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six decades ago. The classical results by Walsh describe the distribution of the inter-
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and converges rapidly for analytic functions within the region bounded by that curve.
The algorithm of this paper is based on the solution of an integral equation, very
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Algorithm and the Fast Multipole Method. The performance of the algorithm is
illustrated with several numerical examples
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1 Introduction

The theory of interpolation in one dimension has been thoroughly studied and under-
stood, and can be easily extended to two dimensions when domains are rectangular.
In practice, interpolation in the complex plane has been normally performed on local
grids, and can be a tedious procedure globally. It is often desirable to have simple and
efficient interpolation algorithms when a function is to be interpolated from a curve in
the plane to the region bounded by that curve, such as in the evaluation of electrostatic
or magnetostatic field near a boundary, or the velocity field near a vortex sheet in fluid
mechanics (see [2, 13, 16]).

In fact, there exist classical results by Walsh (see [17]), describing distributions of
the interpolation points on curves, upon which the Lagrange interpolation is stable and
converges rapidly. However, the results by Walsh do not provide a numerical procedure
for the determination of the nodes of such interpolation formulae.

In this paper, we present a numerical algorithm for the construction of such inter-
polation points based on the solution of an integral equation, very similar to those of
potential theory, by the combination of the Conjugate Gradient Algorithm and the Fast
Multipole Method. The algorithm requires O(N %) operations asymptotically, where N
is the number of nodes in the discretization of the given curve.

The paper is organized as follows. In Section 2, we restate the relevant mathemat-
ical results from [17], and in Section 3, we summarize the numerical techniques to be
used in this paper. The actual numerical algorithm is presented in Section 4, and the
performance of the algorithm is demonstrated with numerical examples in Section 5.

2 Mathematical Preliminaries

In this section, we summarize several classical results from [17] to be used in the rest
of this paper. Throughout the paper, we will assume that I' is a Jordan curve in the
complex plane @€, and is parameterized by its length «y : [0, L] — R%. We will also assume
that £ C € is bounded by T', and D is the complement of £ so that D = C'\{.

2.1 Green’s Function

For a fixed w € D, a function G(z,w) : D — R! is called the Green’s function of D with
the pole at w if it satisfies the following three conditions.

1. The function G(z,w) is harmonic in D\w



2. For any z € T,
G(z,w) =0. (1)

3. The function ¢ : D — R! defined by the formula

o(z) = { G(z,w) — loglz —w| for w # oo, @)

G(z, 00) — log |2} for w = o0,
is harmonic in a neighborhood of w.

For convenience, the Green’s function with the pole at infinity G(z,00) will be de-
noted either by G(z) or G(x,y) with z = (z,y).
Lemmas 2.1 and 2.2 below are well-known and their proofs can be found in [17].

Lemma 2.1 Suppose that G is the Green’s function for the domain D with the pole at
infinity, and n is the interior normal derivative of D. Then

% e)> 0 )

for any (z,y) e T.
Consequently, the function u : [0, L] — R! defined by the formula

t 3G

u(t) = [ s-ds (4)

s @ monolonically increasing positive function on T,

Lemma 2.2 Suppose that G is the Green’s function for the domain D with the pole at
infinily, and n is the interior normal derivative of D. Suppose further that (zg,yq) s
an interior point in Q, and for any (z,y) € D,

r= \/(33 = zq)? + (¥ — yo)*. (%)

Then
G(z,y) = logr—C+ O(—i—) for (z,y) — oo, (6)
oG 1 1
Eg(m,y) = + O(r_z) for (z,y) — oo, (7)

where C is a constant.



2.2 Approximation by Polynomials

Theorem 2.1 below states that any function analytic in & can be well approximated by
polynomials, and the approximation possesses the so-called maximum convergence (see
below). The proof of the theorem can be found in [i7].

Theorem 2.1 Suppose that the function ® : D — € maps the domain D conformally
onto the exterior of the unit circle so that ®(co) = 0o0. Suppose also that for any positive

real r > 0, the locus C, is defined by
C, = {z € € such that |®(2)] =r}. (8)

Then for any analytic function f : Q — €, there exists a real number 1 < p < oo
such that f is analytic at every point interior to the locus C, defined by (8). For any
real R < p, there exists a sequence of polynomials {p,} withn =0,1,2,--. such that for
each n, the polynomial p, is of degree n, and for all z € Q,

M
12 =Pl < 2 (%)

where M is a constant dependent of R and independent of n and z.
Furthermore, for any R > p, there exist no polynomials p, such that (9) is valid for
all z € Q0.

The sequence of functions p, satisfying (9) is said to converge maximally to function
f on domain 2.

2.3 Interpolation by Polynomials

It is well-known that for a given set of distinct points 2y, z7,- -+, 2, in € and a set of
values fo, fi,*, [, there exists a unique polynomial p, of degree n such that for all
1=0,1,---,n,

Palz) = fi- (10)

The interpolating polynomial p, is given by the Lagrange interpolation formula
Pulz) =) fi - Li(2) (11)
=0
where L; is the i—th Lagrange polynomial defined by the formula

noz ez

Li-z = g 12
() H,z,-—zj (12)
i#

with 1 =0,1,---,n.



It is clear from Theorem 2.1 in Section 2.2 that any function f analytic in ) can
be approximated by polynomials. In fact, f can be approximated by interpolating
polynomials as well, and the distribution of interpolation points plays a crucial role in
the convergence of the approximation (see Theorem 2.2 below).

We will first introduce the concept of uniform distribution of points. Suppose that
20,21, 22, * » 2, € I, and function u : [0, L] — R! is positive and non-decreasing. Then
the set of points z; is called uniformly distributed on I" with respect to u if the set of
points z; divides I' into (n+1) equal parts with respect to the increments of u.

Theorem 2.2 below is the principal analytical tool of this paper. It describes the
distribution of stable interpolation points on any given curve in the complex plane.
Theorem 2.3 states that uniformly distributed points on a given curve can be obtained
via a conformal mapping. The proofs of Theorems 2.2 and 2.3 can be found in [17].

Theorem 2.2 (Walsh [17], 1935) Suppose that f is a function analytic in (1. Suppose
also that z((}n),z{n},u-,z,(l“) are (n + 1) points on T, and p, denotes the interpolating
polynomial of degree n to the function f on the (n+ 1) points {z,(n}}.

Then the sequence of the interpolating polynomials p, converges uniformly to f on
domain Q if and only if the set of interpolation points {z,gn)} is uniformly distributed on
I' with respect to the function u defined by (4). Furthermore, if the sequence p,, converges
to f uniformly, then il converges mazimally.

The well-known Fekete points z, 2, +, 2,, which maximize the modulus of the
Vandermonde determinant

n

Vn(w{)?wl’"'iwn) = H(wl _—wj) (13)

iy=0
1<
are uniformly distributed with respect to (4). Moreover,

[Li(2)| <1 (14)

for any z € 2, and 2 =0,1,2,---,n (see [17], for example).

Theorem 2.3 Suppose that & maps the domain D conformally onto the exterior of the
unit circle so that ®(oo) = oo. Suppose also that wy,w,, -, w, are equally spaced on the
unit circle with respect to its arc length. Then points z; == ®=1(w,;) fori =0,1,2,--,n
are uniformly distributed on the boundary I' of domain D with respect to the function u

defined by (4).



2.4 An Integral Equation

In this subsection, we establish an integral equation for the computation of the normal
derivative of the Green’s function of the domain D) on the boundary I', which in turn
will enable us to find uniformiy distributed interpolation points on I

Theorem 2.4 Suppose that G is the Green’s function for the domain D with the pole
at infinity, and n is the interior normal derivative of D. Then there exists a constant C
such that

%_—- /:L log |z — w]c;(w)dsw =C, (15)

and

ziw / Y o(w)ds,, = 1, (16)

for any z € T', where ds is the arc length on T, and
oG

:g,

Proof: Suppose that (zg,y,) is an interior point of Q, and for (z,y) € D,

r=1/(z — 20)? + (¥ — %)% (18)

Suppose also that C(R) is a circle of radius R with center (zq,ye) such that ¢ C(R),
and E denotes the region bounded by both ' and C(R).

By the assumption that G is the Green’s function for the domain D with the pole
at infinity, we immediately have

o

(17)

Gz,y)=0 forall (z,y)eT. (19)

Consequently, we have

oG oG dlogr
]Piogrg;:ds -jr(log r-égﬂG o )ds. (20)

Observing that functions logr and G are harmonic in the domain ), we apply the
Green’s formula (see [4], for example)

dv  Ou
fE (uAv — vAy)dedy = /6E (’r,a-g;;~ — v%) ds (21)
to functions logr and G on the region E ¢ D, and obtain
oG Odlogr oG dlogr
log r—on -— ds = e — ds. 22
fr(ogran @ on ) s L{R)(iogran ¢ In ) * (22)
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Combining (20) and (22), we get

oG dlogr
flogr—ds fc( (1 gro — G )ds. (23)

Combining (23) with (6) and (7) in Lemma 2.2, and letting B — oo, we obtain

/ log r—ds = 2xC. (24)

That is, ac
1
o9 jrlog |zg — wlg(w)dsw =C (25)

for any z, = (zg, ¥o) € O\I'. Now, (15) follows from (25) and the fact that the logarithmic
potential is continuous in R2.

The proof of (16) is nearly identical to that of (15). The only difference is that the
Green’s formula (21) is applied to functions (¢ and ¢ = 1 rather than functions G and
logr. B

Remark 2.1 Due to Theorem 2.4, the function u defined by (4) assumes the form

t
u(t) mf o(w)ds (26)
0
where o is the solution of the integral equation (15) satisfying the condition (16).

It is well-known that the integral equation (15) has a unique solution satisfying
condition (16) (see [7], for example). For a given right-hand side C, the equation (15)
has a unique solution provided that the capacity of I' is not equal to 1 (see 7], for
example). If the capacity of I' equals to 1, the problem is easily remedied by simple
scaling.

Remark 2.2 Obviously, the right-hand side C of equation (15) can be chosen to be equal
to 1, since the location of the uniformly distributed points on T is independent of C.

3 Numerical Preliminaries

In this section, we describe numerical techniques to be used to solve the integral equation
(15). The Nystrom algorithm (or quadrature method) is used to discretize the integral
equation, and the Conjugate Gradient Method is used to solve the resulting linear sys-
tem. At each iteration of the Conjugate Gradient Algorithm, the Fast Multipole Method
(see [5, 3]) is used to compute the matrix-vector product in O(N) operations.



3.1 Corrected Trapezoidal Rules For Singular Periodic Functions

An n-point quadrature rule @}, on interval [a, b] is defined by the formula
Qu(f) = 2_wif(z;) (27)
=1

where f : [a,b] — R! is an integrable function, and {z;} € [a,}] and {w;} € R! are the
quadrature nodes and weights respectively. A family of quadrature formulae {(),} has
a rate of convergence p (p > 1) if there exist a constant M > 0 and an integer N > 0
such that for all n > N,

Q) - [ fledial < - ()

The quadrature formula (27) will be referred to as the n-point Trapezoidal quadrature

rule if the quadrature nodes and weights are chosen so that for: =1,2,.--,n,
b
vi=at(i= 1), (29)
n
b—a
= w, = 30
Uy W, M ’ ( )
and fort =2,-.-,n—1,
_b-ua (31)
wp = ——.

The n-point trapezoidal quadrature rule will be denoted by T.,.

It is well-known that for a periodic function with p continuous derivatives, the trape-
zoidal rule T,, has an order of convergence p + 1. For singular functions, more sophis-
ticated quadratures have to be used (see [14, 8], for example). Recently, high order
corrected Trapezoidal rules have been introduced in [8] for singular functions. We will
need the quadrature rules of [8] in a very special case, and below is a description of one
such rule. We refer the reader to [8] for both the detailed theory of such rules, and for
the description of many other situations where such quadrature rules are applicable.

Suppose that I' is a Jordan curve parameterized by its length v : [0, L] — R?. For
notational convenience, we will extend the mapping - into a periodic mapping R! —» K2,
by postulating that

(= + L) =4(z) (32)
for any integer j and z € [0, L]. Suppose further that for some integer n, the curve v is
discretized into n equispaced nodes, that is, points z; € R! are specified by the formulae

z;={i—1)h (33)

with A= L/n, and i = 0,%1,£2,. .-



defined by

for any z € [0, L}. Tor notational convenience, we will also extend the function ¢ into a
periodic function B! — R! such that
¢(z +jL) = ¢(z) (35)

for any integer j and z € [0, L].
We will be considering integrals of the form

L
Ja) = [ loglai - ol 4(=)ds, (36)
for all i = 0,41,42,---, where ds is the arclength on I'. The integrals (36) will be

approximated by quadrature rules of the form

J(z) ~ To(fi) + b ijaj (8(zi2) + b(@_irs)) + b (log h+ 25 — 2 zij aj) é(z;), (37)

i=1

with appropriately chosen ¢, and «;, where the function f; is defined by the formula

filz) =loglz; — x| - ¢(z). (38)

The following theorem can be found in {8].

Theorem 3.1 Suppose that T' is a Jordan curve parameterized by its length v : [0, L] —
R?, and function ¢ : [0,L] — R! is a function defined on the curve I' and possesses
ot least 2p continuous derivatives. Then there ezist coefficients oy, oy, +++, «,, and
a constant ¢, such that the quadrature rule (37) has al least 2p order of convergence.
Furthermore,

P
Yoai<l (39)
k=1

for all integer p > 1.

Remark 3.1 In Theorem 3.1, the constant ¢, is independent of the order of corrections
p, and for double precision, it assumes the following value

¢ = —0.918938533204673, (40)

We refer the reader to [8] for the detailed calculation of g,
For p = 2,3,4,5,10,15, the coefficients o; of the quadrature rule (87) are given in
Tables 10-15.



3.2 The Nystrom Algorithm

Given an n-point quadrature formula (,, with nodes {z;} and weights {w;}, the Nystrom
algorithm discretizes the integral equation

[ K@0)- 9(0)it = 5(a) (41)

as a system of linear algebraic equations

n

YowK (z;,x;)b(x;) = f(=;) (42)

i=1

with ¢ = 1,2,-.-,n. If (41) has a unique solution, then for a reasonable choice of
quadrature formulae and sufficiently large n, the system of equation (42) also has a
unique solution. Furthermore, under fairly broad assumptions, the convergence rate of
the Nystrém algorithm is one order lower than the convergence rate of the quadrature
formula if the condition number of (42) is proportional to n.

In order to apply the Nystrém algorithm to the integral equation (15), we decompose
the left-hand side of (15) into two parts

/OL log |z — wlo(w)ds,, = I{z) + J(z), (43)

where the integral operators I and J are defined by the formulae

L z—w
I(z) x/o log ) = (w) o(w)ds,, (44)
7a)= [ ogy(z) ~ - )l o(w)ds, (45)

It is easily observed that the integrand in (44) is a ¢F—function of w for any z € I if the
curve v € ck. Thus, the integral operator [ in (44) will be discretized by the trapezoidal
quadrature rule. On the other hand, the integral operator J in (45} will be discretized by
the corrected Trapezoidal rule (37). The discretization of integral equation (15) results
in a system of the linear equations of the form

(An + B = b, (46)

where b= (1,1,---,1)7, and for ¢, = 1,2,---,n

An(4,§) = hloglz, — 2], (47)
B,Gj) = ha for Ji — j] = b, (48)
Bn(i,j) = 0 for ,3 “J[ 7é k: (49)

with k = 0,1,-.+,p, and h = L/n.



Theorem 3.2 below states that the coefficient matrix in equation (46) is negative
definite, and the condition number of the coefficient matrix is proportional to the size
of the matrix. Its proof can be found in [8].

Theorem 3.2 Suppose that the domain §) is contained in a unil circle, and K, =
A, + B, is the coefficient matriz of equation (46). Then there exists an integer Ny > 1
such that for all n > N,, the matriz K,, is negative definite. Furthermore, there exists a
constant ¢ such that

k(K,)=c'n, (50)

where k(K,,) is the condition number of K.

3.3 Application of Matrices A, and B, to Arbitrary Vectors

The Fast Multipole Method (see [3, 5]) provides an O(n) scheme for the evaluation of
gravitational and electrostatic potentials involving n particles. Hence, it can be used to
apply the matrix A, defined by (47) to any vector in O(n) operations. On the other
hand, the matrix B, contains (2p + 1) - n elements, and thus the application of B, to
any vector requires only O(n) operations.

3.4 Conjugate Gradient Method

The conjugate gradient method (see [6, 15}, for example) can be used as an iterative
method for the solution of a system of linear equations of the type,

Ax=b (51)

where b € RB», and the matrix A € R»** is positive definite. Suppose that x; is the
approximate solution at the i—th iterate, then

k(A) — l) ’ (52)

[lx — x:fla < 2l — %o} a (m

where k(A) is the condition number of the matrix A, and the A—norm of vector y € R»

is defined by
Iylla = /¥y" Ay. (53)

Combining (52) and Theorem 3.2, it is easy to observe that for any given precision ¢,
the conjugate gradient method requires O(+/n) iterations to solve equation (46). On the
other hand, each iteration can be achieved in O(n) operations by the Fast Multipole
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Method (see Section 3.3). Thus, the Conjugate Gradient algorithm combining with the

Fast Multipole Method has an asymptotic time complexity O(ngz') for the solution of the
integral equation (15).

4 Description of the Algorithm

Following is the description of the algorithm for the construction of uniformly distributed
interpolation points on any given curve I'.

1. Resample I" into equispaced nodes with respect to the arc length by using periodic
splines under tension as the basis for interpolation.

2. Apply the Conjugate Gradient Method to solve the linear system (46) resulted
from the discretization of the integral equation (15). At each iteration of the
algorithm,

¢ apply the matrix A, defined by (47) to the vector via the Fast Multipole
Method,
e apply the matrix B, defined by (48) and (49) to the vector directly.

3. Find uniformly distributed points on T' with respect to the function u of (26).

e Integrate the solution of the linear system (46) to obtain u of (26).

¢ Obtain the uniformly distributed points by applying the inverse interpolation
technique.

Remark 4.1 We use the 4-th order inverse interpolation to oblain the stable inter-
polation points after solving the linear system (46). For high precision, the inverse
interpolation technique can be replaced by Newton’s method.

Remark 4.2 Integral equations of the first kind are in general to be avoided whenever
possible because of potential ill-conditioning.

Although the condition number of the system ({6) grows in proportion to its size n,
it is safe numerically to use the first kind integral equation (15) in the construction of
stable interpolation points due to the following two facts.

11



o It can be eastly observed that interpolation process is insensitive to small pertur-
bations of stable interpolalion points. Thus, it is often sufficient to obtain the
solution of the integral equation (15) with low precision for the construction of
stable interpolation points.

e Since (15) is a first kind integral equation, one would expect that the number of
iterations required in the Conjugate Gradient Method would grow with the number
of nodes N in the discretization. However, our numerical experiments in Section
5 indicate that the number of iterations required does not grows with N (see Tables
1-9). One obvious ezplanation is that the projection of the solution of (15) onto its
high-frequency eigenfunctions is very small, so that equation (15) behaves almost
like a second kind integral equation when the right-hand side of (15) is constant.

Remark 4.3 It would be natural to attempt to use Theorem 2.8 to find the uniformly
distributed interpolation points via explicitly constructing the conformeal mapping of the
region D onto the exterior of the unit disk. A very saiisfactory algorithm for the con-
struction of such mappings can be found in (9, 12]. However, it is somewhat difficult to
use this approach due to the so-called crowding phenomenon (sec [12], for ezample). In
our experiments, the approach of this paper turned out to be more stable than that based
on the explicit construction of the conformal mapping.

5 Numerical Results

We have implemented the numerical algorithm described in Section 4 for the construc-
tion of uniformly distributed interpolation points on a curve, and performed numerical
experiments on a Sparc-2 workstation. Tables 1-9 contain results for several examples.
The first column of each table contains the number of nodes in the discretization of the
given curve. The second column contains the CPU time of the algorithm. The third
column contains the number of iterations taken by the Conjugate Gradient process. The
fourth column contains the L2 norm of the residual of the numerical solution of (46),
that is, ||(A,+ B, )% — bl|5. The fifth and sixth columns contain the absolute and relative
errors of the solution in L2 norm respectively. For each example, we also present a set
of figures depicting the distribution of interpolation points.

Remark 5.1 Following the standard practice, we have estimated the errors by the dif-
ference between two successive discretizations of the same problem.
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Example 5.1 An ellipse with the aspect ratio 2 : 1. The numerical results are summa-
rized in Table 1 and illustrated in Figure 1.

Example 5.2 An ellipse with the aspect ratio 3 : 1. The numerical results are summa-
rized in Table 2 and illustrated in Figure 2.

Example 5.3 An ellipse with the aspect ratio 10 : 1. The numerical resulls are sum-
marized in Table 8 and illustrated in Figure 3.

Example 5.4 A smile-shaped curve. The numerical results are summarized in Table 4
and illustrated in Figure 4.

Example 5.5 A snake-shaped curve. The numerical resulls are summarized in Table 5
and dlustrated in Figure 5.

Example 5.6 A spiral-shaped curve. The numerical results are summarized in Table 6
and illustrated in Figure 6.

Example 5.7 A star-shaped curve. The numerical resulls are summarized in Table 7
and illustrated in Figure 7.

Example 5.8 A tank-shaped curve. The numerical results are summarized in Tables
8,9 and illustrated in Figure 8.

The following observations can be made from Tables 1-8.
1. The time requirement of the algorithms grows linearly with the number of nodes

N in the discretization,

2. The number of iterations required in the Conjugate Gradient method is almost
independent of the number of nodes in the discretization.

13



Remark 5.2 Table & is given here to illustrate that the number of iteration is propor-
tional to log ¢ for any given precision €.

Remark 5.3 QOur ezperiments show that the interpolation based on the poinis oblained
at very low precision produces very satisfactory resulls.

Remark 5.4 Our numerical experiments indicate that the norms of the Lagrange poly-
nomials are at most slightly greater than one in these exzamples.

6 Conclusions

An algorithm is presented for the construction of stable interpolation points on arbi-
trary curves in the complex plane, upon which the Lagrange interpolation is stable and
converges rapidly within the region bounded by that curve. The algorithm is based
on the solution of an integral equation by the combination of the Conjugate Gradient
Algorithm and the Fast Multipole Method.

Our numerical experiments indicate that the CPU time of the algorithm is roughly
proportional to N rather than the theoretical estimate O(N %), and the number of itera-
tions required in the Conjugate Gradient Method is almost independent of the number of
nodes N in the discretization. Furthermore, the interpolation based on points obtained
at low precision produces very satisfactory numerical results.
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Residual

Nodes | CPU time (sec.) | Iterations Absolute error | Relative error
32 0.5 8 0.90E-08 0.10E-03 0.46E-04
64 1.0 8 0.67E-06 0.52E-07 0.88E-08
128 2.2 8 0.47E-06 0.13E-08 0.16E-09
256 4.4 8 0.33E-06 0.62E-09 0.53E-10
512 8.5 8 0.24E-06 0.55E-09 0.33E-10
1024 17.5 8 0.17E-06
Table 1: A 2:1 Ellipse
Nodes | CPU time (sec.) | Iterations | Residual | Absolute error | Relative error
32 0.5 8 0.67E-06 0.59E-02 0.18E-02
64 0.9 9 0.24E-06 0.45E-03 0.95E-04
128 2.1 8 0.81E-06 0.13E-08 0.19E-09
256 4.6 8 0.57E-06 0.53E-09 0.56E-16
512 9.0 8 0.40E-06 0.21E-09 0.16E-10
1024 17.5 8 0.29E-06
Table 2: A 3:1 Ellipse
Nodes | CPU time (sec.) | Iterations | Residual | Absolute error | Relative error
64 2.2 20 0.47E-08 0.26 E+00 0.64E-01
128 6.8 26 0.92E-08 0.29E-01 0.50E-02
256 16.9 29 0.71E-08 0.31E-03 0.39E-04
512 37.2 28 0.94E-08 0.61E-04 0.54E-05
1024 59.8 27 0.79E-08 0.72E-07 0.45E-08
2048 107.3 27 0.56E-08

Table 3: A 10:1 Ellipse
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Nodes | CPU time (sec.) | Iterations | Residual | Absolute error | Relative error
64 2.3 29 0.65E-10 0.50E+00 0.12E400
128 10.0 37 0.91E-10 0.95E-01 0.16E-01
256 274 48 0.63E-10 0.25E-02 0.29E-03
512 67.4 51 0.95E-10 0.20E-05 0.16E-06
1024 135.8 50 0.16E-09 0.43E-07 0.25E-08
2048 255.7 50 0.16E-09
Table 4: A Smile-shaped Curve
Nodes | CPU time (sec.) | Iterations | Residual | Absolute error | Relative error
128 7.2 31 0.87E-09 0.18E4-00 0.28E-01
256 30.6 40 0.48E-09 0.73E-02 0.79E-03
512 69.3 43 0.65E-09 0.10E-04 0.79E-06
1024 140.0 42 0.74E-09 0.97E-05 0.52E-06
2048 239.8 40 0.91E-09 0.18E-06 0.69E-08
4096 461.8 40 0.63E-09
Table 5: A Snake-shaped Curve
Nodes | CPU time (sec.) | Iterations | Residual | Absolute error | Relative error
128 11.5 37 0.53E-09 0.19E4-00 0.14E-01
256 27.8 41 0.94E-09 0.74E-02 0.38E-03
512 64.7 46 0.96E-09 0.19E-04 0.70E-06
1024 134.1 45 0.91E-09 0.54E-05 0.14E-06
2048 267.3 44 0.84E-09 0.53E-06 0.97E-08
4096 508.1 43 0.59E-09

Table 6: A Spiral-shaped Curve

17




Nodes | CPU time (sec.) | lterations | Residual | Absolute error | Relative error
64 1.7 23 .56 E-G9 0.95E+00 0.12E+00
128 6.8 29 0.66E-09 0.21E4-00 0.18E-01
256 21.7 40 0.32E-09 0.69E-02 0.43E-03
512 44.0 40 0.79E-09 0.80E-05 0.35E-06
1024 90.8 40 0.56E-09 0.18E-07 0.55E-09
2048 177.9 40 0.40E-09
Table T: A Star-shaped Curve
Nodes | CPU time (sec.) | Iterations | Residual | Absolute error | Relative error
64 21 28 0.63E-09 0.33E4-00 0.85E-01
128 9.1 35 0.67E-09 0.95E-01 0.17E-01
256 26.5 45 0.38E-09 0.48E-02 0.61E-03
512 57.2 45 0.85E-09 0.54E-05 0.49E-06
1024 108.0 45 0.72E-09 0.191-06 0.12E-07
2048 213.5 45 0.42E-09
Table 8: A Tank-shaped Curve
Nodes | CPU time (sec.) | Iterations | Residual | Absolute error | Relative error
64 1.6 21 0.64E-07 0.33E+00 0.85E-01
128 6.4 25 0.71E-07 0.95E-01 0.17E-01
256 17.8 30 0.93E-07 0.46E-02 0.59E-03
512 39.2 31 0.64E-07 0.44E-03 0.40E-04
1024 66.0 28 0.93E-07 0.82E-03 0.52E-04
2048 126.7 27 0.72E-07

Table 9: A Tank-shaped Curve

18




Interpolatton polats: m=10G

o5 L el

0.0+

Interpolatton points: m=300

0.5 |

0.0

-t.0

Figure 1: Interpolation points on a 2:1 ellipse
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A o |
-.4325921322794724E-01
0.3202680042388491 £-02

B

Table 10: Coefficients for the Corrected Trapezoidal Rule (35): p=2

l @ |
-5024307342079858 E-01
0.59962331 19529027 £-02
- 4655906795234226 E-03

SOl B = [{%.

Table 11: Coeflicients for the Corrected Trapezoidal Rule (35): p=3

| o l
-.5462714010179898E-01
0.8188266460029230E-02
-.1091885919666338E-02
0.7828690501786438E-04

W | QO BD| | [

Table 12: Coefficients for the Corrected Trapezoidal Rule (35): p=4

| @; |
-.5763224261186158E-01
0.9905467894350714E-02
-.1735836457536894E-02
0.2213870245446548E-03
-.1431001195267904 £-04

O Wb | QO RO = s,

Table 13: Coeflicients for the Corrected Trapezoidal Rule (35): p=>5
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| a; |
-.6471094753809971E-01
0.1471321624569456E-01
-.4244313571022683E-02
0.1219746091263614E-02
-.3156154921336350E-03
0.6890800654569580E-04
-.1195656336479857E-04
0.1529459820049702E-05
-.1274231726028842E-06
0.5166969831297037E-08

OO~ S| O} k| LI DO = [

[y
)

Table 14: Coeflicients for the Corrected Trapezoidal Rule {35): p==10

] Q; |
-.6745551530557688E-01
0.1689299430945688E-01
-.5726331418330602E-02
0.2079973982393914E-02
-. 7402722529894 703 E-03
(.2463303649153491 E-03
-.7432197238379932E-04
0.1984260034353227E-04
-.4580836910292848F-05
10 0.8916453665775555E-06
11 -.1418448246845963E-06
12 0.1767037741742959E-07
13 -.1614096203394717E-08
14 0.9602551109604562E-10
15 -.2789306492547372E-11

OO T | ) i Lo O =[S,

Table 15: Coeflicients for the Corrected Trapezoidal Rule (35): p=15
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