Morrison—-Woodbury formula:

. -1
Z71 = A7 + A7 A RT (Ziml - Ri—lAi—LiA%lAi,iqR?_l) Ri 1 Ai 1AL
Note that the m X m matrix

Zi i1 AF A R

1 — 1 A1y

can be formed explicitly based on m actions of A;' and then factored or inverted
exactly. We assume that we can efficiently solve systems involving the blocks {A; 1.
Note that for 2-D domains €2 these systems are banded. In 3-D one has to approx-
imate them, but since they are well-conditioned this should not be as difficult, cf.,
e.g., Chan and Vassilevski {10].

4 Model analysis of the relative condition num-
ber |

In this section we present a model analysis of the block-ILU factorization method
presented in Section 3 for the elasticity problem of Section 2. The analysis fits in the
framework of the convergence theory presented in Chan and Vassilevski [10].

We assume that Q = (0,1)? the unit rectangle and that we have a square mesh ot
stepsize h = E%"—"i for a given integer n. Let T; = {a;} % (0,1), 0; = ¢h, i =0,1,...,n+1
be the vertical grid-lines (including the boundary ones). Define also the subdomains
Q; = (0,a;) x (0,1). For the analysis to follow we will need some facts concerning the
following inhomogeneous Dirchlet problem:

Given a rectangular domain D = (0,a) x (0,5) and a function g = g(y) € Hz(0,5).
Then consider

—Au =0, inD,
w =g onl={a}x(0,d),
# =0 on the rest of 8D.

For a given small parameter i — 0 split the boundary data g = g' + g*, where

=25 g sin(-’%ﬂ) — the smooth part of g, and ¢*> = 2 3 ¢ sin(ﬁlfi) — the
k<h-1 k>h—1

oscillatory part of g. Then the solution of the above inhomogeneous Dirichlet problem
is split up in two corresponding components, v = u!+u? that are estimated as follows:

l'“'l l%,p <Cr lgli(o,b): (5)

where the constant C is h and domain independent. For the second component
(corresponding to the oscillatory part of g) we have

]u2 g,D < Chlgﬁ,(c,b), (6)

again with constant C' h-independent and domain independent. The estimates (5)
and (6) are derived in Chan and Vassilevski [10]. We will use these estimates even
for @ = O(h), i.e., for narrow domains D,



The main steps of the analysis are summarized as follows. We consider the solution
of an inhomogeneous Dirichlet problem (see (7) below) for a given boundary data
g€ (HXT;))®. Then we need two finite element approximations of this problem: a
standard fine-grid approximation and a coarse-space approximation derived on the
basis of a specifically constructed coarse finite element space that exploits coarse
restriction of the coefficient vectors of the elements of the given fine finite element
space, The specific construction of the restriction operators and of the coarse spaces
is given first below. Then two error estimates (see (8) and (9) below) for the smooth
and oscillatory components of the solution of (7) are proved. Finally, based on the
a priori estimates (5) and (6), the difference between the fine and the coarse finite
element approximations of the solution of (7) is estimated (this is estimate (10) below)
from which the main desired estimate (11) is a corollary.

The final steps are the inequalities (12) and (13) which represent the lower and
the upper bounds for the eigenvalues of C~1A.

We proceed now with the already outlined steps of the analysis.

Consider the bilinear form corresponding to the variational problem (1). Using
vector-function notation we denote its restriction to §; by Aq,(x, %) for x, ¥ € H' (%)
that vanish on 82N8€Y;. Consider then the inhomogeneous Dirichlet problem, similar

to the scalar case above, for a given vector—functions g = g 1| e (HHTY))?,
= 2

An,(n,y) =0 forall ¥ € (Hy(CW)), ()

u =gonl}

Here u € (H'(£%))? and vanishes on 80 N 88;. Counsider finally two finite element
approximations of the last problem. The first one corresponds to the test functions
from W; C W, i.e., to the vector—functions from W that vanish outside {); and the
second one corresponds to the test functions from the coarse space W; € W;. This
coarse space is defined grid-line by grid-line using semi-coarsering. Given I, &
vertical grid line, consider the set of nodal basis functions {¢,,}r_; that correspond
to the nodes z,, on I',. Then given a function v € WY (this is a scalar function)
we expand it in terms of ¢,, and get a coefficient vector ¢ = (c,.), where ¢, =
'u(a:”) For a fixed s the restriction of the coefficient vector to I', is denoted by

. The coarse—grid restriction R,c, is then defined then by ¢, = (ch ) e’ , where

aQ = /735 (sm(:—_’& " k=1,2,...,mand m+1= . Here H can be viewed as a
coarse—grid size. The coarse—ﬁmte element space V is then defined by

k]
span{> (Rl €)rtes}
r=1
where ¢, runs over R™ for s =1,2,...,n.

The final estimates that we are actually needing are as follows. Consider u; and
uy the finite element solutions of the above inhomogeneous Dirichlet problem using
respectively W; and W; as discretization spaces, i.e., we first construct 40 that satisfies
the boundary condition and then for the difference z — u’ we get a problem with a
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certain right hand side but with homogeneous boundary conditions, This problem we
approximate in the corresponding finite element spaces. The particular solution u is
constructed by solving Laplace problem in (the possibly) narrow domain £2; near I;
of width a; = ¢h. This we do for each component of u%. Then we have the following
standard error estimate for both {(smooth and oscillatory) components of & — wy,

Aly' = uly,u' — ujy) < CH?|u' 3., (8)
and for the oscillatory component of the solutions we get
Al? - uh, v — ufy) < Clu’li o (9)

Similar estimates hold for both components of the fine-grid approximation u,.
Since !ﬁlﬁ,n; <C l(ﬂo)lg,a; < Ch_ll,ﬁ_"%,r,— and also Iié2 ini < C|(1£0)2E,Q¢ <
Chlg|iy, we finally obtain the desired basic estimate:

H2
Aﬂi(ﬁh — Ly, Up -'QH) < GT[EI%,P;' (10)

Note that all constants are mesh independent and domain independent.

We note now that Z; defined in the block-ILU algorithm is the Schur complement -
of precisely the coarse—finite element discretization matrix corresponding to the above
problem (7). Let also S; be the same Schur complement of the fine finite element
discretization matrix corresponding to the same problem. Then the following estimate
is a reformulation of the last estimate (10):

H2
((Z2 - Sz)_g_,:g_t) < c“}'{-lgiiifi‘ (11)

for any given g.. Note also that S; is a Schur complement computed with respect to
a larger space (i.e., W;) than the expression A; — A,;,,-_lZ,-“_llA,'mi,i which is a Schur
complement computed from the same bilinear form as S; (i.e., Ag,(.,.)) but in a
smaller (coarser) space (namely, the space obtained from the space W; using line
restrictions on all but the last vertical grid lines in Q; (i.e., without I';)). That is,
having in mind the symmetry and positive definiteness of the bilinear form Ag,(.,.)
and the minimization property of the corresponding Schur complements, the following
inequality is immediate,

(Sivi, vi) < ((Ass — Assm1 2745 Aver i)V, vi)
for all v;. Then using this inequality and estimate (11) we arrive at the first desired -
estimate:

(C-Ay,y) =Tal(Zi — (Ai = Aiga1 25 Air))¥i, Vi)
< (% — S, )
=2
< C‘g;Tz 2?:2 i3 1, (12)
<C(#) g
< O (%) Aalw )

1-r

9



Here we have also used the inequality:
- 2 2
hZ |u; i, S C|2|1,ﬂ=
i=1

valid for finite element functions and also Korn’s inequality (see, e.g., [4]).
Together with the estimate (see Chan and Vassilevski [9])

((C - Ap,p) 20, (13)
we have proved the following main result.

Theorem 1 The relative condition number of the block-ILU factorization precon-
ditioner C' with respect to A is bounded by 5(Z)2. Here H = O(m™) is the
coarse-grid size along each vertical grid line of the original fine discretization with
characteristic size h.

5 Numerical tests

In this section, we analyze the performance rate of our preconditioned iterative
method, varying the size parameters and the Poisson ratio v. The computations
are done with double precision on a Silicon Graphics SGlstation.

The test problem we consider is the system of Navier equations of elasticity in the
unique square = (0,1) x (0,1), where the Poisson ratio is a problem parameter.
Following the notations from the previous sections, we actually vary the modified
Poisson ratio o = 1%, 7 € (0,1). The case ¥ = ~1 does not have a physical meaning,
but it is interesting from a computational point of view, because then the Navier
system of equations is decoupled (namely, it is split into two independent Laplace
equations). We recall, that the almost incompressible case corresponds to 7 =1 — 4,
where § is a small positive number.

Tables 1-4 show the number of iterations as a measure of the convergence rate
of the preconditioners. The iteration stopping criterion is ||r™t||/||r°|] < 107°, where
7 stands for the residual at the jth iteration step of the preconditioned conjugate
gradient method. It can be seen from the numerical results that the block-size re-
duction block-ILU (BSR BILU) preconditioners are characterized by the estimate
k(C1A) = O(#ﬁm), where h stands for the grid size, and respectively, H is the .
coarse grid size corresponding to the used incomplete factorization. The size of the
discrete problem is respectively equal to 2N = n?, where n = h™1.

In general, the presented data are in a good agreement with the theoretical es-
timate. They clearly illustrate the flexibility of the iterative algorithm. The proper
choice of the factorization parameter mn = H !, or actually of the coarse grid size H,
provides the opportunity to control effectively the convergence rate of the iterative
solver.

The theoretical estimates, confirmed by the numerical tests, show that the block-
size reduction block-ILU factorization can be used as a robust technique for precon-
ditioning of FEM 2D elasticity systems for moderate values of the Poisson ratio, and

10



by a proper choice of the coarse grid size, even for values near the incompressible
case.

At the end of this section, we will briefly comment on the present results in compar-
ison to the results from two recent papers, where optimal order multigrid/multilevel
methods for elasticity problems are reported.

S. Brenner proved {cf. [8]) an optimal order convergence rate for the full multigrid -
algorithm, in the case of nonconforming mixed FEM approximation of the pure dis-
placements elasticity problem. The presented numerical tests (see [8]) demonstrate
that the convergence rate does not deteriorate in the almost incompressible case.
However, there remains the requirement that the number of the inner iterations must
be chosen large enough.

It has also been proved (cf. {14]), that the constant v in the strengthened C.B.S.
inequality is bounded uniformly on the Poisson ratio (v* < g—) in the case of con-
forming linear triangle FEM discretization of the Navier system. As a result, the
algebraic multilevel iteration (AMLI) (see [6] for more details) method is of optimal
convergence rate, uniformly in the Poisson ratio. However, the condition numbers
of the first pivot blocks in the AMLI factorization (which are uniformly bounded on
the mesh parameter) increase, when the problem tends to the incompressible case.
This automatically implies the need for a special treatment of this first block which
is similar to the requirement for large enough number of the inner iterations in the
full multigrid algorithm.

Analyzing the presented in Tables 1-4 test data, we can make the conclusion that
for some values near the incompressible case, the proper choice of the coarse grid size
in the BSR BILU algorithm plays a similar role as the large enough number of inner .
iterations in the above mentioned multigrid/multilevel algorithms.

Table 1: Number of iterations for BSR BILU preconditioner, # = —1.0.

At ||128 [64]32[16]8
H—l
4 60[31]161 915
8 37119101 5
16 16 10| 6
32 111 6
64 6

Table 2: Number of iterations for BSR BILU preconditioner, ¥ = 0.5.

11



Bl | 128 (641321168
le
4 110f57[30]16[9
8 70136 (19|11
16 40121111
32 22 112
64 12

Table 3: Number of iterations for BSR BILU preconditioner, ¥ = 0.7.

At 128 1641 32|16 8
H—l
4 140 {73138 20|11
8 891472513
16 521271 14
32 28 115
64 15
Table 4: Number of iterations for BSR BILU preconditioner, & = 0.9,
B~ |l 128 | 64132)161 8
H—l
4 2371124 16332| 15
8 128 821142121
16 90 | 46| 24
32 48 25
64 26
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