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Abstract

Diffusion Monte Carlo is a common method for estimating the properties of
quantum mechanical systems by computing averages over sets of random walk sim-
ulations. We have found that by using quasirandom sequences of points in place of
random or pseudorandom points in generating the simulation paths, we are able to
obtain improved convergence rates and consequently reduced Monte Carlo errors for
Diffusion Monte Carlo. Computational results are presented for a three dimensional
harmonic oscillator and the Helium atom.

A key element in successfully applying the quasirandom sequence is a recently
developed technique involving renumbering the simulations paths after each time
step, which allows a lower dimensional quasirandom sequence of points to be used.

1 Introduction

Diffusion Monte Carlo (DMC) [5, 9, 27, 31] is a common method for estimating the
properties of quantum mechanical systems by computing averages over sets of random
walk simulations. It is closely related to Green’s Function Monte Carlo (GFMC) [4, 14, 17].

Quasirandom sequences [10, 24, 26] are sequences of points designed to produce more
accurate integration estimates, called quasi-Monte Carlo, than standard Monte Carlo with
random or pseudorandom points. This is accomplished by relaxing the requirement that
successive points be independent, and instead seeking a set of points which spreads out
over the domain as uniformly as possible. In one dimension, the best such sequence is a
uniform grid, but in higher dimensions more complicated sequences are preferable [7, 24].
The particular quasirandom sequence which we have used is called the base-2 Niederreiter
sequence [3].

* At Westinghouse Bettis Atomic Power Laboratory, West Mifflin, PA, as of 11/94. This work was
done while at UCLA. Research supported in part by the Air Force Office of Scientific Research under
grant number ¥49620-94-1-0091.



Although originally used for integration estimates, quasirandom sequences can be
used for simulations as well. There have been several examples of such quasi-Monte Carlo
simulations [11, 16, 25, 28], however they have often been limited to cases in which the

number of time steps or iterations was small.

8. 7.¥ R R S, nt fan TV 3 ] i
We have found that for Diffusion Monte Carlo, which often involves hundreds or

thousands of time steps, we can use quasirandom sequences by making use of a recently
developed technique involving renumbering the simulations after each time step {20, 22].
Without this technique either the dimensions of the quasirandom sequence would need to
be too high to be effective (quasirandom sequences lose their effectiveness as the dimen-
sions increase [2, 18, 21, 23, 26]), or else correlation errors between time steps would lead to
erroneous results. With quasirandom sequences and renumbering, Diffusion Monte Carlo
results can be significantly improved in terms of expected error versus either number of
simulations or total cpu time, as will be demonstrated in the examples below.

Note: The renumbering technique mentioned above is still in its infancy and has not
yet been extensively tested nor has its convergence been proven in all cases. However,
computational results using this technique so far have been strongly encouraging {22}. The
results presented here represent a further confirmation that renumbering can be effective,
and that it has a potentially wide variety of useful applications.

2 Diffusion Monte Carlo

In this section a brief description of Diffusion Monte Carlo will be given. As mentioned
above, Diffusion Monte Carlo is a method for estimating the properties of quantum me-
chanical systems. For simplicity, the property which we shall deal with will be the ground
state energy. Diffusion Monte Carlo involves converting the time-dependent Schrédinger
Equation into a diffusion equation by changing the time variable to Imaginary time, as
shown below. The equation is then multiplied by a ‘trial function,’” which is a rough esti-
mate of the exact solution, in order to reduce the expected errors. (Note: This is a type
of variance reduction technique [9].) Monte Carlo estimates are computed by following
a set of random ‘walkers’ as they drift and diffuse through the system according to the
diffusion equation above and then averaging their trial energy levels.

2.1 Schrodinger Equation

For a quantum mechanical system of M bodies with a time-independent potential func-
tion, the time-dependent Schrédinger Equation is the following:
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k‘E S Vig(y,t) + v(y) ¥(y,t) = ik o P(y, 1) (1)
where m, is the mass of the k’th body, y = (®,...,%) is a 3M -dimensional vector rep-

resenting the position of all of the bodies, V% is the Laplacian operator for the &’th body,
v(y) is the potential function, and 1{y,t) is the wavefunction or probability amplitude
for the system.



Defining the Hamiltonian operator, H = — 2’; . E%Vz +v(y), (1) can be rewritten,

ad
Hyp(y,t) = ihgpb(y,t)

A formal solution to (1) is the following:
Yly,1) = D a7 Bity(y)
3=0

when v is continuous, ¢;(y) , j = 0,... , are a complete orthogonal set of eigenfunc-
tions of H with E, < E; < ---, and «; is the 9;(y) component of Y(y,0) , a; =

Jror ¥(,0) ¥5(y) dy.
To transform to imaginary time, let ¢(y,7) = ¥(y,it), then

Ho(y,7) =~ h5-d(u, ) ©)

This has formal solution,

() = Do o e Biry(y)
1=0

where the eigenfunctions and eigenvalues are unchanged since H is a purely spatial op-
erator. (2) is a diffusion equation which, unlike (1), converges exponentially fast to the
ground state, 1. The only exception is when the wavefunction is specifically restricted
to be orthogonal to 1, as when higher energy states are being sought.

2.2 Trial Function

A trial function, which is a rough estimate of the exact solution, is multiplied into the
diffusion equation, (2), in order to reduce the variance and eliminate discontinuities.
Rewriting (2) as follows:

M
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Vidly,7) - %v(y) ¢(y,7) (3)

k

we see a partial differential equation corresponding to diffusion and growth.

The potential, v(y), acts in the growth term. When it is highly variable or singular
(for example a Coulomb potential) it leads to high variance Monte Carlo estimates. Mul-
tiplying by a well-chosen trial function, 7, can eliminate discontinuities and reduce the
variance of the Monte Carlo estimates.

Let f(y,7) = ¥r(y) ¢(y,7), then multiplying (3) by ¥ and rearranging terms gives
us the following:
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where

H
by) = M , the trial energy function.

¥r(y)
a(y) = L . w k=1 M , the drifi functions.
mk ¢T(y) H It k]

The new equation (4) is similar to (3) but with an extra set of terms with 1st derivatives
of f, which add a drift to the diffusion process. Importantly, b, the trial energy, replaces
v, the potential, in the growth term. When t has been well chosen, the trial energy
will be relatively constant, leading to lower variance Monte Carlo estimates of Ey. Note:
Hypothetically, if one used exactly ¥ = 4, then b would be a constant, equal to E,, and
trivial zero-variance Monte Carlo estimates would result.

In practice the ground state energy, E;, is typically estimated using what is called
the variational estimate. Let 1, (y) be an arbitrary wavefunction with a non-zero ground
state component. Then using orthogonality properties,

B o= f?Ré*M HTP*('H) ¢o(y) dy
O " fpem 0u(¥) Wo(y) dy

This is estimated by computing,

_ Jwor Hibu(y) 6y, 7) dy
Jeor a(y) By, 7) dy

and then letting E(r) — E; as 7 — oo and ¢(y,T) — o(y)
It is natural then to take %, = »y. Then we have,

Jeow HYr(y) ¢y, ) dy  _ foow b(y) fly, 7) dy
Juena r(y) ¢y, 7) dy Jasaa [(y>7) dy

Tn which case we observe that E(7) can be computed as the expected value of b(y) when
y is distributed according to f(y,7) as a probability density.

Diffusion Monte Carlo consists of estimating E(7) by using the diffusion, drift, and
growth rates from Equation 4 to generate a large set of simulation paths, or random
walkers, distributed in space according to f(y,7), and then averaging b over the set of
paths to compute a Monte Carlo estimate of E(r). As long as the simulations have
traveled for a long enough imaginary time, 7, so that E(7) has converged to E,, we have
our desired estimate of K.

One important assumption above is that f(y,7) is strictly positive, so that it can func-
tion as a probability density. In many systems with fermions, however, the wavefunction
must be negative in certain regions, leading f to be negative as well, unless one knows
beforehand exactly where the negative regions will be. As a result, further approxima-
tions such as the fixed node approximation [4] are necessary. For simplicity, we will only
consider examples in which f is strictly positive so this problem does not arise. For more
details on this active area of research see [1, 4, 32].

E(7) (5)

E(r) (6)



3 Stochastic Simulation

In this section, a few of the details of simulating the random walks for Diffusion Monte
Carlo will be discussed. The stochastic process which corresponds to (4) in the previous
section is governed by the following system of stochastic differential equations:

dZ (1) = a(Z(r))dr+odW , k=1,...,. M
dY(r) = =b(Z(r))dr

where Z = (Zy,...,2Zx), Z(0) ~ f(y,0) (initial distribution), Y(0) = 0 , o} = (/h/my.
For a random walker, Z(r) indicates the position in 3M-dimensional space and Y(7)
indicates the natural log of the growth weight associated with that walker as it travels
along its path. (Note: Sometimes walkers are allowed to split into multiple walks or
terminate so that weights are unnecessary.)
Using Ito’s Formula, one can prove the following important result:

_E [B(Z(7))eY ()]

E(r)= E[e¥ ] , over stochastic paths (Z,Y). (7)

where the quantities on the right hand side are expectations over the set of all possible
stochastic paths followed by a random walker.
In order to generate simulation paths for (Z(r),Y(7)) it is necessary to discretize the
imaginary time. This is commonly done using the Euler-Maruyama scheme:
ZECJ'H) — Z}(cj} + \/f_bdeff) + hak(ZU)) L k=1,...,. M
YU+H) = YO — pb(ZY)

where Z© ~ 12(y) to approximate r(y)o(y), Y = 0, A is the time step size and
4 the time step counter so that v = hj, and Wf) is a 3D vector of Gaussian, N (0,1},
random variables. For estimates of E(7) as an expected value, this scheme is first order
accurate in A (Kloeden and Platen [153]).

In order to take larger time steps, without large discretization errors, one can use
higher order discretization schemes. In particular, the following scheme is third order
accurate (for estimates of E(7)). It is related to Runge-Kutta methods for ODE’s and
was derived by Helfand and Greenside ([8, 12}):

g = @(ZV+VhG) , k=1,...,M

Gop = (29 415167199, + VR ()

gap = ay(Z9 + h(-.397300 g, + 427690 g;) + Vh(y)

gor = ax(ZY) 4+ R(-1.587731¢, + 1.417263 g, + 1.170469 g5) + VR,
Z6H) = ZU) 4 h(.644468 g, +.194450 g; + 161082 9,) + VR (o
YU+ = YU - 5h (b(ZU)) + b(z(j+1)))

where Z® ~ y2(y) , YO =0, ¢ = WP , ¢, = 211608V , ¢, = 516719W +
499720V | ¢, = 030300 W — 171658 V), ¢, = V¥, and W and V) are two in-
dependent 3D vectors of Gaussian, A'(0, 1), random variables. This scheme involves more



computation than Euler-Maruyama and twice the number of Gaussian random variables
per time step. However, convergence in imaginary time, 7, is reached in far fewer time
steps by taking much larger time steps.

Note: To be precise, the weights, Y, are only simulated to second order accuracy in
terms of h above. In addition, as discussed in [6}, one should be careful using a higher
order accurate scheme because of possible hidden errors. In the examples discussed below,
any such errors were found to be below the level of Monte Carlo errors and were therefore
not considered significant.

4 Standard Pseudorandom Diffusion Monte Carlo

Standard pseudorandom Diffusion Monte Carlo consists of using the simulation techniques
of the last section to compute an estimate of E, using (7), as follows:

m}
. YN p(Z™) N

21':1

where (Z S’"),Y;(m)) represents the position and weight of the ¢’th stochastic simulation
path at time 7 = mh. Simulation paths are computed using pseudorandom numbers
which are transformed into Gaussian random variables using any one of a number of
standard techniques [19].

The error in this estimate can be broken down as follows:

Ey—Ey = [Ey—E®(m)]+ [E®W(m)~ E(r)] + [E(7) - E]
= €t €yt €
O(N-1/2) 4+ O(h*) + O(e™™)

where E(*)(m) is defined as the expected value of B as N — oo, and e is the order of
accuracy of the time discretization method.

In the equation above, e, is the statistical or ‘Monte Carlo’ error, ¢, is the approx-
imation error from the time discretization, and ¢, is the convergence in imaginary time
error.

4.1 Ensemble-Based Sampling

In practice, the estimate (8) above is seldom used precisely as written. Instead of gener-
ating N independent stochastic simulation paths through time 7, it is much more common
to follow a smaller set, or ensemble, of R ‘random walkers’ as they travel forward in imag-
inary time. After a start-up period of J time steps, which reduces the time convergence
error, €,, to acceptably small levels, the positions and weights of the walkers are used
after every j'th time step in computing the estimate of E,, where j is taken sufficiently
large so that the new positions are (nearly) independent of the previous positions used.
For example, for a total sample size of N = 10000, an ensemble size of 50 walkers would



be followed for J + 2007 time steps in order to accumulate the full sample. J and j are
determined empirically.

Ensemble-based sampling saves memory, since R can be much smaller than N, and
time, since j can be much smaller than J. As long as h is sufficiently small so that ¢, is
negligible, and J is sufficiently large so that ¢, is negligible, the primary source of error
left is the Monte Carlo error, ¢,,..

5 Quasirandom Diffusion Monte Carlo

In this section we examine how quasirandom sequences can be used to reduce the Monte
Carlo error for Diffusion Monte Carlo estimates.

Quasirandom sequences are designed to produce more accurate integration estimates
than standard Monte Carlo when used in place of random or pseudorandom points. By
spreading out as uniformly as possible over the integration domain, quasirandom se-
quences can produce Monte Carlo errors which converge at rates as fast as O(N -1} instead
of the usual O(N-1/2) for Monte Carlo [24].

However, quasirandom Monte Carlo estimates, called quasi-Monte Carlo, lose their
advantage over standard Monte Carlo as the number of dimensions increases. This is a
well established result, theoretically and computationally [2, 18, 21, 23, 26]. While there
is no specific maximum number of dimensions for which quasi-Monte Carlo is useful, it
appears that for many applications once the number of dimension reaches levels near 30 or
40 quasi-Monte Carlo may not be any better than standard pseudorandom Monte Carlo,
and at higher dimensions quasi-Monte Carlo can often produce results which are worse
than standard Monte Carlo. This limitation on the number of dimensions has important
implications for quasirandom Diffusion Monte Carlo, as we shall see below.

5.1 Quasirandom Simulation

Although originally designed for integration estimates, quasirandom sequences have been
used for simulations as well. This is accomplished by treating a simulation problem as
being equivalent to the evaluation of an integral of the expected output over the space of
all possible simulation paths [22, 29]. The integrand is then a function of all the random
inputs at every time step of the simulation path since ultimately the output is a function
of all of these inputs. Therefore, the total number of dimensions is equal to the sum of
the dimensions, or number of inputs, at each time step. For a simulation path consisting
of m time steps in d-dimensions then, we would have md dimensions. Hence, the number
of dimensions can easily become very high whenever many time steps are involved, as is
typically the case for Diffusion Monte Carlo. As discussed above, this means that quasi-
Monte Carlo may not be effective in such instances since it loses its effectiveness as the
number of dimensions increases. As a result, most previous applications of quasi-Monte
Carlo estimates to simulations have been limited primarily to simulations involving only
a few time steps or iterations. _
Recently a way to overcome the limitation on time steps has been found which involves



renumbering, or scrambling, the order of a set of simulation paths after each time step {16,
20, 22]. As discussed in [22], this technique can effectively reduce the number of dimensions
from md to simply d (or d + 1) by separating each time step apart from those preceding
and following it.

5.2 Application to Diffusion Monte Carlo

For Diffusion Monte Carlo, the number of random input variables for each time step
is equal to 3M, where M is the number of bodies in the quantum mechanical system,
for the Euler-Maruyama scheme. For the higher order Helfand-Greenside scheme this
doubles to 6M per time step. Therefore, regardless of any renumbering, there is an
essential limitation to the size of the quantum mechanical systems for which quasirandom
Diffusion Monte Carlo may be useful. The examples discussed below include a three
dimensional harmonic oscillator (M = 1) and the Helium atom (M = 2, fixed nucleus).
It is anticipated that similar results should be obtainable in the near future for systems
of 3 or 4 bodies as well. For larger systems of say 10 or more bodies, it is not anticipated
that quasirandom Diffusion Monte Carlo, as presented here, will be useful.

The use of renumbering is essential since Diffusion Monte Carlo typically involves hun-
dreds or thousands of time steps, m, which without renumbering would lead to dimensions,
3Mm or 6Mm, far too high for quasi-Monte Carlo to be effective. Renumbering allows us
to use just 3M or 6M dimensional quasirandom points regardless of the number of time
steps, as long as renumbering is done following each time step. This makes quasirandom
Diffusion Monte Carlo feasible.

5.3 Renumbering

Renumbering, described in detail in {22], involves generating a full set of simulation paths
together, and, after each time step, scrambling up the order of the numbering of the
simulation paths. The method of renumbering can be either random - using a random
permutation of {1,..., N} to renumber N paths, or a more sophisticated technique known
as binary renumbering, in which paths are renumbered according to where they are located
in space after each step.

For binary renumbering, which is used in the examples below, after each time step,
simulation paths are grouped according to which subregion of space they each fall within.
Subregions are formed by dividing each dimension into L levels where L is a power of two
(for convenience), creating a total of L4 subregions in d-dimensions. When every path’s
subregion has been determined, the paths are renumbered by taking all of the paths in
one subregion followed by all the points in the next subregion, and so on through all
the subregions. The order within each subregion is simply random. The order of the
subregions themselves is fixed in a way that minimizes the distance between successive
subregions. This particular arrangement is used because it reduces the average distance
between successively numbered paths, which (as discussed in [22]} leads to improved
quasi-Monte Carlo results by reducing a quantity known as the variation.



It is important to mention at this point that without renumbering, if we used just 3.M
or 6M dimensional quasirandom points for Diffusion Monte Carlo, correlations between
the quasirandom points used in successive time steps would lead to biased and incorrect
results. The other alternative is to use extremely high dimensional quasirandom points,
which as discussed previously, is not recommended because quasirandom points tend to
lose their effectiveness as the number of dimensions increases.

5.4 Continuation Method

Given the very high number of time steps required in general for Diffusion Monte Carlo,
since 7 must be large enough so that the walkers have converged in imaginary time to
the ground state (so that e, is sufficiently small), while 2 must be small enough so that
discretization error, e, is sufficiently small as well, it is impractical to use quasirandom
sequences throughout the simulations. Renumbering allows us to use 3M or 6 dimen-
sional quasirandom points regardless of the number of time steps, but going through the
renumbering process after every one of a large number of time steps would add a great deal
of extra work, which it would be preferable to avoid. A further difficulty is ensemble-based
sampling, described in Section 4.1, to which there is no clear way to apply quasirandom
sequences effectively.

A solution to the two difficulties posed above is to combine standard psendorandom
ensemnble-based sampling with quasirandom sampling in what is termed a ‘continuation’
method. For continuation, we first use standard Monte Carlo with ensemble-based sam-
pling to generate a set of N pseudorandom simulation path ‘endpoints’ and weights,
{Z,-,Y;-}?_I__l. (Note: Endpoints is in quotations because with ensemble-based sampling,
the positions and weights used are actually intermediate values for a smaller set of ran-
dom walkers.) Then, quasirandom points are used to ‘continue’ the paths from each
(Z,,Y;) for an additional fixed number of time steps, using renumbering after each of
these steps, after which a Monte Carlo estimate of Ej is computed as the weighted aver-
age of b at the set of new ‘continued’ endpoints. (Note: For standard Monte Carlo, the
estimate would be computed as a weighted average of b at the original ‘non-continued’
endpoints.)

The basic idea motivating this procedure is that we are first generating a sample,
{Z,, Y;}f_ﬂ, which is relatively free of errors €, and ¢,, and dominated by error €,,.. Then,
the additional quasirandom steps are used to reduce this Monte Carlo error from O(N-1/2)
levels to accelerated levels closer to O(N—1), which are characteristic of quasi-Monte Carlo.

One drawback of continuation is that by requiring us to store the entire set of N
pseudorandom endpoints before continuing them, this technique negates the memory
savings of ensemble-based sampling. This could be a significant drawback when N is
large. The same problem arises, however, if an entirely quasirandom simulation is done
without ensemble-based sampling and without continuation. Variations in which the
samples are continued in smaller blocks to reduce the memory requirements might be
possible [30].

On the other hand, continuation can produce a large improvement in cpu time, since
the number of renumberings can be limited to just the number of continuation steps
rather than the total number of time steps. Then, as long as the number of quasiran-



dom continuation steps is relatively small, the additional cpu time required will not be
eXCessive,

Since increasing the number of continuation steps allows the continued paths to travel
further away from the original pseudorandom endpoints, resulting in a better opportunity
for Monte Carlo errors to be significantly reduced, but also costing extra cpu time, there is
a trade-off between decreased error and increased cpu time as the number of continuation
steps increases. In practice, the optimal number of continuation steps can be determined
empirically by observing the resultant estimated errors and average cpu times.

It is at this point that using a higher order accurate discretization method can be
beneficial, since it allows larger time steps to be used, With larger time steps, fewer
continuation steps and renumberings are needed in order to move sufficiently far away
from the original pseudorandom endpoints to see an appreciable improvement.

The examples below will demonstrate the effectiveness of quasirandom Diffusion Monte
Carlo using the continuation method with renumbering.

6 Quantum Mechanical Examples

We examine two quantum mechanical examples to study the effectiveness of quasirandom
Diffusion Monte Carlo using continuation and renumbering, as discussed above, when
compared with standard pseudorandom Diffusion Monte Carlo. In all cases, the high-
order accurate Helfand-Greenside discretization scheme is used. This allows larger time
steps to be taken than if a less accurate method, such as Euler-Maruyama, were used
instead. The two examples are a three dimensional harmonic oscillator and the Helium
atom.

6.1 FError Measurement

With quasi-Monte Carlo estimates, the issue of error measurement is always an important
one since no truly satisfactory standard procedure has yet been established. Let N be the
number of simulations or equivalently the ‘sample size.” Then, for each of the examnples,
each different estimate of E,, pseudorandom or quasirandom, is repeatedly computed R
times at each of several different fixed values of N. This allows the expected error as a
function of sample size to be observed.

Ideally, each repetition should be independent. True independence is rare when using
deterministic sequences of any kind, including the best pseudorandom generators. How-
ever, when using quasirandom sequences this is a particular concern because successive
points can be highly correlated. In the present examples, each set of R quasirandom
estimates for a given sample size, N, is made using R successive blocks of points in the
quasirandom sequence (the base-2 Niederreiter sequence [3]). However, in order to try
to ensure that these estimates are not too highly correlated, a random number of points
between 1 and N is skipped between each block of points.

Tt is not inconceivable that given just the right scenario, successive quasirandom esti-
mates could be correlated, thereby skewing the error estimates made below, particularly



the second one when the exact solution is unknown. Although no evidence of any such
problem was found in the examples below, in which the exact solutions, or highly accu-
rate estimates, were known in advance, the problem of reliable error estimation Temains
a critical area for further research in quasi-Monte Carlo because without adequate error
estimation technigues these methods will not be widely adopted for use.

Assuming the independence discussed above, the root mean square error of each esti-
mate of E, at sample size N can itself be estimated as follows:

érms(N) = J}R'Z( ‘g) - Eﬂ)z

re=l

where '};’ is the r’th estimate at sample size N and E; is the exact ground state energy.

An estimate of the error which does not rely on the exact solution (presurnably un-
known in any practical situation) is also needed. For non-biased estimates, this can be
accomplished by computing the sample variance of each set of R estimates computed and
then taking the square root as follows:

” 1 R far i
6(N) = J == LBV - By
r=1
where E is the average of all R estimates. In the examples below, both estimates, &,,,,(N)
and &(N) were computed, with similar results in either case.

6.2 Harmonic Oscillator

This is a simple example which readily demonstrates the effectiveness of the quasirandom
techniques.

Example 1 The ground state energy, Ey, is estimated for a three dimensional harmonic
oscillator. The potential energy function is the following:
1
v(z,y,2) = ~2~k r?
where k > 0 is the oscillator strength, and r? = 22 + y? + 2?2 is the squared distance from
the oscillator’s center, which is taken to be the origin.

In atomic units, with k = 1, we consider a harmonic oscillator of mass m =1 and
strength k = 1, which has an ezact ground state energy of Eq = 1.5. This ezact quantity is
used in computations of the estimated root mean square error, €.,,(N). Note: In atomic
units, energy is measured in units of 4.36 - 10718 Joules (Hartrees), length in units of
5.3-10-11 meters (Bohrs), and time in units of 2.4 - 10717 seconds.

The exact ground state wave function, Po(z,y, 2), is equal to (4n)~1e~*/2, leading us
to use as our trial function (as described in Section 2.2):

Yr(z,y, z) = (3.92157x) 1 e~

where we deliberately take a function slightly different from the ezact ground state in order
to avoid the trivial case of exact zero-variance results.



The resultant trial energy function is then the following:

by) = Y1) _ 1 53— 0,202

T Pp(y)
While the vector drift function is the following:

a(y) = (-1.02z,-1.02y, —1.02z)

For the simulations, the time steps are of size h = 0.15 using the Helfand-Greenside
discretization scheme (see Section 3). This time step size was determined to be small
enough so that discretization errors were insignificant relative to Monte Carlo errors. An
ensemble size of R = 50 random walkers is used, with a delay of J = 70 time steps before
positions are stored, and a gap of j = 12 time steps between successively stored positions
(see Section 5.4). '

Standard pseudorandom Diffusion Monte Carlo is compared with quasirandom Diffu-
sion Monte Carlo using continuation (with 2, {, and 12 continuation steps) and renum-
bering (with each dimension divided into 64 equally spaced levels between -5 and +5 for a
total of 262144 subregions in three dimensions).

Figure 1 is a plot of the error, é,,,(N), computed over B = 60 repetitions, as a
function of N on a log-log scale. The log-log scale allows the plot of an error of the
form e = b N® to appear as a straight line with slope a. We expect a convergence rate of
a = —0.5 for standard Monte Carlo, and a lower (or faster) rate for quasi-Monte Carlo.

Figure 2 is g similar plot of the error against average cpu time instead of N. The
graph is intended to provide a more realistic comparison of the various estimates of Ey.

6.2.1 Discussion of Results: Example 1

We see in Figures 1 and 2 that quasirandom Diffusion Monte Carlo clearly outperforms
standard Diffusion Monte Carlo for this example. The convergence rate of the error im-
proves from close to O( N—1/2) {for the standard method to O(N-0641) for the quasirandom
method, with this rate steadily improving as the number of continuation steps is increased.

Figure 2 makes it clear that the extra cpu time required for renumbering and contin-
uation is more than made up for by the reduced errors. For an error level of about 10-4,
we see a reduction in cpu time by a factor of about 5 for quasirandom Diffusion Monte
Carlo with either 4 or 12 continuation steps.

We also observe that taking any more than 12 continuation steps would probably not
be worthwhile since in Figure 2 the results using 12 steps, in terms of cpu time, are
comparable to the results using just 4 steps.

6.3 Helium Atom

For the Helium atom, a number of additional features are incorporated into the quasir-
andom simulations. First of all, in order to reduce storage requirements by nearly half,
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some symmetries are exploited. Given configuration, y = (4,9, Z1, Ty Yg, 73), the po-
tential function and therefore the wavefunction solution is only dependent on ry, r,, and
r14, the distance from the first electron to the nucleus, the second electron to the nucleus,
and between the electrons, respectively. Therefore, when the pseudorandom endpoints
are stored to be reused for continuation, only the triplet ry, 7y, 1y, is saved rather than all
six dimensions. The same thing is done for each of the continuation steps as well.

During the continuation steps, for each path, the missing angles are sampled quasir-
andomly at each time step after retrieving the three distances from storage and before
taking the next time step. This reduces the storage required by nearly a half, and it also,
importantly, simplifies the renumbering process because instead of requiring subregions
over 6D space, subregions over only 3D space are necessary. This use of symmetry does
not introduce any new approximation errors into the results, and should be applicable to
many quantum mechanical systems with various symmetries.

A second feature of the Helium atom simulations is that in the renumbering process,
an adaptive method is used to select the location of subregions. Initially the 3D space is
divided into 4096 subregions by dividing each dimension into 16 levels. Then, depending
on where most of the pseudorandom endpoints fall, some of these subregions are further
subdivided into 512 smaller subregions (8 more sublevels in each dimension). This method
gives us fine subdivisions in regions of greater interest where more of the simulation paths
are, and coarser subdivisions in lower interest regions where fewer simulation paths appear.

Example 2 The ground state energy, E,, of the Helium atom is estimated using Diffusion
Monte Carlo. Ezperimental results [6] have produced the following estimated value: Eg =
—2.903724, in atomic units, which shall be considered the ‘ezact’ solution for the purpose
of computing errors here. We assume a fived nucleus located at the origin so that the
system s just a two body system (M = 2).

The potential energy function, in atomic units, is the following:

T ra Tiz

where Y = (1,41, 21, L2, Yo, 23), Ty i the distance from the first electron to the nucleus,
ry the distance from the second electron to the nucleus, and ry, the distance between the
electrons.

The trial function chosen is of the form:

_ _ _ BNz
Pr(y) = exp(—2r;) exp(—2r,) exp (1 n brm)

with a = 0.5 and b = 0.2, which ensures that trial energy, b(y), remains finite at ry = 0,
ro =0, and v, = 0 [13]. The resultant trial energy function is then the following:

1 1 _ 1 (ry +ra)(1 =1y - ra/rimy)
ra r2(l+ b’"u)s 4(1 + br12)4 r'12(1 + lez)z

While the vector drift function is the following:

by) = -4+

_ Y —y* %y
2r,(1 + 57'12)2 )

a(y)
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where y* = (:’:23 Y2, 225 T15 Y1, zI)'
For the simulations, the time steps are of size h = 0.03 and the Helfand-Greenside

discretization scheme is used. As in Fxample 1, the time step size was chosen to be small
enough so that discretization errors were insignificant relative to Monte Carlo errors. An
ensemble size of R = 100 random walkers is used, with a delay of J = 500 time sieps
before positions are stored, and a gap of j = 50 time steps between successively stored
positions.

Standard psevdorandom Diffusion Monte Carlo is compared with gquasirandom Diffu-
sion Monte Carlo using continuation (with 10 and 20 continuation steps) and renumbering
(using the adaptive technique described above).

Figure 3 is a plot of the error, €,,,,(N), computed over R = 60 repetitions, as a
function of N on a log-log scale. As in Ezample 1, the log-log scale allows the plot of an
error of the form e = b N® to appear as a straight line with slope a. We expect a to be near
—0.5 for standard Monte Carlo and lower for quasi-Monte Carlo. Figure { is a similar
plot of the error against average cpu time instead of N.
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6.3.1 Discussion of Results: Example 2

The results for Example 2 are similar to those for the first example. We see in Figures 3
and 4 that guasirandom Diffusion Monte Carlo still clearly outperforms standard Diffusion
Monte Carlo, although not to as large an extent as in Example 1. This is not surprising
since this system is of size M = 2 while the first was M =1, as discussed in Section 5.2,
The convergence rate of the error improves from close to O(N-1/2) for the standard
method, as expected, to O(N-95%) for the quasirandom method with 20 continuation
steps.

As in Example 1, the plot against cpu time shows that the extra cpu time required for
renumbering and continuation is more than made up for by the reduced errors. For the
Helium atom, at an error level of about 10—2 we see a reduction in cpu time by a factor
of almost 3 for quasirandom Diffusion Monte Carlo with 20 continuation steps.

It was found that taking more than 20 steps was not profitable in terms of error
reduction versus extra cpu time for this example.

7 Conclusions

The results of the two examples above demonstrate that quasirandom Diffusion Monte
Carlo is not only feasible, but can actually produce more accurate results in a given amount
of cpu time than standard Diffusion Monte Carlo. It is the two techniques discussed above,
renumbering and continuation, which make this possible.

There are many possible directions for further work in this area. One would be to bet-
ter understand how and why renumbering works, and to prove conclusively that it does
work for some well defined class of problems. Another would be to apply the methods
described here to more complicated quantum mechanical systems involving perhaps 3 or
4 bodies in motion. A third direction would be to adapt the methods here to fermion
problems in which the wavefunction changes sign, introducing new difficulties, as men-
tioned in Section 2.2, In addition, the problem of quasirandom error measurement needs
to be further addressed, as mentioned in Section 6.1.

Finally, the results presented here should demonstrate that quasirandom sequences
can perhaps be beneficial for a far wider range of Monte Carlo applications than presently
thought possible.
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