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Abstract

Standard numerical methods for the Birkhoff-Rott equation for a vortex sheet are ill-posed
due to amplification of roundoff error by the Kelvin-Helmholtz instability. A nonlinear filtering
method was used by Krasny to eliminate this spurious growth of round-off error and accurately
compute the Rirkhoff-Rott solution essentially up to the time it becomes singular. In this
paper convergence is proved for the discretized Birkhoff-Rott equation with Krasny filtering and
simulated roundoff error. The convergence is proved for a time almost up fo the singularity
time of the continuous solution. The proof is in an analytic function class and uses a discrete
form of the abstract Cauchy-Kowalewski theorem. In order for the proof to work almost up
to the singularity time, the linear and nonlinear parts of the equation, as well as the effects
of Krasny filtering, are precisely estimated. The technique of proof applies directly to other
ill-posed problems such as Rayleigh-Taylor unstable interfaces in incompressible, inviscid and
irrotational fluids, as well as to Mullins-Sekerka unstable interfaces in Hele-Shaw cells,
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1 Introduction

Standard numerical methods are generally not convergent for ill-posed problems. Typically, in
an ill-posed problem, the linear growth rates increase unboundedly with increasing wavenumber.
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Such problems may have short time smooth solutions if the Fourier coefficients of the initial data
have rapid enough decay (i.e. existence in analytic function spaces [5, 10, 21]). However, when
standard numerical methods are used to compute them, the methods prove to be highly unstable.
The reason is this: on the numerical level, the decay of the Fourier coefficients is limited by the
numerical precision. For example, the Fourier coefficients of ke initial data will decay only until the
roundoff level is reached. Roughly speaking, all subsequent modes will be dominated by roundoff
error. Since these highest modes are amplified the fastest, in time, the numerical solution becomes
dominated by spurious error and the computation breaks down, even though the true solution may
still be very smooth.

A prototypical ill-posed problem, and the one we will consider in this paper, is the evolution
of a vortex sheet in an incompressible, inviscid and otherwise irrotational fluid. This is a classical
problem in fluid dynamics and the sheet undergoes the Kelvin-Helmholtz instability. In this prob-
lem, the linear growth rate is proportional to the wavenumber. Moreover, singularity formation
appears to be generic, even for vortex sheets initially near equilibrium [13, 6, 19]. One motivation
for performing numerical simulations of the vortex sheet problem is to characterize the types of
singularities that can form and to determine whether there is in fact a “generic” type.

To accurately compute the numerical evolution of a vortex sheet, one must overcome the spurious
growth of roundoff error. This can be done using a numerical filter. However, standard linear filters,
such as removing, or damping, a fixed band of modes, often “over-smooth” the details of the solution,
making singularity characterization difficalt. Moreover, through nonlinearity, the physically relevant
spectrum typically expands in time into the region of artificially removed wavenumbers. If this region
is fixed independently of the discretization parameters and of time, then this type of filtering scheme
will clearly no longer converge at such times. On the other hand, a nonlinear filtering, introduced
to this problem by Krasny [13], has proven very successful. The filtering scheme of Krasny simply
says that Fourier modes should be discarded if they lie below a certain error tolerance and kept
if they lie above the tolerance. It is nonlinear because the modes to which it applies depends on
the function to which the filter is applied. Important consequences of this filter are that it allows
nonlinearity to produce non-zero modes anywhere in the spectrum and that the linear growth rate
is determined by the spatial discretization and not the filter. Using this nonlinear filter, Krasny [13]
and subsequently Shelley [19] were able to accurately compute numerical solutions essentially up to
the time they become singular.

In this paper, a convergence analysis is presented for the point vortex method (applied to the
vortex sheet problem) with nonlinear filtering and in the presence of simulated round-off error. The
proof is in an analytic function class and uses a discrete form of the Cauchy-Kowalewski theorem
[7, 16, 17, 18]. The proof is presented for the case in which the sheet is initially near equilibrium
and convergence is obtained nearly up to the singularity time. This result is nearly optimal and is
referred to as a “long time” convergence theorem. This is a significant improvement over previous
previous convergence theorems for this problem where the time of convergence was restricted to be
much less than the singularity time [8, 12]. The near equilibrium case was studied on the continuous
level in [5, 21]. If the near equilibrium condition is violated, convergence is obtained for a short
time if the true solution remains smooth.

The improved result rests on two observations. First, the nonlinear filter must be included in the
analysis to control the growth of the round-off error in time. We note that the previous convergence
results did not include the nonlinear filter, as the analysis of it was incomplete at that time. Still, this
is not enough to obtain a “long time” convergence theorem. Second, it also is necessary to separate
the linear and nonlinear parts of the equation. Both parts of the equation must then be precisely
estimated. This is analogous, in spirit, to the continuous analysis of {5] where the linear part of the
equation is solved exactly (by integration along complex characteristics) and precise bounds were
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obtained for the nonlinear operator. The analysis in this paper applies directly to other numerical
methods, such as the modified point vortex method [19], as well as to other ill-posed problems such
as Rayleigh-Taylor unstable interfaces in incompressible, inviscid and irrotational fluids as well as to
Mullins-Sekerka unstable interfaces in Hele-Shaw cells. Further, if surface tension is included so that
the problems are well-posed [3, 2], then the analysis of Krasny filtering presented here, combined
with the analysis presented in {4] can be used to prove convergence in that case also.

The outline of the paper is as follows. In section 2, the nonlinear filtering is introduced and a
sequence of model equations is analyzed, providing an overall framework for our analysis. In section
3, the vortex sheet problem and point vortex discretization are introduced and the convergence
theorem is given. In section 4, the discrete Cauchy-Kowalewski theorem is presented. In section
5, the main convergence theorem in proved. In section 6, the discrete Cauchy-Kowalewski theorem
with filtering and roundoff error is proved. In Appendix 1, a continuous time version of the Cauchy-
Kowaleski theorem is given. In Appendix 2, the consistency and stability of the nonlinear filtering
are proved. In Appendix 3, the proof of the discrete Cauchy-Kowalewski theorem in the absence of
numerical filtering and roundoff error is presented. Finally, in Appendix 4, an estimate concerning

the time difference of certain nonlinear terms is proved.

2 Nonlinear Filtering and Model Problems

The nonlinear filter introduced by Krasny {13] can be considered as a projection operator in Fourier
space. It is described as follows. Given an error tolerance 7, the projection operator P is given by

5 £ - .fks if Jfkl 2 T
(Pfh = {0, i |hl < (2.1)
Here f(a) is a periodic function, and f. is the discrete Fourier transform of f. The filter P is
nonlinear because the wavenumbers at which it is applied depend on the solution. Effective use of
this filtering method depends on periodicity and analyticity of the function f, so that its transform
fy is rapidly decaying in k. It also requires high precision computations, since the filter level 7 must
be much larger than the round-off error size £,. Typical sizes for a double precision computation
are g, = 10-%%, r = 107%,

The usefulness of this nonlinear filtering is that while it prevents the spurious growth of round-off
error, it allows the linear growth rate to be determined by the numerical discretization rather than
the filtering scheme, since the filtering is based on the amplitude of the solution and acts like the
identity to modes that lie above the tolerance level. This is most effective for nonlinear problems, as
the high wavenumbers grow due to nonlinear interactions as well as due to their own linear growth
rate. Although it is difficult to explicitly write down a nonlinear example showing this, it is clearly
seen in computations [13, 19].

In this section, we present a sequence of examples that show the essential effects of filtering,
the necessity of using the abstract Cauchy- Kowalewski theorem and the overall strategy of our
convergence proof. We begin with a linear example. Consider the simple model equation

1
Uy = EH(H'Q’)7 2 2
{ u(z,0) = up(a) (2.2)
in which H is the Hilbert transform; i.e. (’}/i;)k = —isgn{k)i,. Take the initial data to be p(k) =
e~1¥o_ 50 that the solution is
(1) = e~ TPt/ (2.3)



This solution develops a singularity at time T, = 2p,, when the exponential decay of the Fourier
components is lost. Of course, this singularity was “built” into the initial condition,

Now suppose that the initial data is perturbed by simulated roundoff error and solve equation
(2.2) both with and without filtering. For simplicity, we will suppose there is no roundoff error in
the equation. This will make the effect of filtering clearer. Moreover, because the equation is iinear,
the analysis of roundoff error in the equation essentially reduces to that given below for the case
when initial data perturbed by roundoff error. This is because in the periodic case where k is an
integer, multiplication by |k|/2 (for [k| > 1) ensures that if the initial data at mode & lies above the
roundoff, then mode k lies above the roundoff at all subsequent times.

The roundoff error is simulated by a perturbation e, with é,(k) = £, in each Fourier mode (with
g, ~ 1073}, The perturbed problem without filtering is

9y, = L|kldy,
{ 5,(0) = e 1 g, (24)
which has solution

B () = e~ hllpomt/2) | ¢ (lEI/2, (2.5)

Notice that the initial roundoff error is amplified exponentially in time with a rate proportional to
[
Now consider the perturbed problem with filtering. It is given by

. 1, ..
thw, = -2—|k|'w;,, (2.6)

B(0) = (Pu)
_ e lklea  if g=lkloo >
0 if e~lklpo « 7

which has solntion

w|kl{po—1t/2) if e~ tklea >
N € e T
Wy (t) = { -

0 if e7l¥leo < 1, (2.7)

The smallest wavenumber at which filtering is applied is

By = o5 log(r™). (2.8)

Now compare the error (v — u) and (w — u) made in the two approximations. For the perturbed
problem without filtering, the dominant contribution to (v — u) is due to the growth of the largest
wavenumber, k,.., = N/2, so that

o — u| ~ g,.eMN4, (2.9)

The approximation fails when this error is of size O(1), which occurs when ¢ =T} = 4N -1 a time
that depends on the discretization, rather than on the singularity time of the continuous problem.
If N >> 1 then T} << Tg; i.e., the solution with roundoff error but no filtering diverges from the
unperturbed solution well before the singularity time.

On the other hand, for the problem with filtering the dominant contribution to (w — u) comes
from the smallest wavenumber k; that is set to zero; i.e.,

lw—u] = e~ lEsl(po—t/2)  — p1=t/2p0 (2.10)



This error becomes size O(1) when ¢t = T, = 2p, which is the same as the singularity time for the
original problem.

These estimates for the errors show that the unfiltered problem with roundoff is close to the
exact problem for only a short time; whereas the filtered problem is accurate almost up to the
singularity time, This is precisely the behavior that has been observed in numerical simulation of
the vortex sheet problem with and without filtering {13, 19].

Now, consider the following nonlinear modification of Eq. (2.2). Suppose that ¢ is a small
parameter and take

me = EHlna] + $Alnl(ay 1), Aln] = 2 [2, GLO=E gy (2.11)
1 (0) = e=#ol¥l |

The choice of A[7] is motivated by the expansion of the integral operator in the vortex sheet problem
given in section 3.2 for the discrete case (see Eq. (5.7)). The parameter ¢ arises {rom rescaling the
equation given small initial data. Although we cannot write the explicit solution to Eq. (2.11),
we expect that it’s solution remains smooth until ¢ = 2p, since e may be expected to keep the
nonlinearity small. Roughly speaking, the operator Afn] behaves like the product H[n,] H[n.] (also
see section 3.2). Therefore the nonlinearity contains derivatives of the same order as the linear
term. This fact combined with the linear ill-posedness of the equation and the nonlocal nature of
the nonlinear terms, requires the use of the abstract Cauchy-Kowalewski theorem to prove existence.
The abstract Cauchy-Kowalewski theorem is a fundamental theorem on the existence of ‘analytic’
solutions of functional differential equations such as certain integro-differential equations. Actually,
solutions are obtained in certain more general Banach spaces, but we always use analytic function
spaces in this paper. A precise statement of this theorem is given in Appendix 1. To prove that
solutions exist up to t & 2p;, it is instructive to rewrite Eq. (2.11) by integrating in time and using
an integrating factor. This gives

e, t) = wla,t)+ %/01 A[nl(a,t,t)dt’ where (2.12)

Afnl(k,t,¢) = HHO- Ak, v) (2.13)

and v is the solution to the linear Eq. (2.2). Thus, the linear part of the equation is integrated
exactly. The abstract Cauchy-Kowalewski theorem in Appendix 1 can then be used to show existence
of solutions to Eq. (2.12) for a time interval arbitrarily near 2p, for ¢ close to 0. We will use a
similar exact integration of the linear part of the numerical scheme when we prove the convergence
of the point vortex method for long times in section 3.2.

Now, consider the case with both filtering and roundoff error. Since the equation (2.11) is
nonlinear, the mode interaction makes the analysis of the effects of filtering and roundofl error in
the equation (scheme) much more difficult than the case where filtering and roundoff error perturb
only the initial condition. Therefore, we consider equation (2.11) with filtering and roundoft error
in both the initial condition and the equation.

gt =P {%H{Ca] + %A[C] + er} (2 14)
((0) = e=** for [k} < Llog: and 0 otherwise '

T

Again, we expect that if |e, (k)| < ¢, is small, that solutions to (2.14} exist for t ~ 2p, as well. The
presence of the nonlinear filtering and roundoff error makes it difficult to directly apply the Cauchy-
Kowalewski theorem of Appendix 1 to obtain this result. This is because additional assumptions are
required to control the effects of the filtering and roundoff error. Using the appropriate assumptions,
a careful mode by mode analysis shows that (2.14) does, in fact, have solutions existing for ¢



arbitrarily close to 2p, when €,¢, are close to 0. More specifically, it is shown in sections 4 and
6 how (on the discrete level) the assumptions of the abstract Cauchy-Kowalewski theorem, it’s
statement and it’s proof, respectively, must be modified to accomodate numerical filtering and
roundoff error. The continuous version follows analogously.

Finally, the difference n — { can also be analyzed using the Cauchy-Kowalewski theorem as
follows. Let v = 7 — (, then

v(a,t) = u(e,t)— wia,t)+ Fla,t)+ -;— fo t (Aln)(ent,t) - Aln— vi(et,t)) &' (2.15)
P(k,t) = foteﬂ"’("")f(k,t)dt' and (2.16)

fa) = (1- P){Hic]+ 5410} (217)

where w is the solution to Eq. (2.6) and [ is the identity operator. Therefore, treating F as a
forcing function by using the fact that the solution, ¢, to {2.14) is smooth and using the consistency
of the nonlinear filtering operator P, presented in lemmas 5.1-5.3 in section 5, and the fact that
lu — w| m 717¥/%% is smooth, then the abstract Canchy-Kowalewski theorem of Appendix 1 can be
applied to show that smooth solutions to (2.15) exist in a slightly smaller time interval than for
either 5 or ¢, but that this solution is, roughly speaking, of size O(r'~" + 2=). This result is almost
optimal because it holds nearly up to the singularity time of the smooth solution.

The above scenario provides an outline for the approach we take to prove the convergence of the
point vortex method in the following sections of this paper.

3 Vortex Sheets and Main Result

The equation governing the motion of a periodic, planar vortex sheet, with single-signed vortex
sheet strength, is called the Birkhoff-Rott equation and is given by

dz 1 +x 2(a,t) — z(a, t) ,
p - mPV . cot ( ) ) do (31)
2{a,0) = a + sp{a) (3.2)

in which 2{a, ) is the complex position of the interface and « is the Lagrangian circulation variable.
If the initial vortex sheet strength is not single-signed then the circulation variable cannot be used
to parametrize the sheet and the vortex sheet strength must be explicitly introduced. Our analysis
also applies to this case, however we omit it here for simplicity. The explicit inclusion of the vortex
sheet strength only introduces minor modifications of the analysis presented here since the vortex
sheet strength is time independent in the Lagrangian frame. See [14] for details.

In Eq. (3.1), the integral is a Cauchy principal value integral, due to the singularity at o = a,
and * denotes complex conjugate. The periodicity implies that

e, t) = a+ s(a, ) (3.3)

in which s{a,t) is 27 periodic in a for each t. Since filtering can be applied only to functions that
are periodic, the operator P will be applied to s, but cannot be directly applied to z. For simplicity
of notation, however, we denote

Pz=a+ Ps. (3.4)



Denote by Z; the discrete approximation of z{e;,?), in which a; = jh = 27xj/N. Without the
numerical filtering, the usual point vortex approximation is

d3] R & % -3
—i’— = — Y COt( e I\
dt dmi <= N 2
155
Nf2 _
o, — §; — 8
froed 4— cot( 1 f+ 1 ]). (35)
m T Nf 241 2

[E3)

With the inclusion of simulated roundoff error €, and the application of Krasny filtering P, the
ODE’s for Z become

dz ho 5 -5\
pr =P "'4"';1"_"; Z cot 9 + 6,.}j. (3.6)

tz=N{241
%5

A time discrete version can be obtained by applying any consistent time discretization. For sim-
plicity, we consider the Euler time discretization and we also filter the full right hand side rather
than just the O(At) terms. The fully discrete method is then given by

1 & 5 -3
grile _ Zh* b ! .
Z Pz +At4m’ i=_%;:+1 cot( 5 )h + Af-e.p . (3.7)
Igtg g

We refer the reader to {13, 19, 8, 12] for additional details.
We now introduce some notation. For p > 0, define a norm as follows

oo
1A, = D Ifiler™ (3.8)

k=—00
Assuming that [|f]|, is finite is roughly equivalent to assuming that f(c) is analytic in the strip
lIm{a)] < p. Denote such analytic function spaces by B,
B, = {f:Ifll, < o0}. (3.9)
Moreover, if the function f is defined on the grid {a; = 27j/N} for j = —N/2+1,...,N/2, then
there is a corresponding discrete norm

N/2

Ifllo= 3 Ifele (3.10)

k=—N/2+41

in which f; is the ¥** discrete Fourier coefficient for f. This is the norm in which convergence is
proven.
In the continuous case, Caflisch & Orellana [5] showed the following near equilibrium result.

Theorem 3.1 Long Time Ezistence, Caflisch & Orellana
Let ¢ be sufficiently small and z{c,0) = o + sp(a) with

[1s0llps < € and 3,(0) = 0. (3.11)



Then, there exists & > 1 such that for 0 < t < Ty = 2py/k, the Birkhoff-Rott equation has an
analytic solution z(a, 1) = a + s(a,t) in which the perturbation s continues to have 0 mean and
remains of size €, ie.

and 30,t)=0 (3.12)

I

where p(t) = py — kt{2 and moreover, K is arbitrarily close to 1 when € is close to (.

For initial data in B,,, there may be a singularity at position e, in the complex a plane with
po = |Im(a,)| > py. For such data, linear theory predicts that a singularity will occur at time
t, = 2p,. It was shown in [6] that for £ small and for a restricted set of initial data, that the nonlinear
and linear solutions are nearly identical up to, and including, the singularity time. Therefore, the
time of existence T, is nearly optimal.

The main result of this paper is to show that with roundoff error and filtering, the point vortex
method converges to the types of solutions considered by Caflisch & Orellana for a time interval
almost up to the singularity time.

Theorem 3.2 Almost Optimal Convergence with Roundoff Error and Filtering

Assume that z(a,t) = a + s(a,t) is a near equilibrium, periodic solution of the Birkhoff-Rott
equation satisfying Eqs. (3.11) and (3.12). Suppose that 2} solves the discretized Birkhoff-Rott
equation (3.7) with simulated roundoff error and filtering. Then, for any 0 < w < 1 there exist
constants C, ¢ independent of the numerical parameters but depending on w and 2(a,t) such that

1—w

n ey} T E’,
12" = 2'lpageny < € | A+ Rt —

A7 (3.13)

for a time interval 0 < t, < T,, where {, = nAt and tn which

T, = 2wpo/(1+ eve)
pa(t) wpg ~ (1 + ev/e)t/2. (8.14)

fore, At, h, TV [ At, and ¢, /(T At) sufficiently small.

Remarks

1. The proof of theorem 3.2 relies on two versions of the discrete Cauchy-Kowalewski theorem,
which will be presented in the next section. One version includes the effects of numerical filtering
and simulated roundoff error. In addition, careful estimates must be obtained for the filter P and
for the linear part of the discrete operator as well as the nonlinear part. The /¢ in the theorem
arises naturally from the choice of constants in the application of the discrete Cauchy-Kowaleski
theorem.

2. If the solution is far from equilibrium, then the careful estimate on the nonlinear part of the
discrete operator breaks down. It still can be estimated, however, but only in a way that results in
short time convergence (if the true solution is smooth).

3. The technique of proof can be used to prove similar convergence theorems for other discretiza-
tions, such as the modified point vortex method [19], as well as for many other ill-posed problems to
which the abstract Cauchy-Kowaleski theorem can be used to prove existence of analytic solutions
in the continuous (spatially and temporally) case. Such problems include Rayleigh-Taylor unstable
interfaces in inviscid, incompressible and irrotational fluids as well as Mullins-Sekerka unstable inter-
faces in a Hele-Shaw cell. See {14, 15, 9, 22, 23, 1] for example. The appropriate convergence proofs
are then obtained by carefully analyzing the particular numerical method in question, obtaining an



error equation and then applying the discrete Cauchy-Kowalewski theorems to these cases. In order
to be sure that the discrete Cauchy-Kowalewski theorem can be applied, two things are important.
First, it must be possible to apply the continuous version to prove existence of analytic solutions.
Second, it must be possible to write the spatial discretization so that it does not explicitly contain
discrete derivatives of higher order than 1. This is because the C-K theorem applies only to 1si
order operators. One consequence of this is that our proof cannot be directly applied to the case
with surface tension as this contains high order derivatives. However, this case is in fact linearly
well-posed [3] and our analysis of Krasny filtering, presented here, combined with the convergence
analysis presented in [3, 2] can be used to prove convergence in that case as well.

4 Discrete Cauchy-Kowalewski Theorem

The Cauchy-Kowalewski Theorem is a fundamental theorem on existence of analytic solutions of
partial differential equations. In its abstract form {16, 17, 18] it is applicable to integro-differential
equations such as the Birkhoff-Rott equation (3.1). The abstract form of the theorem is directly
applicable to semi-discrete equations (with continuous time), and needs only superficial modification
for equations with discrete time. A precise statement of the continuous time version is given in
Appendix 1. Of course, for fully discrete equations, existence of solutions is trivial, and the real
point of the theorem is to obtain uniform bounds on the solution. A discrete version of the theorem
was proved in [8). In this section, two versions of the discrete Cauchy-Kowalewski theorem are
given. The first is a discrete version of the strengthened formulation and simplified proof of the
Cauchy-Kowalewski theorem by Safonov [18]. It has been modified to serve as a result for estimating
perturbations, as needed for the nearly optimal convergence result with filtering. The second version
modifies the first by allowing the inclusion of simulated roundoff error and numerical filtering. Again,
a nearly optimal bound results. This is necessary for the convergence proof (presented in the next
section) by providing uniform bounds on the numerical solution of the point vortex method with
filtering and roundoff error.

Consider first the discrete equation without roundoff error and filtering

Ugpr = L, + AtA,[u,]
in which u,, = {u},} is a discrete function in B,. Suppose that the linear operator L satisfies
(i). L is a linear operator on B, such that for any o’ > p > 0 and any v € B 15,4

HZull, < lullosrear (4.2)

(L —Dull, < XAt~ p)~ lull,r (4.3)
Suppose further that the nonlinear operator A satisfies the following assumptions:
(ii). For any 0 < p < p' < py — Agndt, A, is a continuous mapping of {1 € B, ||u||, < R} into
B,.
(iii). For any 0 < p < p' < pg — AgnAt, and for any u,v € B, with {Jull,r < R,[|v[],» < R,

| 4nl] — Anlelll, < Ci(p' = p) Hlw = vl (4.4)
where C, is a constant independent of u, v, p, o', n. It may depend on R.

(iv). For any 0 < p < py — AgnAt
|| 4a{0]]l, < K. (4.5)



where K is independent of p,n
(v). For any 0 < p < po — AonAt and any u € B, with [|u||, < R,

| Ansalu] = Anld]|l, < Ca(p' ~ p) " A (4.6)
where C, is independent of p, p',u,n. It may depend on R and boundedly on At as At — 0.

Theorem 4.1 Discrete Cauchy-Kowalewski Theorem

Suppose that L and A satisfy assumptions (i)-(v) for some positive constants pg, Ao, K, C}, Cy
and R. Then, there is a constant A (defined explicitly below), such that for |n| < po/(AAT) the
solution u,, of equation (4.1) satisfies u,, € B, and

liwall,. < B (4.7)
an which p, = po — A|n|At and X is given by

Ropt™?

Ao + Rirtsy)

A= maz{ Ay (1 + M) , (4.8)
'l [ Ci2 (14 £) + 26'2%5:;]

forany 0 <y <1 and Ry 2 Kp].

The bound (4.7) will be used to estimate the difference between the solutions of the Birkhoff-
Rott equation and the discretized equation, in order to show convergence of the discretized solutions.
Note that in assumption (v), which does not appear in the statement of the continuous version,
the values of the operator A are compared at two different discrete time values # and n + 1. In
the application to the convergence theorem 3.2, the n dependence of A will be due to the time
dependence of the exact solution. The proof of Theorem 4.1 will be given in Appendix 3.

Note that time interval of existence for the linear operator L alone would be po/As. If the
nonlinear operator A is small, as would be the case if the solution u were small, then the constants
C,,C,, K and R could be taken to be small. By careful choice of these constants, the resulting value
of A will be only a small perturbation of Ay; i.e. by separating the linear and nonlinear parts of the
equation, we obtain a nearly optimal time of existence.

Now consider the discrete equation with filtering and roundoff error

oy = P{Iv, + AtA,[v,]+ Ate,}

v = given (4.9)
where P is the nonlinear projection operator defined in Eq. (2.1) with filter level 7, and e, is the
simulated roundoff error which is assumed to satisfy the bound
(vi) 1&,.(k)| < &, < 557 for all wavenumbers k.

In this theorem, the filter level 7 is allowed to depend on the wavenumber k. This is needed in
the convergence proof for the Birkhoff-Rott equation, since the Cauchy-Kowalewski theorem will be
applied to the derivative of the original equation.

The linear operator L, in addition to satisfying (i), is also assumed to be diagonalized by the Fourier
transform, i.e.

(vii) Lu(k) = I{k)u(k).
The nonlinear operator A, is assumed to satisfy assumptions (ii)-(v). Unlike the previous case,
non-zero initial data, v, is allowed. This is because the nonlinearity of P makes it difficult to
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absorb the initial data into the equation. The projection is performed on the initial data, and it is
further assumed to satisfy

(viii) ||vollpe4ps < 8B and vy = Pug, with § < 1.

—~~——
for some A > 0. Further, let 11 be an arbitrary linear Fourier projection operator such that [Tu(k)

ARFR W s vaAra g ATy an At AL QL LASLILL Y sRALLD LAARIILS b ;

is either 0 or 4(k) and set 0 < ¥ < 1. Define the constants R, and R, such that

su

B, > gy IMolToolll, (4.10)
Y

By 2 (=Dl (+11)

Note that assumptions (i), (iii), (iv) and (viii) imply that R, > (6RC;/8+ K)pj and R, > § Al o7
satisfies (4.10) and (4.11).

Theorem 4.2 Discrete Cauchy-Kowalewski Theorem with Roundoff Frror and Filtering

Suppose that P is defined by Eq. (2.1) and that L, A, vy, €, and T satisfy assumptions (i)-(viii)
for some positive constants py, Ao, K, Cy,Cq, R, Ry, Ry and e,. Then, there is a constant A (defined
explicitly below), such that for n < py /(AAL) the solution v, of equation (4.9) satisfies v, € B, and

[onllp, < B (4.12)
in which p, = po — Aln|At and X is given by

€ epy—1 Rapg™?
Do o (14 2588) (1 6 — 2=0)™" iy,
A =maz{ A [1 + %2“‘"’ 1+ ?*5—%’-)} + £2pg, (4.13)

2

(
et (L i+ 20) £ 26, + 2]
in which t = max(|n|)At and if the filter level T depends on k, then 7 = min 7(k).

The bound (4.12) will be used to estimate the solution of the point vortex method with filtering
and roundoff error. This requires the additional assumptions (vi)-(viii). Furthermore, if § < 1 and
if &, < 47 then, A given by Eq. (4.13) is close to that given by Eq. (4.8), which gives a nearly
optimal result in the case of filtering and roundoff error.

Before giving the proof of Theorem 4.2, we first prove the convergence result stated in Theorem
3.2. The proof of Theorem 4.2 will be given in section 6.

5 Convergence Proof

In this section, the proof of the convergence Theorem 3.2 is presented. We begin by using the
discrete Cauchy-Kowalewski Theorem 4.2 to prove uniform bounds for the numerical solution of the
point vortex method with roundoff error and filtering. This bound plays an important role in the
convergence proof by providing a control on the error introduced by the filtering.

In terms of the discrete periodic function 3;, i.e. §; = % — a; where a; = jh, the point vortex
method is given by

N2 -n =
g = Pl 4 AL 3" cot (zf = ZP) + Ate, ¢ . (5.1)
7 ! 47“' Im—-Nf2+1 2 ’

1#5 i
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It is convenient to expand the cotangent kernel as follows. Extend the discrete solution, §;, peri-
odically outside the interval (-N/2+1 < j < N/2), i.e. 3;4n = &;. Then, it is a straightforward
computation to see that with Z; = a; + 5; so extended, one gets

h Ni2 ‘5 PR fim h N(M+1/2) 1
j = ]
cot | = = — o -
4:7!"1« l——NZ/?-H ( 2 ) M — 00 2m12 Z z -2 ( )

Pew N(M41/2) 41 77
t#j 15

See [4] for details. Hereafter, we adopt the notation

1 im A VD
F[s); = 2m§:2j—2,=M~.+oo§?}'i 2 Z -5

Taru N(M+1/2)+1
t#y

(5.3)

Some properties of I are given as follows. Define D to be the discrete spectral derivative, ie.
= ik for ~N/2+1 < k < N/2 and periodically extended to all k. Then, it was shown in [8] that
i |Dfli,r < 1/2 and ||Dgl},» < 1/2, where || - |, is the discrete norm in (3.10), then

|DF[f] - DFgl, < ;,—'é;unf — Dy|l,. (5.4)

All subsequent norms in this paper are this discrete norm. Further, decompose F into a linear and
nonlinear part

Pl3]; = Fi[3]; + Fr[3); (5.5)
where

L 27“" Z (a — ar)z and FNL =F - FL (56)

If || D3|, < 1, then Fy,, may be expanded in the series [8]

Fye = 21'r1,Z Z G 5;2““ (5.7)

1£] m=2 (a: - oq)

Discrete Fourier analysis can be used to analyze Fy and Fyp. In fact, Fy is exactly 1/2 times
the trapezoidal quadrature (omitting the singular point) of the continuous spatial derivative of the
Hilbert transform

HIf.) (@) = %P.V. RO RSICIFN (5.8)

o (a—a')?

applied to periodic functions (see [11]). Tt is not difficult to see that

- —Ik] (1 - %“-,L) (5.9)

for ~N/2+1 < k < N/2 and periodically extended to all k. See [4] for example. This should be
contrasted with the continuous case, in which the symbol of the continuous version of I, is given
by 1|kj for all k, as well as with the symbols of other quadrature rules such as the alternating point
quadrature rule [20] which has as its symbol 1{k| for —-N/2+1 < k < N/2 and periodically extended
to all .
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. Since |Fyr| < |k|/2, it follows that for an appropriate grid function f

NI+ AtFL) U, £ 1 floraee (5.10)
BN, < 50 - 1 (5.11)

with p' > p > 0.
The nonlinear term Fy; may be estimated exactly as in [8] where it was shown that

| Fnzlf]— FNL[S'mp <ee||Df - Dg”p (5.12)

if | Dfll,, |1 Dgll, < € and e is sufficiently small and ¢ is a constant independent of f, g.
Now, turn to Eq. (5.1). Applying the discrete derivative D to (5.1) and defining

" = pEntt (5.13)
Lv® = "+ AtF[v"] (5.14)
A[v"] = DFy; [D7'%"]" = Dy, [3"] (5.15)
é = De; (5.16)

one gets
"+ = B {Lv" + AtA "] + Até,} (5.17)

where P denotes the projection operator with T replaced by 7|k} for each Fourier mode —~N/2+1 <
k < N/2, Purther, 7 and &, are replaced similarly in the assumption (vi} which now applies to é,.
The reason for this is that the discrete derivative D has been passed through the original projection
P,

Eq. (5.17)is now exactly in the form required to apply the discrete Cauchy-Kowalewski Theorem
4.2. Tt is straightforward to see that Eqs. {5.9)-(5.13) imply that requirements (i)-(iii}, (vii), (4.10)
and (4.11) are satisfied with

o = %, K=0,C,=0,R=¢, 6=1/2 (5.18)
Cl = ¢g, .R2 ) SZCTﬁpu, Rl = ADE%' (519)

Further, if €, € ey7 and ¢, < €°r, and taking initial data that satisfies (viii}, Theorem 4.2
implies that

“gnnpn S € . (5‘20)
where
Pn = po — Apnit (5.21)

and A; is a small perturbation of the linear result Ay = 1/2
1
Af = 5 + cg (5.22)

where c is a constant that can be bounded independently of C;, 8,7, Af, 7 and ¢, provided that At,
r are small enough and ¢, is as above. The bound (5.20) will be used to control the effect of the
filtering error in the full convergence proof.
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Now, turn to the question of the convergence of the numerical scheme. In [8], it was shown that
the continuous solution s} = 2(a;, nAt) — o; satisfies the discrete equation

= s} + AtF[s"]; + ot (Atf + b f;")j (5.23)

where F is as in (5.3) and f7*, f§ are the local temporal and spatial consistency errors respectively.
They satisfy the bound

IDSM, < ce (A(t) - p)™* fori=1,2 (5.24)

for f(t) = po — kt/2 from Theorem 3.1, The —3 power is not of much significance and is probably
not optimal. The bound can be controlled by keeping p sufficiently smaller than p. For example, if
p < wpy — ktf2 with 0 < w < 1, then

antnp S €€, (5‘25)

! = Ddrt! gives the error equation

Define the error to be d* = s — §" = 2" — 3" and letting u™*

w*t! = Lu® + AtA,[u"] (5.26)
where I is defined as in Eq. (5.14) and the nonlinear operator, A,, is given by

Ap[u"] = DFy[s"]" — DFyy [s" = D7'u"]” + Ate} + hel + €} (5.27)

and e}, e}, €} denote the temporal, spatial and filtering errors respectively, They are given by

e = Dff* (5.28)
e = Dff” (5.29)

Consequently, Eq. (5.26) is exactly in the form to which Theorem 4.1 may be applied once conditions
(i)-(v) are verified. Eqs. (5.10) and (5.11) show that condition (i) is satisfied with é§ = 1/2. Eq.
(5.12) shows that (ii) and (iii) are satisfied with C; = cR, where |jul|, [|v[|» < Rand p' < wpy—zndt
with 0 < w < 1 (with wp, replacing py). It remains to verify conditions (iv) and (v).

Consider first condition (iv). Evaluating A,[0] gives

AL[0] = Atey + hey + e}, (5.31}
As we have seen from Eq. (5.25),
AL (0], < cue(At +h) + il (5.32)

with p < wpy — knAt/2. Thus, the filiering error, ||e;|l,, must be estimated. The following three
lemmas, which show that the filtering operator P is stable and consistent, will be used for this
purpose.

Lemma 5.1 (Consistency property of P)
Let 0 < p < p' and assume that f € B,. Then

1= PYAll, < I @4 7+ (o = p) )il (5.55)
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Lemma 5.2 (Stability Property of P).
Let 0 < p < p' and assume that f € By and g € B,. Then

VPF = Pall, < If = gll, + WFIS7 2+ p7t + (0 = p) )7, (5.84)

Lemma 5.3 (Filtering with Roundoff Error)

Let 0 < p < p' and assume that f € B,. Let e, represents simulated roundoff error, with
|&.(k)| € &, < T/2 for all k. Two estimates on the filtering in the presence of roundoff error are the
following:

1+ ey - ool < Sdlleyriog Uy aps—p g, (5.35)
1P +e) = PAll, < (5= )1l + 415 = P Sl (5.30)

in which P,, s the filtering operator of (2.1) with T replaced by 27.

The proofs of these lemmas are given in Appendix 2.
Now, estimate e} by

1 - an -
lleslle < 250 = p)THI(T = PY(LE" -+ AtFyc[8"] ]|
1
+E(p’ — p)—IHP(Lgn + AtFNL{gn]) — P (Lgn + AtFNL[En] + Ate,.) “P"
(5.37)

As we have seen by applying Theorem 4.2 to the discrete filtered equation, " satisfies the uniform
bound

15" < e (5.38)

with 5 < pp — Ay;nAt with A; = 1/2 + ce. Thus, by restricting p and p in Eq. (5.37) by 0 < p <
P < wpg ~ A;nAt, Lemmas 5.1 and 5.3, together with the estimates (5.10)-(5.12) can be applied to
show that

1-w

T £,
|[e;l|p<c 5( A +1‘At)' (5.39)

Putting everything together shows that (iv) is satisfied with K = c,¢ (At +ht g 4 m) Again,
¢, is a generic constant depending only on w and z(e,t).
Finally, it remains to show that (v) is satisfied. We have

An+1[u] - An[ﬂ] m DFNL[ n+1] .DF { 7+l D_l ] DFNL{ n] -i" DFNL[Sn - D_lu]
+AH(eft — €f) + h(el T — b ) + eft! — €. (5.40)

It is not difficult to show that
|At(elt ~ ef) + h(ert! — el ) + e}t — e}, < AtK (5.41)
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with p < wpy — AAt with A = max(},,s/2) and A;, K defined as above with a redefined constant
¢,. The estimate of the remaining terms in Eq. (5.40) is more subtle. A straightforward estimate
of these terms yields an estimate of the form

&

Hpr. [ntl _ DR Iert _ p-lyl n_pt
e NLps ] T LENLLS D7 luj-D [s" — D™"uj]

i 4
< |IDFwg[s™) = DFyy[s"|ll, + | DFsls"* = D7 u] - DFyg[s" — D7']|lp

e DR,
YL i© §F P et avL

(5.42)
c n n
< S IDst = D
c,EAL
< =2 5.43
I Al (5.43)

for p < p' < wpg — A(n + 1)At provided that {jull,» < 1/2. See below and in Appendix 4 for further
details. Estimate (5.43) implies that Cy = ¢,e. However, it is not difficult to see that this estimate
is not good enough to obtain convergence. This is because in the evaluation of A from Eq. (4.8), the
terms Ry/R, R/ R, and Cy/ R, must be evaluated, Since R — 0 as the numerical parameters vanish
(for convergence), we must similarly have R, — 0 in order to obtain a finite estimate of A. But,
this implies that c,e/Ry — o0 as ¢,,¢ are independent of the numerical parameters. Clearly, it is
important, to obtain a finite estimate of A, that C; — 0 as the numerical parameters vanish as well.
This difficulty arises because the terms involving u and s™*!, 5™ have been handled in (5.42),