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Abstract

The stability of interpolation for one-dimensional overlapping grids is considered. The
Cauchy-problem for a second order accurate centered finite difference approximation of
u, = u, is analyzed on the semi-discrete level. The existence of generalized eigenvalues
is demonstrated for some rare overlap parameters, in which cases the discretization is
found to be unstable. It is demonstrated that the stability can be recovered by adding
artificial dissipation to the equation. Numerical experiments on the strip problem show
that when a second order dissipation is used, the amount of dissipation necessary to cancel
the spurious growth is O(h?) in the absence of generalized eigenvalues and O(R) in their
presence, where h is the grid size. It is also demonstrated that the accuracy is improved
by using a fourth order dissipation.
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1 Introduction

When finite differences are used to numerically solve partial differential equations, the
mesh must be structured as opposed to unstructured meshes used with finite elements
or finite volume techniques. The advantage with a structured mesh is that it is easier to
construct an efficient numerical algorithm. The apparent disadvantage is the difficulty
to construct structured meshes for complicated geometries. One successful solution to
this problem is to use overlapping composite meshes. Then the region is divided into
subregions, each of which can be discretized with a structured mesh. Instead of patching
the subregions along common boundaries they overlap and each subregion can be changed
independently of the others, something which further facilitates the construction of the
meshes. Additional boundary conditions must be given for the new sub-domain bound-
aries in the interior of the original domain. The values at the boundary are interpolated
from the interior of an overlapping neighboring mesh. It is the influence of these added
“boundary conditions” on the stability of the numerical solution that is to be studied in
this paper. |
We will consider the wave equation

uy=u, t20 z€Q CR, k=12

1

u(0,z) = f(z), /ﬂklf(m)lz dz < o0, g
for the Cauchy problem €, =: {z : —00 < z < +oo} and the strip problem §2; =: {z :
0 < z < 2x} with in/outflow boundary conditions. Since we want to see the effect on the
stability of the interpolation between the two meshes without making any assumptions
about the time integration, the analysis is done on the semi-discrete problem where only
the space variable is discretized. In both cases we treat two grids with one overlap region,
see the schematic picture in figure 1.

Our analysis is an application of the normal mode techniques developed by Gustafs-
son, Kreiss and Sundstrom [6] and described in more detail in Gustafsson, Kreiss and
Oliger [5]. There are many applications of the normal mode technique in the literature.
Reyna [10] analyzed the semi-discrete Cauchy-problem for an overlapping grid and Star-
ius [11] did a similar analysis for the fully discretized (Lax-Wendroff) half-plane problem.
More recently, Part—Enander and Sjogreen [9] analyzed the fully discrete problem to de-
termine stability properties of different interpolation methods. Similar techniques have
also been used by Berger [1] and Ciment [3, 4] to study stability of interfaces with mesh
refinement. Necessary and sufficient conditions for stability of the semi-discrete strip
problem discretized on one grid was reported by Strikwerda [12]. For a more physical
interpretation of the stability theory for one grid, we refer to the work by Trefethen [13].

In section 2 we will state some well-known results from the normal mode theory de-
veloped in [5]. We present the Kreiss condition, which together with some additional
assumptions is sufficient to ensure stability of general difference approximations in the
presence of a boundary. We also state a lemma that relates the Kreiss condition to alge-
braic conditions for an eigenvalue problem corresponding to the difference approximation.
We thereafter present a lemma that in essence says that when two half-plane problems

1



I | i | I | I B
T !
0

i |
H I
P p+l
Figure 1: Schematic picture of an one-dimensional overlapping grid.

are combined into a strip problem, the resulting system will be stable if the two half-plane
problems were stable. We want to emphasize that the theory is based on a stability cri-
terion which does not exclude exponential growth as long as it is bounded independently
of the data and the grid spacing k. This point will be discussed more below.

In section 3 we study (1) for the Cauchy problem discretized in space by second order
accurate centered differences on two overlapping grids as is shown in figure 1. Grid 1, for
z > mo , has grid spacing h, and grid 2, for z < hy(q¢ — o} + :c{(, ) has grid spacing h,.
Introduce the grid functions ug ) and ugz) for the left and right grid respectively:

uf,-l)(t) ~ u(t, ]h1+$(l)) 3=0,1,...,
u,(fz)(t) ~ u(t: (.7 - Of)h2 + m((Jl))'; .7 =4q,q9— 1:" ' 0<a< L

To apply the theory from section 2, it is convenient to view the discretization of the Cauchy
problem on an overlapping grid as a half-plane problem for a system of two equations for
(u), w)T coupled by the interpolation relations as boundary conditions. We will in
the following call this system the interpolation problem. We will show that for some
overlaps, the corresponding eigenvalue problem has generalized eigenvalues. The Kreiss
condition is therefore not fulfilled and we cannot determine stability from the algebraic
conditions. However, these unwanted eigensolutions disappear by changing the overlap
by an arbitrarily small amount, e.g. by shifting one grid slightly.

By adding a viscous term vu,, to the right hand side of the wave equation (1), and
discretizing space by second order accurate centered differences, we will in section 4 prove
that the viscous interpolation problem is stable for all » > 0 regardless of the interpolation
parameters at the overlap.

In section 5 we investigate the stability of the strip problem, which can be thought of
as an initial boundary value problem for (u(1), u(2))T where at one boundary we have the
interpolation conditions and at the other boundary we have an inflow boundary condition
for one component and an outflow condition for the other. By using the theory of section
2, we know that the strip problem is stable if both the left and right half-plane problems
are stable. It is not difficult to show that the half-plane problem with the in/outflow
boundary conditions is stable. We therefore know that the stability of the strip problem
is determined by the stability of the interpolation problem.

Using the same spatial discretization as in the analysis and the classical fourth order
Runge-Kutta method to integrate the solution in time, we will calculate numerical so-
lutions of (1) for the strip problem. By computing the solution for large times with an
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overlap that does not give generalized eigenvalues for the inviscid interpolation problem,
we are able to see the exponential growth, which corresponds accurately to the growth
predicted in the eigenvalue analysis of the strip problem. This type of growth, which is
very weak, is not an instability according to our definition. It is a result of the spurious
modes which always are present because of the discretization. The exampies show that
the growth rate will decrease with grid refinement and increase when the overlap is moved
closer to the boundary. This is explained by the spatial decay of the spurious modes. In
contrast, when we solve the strip problem with overlaps that give generalized eigenvalues
for the inviscid interpolation problem, we see a stronger spurious growth where the growth
rate increases with mesh refinement. This latter type of growth represents an instability
according to our definition.

According to the previously described analysis, the strip problem becomes stable for
all overlap parameters if a second order dissipative term vD, D_u;, v > 0, is added to
the discretized equation, Here, D, and D_ denote the standard forward and backward
divided difference operators. However, the solution can grow exponentially in time but
the growth rate is bounded independently of the grid spacing h. If we are interested
in solving the inviscid wave equation, we want v to decay with A for accuracy reasons.
When the inviscid interpolation problem is stable, the amount of viscosity necessary to
obtain a solution of the strip problem without spurious growth is found to be v ~ O(h?).
However, in the cases where the corresponding interpolation problem has a generalized
cigenvalue on the imaginary axis, the amount of viscosity is found to be v ~ O(h). Thus,
in the absence of the generalized eigenvalues, the method is still second order accurate
with respect to the inviscid equation, but when generalized eigenvalues are present, the
method is only first order accurate. To cure the accuracy problem, we replace the second
order dissipation term by the fourth order term —vD? D?u;. It is found that this term
damps the growing mode much more efficiently. Now, v ~ O(h?) is sufficient to cancel
the spurious growth, even in the presence of generalized eigenvalues in the corresponding
interpolation problem.

2 Sufficient Conditions for Stability

In this section we will state some well-known results from the normal mode theory pre-
sented in [5]. We will exemplify the ideas on the semi-discrete approximation of the
half-plane problem for a hyperbolic system. We define a grid by z; = hi, 7=0,1,2,...,
and denote a grid function with m vector components by #;(t) ~ 9(z;,t). Let us denote

the k’th component of #; by v§k) and define the scalar product and norm by

(50 = (3 B 0r B2 = @) [55] = (55:3),

where

(6, ),, = b 3000, (0;,3;) =Y (v) .

j=r k=1



We denote the difference approximation by

o)
w_a’?t = QUJ(t)+FJ(t), 7= ]_,2,”., taO,

50 =0, =120, @)
Loio(t) = g(t), t>0,

where sup, ||F(t)]], < oo and sup, |§(t)] < oo. Here, Ly is the boundary condition operator
and the spatial difference operator @@ has the form

1 P
Q:-}; E BVEV‘)

where E is the shift operator and B_, and B, are non-singular matrices. The assumption

that the initial data is homogeneous is not a restriction but is motivated by the use of the

Laplace transform method to analyse the stability. A problem with inhomogeneous initial

data 9;(0) = f; can be transformed to a problem with homogeneous initial data by the

change of variables 9;() = 5;(t) — ¢(t)f;, where q(t) is a smooth function with ¢{0) = 1.
We define the Laplace-transform by

9,(s) = fo e~sto;(t)dt, s=1il+n, 7>0
When F' = 0, the Laplace-transformed half-plane problem is

§,=h0d, j=1,2..., &=hs,
@ 3)

We make the following definition.

Definition 1 (The Kreiss condition) Assume that there is a constant K independent
of 8 and § such that the solution of (8) satisfies

P
S [ <Kl Re(@) > 0.
y=-r41
Then we say that the Kreiss condition is satisfied.

The stability properties of (2) are closely related to the eigenvalue problem:

3; = hQd; j=12,...,

! - (4)
Lot = 0.

We call § an eigenvalue if there is a non-trivial solution ¢; with Re(8) > 0 and ||4]}), < oo.

In addition, if there is a solution with [|¢||, = co on the imaginary axis Re(3) = 0, we call

5 a generalized eigenvalue. The Kreiss condition can be translated to algebraic conditions

on the eigenvalue problem (4). One can prove:
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Lemma 1 The Kreiss condition is satisfied if and only if there are no eigenvalues or
generalized eigenvalues for Re(3) > 0.

Several stability definitions for difference approximations are possible and we refer
to [5] fOI a discussion_ I—TP\‘P we Wﬂl call thP diﬁ’m‘enc_e approximation (2) Sﬁa,ble ]f it

satisfies the following criterion.

Definition 2 (Strong stability) We say that the approzimation (2) is strongly stable
if
t ~
Io@I < Ke* [ (IFIE +1a(r)I) dr.

Here, K and § are constants which do not depend on F, g, orh.

The stability investigation that we will perform in the present paper relies on the
following theorem which is proven in [3)].

Theorem 1 Assume that r > p, that the Kreiss condition is satisfied and that the differ-
ence operator () is semi-bounded for the Cauchy-problem, i.e. the coefficient matrices B,
are Hermitian and

Re(, QW) o000 <0, forall [|B]|_s00 < 00
Then the approzimation (2) is strongly stable.

We remark that the Kreiss condition is not a necessary condition for stability and the
border-line case when there is an eigenvalue or generalized eigenvalue on the imaginary
axis, Re(s) = 0, is very subtle. The difference approximation can be stable or unstable
depending on the multiplicity of the eigenvalue and the boundedness of the corresponding
eigenfunction, cf. [5] for details.

To determine the stability of the difference approximation for a bounded region,
e.g. the strip problem z € , = {z | 0 < ¢ < 2x}, it is sufficient to establish stabil-
ity for the right half-plane problem (z > 0) and the corresponding left half-plane problem
(z < 2r), and use the following lemma which also is proven in [5].

Lemma 2 The approzimation of the strip problem is strongly stable if the operator ¢
is semi-bounded for the Cauchy-problem and the right and left half-plane problems are
strongly stable.

Even if the solutions of both half-plane problems do not grow in time it is possible that
their combination into a strip problem has a solution which grows exponentially, An ex-
ample of this situation is the combination of an energy feeding (inflow) boundary and a
reflecting boundary. The boundary conditions can cause the solution of the strip problem
to grow exponentially since the energy fed into the system by the inflow boundary con-
dition gets reflected at the other boundary. The exponential growth can also be caused
by the discretization beacause there is always a spurious mode present in the numerical
solution. For these reasons, we can only expect to get strong stability with é > 0 for the
strip problem. The second type of of growth is very weak and is usually only detected
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if the equation is integrated for a long time. If the growth causes problems, it can be
compensated for by introducing a dissipative term in the equation, e.g. vd2v[0z? We
remark that the difference approximation can be modified in other ways to make the strip
problem stable with § = 0, cf. Paik [8].

In the follwing sections, we will apply the stability theory to a difference approximation
of (1) on an overlapping grid. Instead of checking the Kreiss condition, we will use
Lemma 1 and investigate the algebraic properties of the eigenvalue problem corresponding
to (4).

3 The Inviscid Interpolation Problem

In this section, we will analyze the stability properties of (1) for the Cauchy problem
discretized on two overlapping grids as is shown in figure 1. We approximate d/0z with
second order accurate centered differences. The semi-discrete version of the Cauchy prob-
lem (1) then becomes

aug-l) ugi_)l —ulY

71 :
= =12,..., t=20
at 2h1 ? J k) b - ¥
”gl)(ﬁ) :f}l)‘} 1=12,...,
gl W — WP (5)
i i+l i :
= =g—1,g—-2,..., t>0
ot 2%, y J =4 4 ! > Z Y,
u{(0) = £{%, j=q¢-Lg-2,...,
”f(k)”hk < 00, k=1,2,
augmented by the interpolation relations
uf,l) = {1 -~ a)u(gz) + augz), 0<a<l,

2 1 (1) (6)
ul® = (1~ B)ull + Buyyy, 0<f<1.

The inhomogeneous initial data can be transformed into a forcing as was described in the
previous section. We will in the following assume that this has already been done. To
write the system in the form (2), we can take h = hy, introduce a new variable

) ’U)_S;l) ugl)

’w_.‘: = - y
(2) (2)
W; Yg-j

and write the system (5), (6) as
dw;(t 1 0 Diyy — W, _
u:;( ) - Uiy — Wi —[—Fj(t), 3=12, , 120,
t 0 —hy/h, 2h

'U_JJ(O):O, j31,2,...,
Loffﬁa(t) —_ 0, t 2 0.



The boundary condition operator is

_ _ 0 0 _ 0 0 _ 1-8 01} _ g 0y
Loy = Wy — Wyq — Wy — W, ~ Wyp1-
0 o, 0 1-a ‘ 0 0, ‘0 0

As was shown in the previous section, the stability of (7) is determined by the prop-
erties of the eigenvalue problem corresponding to {4}:

i} 10
hs; = "’53“2"5’1 i=1,2...,
0 —hyfhy

(8)
Lo‘.go = 0.

The main result of this section is

Lemma 3 Let p > 1 and g > 2. There are no eigenvalues of (8) in Re(s) > 0 and there
are generalized eigenvalues on Re(s) = 0 if and only if

B=0 and p=2,46,...,

or
a=B=0 and p#q and p=3.

Instead of analyzing (8) we find it more convenient to change back to the notation of

(5), i.e.
(1 ~(1)
2 ~(2
g7 72

This leads to the equivalent eigenvalue problem

ZShl A(l) = ?};-1{-) ?;’51_)1, j = 1327' ey
23h A(2) = yﬁ) g_'sz}la .7 =q— 13‘1' 21---3 (9)

gé” = (1 - ) + o,
i@ = (1- B30 + 5.

The general solution of the difference equation (9) can be written

1 .
y()'“0'1f‘71+0'2“32: 1=0,1,...,
~(2) i=g i=q . (10)
g, =nATT RN, J=q9-1.
where &, \;, are the roots to the characteristic equations obtained by inserting (10) into
the difference approximation (9), i.e

2§2A _ Az "l"’ ]., ‘§2 —_ h23.

(1)



Figure 2: The functions x(s) and A;(s) for the invicid case.

Thus,
£1(8;) = 8, — ma Ko(8y) = & + /148, (12)
ME) =6 1+8, ME) =5+1+3,

where

_g < arg /145 < 3;_ for Re(3,) >0, k=12

We note that A, = —1/),. Straightforward calculations, which are presented graphically
in figure 2, give Lemma 4.

Lemma 4 Consider the functions

£i(8) = 5 - Y148,
A(5) = 5+ /14 &,
where x T
-5 SargVl +38 < 5 Jor Re(3) 2 0.

The function &,(3) maps the right half-plane Re(3) > 0 one-to-one onto the left half-disc
D, := {K, 15| € 1, Re(r,) < 0}. The function Ay(3) maps the right half-plane Re(3) >0
one-to-one onto the exterior of the right half-disc D, = {);,|Ag] = 1, Re(};) > 0}.
Furthermore, the function A\3'(3) = —&(3) maps the right half-plane Re(3) > 0 one-to-
one onto the right half-disc D, := {};, ]3] < 1, Re(A7') > 0}.

The solution (10) is bounded in space only if

gy =1 =0,



The interpolation conditions at the boundary give a linear system for oy and 73

-1 i—
(o e +a)w)(%)=g. a3
—(1“'3";"351)51; 1 y ‘7'2’

\

There are no non-trivial solutions as long as the determinant
A=1-((1— @)t +a) A7 (1= B+ Bry) (14)
is non-zero. We denote the factors in equation (14) as

ay = (1 - a)A;! +a,

e y1—g
a2 = A2 9
ag = 1—F+ fry,
ay 1= K.

The determinant is zero if the product a,a,asa, equals one. A necessary condition for
A =0 is therefore

|a]]asllas]|aq} = 1. (15)

Note that Ja;] = |Ag|1=¢ < 1if ¢ > 1 and |ay| = |r,|p <1 if p 2 0. Furthermore,
]2 = (1 = a)?|A;12 + o2 + 2a(1 — a)Re(A7), ,(16)
lagl? = (1 — )% + B*r | + 28(1 — B)Re(r1)- (17)

Since Re(A51) — |A37]| < 0, we have
2
lag|? = ((1 = )5 + @) +2a(1 — ) (Re(Az") ~ 1351])
< (-a)P;i+e) <max(P?f1) <1, 0Sa<l

The same argument applies to jas| and we have |a| < max(|r,},1) < 1 for 0 < g <L
Because all factors |a;] in (15) are less than or equal to one, their product can only be
one if all the factors are equal to one. But, if ¢ > 2 and p > 1, |ay| = |a,| = 1 implies

el =1, A} =1. (18)

From lemma 4 we have that |r;(h15)] = |Ay(hes)] = 1 for s € I, where the interval [ is

defined by
11 1 1
= =1 —mi —_— b < < i — .
I {s i€, mln(hl, hz) < { < min (h1, hz)} (19)

Therefore, the determinant (14) is non-zero in the right half-plane Re(s) = 0, outside the
interval I. We next study the determinant in the part of the imaginary axis Re(s) =0
where s € I, Inserting (18) into (16) and (17) give

la,|? = (a*® — «) (2 - 2Re(/\;1)) +1,
|as)? = (8% — 8) (2 — 2Re(x,)) + 1.

9



From lemma 4, we have 0 < Re(A;') <1, and Re(A;1) =1 at s = 0. Hence, for s € I,
the function |a,| satisfies

=1, s=0, 0<axl,
le|§ =1, sel, o =0, (20)
<1, sel, s#0, 0<a<l.

The behavior of the term |ag| is simpler because 2 — 2Re(;) > 2 for Re(s) > 0. Therefore
|las] <1 for 0 < 8 <1 and |ag| = 1 at 8 = 0. Note that we have so far only investigated

P := |ay||as)|as||a4|, and that P = 1 is a necessary, but not a sufficient condition for
A = 0. We conclude that P < 1, which implies that the determinant (14} is non-zero, for
selif B#0.

We proceed by investigating the case when § = 0 for s € I. Because lei(hyif)| = 1
and |A,(h,7€)] = 1 we have

k1 (hyi€) = ihyé — \J1 — (hy€)? =1 ',

Aa(hgif) = ihgl + /1 — (Rof)? =: €2
In the case 8 = 0, the determinant (14) simplifies to

A== ({1 = a)e 4+ a) cilinsgins,

If & # 0, we know from (20) that only the case s = 0 must be considered. We then have
0, = x and 6, = 0. Therefore,

A=l—emm=1—(-1P=0, p=24,6,.... (21)

Because 6, = 0, (21) is satisfied for all 0 < ¢ < 1.
If & = 0 and 8 = 0, we must investigate if there are any additional cigenvalues in the
interval (19) except s = 0. In this case, the overlap relations yield

qhy = phy, ¢>2, p>1. (22)

In the trivial case when h; = h,, the original problem (5), (6) reduces to a one-grid
problem for which an energy estimate easily can be derived. We can therefore focus on
the case hy # h,. The determinant (14) now satisfies

A =1— eilohi-sta), (23)

It is easy to see that solutions of A = 0 come in complex conjugated pairs: s = +:£ It
therefore suffices to consider 0 < £ < min(1/hy,1/hy) where the angles §; and 0, satisfy
72 < 0, <7 and 0 < 0, < w/2. We therefore have

6,(¢) = ™ — arctan (__,__Ei__) ,

1 - (h:€)?
hy€
0,(¢) = arctan | ———=—1 .
© ( 1 —'(th)z)

10



The determinant (23) is zero if pfy — ¢f, = 2k for some k = 0,%1,42,.... This is
equivalent to

1 a,rcta.n( \ + ctan( ,._{L:"—g——— = w(p — 2k). 24
p \\/ h1£)2 qa \\/1 Z (hgt)? ) (p ) (24)

We set X
p ~ ~
r= 2= E} 61 = hlE} 62 = hzf'

Equation (24) can be written as

arctan ( & = ) + —l—arctan (——T—gl—;“——) =7 (p - Qk) ) (25)
- 1= (b P

or equivalently

(g s 2 e (52)
arctan = — arctan | —m———=| = 7r .

vi-g) Vi-(1Ey P
We will use (25) when r < 1 and (26) when r > 1. The intervals we must consider are

therefore 0 < ¢ <1 and 0 < £, < 1, respectively. Elementary properties of the function
arctan(z) yield

0 < arctan E + ! t rf < T + ! t ( . )
arc - arctan | === — + —arctan | —p=—— ],
J1— & r 1 — (ré)? 2 r V1—r?

for 0 <E§ 1,0 < r < 1. We also have that

1 T
1 < — arctan <
r (\/1-?‘2)

When r < 1 there is therefore a solution of (25) for every integer k such that

p—2k T 1 T
0<n < — 4 —arctan < 7.
P 2 r 1-—r?

These solutions exist for p > 3. For example, the case p = 3 and ¢ = 4 is solved by
£, = 0.1661 with k = 1. Similarly, when r > 1, (26) has a solution for every integer k

such that
0 p—2k .1 1 r—t
<wr ’ <-2—+r—_~1~a,rctan —1\/_:_;—";—;; <7
Also these solutions exist for p > 3. One example is p = 3 and ¢ = 2, where £, ~ 0.7262
and k =1 is a solution of (26).

We summarize the analysis of the determinant (14) in the half-plane Re(s) > 0 in
Lemma 5.

0<r<l.

e 3
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Lemma 5 The determinant (14) is non-zero in the half-plane Re(s) > 0, for s g I. If
B + 0, the determinant is also non-zero for s € I. If B = 0 the determinant is zero at
s=0ifp=2,4,6,.... [falsoa=0, the case p/g=1is ignored because it corresponds to
discretizing the original problem on one grid where the stability can be shown by an energy
estimate. However, if p/q # 1, there are additional zeros fo the determinant ifp > 3; we
will denote these roots s = +it,. When p/q < 1 they are the solutions of (25) and when
p/q > 1 they follow as the solutions of (26). Thus,

(#0, Re(s)20, s¢ 1,

#0, sel N B#0,

=0, s=0 N B=0 N p=2,4,6,...,

| =0, s=#if N a=p=0 N p#Fg N p23

A(8) 4

Applying Lemma 5 to the system (13) reveals when there are eigenvalues or generalized
eigenvalues of (9) (and equivalently (8)). Because the zero’s of A(s) have Re(s) = 0 and
correspond to |k| = 1, they are generalized eigenvalues. This proves Lemma 3.

The eigenfunction corresponding to s = 0, § = 0 and p even is

g0 =0y (-1)7, §P =1, (27)

We note in passing that the characteristic of (1) is x(t) = zo — ¢, i.e. the solution of (1)
is a translation of the initial data to the left with velocity one. Hence, the eigenfunction
(27) is constant to the left (downstream) of the overlap region, and oscillates rapidly to
the right (upstream) of the overlap region.

Because the L,-norm of (27} is unbounded, we calis =0 a generalized eigenvalue. To
determine the stability properties of s = 0 when = 0 we expand A around s = 0. The
factors in (14) satisfy

k1(hys) = =1+ hys + O((7y3)?),
A(hys) = 1+ hys 4 O((hes)?),

and by the standard formula for binomial series,

K3 (hys) = (1) + p(=1)P" hys + O((la5)?),
A3 (hos) = 1 — ghas + O((hs3)?).

For even p we therefore have
A(s) =1~ (1= a+ ar) k] = (phy + (g — @)hy)s + O(s?).
Because § = 0, the overlapping relation is
(q — a)hy = phy,

12



and we see that the factor in front of the s-term equals twice the size of the overlap region,
which by definition always is positive. Hence, the generalized eigenvalue s = 0 corresponds
to a simple zero of the determinant A. By the theory in [5}, section 12.5, we have that
this type of eigenvalue makes the corresponding strip problem severely unstable, i.e. the
instability grows with mesh refinement. In absolute ierms, however, our computational
examples show that the instability is still moderate, see section 5.

By the same arguments, the eigenvalues in the interval I on the imaginary axis in the
case @ = 8 = 0 and p > 3 are also simple roots of the determinant and since |1} = A = 1
these are also generalized eigenvalues of the bad type.

4 The Viscous Interpolation Problem

In this section we perform the same analysis as in the previous section but for the viscous
wave equation:

Uy = Uy + Vg, 120, —o0 <z <00,
w(0,2) = f(z), [ |f@)Pde <oo.

By discretizing the viscous term with second order centered differences and forming the
eigenvalue problem corresponding to (9), we get

- (28)

2shy 3 = 30 = 38 + 26 (55 - 200 + 52, =12,

25hy§® = 90 — i + 26, (3% 2P + 42, i=a-la-2,...,

3 = (1 - )" + ag?,

0 = (1 - B + B,

(29)

where ¢, = v/h; > 0, k = 1,2. We will prove

Lemma 6 Let p > 1 and q > 2. For positive viscosities, v > 0, there are no eigenvalues
or generalized eigenvalues of the system (29) in Re(s) > 0.

As in the inviscid case, the general solution to the system (29) is

ﬁ;l) = 0‘1"“{ + C"2"{’%‘7 i=01,..., (30)
?:}EZ) = TlA{—q+T2Ag—qu j:Qaq—ls“'a

where £, A, are the roots of the characteristic equations obtained by inserting (30) into
the difference approximation (29), i.e.

25,k = k2 — 1 + 2¢,(k? — 26 + 1), 8 = hys,
28,0 = M — 142602 —22+1), & =hys.

(31)

13



- 1 . - "
K12(81) = o0, (sl + 2¢; Fyf/l1 4 sf + 4613) .
Aa(8s) = ! 59+ 2 14 32 4 4¢,8
12(82) = 1 26, S+ 26 F L+, +46s).

As in the inviscid case, the solution is bounded if o, = 7, = 0, because |k,| > 1 and
|A1] < 1 for Re(s) > 0. Similar to the inviscid case, |A;] > 1 for Re(s) > 0. The important
difference obtained by adding viscosity is that || < 1 for Re(s) > 0. Using the notation
of Lemma 4, the properties of A; and «, are stated in Lemma 7 and illustrated in figure 3.

(32)

Lemma 7 Consider the functions

1
k1(8) = T3 (§+2€1 — /1 + 3% +461§) ,
1 S ——
Ag(g) = 1 +262 (§+262 + 1 +§2 + 4€2§> N

where ¢, > 0, k =1,2, and

vy ~ "
-3 <argyl1+ 82 +4¢35<

The function ,(3), maps the complex half-plane Re(3) > 0 to a sub-domain of the interior
of the left half of the unit disc, ks, CC Dy for Re(3) 2 0. In particular, lk1(3)] < 1. The
function \y(3) maps Re(3) > 0 to a sub-domain of the exterior of the right half of the unit
disc, \, C D,. However, A,(0) =1, so |Ay| > 1 for Re(3) > 0.

for Re(s) > 0.

S

The definition (14) of the determinant A is the same as in the inviscid case and
therefore, because |x,| < 1,

A#0, Re(s)=20, v>0.

Thus, there are no non—trivial solutions of (29) in Re(s) > 0. This proves Lemma 6.

5 The Strip Problem

In this section we will investigate the inviscid wave equation (1) and its viscous counterpart
(28) for the strip problem z € £2,. After an eigenvalue analysis similar to that in previous
sections we numerically compute the solutions of the inviscid and viscous wave equations.

As we have noted before, the solution of (1) is u(t,z) = f(z —t), i.e. a wave moving
with speed 1 to the left. We therefore prescribe a Dirichlet boundary condition at x = 2:
ull) = h(t), where the characteristic is in-going. At z = 0, where the characteristic
is outgoing, we must give a numerical condition for the discretized system. Here, the
solution is extrapolated linearly to the boundary point u(_2,), The indexing of the grid
points is shown in figure 4.

14



1.5f

0.5

Figure 3: Mappings of the imaginary axis by the functions &, (i) (dash—dotted) and A,(3€)
(dashed), —1.6 < £ < 1.6 for different values of €; ; in the interval 0.02 < ¢; 3 < 0.2. The inviscid
case €; , = 0 is described in figure 2.

Figure 4: Schematic picture of overlapping grids for the strip problem.

15



The semi-discrete strip problem is

{1)

0P o~

8?—\: “2h1“’ i=12,...,m—1,
T N C R ) _

i il . 1, J;q_ls '1_n+15
ot 2h,

ull) = h(t),

ugl) =(1- a)uf,z) -+ a'u,gz),

u® = (1 - B)uld + Buh,
{2)

uﬁ{ = 2'“(-21)1+1 = U_ni2

W) = 19, k=1,2,

(33)

As was discussed in the introduction, the striF problem can be seen as an initial boundary
value problem for the vector variable (ugl), uj2))T. At one boundary we have the interpo-
lation relations and at the other boundary we have in/outflow boundary conditions. By
using the theory of section 2, we know that the strip problem is stable if both the left and
right half-plane problems are stable. It is not difficult fo show that the half-plane problem
with the in/outflow boundary conditions is stable and that the remaining conditions of
Theorem 1 are satisfied. We therefore know that the stability of the strip problem is
determined by the stability of the interpolation problem. Our stability definition allows
for exponential growth, and we will in the present section investigate how the growth rate
depends on the overlap parameters.

The eigenvalue problem corresponding to (33) is

2hysgf) = g - 93, i=1,2...,m=1,
2h233}§2) = ?;';('-21-)1“!791: .7 :q—la"'s—n+1a
O =0
j (34)
30 = (1 - it + i,
9@ = (1- B + Bisia,
i =298, - 19,0
Using the Ansatz
(1) _ i J —0.1
yg oKy +0'2K’21 ry=vL...,m, (35)
ﬁ}z)leA{+72)\£a j=q,q—'1a'--:_ns

we get the same characteristic equations for x; and A; as n the interpolation problem
(12). The boundary and interpolation conditions give the following system of equations

16



for 7, and o, k= 1,2:

A o
1 1 a—ak—1 a—ak;—1 Ty 0
(B=Bri—1)sY (B—PBry—1)K3 M A3 m
0 0 (1=2X0 + AN (1=2Xp+A2)AF™ "
(36)
An eigenvalue s of (34) is thus a root of the equation
det(a,-j) = 0, (37)

where (a;;), 4,7 = 1,...,4 is the coefficient matrix in (36). (This equation corresponds
to equation (14) for the interpolation problem.) For some values of the grid parameters
a, B, by, p, q etc., there are roots s to (37) with Re(s) > 0 and thus the semi-discrete
problem has exponentially fast growing modes for these grids. We will calculate such
roots numerically for a few test grids given below, where we will denote by s, the root
with the largest real part. The expected growth

uOla, ~ €%, &= Re(s)) (38)

compares accurately with the growth in the numerical solution of (33).
We will take the initial and boundary data to be

f(z) = sin(z), (39)

h(t) = sin(at), a= Si“}Efi). (40)

The factor sin(h,)/k, is included to correct the boundary data for the numerical phase
error on grid 1 so the value at the inflow corresponds better to the wave propagation
speed on grid 1. The numerical solution is calculated with a fourth order (classical)
Runge-Kutta method in time. The time step is chosen at least ten times smaller than
required by the stability limits of the Runge-Kutta method as to avoid the dissipation
which otherwise could damp out an expected growth. (That a growing mode in some
cases can be neutralized by discretizing time with a fourth order Runge-Kutta method
reveals how weak the growing mode is for this system.) For all grids, we take z{!) = 27

and :n!_z,)t = 0. The overlap parameters are uniquely determined if, say, hy/hq, o, and ¢ are
given. The numbers m and n determine the location of the overlap, denoted in the tables
below by a:f)l), which is the coordinate of the first grid point in mesh 1.

We first focus on the “bad” overlaps, i.e. the overlaps for which there are generalized
cigenvalues for the inviscid interpolation problem. Such eigenvalues can in general not be
. accepted for the strip problem, as is shown by Gustafsson et al. [5], because a disturbance
is not damped away from the interpolation boundary and it can be amplified and reflected
at the in/outflow boundary.

17



Overlap parameters

hfhy | o 1(B)|(P) |4
21 |0.1429] 0. | 6

Grid parameters eigenvalue growth
m | n | (@& 5 )

16 | 8 | 3.23 | 4.489e-02 + i2.346e400 | 4.142¢-02
32 1 16 | 3.23 || 7.249e-02 + i4.379e+00 | 7.190e-02
64 | 32 | 3.23 | 1.018e-01 + 19.253e+00 | 1.016e-01
128 | 64 | 3.23 |l 1.851e-01 + 11.889%e+401 | 1.844e-01
256 | 128 | 3.23 || 2.094e-01 + i3.699e-4-01 | 2.095e-01
512 | 256 | 3.23 || 2.575e-01 + i7.456e+01 | 2.567e-01

Table 1: Grid parameters for a “bad” overlap. The growthrate 6 increases with mesh refinement.

In table 1 are listed the grid parameters and the growth rate of the solution when
the system (33) is solved on overlapping grids with a “bad” overlap of the first type, i.e.
B =0 and p > 2 is even. We note that the growth rate § increases with mesh refinement.
Figure 5 shows 6 as a function of m, on a logarithmic scale, where m is the number of
grid points in mesh 1. If a straight line is fitted to these data we find that the growth is
of the order

et ~m, v~ 0.065. (41)

The situation is similar for the second kind of “bad” overlap when a = 8 =10, p > 3
is odd. Table 2 gives the grid parameters and the growth rate. Figure 6 shows how the
growth rate increases with mesh refinement and here

eft ~mt, vy = 0.033. (42)

For comparison we have in Table 3 included a case with a “good” overlap, ie. a
overlap which has no eigenvalues in Re(s) > 0 for the interpolation problem. Iirst we
note that the growth rate is smaller than for “bad” overlaps studied earlier and also
that the growth rate decreases with mesh refinement. However, for most overlaps in this
category the solution will show no growth at all.

One remedy to the problem of having growing modes is to add some dissipation, which
will remove the generalized eigenvalues for the interpolation problem, as was shown in
section 4. The question is how much viscosity is needed to cancel the growth and if this

18
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Figure 5: The growth rate § as a function of the number of grid points m for the grid of Table 1.
The dashed line shows a least square fit of the function A + ylog(m), which gave y = 0.065.

Overlap parameters

hafhy | @ | (B) | (P) | ¢
0.5 [0.] 0.5 |10

Grid parameters eigenvalue growth
m | n (mgl)) 8 é

32 1 8 | 0.70 5.8338-02 + 14.945e+00 | 5.831e-02
64 | 16 | 0.70 i 1.029e-01 4 19.732e4-00 | 1.029e-01
128 | 32 | 0.70 || 1.094¢-01 + 11.930e+01 | 1.104e-01
256 | 64 | 0.70 | 1.345e-01 + 13.898e+401 | 1.348e-01
512 | 128 | 0.70 || 1.556e-01 + 17.823e+01 | 1.556e-01

Table 2: Grid parameters for a “bad” overlap. The growth rate § increases with mesh refinement.
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Figure 6: The growth rate § as a function of the grid refinement m for the grid of Table 2. The
dashed Tine shows a least square fit of the function A + +ylog(m), which gave v = 0.033.

Overlap parameters

hifhy | @ | (B) | ()
1.7 [03]059] 4 |3

Grid parameters eigenvalue growth
m| n (mgl)) 8 )

16 | 32 | 4.87 1.040e-02 + 16.473e+00 | 1.026e-02
32 | 64 | 4.87 | 8.377e-03 + 11.275e+01 | 8.507¢-03
64 | 128 | 4.87 || 5.371e-03 + i2.512e4-01 | 5.635e-03

Table 3: Grid parameters for a “good” overlap. The growth rate § decreases with mesh refine-
ment.
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Overlap parameters

hy/hy o B 1) |q
21 |01429} 0. ] 6 |3
Grid parameters eigenvalue growth
m|n (:1:5,1)) Vy 8 )
32 |16 | 3.23 | 0.000e+00 || 7.249¢-02 + i4.379e+4-00 | 7.190e-02
3216 3.23 | 1.000e-04 || 6.213e-02 + i4.380e+00 | 6.168e-02
32 116 | 3.23 | 2.000e-04 | 5.200e-02 + 14.382e-+00 | 5.149¢-02
32 |16 | 3.23 | 4.000e-04 | 3.243e-02 + 14.383¢4-00 | 3.295e-02
32 |16 | 3.23 | 6.000e-04 | 1.371e-02 + 14.383e+00 | 1.321e-02
32 116 | 3.23 | 7.390e-04 | 1.173e-03 + i4.383e+00 | 0.000e+00
64 | 32| 3.23 | 0.000e4-00 || 1.018e-01 + 19.253e400 | 1.016e-01
64 {321 3.23 | 1.000e-04 | 7.047e-02 + 19.282e+00 | 7.012e-02
64 | 321 3.23 | 2.000e-04 || 3.897e-02 + i9.297e+400 | 3.946e-02
64 | 32| 3.23 | 3.000e-04 | 8.640e-03 + 19.305e+00 | 9.432e-03
64 | 32 | 3.23 | 3.280e-04 || 4.000e-04 + 19.307e+-00 | 0.000e+00

Table 4: Grid parameters for a “bad” overlap. The solution of the wave equation is computed
with second order artificial viscosity », D, D_u;. The growth rate § decreases with increasing
viscosity.

will affect the accuracy of the solution. In Table 4 are listed the results from solving
the system (33) with the dissipation terms V2D+D,_u§vk), kE = 1,2, added to the first
and second equations, respectively. First we consider the grids from Table 1. Figure 7
shows the decrease of the growth rate as function of increasing viscosity v,. Although the
viscosity needed to completely remove the growth is small, we note that it only decreases
by a factor 2 when the number of grid points is doubled. Thus the amount of viscosity
required for a “bad” overlap is of the order

Yy ~ O(h‘)a

and the method is only first order accurate with respect to the inviscid wave equation (1).

We next investigate how the same dissipation terms change the growth rate of the
solution when the grid from Table 3 is used, where the overlap is of the “good” type. The
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Figure 7: The growth rate § as a function of the coeflicient of the second order viscosity, 1/, for
a “bad” overlap with two grid refinements. The dashed line is computed with m = 32 and the
solid line with m = 64. Note that the amount of viscosity only decreases by a factor two when
the number of grid points is doubled.

results are given in Table 5 and Figure 8. Here we need less viscosity since the growth rate
is smaller. Furthermore, the amount of viscosity needed to cancel the growth decreases
by a factor 4 when the number of grid points is doubled. Thus, for a “good” overlap the
amount of viscosity is :

vy ~ O(B2).

Therefore, the method remains second order accurate with respect to the inviscid equation
(1), despite the addition of the artificial dissipation term.

We end this section by reporting how a fourth order artificial dissipation term affects
the solution of the wave equation. In this case, an analysis is more difficult, and we will
only report on the results of our numerical experiments. We solved the system (33) with
the additional terms —-M;DEDiugk), k = 1,2, added to the first and second equations,
respectively. The results are given in Table 6 and Figure 9. By decreasing the grid size,
we found that for the grids that previously gave the worst growth (Table 1 and 4), the

minimum amount of viscosity to cancel the spurious growth is
by~ O(h3)$

or possibly less. We therefore conclude that the method remains second order accurate
for all types of overlaps.
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Overlap parameters

hi/hy | @ | (B) | (p)
7”1.7 031059 4
Grid parameters eigenvalue growth

m | n (:ct(,l)) vy S )
16 | 32 | 4.87 | 0.000e-+00 || 1.040e-02 + 16.473e+00 | 1.026e-02
16 | 32 | 4.87 | 1.000e-05 | 9.172e-03 + 16.473e+00 | 1.013e-02
16 [ 32 | 4.87 | 4.000e-05 || 5.521e-03 + i6.473e+00 | 6.000e-03
16 | 32 | 4.87 | 8.000e-05 || 6.824e-04 + 16.473e+00 none
32 | 64 | 4.87 | 0.000e+00 || 8.377¢-03 + i1.275e+01 | 8.507e-03
32|64 | 4.87 | 1.000e-05 || 3.923e-03 + i1.275e+01 | 4.357e-03
32 | 64 | 4.87 | 1.800e-05 || 3.705¢-04 4 i1.275e+01 none

Table 5: Grid parameters for a “good” overlap. The solution of the wave equation is computed
with second order artificial viscosity 1, D, D_u;. The growth rate § decreases with increasing
viscosity.
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Figure 8: The growth rate & as a function of the viscosity v, for a “good” overlap with two
grid refinements. The dashed line is computed with m = 16 and the solid line with m = 32.
Note that the amount of viscosity decreases by a factor four when the number of grid points is
doubled.
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Overlap parameters

hi/hy @ (8) | (p) | 4
21 01429} 0. | 6 {3

Grid parameters growth
m | n | (@) V4 )
32 | 16 | 3.225 | 0.000e+00 || 7.190e-02
32 {16 ] 3.225 | 1.000e-06 { 5.012e-03
32 | 16 | 3.225 | 2.000e-06 || 2.820e-03
32 |16 { 3.225 | 3.000e-06 | 1.626e-03
32116 | 3.225 | 4.000e-06 || 1.156e-03
32 116 | 3.225 | 5.000e-06 ji 6.016e-04
32 |16 | 3.225 | 6.000e-06 none
64 | 32 | 3.225 | 0.000e+00 || 1.016e-01
64 | 32 | 3.225 | 2.000e-07 | 2.681e-04
64 | 32 | 3.225 | 5.000e-07 | 7.234e-04
64 {32 {3.225 | 6.250e-07 none

Table 6: Grid parameters for a “bad” overlap. The solution of the wave equation is computed
with a fourth order artificial viscosity —v; D3 D2 w;. The growth rate § decreases with increas-
ing viscosity, Note the dramatic decrease in the growth rate when the viscosity v, = 107° is
introduced for the coarser grid and, likewise, when v, = 2 - 107 is applied to the finer mesh,
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Figure 9: The growth rate § as a function of the coefficient of the fourth order viscosity, v, for
a “bad” overlap with two grid refinements. The dashed line is computed with m = 32 and the
solid line with m = 64. Here, v, ~ O(h®) is sufficient to cancel the spurious growth, and thus
the artificial viscosity will not affect the overall accuracy of the method.

6 Discussion

From the analysis and the numerical experiments presented above it is clear that when
a one-dimensional hyperbolic problem is solved with finite differences on an overlapping
grid, some dissipation must be introduced to remove possible spuriously growing modes.
We have demonstrated that for most overlap parameters, the solution will not grow or
only grow slowly in time. In the latter case, the growth rate will decay with mesh refine-
ment and a dissipative time integration method is likely to cancel the growth completely.
However, for certain rare overlap parameters the instability becomes worse with mesh
refinement. In these cases, the discretized interpolation problem has generalized eigenval-
ues.

Although weak, the spurious growth can cause problems in systems with different time
scales, where there is a phenomenon which vary on a fast time scale (e.g. sound waves)
mixed with a slow feature (e.g. Rossby waves). The computations, which usually are
performed to capture a behavior on the slow scale, correspond to a very long time on the
fast scale and thus the spurious growth can eventually destroy the numerical solution,
cf. Browning et al. [2] and Olsson [7]. The weak spurious growth is also likely to be found
in other problems where the solution must be computed for long times.

The spurious growth can be damped by adding an artificial second order difference
term v D, D_u; to the equation. To cancel the growth, it is sufficient with v ~ O(h?) when
generalized eigenvalues are absent, but in their presence it is necessary to take v ~ O(h).
This makes the scheme only first order accurate with respect to the inviscid equation.
To cure the accuracy problem, we can replace the second order dissipation term by the
fourth order term —»D?% D? u;. It is found that this term damps the growing mode much
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more efficiently. Now, v ~ O(h3) is sufficient to cancel the spurious growth, even in the
presence of generalized eigenvalues in the corresponding interpolation problem.

Is hard to foresee the implications of the present theory for hyperbolic problems in sev-
eral space dimensions. We can expect there to be both “bad” and “good” overlaps in the
domain and there can be a combination of damped and undamped disturbances present
in the interior of the domain whose combined effect is difficult to predict. To further
complicate the situation, an interpolation boundary can intersect a physical boundary so
that the closest interpolation point is always only one grid point away from the physical
boundary, regardless of the number of grid points in the interior. The experience from
the two-dimensional calculations in [7] is that the accuracy of the method is degraded to
first order when a second order dissipation of the type vAu is used, because the neces-
sary amount of viscosity to damp the spurious growth is of the order O(h). Preliminary
computations with an improved version of that method indicates that the accuracy is
restored when the second order dissipation is replaced by a forth order dissipation of the
type vA?u. These issues will be studied further in a forthcoming paper.
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