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Abstract. We consider Arrow’s model for an economy engaged in consuming a randomly
distributed natural resource, and in exploring previously unexplored land to find more of the
resource. After modifying the model so that each discovery reveals a random amount of the
resource, we use dynamic programming techniques to derive the equations governing optimal
rates of exploration, consumption, and pricing of the resource. We analyze these equations
asymptotically when the typical amount discovered is small compared to the total amount of the
resource, and approximately when the amount is medium or large. In both cases we obtain
formulas for the optimal exploration, consumption, and pricing policies. We demonstrate the
accuracy of these analytical results by comparing them to numerically-determined exact
solutions, and discuss economic implications of these resuls.
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1. Introduction. Suppose that an economy has a reserve of an exhaustible resource which jt
consumes gradually [1]. Hotelling [1] showed how to determine the optimal rate of consumption,
i.e. the rate that maximizes the present value of the resource. Later authors included deterministic
land exploration to discover more of the resource, and determined the optimal exploration rate,
Then uncertainty was introduced into the model. For example, Deshmukh and Pliska [2] let
discovery of the resource be a random process with an infinite area of unexplored land. Arrow
[3] formulated the corresponding problem for a finite area of unexplored land, and Arrow and
Chang [4] partially analyzed it. Here we complete the analysis, obtaining explicit results from
which we can deduce the economic consequences inherent in the model.

First we modify the model slightly to allow each discovery to reveal a random amount of the
resource. This introduces a parameter ¢, the ratio of the expected amount revealed by each
discovery to the expected total reserve of the resource. Following Arrow and Chang [4], we use
dynamic programming methods in §3 to obtain a set of equations characterizing the optimal
policy. After briefly considering the deterministic case (e=0)in §4, in §5 we use singular
perturbation techniques to analyze these equations when € is small, obtaining explicit asymptotic
expressions for the optimal policy. We then develop an approximate solution in §6 valid for any
value of &. In §7 we compare these resuits to the numerically-determined exact solution for
several examples. There we find that the results of the asymptotic analysis agree well with the
exact solution, and that the approximate solution agrees even better. Finally, we examine the
economic implications of these results, and discover that even as the amount of uncertainty goes

to zero, one does not completely recover the deterministic results,

2. Formulation of the model. Consider an economy engaged in consuming some natural
resource and in exploring previously unexplored land to find more of the resource. With respect
to these activities, the state of this economy at any time t is characterized by the rate of
consumption c(t), the rate of exploration x(t), the amount R(t) of known reserves of the resource,

and the area A(t) of unexplored land. We assume that the economy enjoys a utility of



consumption U(c) per unit time, and that it pays a price P to explore a unit area of land, The net

increase in utility per unit time is U(c(t)) — Px(t), so the payoff, the discounted present vaiue of

2.1 J e P Ule(n)] - Px(t)} dt .
. 0

Here p is the discount rate for utility.
The amount of unexplored land A(t) and the known reserves R( t) must be non-negative, so

consumption and exploration rates are limited by

t
2.2a Aty = A(0) - fx(t') dt' = 0,
0
i
2.2b R(t) = R(0} - jc(t’) dt' + N(1y 2 0.

0

In 2.2b, N(t) is the amount of resource discovered by exploration during the time interval 0 to
t. To characterize N(t), we assume that the resource 1s randomly distributed throughout the area
A in discrete deposits of average amount £. We assume that the probability of discovering a
single deposit by exploring a small area dA is MedA + O(dA)?, and that the probability of
discovering two or more deposits is O(dA)2. Let the amount of resource in a given deposit be gs,
where the random variable s has probability density g(s). In particular,

2.3a [ g(s)ds = 1, j sg(s)ds = 1,
0 0

since the deposits’ average size is €.

From these assumptions it follows that the expected amount of resource in any unexplored

region of area A is AA, and that the variance in the amount is EM,AA, where M, is the second

moment of g:

2.3b M, = r s?g(s)ds .
0

(3]



The payoff is given by 2.1 with c(t) and x(t) subject to 2.2. Since the random variable N(t)
occurs in 2.2, the payoff is also random. Therefore we seek a policy for choosing consumption
rates ¢(t) and exploration rates x(t) which maximize the expected value of the payoff. These
choices define our optimal policy.

The maximum expected payoff depends on the initial values A(0) = A and R(0) = R, so we
denote it as V(A,R):

2.4 V(A.R) = max E{J e‘p‘{U{c(t)}—-Px(t)}dt}.
x{-) e} 0

In the next section we consider the problem of finding this maximurm and the rates X(t) and c(t) at
which it is achieved.
We assume that the utility function satisfies U’(c) > 0 with U’(0) = +o, and that it is concave

*

U"(c) < 0. To illustrate our results we will use

2.5a Uc) = - %, n>-1,
neh

as examples, which we interpret as
2.5b Ulc) = aloge

forn=0.
For clarity, it is advantageous to nondimensionalize our variables. Let us measure area in
units of a typical area Ay, such as the initial area, and measure reserves in units of AA, the

expected quantity of the resource in A, We define the new variables

2.6a A'= A/Ay, R =RAA, N = NAA,,
2.6b g = g/AA X' = x/Aq, c' = c/hA,,
2.6c P' = PA,, Ulle) = U(?\.AOC').

When we introduce these variables into the preceding equations, and omit the primes, the

equations remain unchanged except that A is replaced by unity. The new dimensionless € is the



ratio of the average amount of resource in a single deposit to the expected amount in the area Ay,
It is also proportional to the variance of the amount of resource in the area, and thus measures the

unceriainty in the amount of undiscovered resource.

3. Equations for the optimal policy. We determine the expected payoff V(A,R) by using

dynamic programming [4]. Writing V at time t in terms of V a short time 7 later, we find

+1T
3.1  V[A®,R(1)] = max E{( e P {Ue(t)) - Px(t) } dt' + e PTVIA(+T), Rt+1)] },
x(-hel) -t

and expanding in powers of T vields

3.2 VIA(1),R(1)] = (1 -pDVIA®), R()] +

max {T[U(c(t)~Px()] + E{V[A(+1), R(t+1)] - VIA(D), R()]} } + O() .
X(‘), C()

In 3.2 we have used the fact that at time t, the rates x(t) and c(t) are determined by guantities

which are known at time t, and thus are not random,

From 2.2,
3.3a A(t+T) = A(t) — () + O(1D)
3.3b CR(+1) = RO — 1o(t) + N(t#+1) — NGO + 0(12) .

Since an area x(t)t + O(12) is explored in the time interval t to t + T, the amount of resource

discovered is
0 with probability I —x(t)r/e + O(12)

33c N@+1t) = N(t) = .
es  with probability density x(t)t/e g(s) ds + O(1?)

Substituting 3.3 into 3.2, dividing by 7 and letting 7 tend to zero yields

34 pVAR) = max {U(c)- Vg(AR) + [AV(AR) - V,(AR) - Plx }
X(‘), C()

where A, R, x, ¢ are evaluated at time t. In the above



35 AV(AR) = J_J g(s) [V(A,R+&s) - V(A,R)]ds .
£ Jp

which is 1/e times the expected return from making a discovery.

Note that Vp(A, R) and VA(A,R) represent the (marginal) values of a unit amount of
resource and unexplored land when the economy is in state A, R. Equivalently, VR(A, R) and’
Va{A,R) represent the cost of consuming a unit amount of resource and exploring a unit amount
of land. Thus, U(c) — Vir(A,R)c is the net rate at which the economy gains value by consuming
the resource at rate c; likewise, [AV(AR) - Vi(AR)-P]dA is the expected gain from
exploring an area dA. Clearly 3.4 articulates the balance between the benefits of exploring and
consuming now, against the benefits of future exploration and consumption.

We must now select the consumption and exploration rates that maximize the right hand side
of 3.4, 3.5, subject to the constraints that A and R remain positive. This yields differential and
integro-differential equations for the payoff V(A,R). After selecting the optimal ¢ and x, in this
section we reduce the resulting equations to a single integro-differential equation for V. In §§4-6
we use asymptotic and approximate techniques to solve the integro-differential equation
explicitly when £ = 0 (no uncertainty), € << 1 (small uncertainty), and when ¢ is moderate or

large. These formulas are then compared to exact numerical solutions in §7.

3.1. Optimal consumption and exploration rates. The maximum of 3.4 occurs when the marginal

utility of consumption equals the cost of the resource:
3.6a U'(c) = VRx(A,R).

The alternative, that the maximum occurs at ¢ = 0, is excluded by the hypothesis that U’(0) = +eo.
Since U is concave, expression 3.6a can be inverted to give the optimal consumption rate as a

function of the cost Vg:

3.6b ¢ = C(Vy).



The right side of 3.4 is linear in x(t), so its maximum occurs at x = 0 if the coefficient of x is
negative, and at x = +oo if the coefficient is positive. If the coefficient is zero, the expression is

independent of x, so maximizing it leaves the value of x undetermined. Thus, if

< 0 thenx=0

0 then x is undetermined |

H

3.7 AV(AR) -V, (AR)-P

> 0 thenx=+4w

3.2. Equations for V(A,R). Let us divide the quarter plane A 2 0, R > 0 into two regions

3.8a Do = {all (A.R) with AV(A,R) - V,(AR)~P < O and X <eol
3.8b D. = {all(AR) with AV(AR)~ V,(AR)=P > 0 and X = oo}

b

and define the boundary between these regions to be Rg{A). As shown in figure 1, we are
assuming that D, contains the region R > Rgz(A) and D_, contains the region R < Rg(A), since the
value of making a discovery surely decreases as the reserves R increase. Note that Rg(A)

represents the minimum acceptable reserves in the economy.

Consider the region R > Rg(A). There (P +V A — AV)X = 0 because either the first factor is

positive and x = 0, or the first factor is zero and x is finite. So eq. 3.4 yields

3.9 PV(A,R) = Uc) - VRx(AR) for R > Ry(A).
Substituting the optimal consumption rate ¢ = C(Vy) from 3.6, we obtain

3.10 PV(A,R) = UC(VR)) - VR(A.R)C(VR) for R > Rg(A) .

This is an autonomous first order differential equation for V as a function of R. Therefore its

solution can be written as

3.11 V(AR) = W(R + Rg(A)) for R > Rg(A),



where the function W is determined by 3.10, and depends only on p and U(c). The ‘integration
constant’ Rg(A) is arbitrary as yet, and must be determined later. Note that it can be regarded as

the resource equivalent of an area A of unexplored land, so we choose

3.12 Re(0) = 0.

Now consider the line A = 0. Since there is no unexplored land, clearly x = 0 and the
economy remains on this line as the resource R is consumed. With x = 0, eq. 3.4 reduces to 3.9

which leads to 3.10 as before. Solving 3.10 then gives

3.13 V({O.R) = W(R).

At A =0, R =0, there can be no consumption or exploration, so

oa

3.14a W) = V(0,0) = J e PTU(0) dt = UO)p if U0} <o,
0

3.14b W(0) = —ce if U(Q) = ~oo,

The differential equation 3.10, together with the initial condition 3.14, determine W(R) for any
utility function U(c).
Finally, let us consider the region R < Rg(A), in which the exploration rate X is infinite. From

3.4 we deduce that

3.15 VA(AR) = AV(AR)-P for R < Rg(A),

since otherwise V would be infinitely large. This is the desired equation for V when R < Rg(A).
(A careful derivation of 3.15 is given in Appendix A.) From the definition of AV(A,R) in 3.5,
we note that the integral in AV may extend to values of V in Dy.

We view 3.15 as a first order differential equation for V as a function of A when R < Rp(A).
Then 3.13 provides the initial condition V(O,R) = W(R) at A = 0. We note that V and its normal

derivative must be continuous along the boundary R = R(A), since otherwise V could be

increased by shifting the boundary appropriately. For example, if V were larger on the upper side



of the boundary for some part of the curve R = Rg(A), then V could be increased by shifting the
boundary upward. A similar argument in Appendix B shows that the normal derivative of V must
also be continuous across the boundary R = Rg(A). The continuity of V and its normal derivative

implies that both V, and V; are continuous at the boundary.

3.3. Summary of equations for V(A,R). For future reference, let us gather the equations and

conditions determining V(A ,R). We have

3.16a V(O,R) = W(R) at A=0,
3.16b Vo = AV(AR)-P for 0 SR <Ry(A),
3.16¢ V(A,R) = W(R +Rg(A)) for R>Rg(A),
3.16d V, Vg, V4 continuous at R = Rg(A),
where
3.16e AV(AR) = lJ g(s) [V(A,R +&s) ~ V(A R)]ds .

€70

In addition, W(R) is the solution of the ordinary differential equation
3.17a pW = UC(W')) = W/C(W")

with the initial condition W(0) = U(0)/p 1f U(0) is finite and W(0) = — o< otherwise. Here the

function C(y) is defined implicitly by
3.17b U'Cy=1.

Note that differentiating 3.17a and using 3.17b yields the identity

3.17¢ C(W) = —p &{l

For example, if U(c) is given by 2.5, then 3.17b yields the optimal consumption rate

3.18a C(W") = (m%)“(““’

Wf



so 3.17a becomes

3.18b dW _ a(_“&_)(““”” tw* e (n#£0)

{(n+1o

which results in

3.19a W(R) = - K/nR" (n=0)
with K = oo{(n+1)/p } 1. Similarly, when n = O we have

3.19b W(R) = (w/p)logpRie {(n=0)

Equations 3.16a-3.16c were given by Arrow and Chang [4] with AV = V(A R+1) — V(A,R).
In addition, they gave two other equations, their (23) and (24). which are superfluous.

One can expect egs. 3.16a-3.16¢ to have a unique solution. To see why, suppose that Rg(A)
and Rg(A) are given smooth functions. Eq. 3.16¢ yields V for R > Rp(A), and then eq. 3.16b has
a unique solution for 0 < R < Rg(A) which satisfies the initial condition 3.16a. (This is easily
proven using standard Picard iteration). In general, these solutions will not satisfy the continuity
conditions 3.16d; therefore these conditions will provide two independent equations that
determine Rp(A) and Rg(A). These equations are solved for V(AR), Rg, and Rg; in subsequent
sections. Once they have been solved, the consumption rate can be found from ¢ = C(VRr(A,R)),

and the optimal exploration rate is x = 0 when R > Rp(A)and x = o when R < Ry(A).

3.4. Optimal pricing. The optimal resource price pg and land price p, are the marginal values

Vr(AR) and V,(A,R), and are found easily once V(A,R) is known. In particular,

3.20 Pr = W/(R+Rg(A),  ps = W(R+RA)RLA),  when R2Ry(A).

We can show that these prices rise exponentially in time at the discount rate p as long as the

economy remains in the region R = Rg(A). Since dR/dt = —¢ = — C(W") and dA/dt=-x=0in

this region, differentiating W'(R + Rg(A)) yields



3.22 pr(D) = pglty) eP0 for R 2 Ry(A)

Hence, if the economy is at R(t,) = Rp(Alty)) at time t,, the resource price rises exponentially as
the economy evolves along the path dR/dt = — ¢, A(t) = A(ty) until it reaches the boundary

R = Rg(A). Since 3.20 shows that p,(t) = Pr(t}Re(A(ty)), clearly land prices also rise
exponentially until the economy reaches the boundary.

Once the economy reaches the boundary, the exploration rate is infinite until enough
discoveries are made to raise it above the curve R = Rp(A). So the economy jumps to a new
value of A and R. Surprisingly, we will find that the prices Pa and py after the jump equals, on
average, the prices before the jump. So, in a certain sense (see §7), the exponential price rise

continues through the jumps.

4. The deterministic case. Before considering the problem with uncertainty, we analyze the
deterministic case (€ = 0). When € = 0 there is no uncertainty in the discovery process. Exploring
at rate X is certain to discover resource at rate x. The discount factor makes it disadvantageous to

explore before necessary, so x should be zero when R(t)>0. Thus, lim Ry(A)= 0and
£—=0

4.1a V(AR) = W(R +Rg(A)) foralR=20, A20.

See 3.16¢c. When R = 0 it is disadvantageous to explore at a rate greater than is needed to make

up for consumption, so the optimal exploration rate is
4.1b x=0 when R>0, X=c when R=0.
The optimal consumption rate is (see 3.17)

4.1¢c ¢c=C(W'[R +Rg(A)]) forallR>0, A>0,

10



while the optimal resource and land prices are
4.1d Pr = W (R +Rg(A), p, = W(R+ Re(A)RE(A) forallR>20, A20.

Thus, if the economy starts at a point Ay, Ry at time t = 0, the optimal policy is to not explore, so
A remains at A as R(t) declines with consumption until reaching R = 0. Then the exploration
rate is x = ¢, so the economy remains at R = 0 as A gradually declines towards zero.

The remaining problem is finding Rg(A). Using continuity at R = Rg = 0 allows us to
substitute V(A,0) = W(Rg(A)) into 3.16b, and from 3.16¢ we see that AV becomes Vg ase = 0.
After dividing through by W'(Rg), 3.16b yields

43 RE(A) = 1= P/W'(Ry)

With the initial condition Ri(0) = 0, this differential equation determines Rg(A) uniquely.
Apart from a few special cases, this equation cannot be solved explicitly for Rg(A), even
when U(c) is given by 2.5, and hence W by 3.19. However, note that W/(Rg(A)) = VR(A,0). As
A goes to zero, the marginal value of the resource surely goes to infinity, so the last term in 4.3

must become negligible. That is, the cost of exploration becomes negligible compared to the

value of the resource. Dropping the last term shows that
4.4a Rp(A) ~ A for A small .

On the other hand, as A becomes Jarge, Rg(A) will go exponentially to the root R_ of the right

side of 4.3. So

4.4b Rg(A) - R, where W'(R_)=P for A large.
Then 4.1d yields

4.4c Pr - P, pa - 0O for A large .

So the price of the resource becomes just the cost of exploration, and the price of land tends to

zero as the amount of unexplored land becomes large.

11



We now consider how the optimal prices evolve with time. From §3.4 we know that both pg
and py rise exponentially at the discount rate when R > 0. So suppose that the economy reaches
R=0, A=A attime t = ty. Then it will remain at R = 0 with the amount of unexplored land A

decreasing at the consumption rate C(W' [Re(AY]). From 3.17c, then

45 %% = pW'(RE(A)/W"(Rg(A)) .

Using 4.3 we argue that

46 § (W Re)-P) = WRpREIA = pW'R9RE = p{W'(Rp) - P} |

So once the economy reaches R = 0, then
4.7 W' (RE(A) = P + {W'(Rg(Ay)) — PlePlth)

Now pr = W'(Rg), so this equation yields pg(t) explicitly. Since Pa=W'(RgRg= W'(Rp)-P,

we have
4.8 PAWM = paltgeP 0 pp(t) = Pt putgeP®0)

That is, the optimal resource price is the exploration cost plus the price of land, which grows
exponentiaily at the discount rate. As we shall see, this is in contrast to prices in the presence of
uncertainty, where the average prices do not converge to 4.8, even as the amount of uncertainty

goes to zero, We will examine this seeming contradiction in §7.

5. Small uncertainty. Small uncertainty (€ << 1) is the most widely occurring case for most
natuaral resources; it pertains whenever each discovery reveals a small fraction of the total
amount of the undiscovered resource.

We need to solve 3.16b for V(A,R) when R < Rg(A), and then use continuity to determine

Rg(A) and Rg(A). Expanding V(A, R+¢€s)ina Taylor series and substituting into 3.16b, we find

2
5.1 Va = =P+ Vp+ EMyVpg + %M3VRRR + .. for R < Rg(A)

12



Here M, is the second moment of g(s), defined in 2.3b, and Mj is the third moment, defined

similarly. This suggests finding V(A,R) via a power series expansion:
5.2 V(AR) = VO(AR) + eVIYAR) + ... for R <Ry(A).

Substituting this expansion into 5.1 and the initial condition 3.16a, and equating like powers of ¢

yields
5.3a v - v - _p, VOOR)=W(R),
5.3b v - v = LMV, VIOR) = 0,

through O(€), and solving these equations vields
5.4 V(AR) = W(R+A)~PA + SMAW'(R+A) + .. for R<Ry(A).

Now, V(A,Rp) and V(A ,Rg) must be continuous at R = Rg(A). From expressions 5.4 and
3.16¢, then

5.5a W(Rg+Rg) = WRp+A)~PA + EMAW'Ry+A) + ..

1

5.5b W'(Rg+Rg) = W'Rp+A) + % MAW"(Rg +A) + ...

Solving these equations, we find that
56a  Rg(Asg) = Ry(e)—A+ ..., Re(Ag) = A{l+ EM,W™R)/W'(Ry) + ...}
where Ry (e) is defined by

5.6b W'(Rg) — W/(R))W"(Ro)/W"(Rg) = 2P/eM, .

The solution for V(A,R) in 5.4, with Rg and Rg given by 5.6, can be continued to higher

powers of € in the same manner.

13



5.1. Singular expansion when A > R,,. The preceding expansion fails when A > Ry(g), since it
predicts that Ry is negative. In appendix C we use singular techniques to analyze 3.16b more

carefully. There we discover that when A/e >> 1,

57a RgA) = 1- D+ lem, ¥

W’ “W’
5.7b W/(Rg)e ¥ = W“L {P+ 1 Lemy( WW” W"' W)+ ..}
Here
5.7¢ a=Ry(e) if A <Ryle), a=A ifA>Rye),

and the arguments of W are Rg(A) + Rg(A) on the right hand sides of 5.7a, 5.7b.

Equations 5.7 sum up Arrow’s model in the presence of uncertainty. at least when these
uncertainties are small. The algebraic relation 5.7b implicitly determines Ry in terms of Rg and
A, and this can be used to eliminate Ry in 3.7, reducing it to an ordinary differential equation
for Rg. After solving this equation, the payoff V can be found as W(R +Rg(A)) when R > Rp(A),
and the other economic quantities can be deduced from the payoff. See figure 2.

Note that the right hand side of 5.7b depends only on Rg(A) + Rg(A), while the left hand side
is transcendentally small unless Rg(A) is transcendentally small. Let Ry(e) be the value of
Rg + R at which the right hand side is zero (see 5.6b). Then 5.7b yields Rg(A) = Ry~ Rg(A)
until Ry is transcendentally small. When Rp(A) is transcendentally small, it can be neglected on

the right hand side of 5.7b. Thus we obtain

5.8a Rp(A) = Ry(e) ~ Rg(A) + .. when Rg(A) < Ry(e),

580 WRp) = eeMe{-EWT, oMW~ W) + ..} when Re(A) > Ry@).

Here the argument of W on the right side of 5.8b is Rg(A), s0 5.8b determines Rg(A) implicitly
from RE.

The arguments on the right side of 5.7a are Rg + R, which equals Ry(g) when Rg(A) < Ry(e).

So Rg(A) is constant there, and using 5.6b we obtain

14



5.9a Re(A) = A{l+ SMW"Ro/W'Ry) + ...} when Rg(A) < Rye) .

When Rg(A) > Ry(e), then Rp(A) is transcendentally small and can be negiected in 5.7a. Hence,

Rg is the solution of the differential equation

dR P W(RE)
5.9b B =] - + leM, ANE) when R:(A)> R
dA W ’(RE) 2 MW'(RE) ¢ E( ) g 0(8) '

with the initial condition
5.9¢ Re(A) = Rye) + ... at A=Ry(e){1 - EMQW’"(RO)/QW”(RO) +..}.

We see that 5.8 and 5.9 agree precisely with the regular expansion 5.6 when Rg(A) < Ryg).
The results differ when Re(A) > Ry(¢) because the transcendentally small term e*"€ in 5.7 forces
Rg(A) to remain slightly positive. Now, e™€ is the probability that the unexplored area A
contains no more resources, and recalling that V(O,R) = W(R), we see that its co-factor W'(Rp) is
the marginal value (price) of the resource at A = 0, R = Ry. Thus, the only reason that the
minimum acceptable reserve Rg(A) remains non-zero when Re(A) > Ry€) is to guard against the
unlikely possibility that no more discoveries will be made. More precisely, to limit the price
shock that would occur in this unlikely event.

In addition, as A becomes large Rp(A) will tend to a constant value R.., which satisfies

5.10 W/(R.) + %& SWHR )+ ... = P.

So when there is plenty of unexplored land, the average value of a discovery is just the cost eP of

finding it.

5.2. Economic considerations. Equations 5.8 and 5.9 show that Rpg(A) declines linearly when A
is small. This can be understood from an economic viewpoint as follows. Let Q denote the

random amount of resource in the unexplored land, and suppose that the entire area is explored at

once. Then the expected payoff V,(A,R) would be

I5



5.11a Vo(AR) = EV(O,R+Q) -PA = EW(R+Q) - PA
= W(R+A) + 1 eMopAW"(R+A) + .. - PA .

To obtain the last line we expanded W in Q- A, recalling that the mean of Q is A and jts

variance is eM,A.
We compare this to the result obtained by first consuming at the rate ¢ for a short time dt, and

then exploring all the land. In this case the payoff is
5.11b Vi(AR) = (1 -pd)V4(AR—cdt) + U(c)dt + O(dr)?

= Vo(AR) — [Vor(AR)c + pVy(AR) - Ulc)] dt + O(dt)?

!

Vo(AR) + [geMQ(W\;r,, " W) + PlAp di+ O(di)?.

Here the argument of W is R + A, and to obtain the last expression we used pW = U(c) - W'
and ¢ =—p W'/W”. See 3.17a - 3.17c. Delaying for a time dt is a better policy if and only if the
coefficient of dt in 5.11b is positive. The boundary between these cases occurs at R + A = Ry(8),
that is, at R = Ry(e) — A. Comparing with 5.6 shows that this boundary is Rg(A) to leading order.
In essence, the curve Ry is set by balancing the gain PAp dt of delaying exploration against the
expected losses eM,Ap dt (W” — W'W"/W"Y/2 cansed by choosing consumption rates based on
the expected, and not actual reserves. Thus this latter term represents the inherent value of
information in the economy.

The curve Ry(A) for large A is determined by different considerations, At R = Rg(A), the
price of the resource py = W' can be written as the sum of two terms. One is the value of the
reserves at A = 0 multiplied by the probability e~A€ that no more discoveries will be made. The

other is the expected price after one discovery. This yields
5.12a W'(Rg+Rg) = W'(Rg) e ™A% 4 W/(Rg+Rg) + e(1- REW' R +Rg) + ...

When A is large the price of reserves W’ should be nearly the price of land W’ Rf. plus the unit

cost of exploration P, so W' = W'Rg + P, which yields Rg =1 - P/W'. From 5.12a, then
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5120 W'(Rg)e™%E = —ePW'(Rg +Re)/W'(Rg +Rg) + ...

which agrees with 5.8b for large A.

2.3, Explicit examples. Before considering larger uncertainties, let us illustrate the preceding

results using the utility function U(c) in 2.5. Then W is given by 3.19, and solving 5.6b yields
5.13a Ry(€) = (eM,K/2P)/n+2)

50 Rg goes to zero with €. When Rg(A) < Ry€) we have

5.13b Rp = Ry(8) = Rp(A) + ..., Rg = A{l - eMa(n+2)/2R(g) + b
When Rg(A) > Ry(€), solving the implicit relation 5.8b vields

2 Hin+l
5.14a Ry = REe“A/E“‘*”{ KR /e(n+1) } n+1) .
PR™2 — eM,K/2

when Rg(A) > Ry(e) ,

explicitly showing that Ry, is transcendentaily small, Eq. 5.9b shows that R solves the equation

dRg _ | _ Pport _ 1 n+l
5.14b A = 1 KRE 28M2 Ry + ..
with

5.14c  Rg = Ry(e) at A =Ro(e) + eM,(n+2)/2 .

6. Moderate and large uncertainties. We now consider the case where € is not small. When £ is
small we found that Rg(A) and Rg(A) are initially nearly straight lines. So for the present case
we expect that Rg and Rg can be represented by their Taylor series for moderately smail values

of A. Using 3.16a and 3.16b to expand V(A R) in a power series in A forR < Rp(A), we find

6.1 V(AR) = W(R) - (A/e){eP + W(R) - J g(s)W(R +es) ds }
0

+ (A%2e2) { eP + W(R) - r g(s)W(R +&s)ds + ef g(s)V,(O,R+&s)ds } + 0(A3)
0 0
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We evaluate V and Vp in 6.1 at R = Rg(A), equate the results to W(Rg +Rp) and W'(Rg + Rp),

and then expand in powers of A. This yields

6.2a eRKO) = - { W[Rg(0)] +eP—f g(s)W[Rg(0) +es] ds}/W’{RB(O)},
0

o0

6.2b  eRL0) = — { W[Rg(0)] - f g(s)W'[Rg(0) +es] ds } /W [RR(0)]

0
6.2¢ Rp(0) = —Rg(0)2, g0)=0.
Therefore,
6.3 Rg(A) = Rp(0) —-é_ RE(DA + O(A7), Re(A) = RE(D)A + O(AY)

for A small, where Ry(0) can be obtained by equating 6.2a and 6.2b and solving the resulting
algebraic equation.

For larger values of A, one equation can be obtained by using 3.16b to evaluate V, at
R =Rg(A), and equating it with W'(Rg + Rp)Rg(A). This yields the exact expression

6.4a REA) = {EW'[Rg+Rg]}™! {J gS)W(Rg +Ry+es)ds — W(Rg+Rp) ~ eP} .
0

Note that the right hand side depends only on Rg(A)+Rg(A). Recalling that the price of land is
Pa =Re(A)W'(Rg + Rp) when R 2 Rp(A), we see that eq. 6.4a simply states that p, is equal to
the expected increase in value due to making a discovery less the exploration cost at R = Rg(A).

A second equation can be obtained from the integral equation C.2. Taking the derivative of

C.2 with respect to R, and evaluating it at R = Rg(A) yields

oo

6.4b W'[Rg+Rg] = J g(s){ W'[Rg +Rg+es] — ERE(A)W'[Rg+Rp+es] + ..} ds
0

o

+ eV {W'(Rp) -[ g(s)W'[Rp+es] ds
0

- f J g(s)g(sH)[W'(Rp+es) ~ W' (Rp+es+es)] ds' ds - ...
0’0
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This equation is only approximate since it neglects terms with V 4 and higher derivatives in C.2.
We took the derivative with respect to R, rather than use C.? directly, since prices are generally
more sensitive to detaiis — like precise values of Rg(A) and Rg(A) — than payoffs.

The pair of equations, 6.4a and 6.4b, determine Rp(A) and Re(A). If we use 6.4a to eliminate
RE(A) in 6.4b, then 6.4b reduces to an algebraic equation. We have solved 6.4a, 6.4b numerically
for U(c) = etlogc, g(s) = 8(s—1), Pp/oc = 1, with € = 0.1 and 1.0. Figures 3 and 4 show the
approximate Rp(A) and Rg(A) obtained, along with the exact values.

As A becomes large, Rg(A) will become small enough that Rg + Ry can be replaced by RE.

Then 6.4 simplifies to

o

6.5a RE(A) = {eW'[Rg]}™! {J g{s)W(RE+Es)ds—W(RE)—8P} .
0

=)

6.5b e ™EW/[Rg(A)] = W'[Rg] — f g(s){ W'[Rg+es] - eRE(A)W'[Rp+es] ds .
0

In 6.5b we have also neglected the exponentially small terms, but not e V¢ W'[Rg(A)] since this
term is not small when Ry is small enough. The differential equation 6.5a is now uncoupled from
6.5b, and can be easity solved for Rg(A); then 6.5b yields Rg(A).

As A becomes infinite. 6.5a shows that Rg(A) tends to zero and RE(A) tends to the root R of

6.6 f S8)WR_ +es)ds—W[R_] = eP+....
0]

So as before, the average value of a discovery is the average cost P of finding it when there is

plenty of unexplored land.

7. Numerical solutions. Discussion. To test our analytical results we have calculated the exact
curves Rg(A) and Rg(A) numerically for many cases. In figures 2 - 4 we portray the case
Ulc) = alogec, g(s) = 8(s—1), and Pp/o. for g = 0.01, 0.1, and 1.0. For £ = 0.01, we compare the

exact curves to the asymptotic resuits obtained by solving 5.7. In figures 2 - 4, we compare the
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exact solutions to 6.3 when A is moderately small, and to the approximate solutions obtained
from 6.4 when A is larger. Note the surprising accuracy of the approximate solution.

— 1 .

he optimal exploration policy is determined by the curve

[P PIG.. [ I Jy T
10W CONSIACT Our iCbu}tb. 1

Let us
Rg(A), which represents the minimum acceptable reserves for the economy. If at time t the
proven reserves R(t) and unexplored land A(t) satisfy R(t) > Rp(A(t), then the exploration rate is
zero and the optimal consumption rate is c(t) = — pW'[R(t) + Rg(A)/WIR(t) + Rg(A)]. Thus
R(t) decreases and A(t) remains unchanged until R(t) = Rg[A(t)]. Then exploration begins at an
infinite rate until enough discoveries have been made to increase R above Rg(A). This occurs
instantly since the exploration rate is infinite, so A(t) decreases and R(t) increases
discontinuously to new values A(t+) and R(t+), which are random since they depend on the
vagaries of the exploration process. Then the cycle begins again.

The price of reserves pg(t) and land p(t) both increase exponentially at the discount rate p
during the consumption phase of each cycle, as shown by 3.22 et seq. They both change
discontinuously at the instant when exploration occurs, jumping to new values
PR{tT) = VR[A(H),R(t*}] and po(t1) = VA[A(F),R(tH)]. In Appendix D we show that, on
average, the post-exploration prices are exactly equal to the prices immediately before

exploration:

7.1 E{pr(th)} = pr(1), E{pAa(th} = pa(t).

This means that on average, both resource and land prices continue to increase exponentially as
the economy goes through the exploration/consumption cycles, regardless of how little (or much)

uncertainty there is in the exploration process. In the limit of small uncertainty (¢ — 0), we do

" not recover the deterministic result of §4:

72 Pr{t) =palt) + P, palt) = const. x eP!

To resolve this apparent contradiction, consider the small uncertainty case. In §5 we

discovered that Rg(A) is governed by 5.7b. Using 5.7a, we can re-write this equation as:
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7.3 {eW"(R+Rp) + % £°M, W"(R + Rp)+ ..} - {EW"R +RpRI(A) + ..} + W/ (R)e™E = ¢
at R =Rg(A).

At R = Rp(A) the optimal policy is to explore, and the first two terms represent the change in the
resource price py after the first discovery is made. The first term is the price change due to the
increase in reserves R, and the second is the change due to the decrease in unexplored land A.
However, there is a small probability e~ that there is no first discovery. The last factor is the
expected change in resource price if no discovery is made. In essence 7.3 states that the expected
price change during exploration is zero. but this zero average 1s made up of two terms: a price
decrease that occurs after a discovery, and is virtually certain to happen: and a small possibility
that an enormous price increase occurs because no more resource is discovered, As g -5 0, the
latter possibility becomes extrerely remote. but the optimal policy reduces the minimum
acceptable reserves Rg(A) until the price increase that would occur is large enough to offset the
remoteness of the possibility. So because the optimal policy must discount the price shock that
would occur if no more discoveries are made, the economy enjoys a price decrease each time it
passes through a discovery phase without this possibility occurring. Thus the model does not

account for the slow growth of oil prices from 1950 to 1970, as proposed in {3].



Appendix A. The equation for V(A,R) in the region D, can be found by re-eXxamining the

exploration process. Suppose that a small area dA is explored. The probability (density) that a

deposit of size €s is found while expioring is g(s) dA/, the probability that no deposit is found is

1 — dA/e, and the probability of finding two or more deposits is O(dA)?. Since this area is

explored infinitely fast, no consumption takes place during exploration. Therefore,

Al V(AR) = % fwg(s)V{AudA,R+£s) ds + (1-dAZ)V(A-dAR) - PdA + O(dA)?
0

Expanding in dA now yields 3.15.

Appendix B. We now prove that the function V(A.R) defined by 3.4, and its derivative Vg, are
continuous across the curve R = Rp(A). To do so. we assume that W(R) is an increasing function
of R (this is easily proven from 3.17), and that Ufc) < o + B

To prove that V is continuous, note that 2.4 shows that V(A,R) is the maximum of the
expected value of an integral over a class of admissible functions. These functions are restricted
by 2.2a, 2.2b with A(0) = A and R(0) = R. When A and R are .changed slightly, this class of
functions is changed slightly in the L! norm. Then, because U(c) grows no faster than linearly, it
follows from 2.4 that V changes only sli ghtly. Thus V is a continuos function of A and R,

We prove that Vi, is continuous by contradiction, Suppose that Vg[A Rz(A) ] is larger than
VeIARp(A)*] when [A - Ayl < 8 for some Ay and 8 2 0. Then we can construct a new larger
function VN(A R) and corresponding functions R',;’(A) and RS{A) such that these functions satisfy
3.16a - 3.16¢c with VN continuous; this wil] contradict the maximality of V.

To construct VN, increase Ry by an amount AR(A) > O
B.1 RR(A) = Ry(A)+AR(A) forlA— Ayl <3,

requiring that AR(A) = 0 for |A—Agl 2 8. We define VN by VN = V for A < Ag— 6. When
A>Ag—9, weset VN = WIR +Rg(A)] for R 2 R}(A) and we require V™ to satisfy'3.16b for
O<R< Rg(A), and to equal V(A;-8R) at A = Ag— 8. From this definition it follows that



B.2 VN = V + O(8AR) for[A-Agl <8 and R<Rg.

The function RE’(A) is equal to Rg for A < Ay~ 8, while for A > Ag -9 it is determined by the

continuity of V at RY. By using B.2 in this condition, we obtain for |A — Apl <3

B3  W(Ry+Rg) = VMAR]) = V(ARp) + ARVR(AR3) + O(AR)? + O(SAR)

"

W(Rg +Rg) + ARV (AR) + O(AR)? + O(8AR) .
From B.3 we find that

B4  R{(A)-Rg = AR[VR(ARE) - W'(Rg +Rp)l/W'(Rg + Rg) + O(AR)? + O(3AR)

for }A—A(}l < 5 .
Now, W’ >0 and we are assuming that Vr(ARR) > Vo(ARE) = W'(Rg +Rg). So

B.S RY(A)-Rg>0  forlA-Ayl<d

provided we select 6 > 0 and AR > 0 sufficiently small.
Comparing VN with V, we see they are equal when A < Ag~ 0. For|A - Ayl < 8 and

R > RE(A), the monotonicity of W ensures that
B.6 VN(ARR) = WR+RNA)] > W[R+R(A)]= V(AR),

so VN> V in this region. We now use B.6 and 3.16b to conclude that VE2V, inlaA-Ayl <8,
R < Rg(A). It then follows that VN > V in this region. Similarly we find that VN > V for all
A>Ay-0.

Because VN>V everywhere, we conclude that Vr[AgRg(Ap)] > VriAg.Rp(Ag)*] for some
Ay cannot occur. If this inequality is reversed, we can construct a larger solution VN simply by

reversing the sign of AR. Thus we see that Vi cannot be discontinuous.



Appendix C. Singular analysis. The regular expansion fails near A > Ry(€) since it predicts that
Ry is negative. To obtain a valid solution, let us return to 3.16b. We can re-write 3.16b and its

initial condition 3.16a as

=]

A
C.1 V(AR) = W(R)e™8 _ gp(1-eA% 4 1 J ela-Ale f g(s)V(a,R+¢es) ds da
eJp 0

for R £ Rg(A). Repeatedly integrating the last term by parts yields

C2  V(AR) = WR)e ™ _ ¢p(1-e A%

+ J g(S){V(A,R-F-ES) - eV, (AR+8s) + 82VAA(A,R+ES)~ ..} ds
0

“e“A/EJ g(s){ V(O.R+es) — EVAOR+es) + £2V 4, (0O R+es) - ...} ds .
0

We now evaluate C.2 atR = Rp(A) and equate it with W(Rg +Rp). In the first integral we can
replace V(A,Rp+es) by W(RE(A) + Rg(A) +£s) . In the last integral the initial condition 3.16a
allows us to evaluate V(0,R+¢s), the initial condition and 3.16b allows us to evaluate

V A(0,R+es), etc. Hence, C.2 becomes

C3 W(Rg+Rg) = W(Rpe™ _ ¢p

+ f g(s){W(RE+RB+ss) - EW,(Rg+Rp +¢€s) + SZWAA(RE+RB+ES) - ...} ds
0

- e“A/EJ' g(8)W(Rp+es)ds — e_AjEJ J g(s)g(s)[W(Rg+es) - W(Rg+es+es)] ds' ds + ...
0 00

The regular expansion in §5 is valid when A < Ry(€), so let us consider values of A large
enough so that A/e >> 1, and thus e % jg transcendentaily small. The integrals that are
multiplied by e~E can be relevant only if Rg(A) is transcendentally small, so that W(Rg +&s) is
large enough to balance out the factor e ™%, However, since W(Rg + £5) occurs in the integrand,

these integrals are smaller than the first term W(Rp)e ™2, at least by a factor of Rg. So these
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integral terms are never relevant and can be neglected: they are either transcendentally small or
transcendentally smaller than the first term W(Rp)e %,

Consider the first integral on the right hand side. Regardless of the value of A, the argument
Rg(A) +Rg(A) + €5 is always larger than about Ry(g). For if A < Ry(€) then Rg+Rp "Ry(e) + ...
(see 5.6), and for larger values of A we have Rg(A) + Rp(A) 2 Rg(A) 2 Ryfe) since Re(A) is an

increasing function of A. Therefore we can expand the integrand in powers of £. This yields

C.4a (Rg~ DW’ = W(Rpele™™® _p 4+ gw{1 LM, -RE+ (REP} + eW'RE

where unless specified otherwise, the argument of W is REe(A)+Rg(A).
In a similar manner we differentiate C.2 with respect to R and evaluate it at R = Rg(A).

Following the preceding arguments leads to

C.4b (Rg - DW” = W'(Rg)ele™® 4 gwr{ M, ~RE +(RE?) + eEW'RE + ...

1
2
where all unspecified arguments of W are Rg(A) + Rg(A) as above. Now consider the term
W(Rg)e e ™ in C.4a. For this term to be relevant, Ry must be transcendentally small. But for
small Ry, this term is a factor Rg smaller than the term W'(Rg)e~le ™ i C.4b. Accordingly, we
can neglect the term W(RB).E“t=fN‘la in C.4a since it is either transcendentally small or
transcendentally smaller than W'(RB)E"e_AjE in C.4b. After neglecting this term, manipulation

of egs. C.4a and C.4b yields

Cs5a  R.= 1-\};,+ \‘;\/",{11\/12 R+ (RE?) + eRY + ..,
C5b  W/(Rgle-le™ % = { P+E(W\;VV,‘{ ~WN( My - R + RE?) + ...} .

Eq. C.5a shows that Rg = | — P/W’ o leading order. Substituting this into the higher order
terms in C.5a, C.5b yields

Céa Rp=1-F 4 1eM2¥,' o

and changes the last term in C.5b to
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a(% = W")(L M, ~ (1 -P/W")PIW') .

When Rp + Rg is O(1), this term is O(g) and can be neglected compared to P. When

Rp +Rg << 1, then (1 —~P/W")P/W’ can be neglected compared to M./2. In either case C.5b

simplifies to

’ -1 —Ale - W" W’W"’ Iy
C6b  WRgee™ = - 20 {P+ Lemy( i~ W)+

to leading order.
Note that if the factor e ™€ is set to zero in C.6b, then eq. C.6a and C.6b reduce to the regular
perturbation solution of §5. Accordingly, we can devise a uniformly valid expansion by replacing

this factor by one which is always transcendentally small;

’ i —AfE _ w” Ww" 7"
C7a  W/(Rpe'e ™t = ‘W{P“L FEMy( = - W) 4

where

C.7b a=Roe) ifA<Ry(e), a=A ifA>Rye).

Egs. C.6a and C.7 are the equations needed in § 5.

Appendix D. Post-exploration prices. Suppose the economy is at some point A,R in the
exploration region R < Rg(A). Let A* and R be the point where the economy first ceases

exploration, and let Z(A,R) be the expected land price p a at this point:
D.1 Z(A,R) =E{V,(A*,RH)}

There are three possibilities. With probability e~AM €, exploration ceases without making a
discovery and the post-exploration price is V A(O.R). With probability g-! e{A-AYE g(s)ds dA',
the first discovery occurs at A' and increases the reserves to R' = R+gs . If R' < Rg(A") then
exploration ceases and the post-exploration price is V A(A'R). If R' < Rp(A") then exploration
continues, and the expected price when the economy ceases exploration is Z(A',R"). Accounting

for these possibilities, we have



A oo
D2 Z(AR) = eV, 0R) + 1 J e*A"’A’VEJ g(S)VA(A' R+ €s) dsdA’
e lp 0

A ‘ a(A")
LJ e (A-AYE f g(IR-R)/e)[Z(A'R") - V, (A" R)] dR' dA' .

€2 /g R

Now, differentiating 3.16b with respect to A vields

L=

D.3 eVAA(AR) + V4(AR) = f 2(s)VA(AR +gs) ds for R < Rg(A),
0

and substituting into D.2 yields

- A
D4  Z(AR) = ™MV, (OR) + { EQA_' {eAAey (AR) }aA!
iy
| A [Re(A) ,
- f J e AAYE G [R-RI/E)[Z(A'R) — V(A" RY] dR' dA’
g€2/9 /R

Integrating D.4,

A Rg(A") . '
D5 Z(AR)-V4(AR) = 35 J J e AAYE g (R-RYE)Z(A'R) - VA(A'R)] dR' dA'.
€ Jo /R

Equation D.5 is a homogeneous integral equation whose kernel is positive and satisfies

A rRy(AY) .
D6 L f J e A AVE g ((R_R}/e) AR dA" < | .
e2ly IR

Conseguently, the solution is Z(AR)-V AlAR) =0, so
b.7 E{V (AT, RH} = VA(AR) for R<Rg(A).

An indentical argument shows that

D.7b E{Vg(A*,R"}

1]

Vr(A.R) for R <Rp(A).

Consequently, once the economy enters the exploration phase, the expected price of land and

resource immediately after exploration ceases is identical to the prices on entering.



[1]
[2]

(3]

[4]

Figure Captions.

Figure 1. In Dy, where the proven reserves R exceed minimumacceptable reserves Ry(A), the
optimal policy is no exploration (x = 0) an consuming at the rate U'(c) = Ve(AR). InD_,
where R < Rg(A), the optimal policy is to explore infinitely rapidly until new discoveries place

the economy above the curve Rg(A).

Figure 2. Comparison between the exact Rg(A) and Rg(A) (solid curves) and the asymptotic
solutions given by 5.7 (dashed curves). The curves were computed using U(c) = o log ¢ with
g(s) = &(s—1) and Pp/o.= 1,€ = 0.01. The asymptotic solution for Rg(A) is indistinguishable from

the exact solution.

Figure 3. Comparison between the exact Rg(A) and Rg(A) (solid curves) and the approximate
results given by 6.4 (dashed curves). The curves were computed using U(c) = o Jog ¢ with
8(s) = &(s~1) and Pp/o. = 1, € = 0.1. The approximate solution for Rg(A) is nearly

indistinguishable from the exact solution.

Figure 4. Same as Figure 3, except that £ = 1.0.
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