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Abstract. We will analyze multilevel additive Schwarz preconditioner based on non-nested mul-
tilevel meshes. Under some assumptions on the relations between neighbouring mesh levels, we prove
that the condition number of the preconditioned system can be bounded by O(L?). Here L is the
number of levels of non-nested meshes.
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1. Introduction. In this paper, we are mainly interested in applying multilevel
additive Schwarz algorithms to solve linear systems of equations arising from the finite
element discretizations of second-order elliptic problems based on non-nested meshes,
For the nested meshes, there have existed a well developed theory for the multilevel
algorithms. Algorithms of the kind was initially proposed by Bramble et al. {2], known
as BPX algorithm, and a little later, was also independently discussed in Zhang [11].
It was proved there that the condition number of the BPX operator is bounded by
O(L?) where L is the number of mesh levels. Later on, Oswald [9], Bramble and
Pasciak [3] and Xu [10] improved the previous estimates of the condition number of
BPX algorithm and showed that the condition number is O(1). Dryja and Widlund
[7] and Zhang [12] used the additive Schwarz framework to discuss a class of multilevel
algorithms with BPX as its special case and proved that the condition number is O(1)
in these more general cases.

Unlike the nested meshes, for non-nested meshes the spaces of functions on the “
coarser ” meshes are no longer subspaces of that on the fine mesh. Therefore, both
the theory and the algorithms developed for the nested meshes need to be modified
to accomodate the present non-nested meshes. In this paper, we will construct the
multilevel additive Schwarz preconditioner on the non-nested meshes and show that
the condition number of the preconditioned system can be bounded by O(L?), under
some assumptions on the relations between neighbouring mesh levels. Some of these
restrictions on the meshes are: the fine and all the coarser meshes are assumed to be
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quasi-uniform, each coarser element contain sufficiently many finest elements, and all
the boundaries of coarser domains are matching to the boundary of the fine domain.

2. The formulation of the problem. We consider the following self-adjoint
Dirichlet elliptic problem: Find u € H}(£2) such that

a{u,v) = f(v), Y v € Hy(Q)

where O C R%(d = 2,3) is a open convex polygonal (d=2) or polyhedral (d=3) domain
and

alu, 'v)_/ ( Z a,,éju gv +buv)de, fe H Q).

1,71

We will solve the above variational problem by finite element methods. Suppose we
are given a family of triangulations {7"} on (, our finite element problem is stated

as:
Find u* € V* such that

(1) a(ut,v*) = f(o*), ¥ " € V,

Let A = (a(¢;,#;)) with {¢;} being the nodal basis functions of V. A is called the
stiffness matrix, It is well-known that A is ill-conditioned, and our aim is to construct
a good preconditioner M for A by the multilevel additive Schwarz method to be used
with the preconditioned conjugate gradient method.

3. Multilevel additive Schwarz preconditioner. In this section, we will give
the expression of the multilevel additive Schwarz precondioner. We do not suppose the
triangulation 7" is obtained by the successive refinement of a coarse triangulation on
Q.

Let {T'}£, be a series of quasi-uniform triangulations on {2, they are not neces-
sarily nested. h, denotes the maximum diameter of all elements in 77. 77 is the finest
triangulation on which the finite element space V*, and our finite element problem (1},
is defined. We consider only the matching boundary case, i.e. we assume

(A1) Q' =U,cn7=8, 0<I<L.

Let {' be the set of nodal points of the triangulation 77, V' C H}(Q') the piecewise
linear finite element space corresponding to the trlangulatlon T {¢l,i € Qr} the set
of usual nodal basm functions of V', For | = L, we use Q = {2F,

Let {QL}%, be an overlapping domain decomposition of €, which is obtained by
extending a given nonoverlapping subdomain covering {2}, of ' such that

(A2)  dist(00,80L) > 6, 1<k<N,.

6, is called the [-th level overlapping size. Here we assume that the boundary of QL
aligns with the ones of the {-th level elements in 77, and

(A3)  Any point in  is covered by a fixed number of subdomains in {3

Let QL = Q4 n Q' be the set of nodal points in Q.
By II, we denote the the standard nodal value interpolation operator from Vto
VI 0 <1< L—1,and I; the matrix representation of I, : V! — V*. Further, by E} we
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denote the matrix representation of the zero extension operator from V{ = VI N H{(Q})
toV!, 0<I<L, 1<k<N,.

With the above preparations, we can give the expression of the multilevel additive
Schwarz preconditioner M for A:

M= L (By (4 (EDT) 17

L N
=0

—

k=1
where Al is the stiffness matrix corresponding to the subspace V{ C V', i.e.
Ai: = a(qb:)qb;')i,jeﬁ,;e:ﬂ SILL1<kL N,
4. Estimation of the condition number &(M A). To evaluate x(M A}, one
needs to estimate the upper and lower bounds of the generalized Rayleigh quotient

(AM Au,u)
(Auw,w) -~

It is more convenient to express the above quotient in terms of the operators. To
do so, for 0 < 1 < L,1 < k < N;, we define projections Py : V¥ -+ V{ such that
Plu € Vi and

a( Pyu, ¢}) = a(u, Iagi), ¥V ¢} € Vi,

we denote P} = I, P!, whose matrix representation is I, (Ef,(AL )‘l(E}c)T) LTA. Let
P=YF M Bl Then it is readily seen that

(AMAu,w) _ a(Pu,u)
(Au,uv) — alu,u)’

We need two more assumptions to estimate the above Rayleigh quotient:

(A4) FEach clement T belonging to the coarser triangulation 79,0 <[ < L -1,
contains some fine elements belonging to 7% such that the measure of those
fine elements is proportional to the one of the coarse element 7.

(AB) (b + hy_1)/8 < C, where 6, is the I-th level overlapping size defined in Section 3,
and h; and h;_, are the maximum diameters of all elements in the I-th and
(I — 1)-th level trangulations 7' and 7', respectively.

In order to evaluate the condition number k(M A), we first give some lemmas. The
first lemma states that the standard nodal value interpolation II, is H! stable and
has the L? optimal approximation when it is restricted to the coarser finite element
subspaces. The proof of the lemma was given in Chan et al. [4].

LEMMA 4.1. For any coarse triangulation T', 0 <1 < L —1, and any u € V', we
have

|Ta el
o — Myullo

leu’ll:

<
S Ch i’tﬁh.

The second lemma states the properties of the Clément interpolation operator; see
Clément [6].



LEMMA 4.2. For any triangulation T', 0 <1 < L, let Ry : L*(Q) — V' be the
Clément interpolation operator, then for any u € H3(Q),

(2) Rufy < Cluly,
(3) Hu—Roulle < Chyluls.

Moreover, let V! C H*(Q) be a higher order finite element defined on T and R; :
L*(Q) — V' be the corresponding Clément interpolation operator, then Ry satisfies (2)
and (3), and

[Ryuly < Cluly.

For each space V', 0 < | < L — 1, which is not a subspace of VI, we define
V! = I,V'. Obviously, V! is a subspace of VE.

Define P' : H{(Q) — V' to be the orthogonal projection with respect to the scalar
product a(-, ).

LEMMA 4.1. For any v € V¥, we have

v — Plollog < Chyl|v||an

Proof. We use Nitsche’s trick to prove Lemma 4.1. First we show that for any
u € HY(Q)n HR), there exists a & € V' such that

(4) Hu — @[laa < Chllullz g
Let @ = I, R'u € V!, we have
lfa— @0 = |Ju~ Riullan + [[Rv — Riuflon+ [1R'w — IR ul| 0.

By using Lemmas 4.1 and 4.2, we obtain |ju — R'u|ls 0 < Chi|t|gsq), and

”Rr"" - ﬁ'r""”a,n < lu- Rru”a,n + lu — T'Qi“Ha,n < Chylula,g,
R — IR |l < [[Ru— IR w|un+ [[TaR e — IR ulla g
< CiR'ulgay + IR — R'ullq
< ChifR'ulp o < Chylulyg,

which proves (4).
To prove Lemma 4.1, for any v € VI, let w € Hi(§2} be the solution of the
following Dirichlet problem

a(w,u) = (v~ Plv,u), ¥ u e Hi(Q).
and w, be its finite element solution in V* such that
a(wy,u) = (v— Plv,u), Vue V.

Since § is convex, we know w € H*(Q)N H5(S2). Hence from the previous result, there
exists @' € V' such that

lw = B'||e,0 £ Chilwls,a,
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and by the standard a priori estimate, cf. Grisvard {8],
lwll2,0 < Cllv = Plvfloa

Thus from the last two inequalities and the definitions of w and w,, we obtain

Ho—Pollia = a(w,v— Pv)=a(w—w,,v- P'v)
< Hw = wyllaallo — Plollag < llw - @'{laallollan
< Chyfwly,allvllan < Chiflo = Plolloallolao.

Then Lemma 4.1 follows immediately.
LEMMA 5. Forv' € V! and s = 0,1,

(5) [v'], 0 < Clid'|, 0

Proof. Obviously, we can write,

ia= D Wi

TeT!

We know from (A4) that the meausre of those elements which are contained in 7 € 7*
is proportional to ||, Note that on these clements, II,v' is equal to v/, so we derive
by noting that »' is linear on each r,

W, = elrl < C T e lrt] < ClLE.,
Ther
which gives (5) with s = 1.
Next we prove (5) with s = 0. Using Lemma 4.1, the proved (5) with s = 1 and
the inverse inequality of the finite element functions,

o'llsa < 110 = To'llo,0 + Maollo,e < CR o'l + 0 llon
Ch th’Urh’n + “H};UIH(},ﬂ S C“Hhﬁznﬁ.ﬂ’

IA

that proves (5) with s = 0. O

With the previous preparations, we are now in a position to prove our main theo-
rem:
THEOREM 5.1. Under the assumptions (A1) - (A5), we have

1 (AM Au,u) _ a(Pu,u)
C(1+1L)~ (Aw,u)  a(u,u)

<C(1+ L)

Proof. We first estimate the upper bound. Note that
af{ Plu, Piw) = a(u, 1, Piu) = a(u, Piu).

Therefore we have

L N
(AMAu,u) =Y a(Piu, Pu).
I1=0 k=1
5



Let O} = Urere, rnni 247, we obtain by Cauchy-Schwarz inequality that

|Plullia = a(u, Piu) = aoy (u, Pru)

Cllulla,oy 1 Piullea < Cllullsoll Prullen,

IA

that implies || Piulls.0 < Cllullaor.
From above we get

L N
(AM Au,u) =) a(Piu, Plu) < C(1+ L)l{ull?q,

=0 k=1

where we need assume that any point in ) can be covered by only a finite number of
subdomains {O}}p,.

Next we estimate the lower bound of the condition number. To do so, we need
a proper decomposition for any finite element function u in V¥ which is defined as
follows:

2’ = Plu,
ut = PNy~ u®),

u? = Pu—u’ —u'),

u’:Pl(umuu-—ul—---—ur_l),

uL:PL(u—uﬂ—ul—---—-uL_l):u—uO—ul——---—'u,L_}.

It is readily seen that «' € V' and

v=ul+ul 4+ 4 ul

Let w' = u — Yoi_g o, then ' = Plw' and
W = =t — Prlgl = gl g

By the definition of P!, we derive for 0 <1 < L that
u'llo0 < lw'llan < ' Hlga £ - < Hlwtllan < [lullea

and by Lemma 4.1,

{P ! |lo < [Jw']lo + [[w' ~ Plw'l]
”wf—l _ P!—lwl—lno + le _ lerl]o

Clhi_y + by)|u|la g

llllo,0

1A

Since ! € V!, we can write ' = II;v', v € V. We further decompose v'. It is

known, e.g., Bramble et al. [1] that there exists a partition {#};., of unity for &

related to the subdomains {§2}} such that 320, #i(z) =1 on Q' and for 1 < k < N},

(6) supp 0, C QL UIQ, 0< 6, <1, |[Vhllpey S C 67
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Using this partition of unity, we can decompose v' as
N N
vl = Zﬁ,(ﬂiv’) = Zvi, vk e Vi,
k=1 k=t

where II; is the standard nodal value interpolation related to V. This gives
L L N
U = Z'H.I = ZZHhvk

=0 I=0 k=1

By the standard proof, cf. Xu [10], Chan and Zou [5}, we have

Ny
Do lokllza < C(10'l o+ (1/8D)]19']30)-
k=1

Thus, we deduce from the last two relations and the Cauchy-Schwarz inequality that

a(w,u) = rinia(u, ) = gﬂ::\i}a(ﬂﬁu, vg)
L N 1/2 , L N 1/2
< Zza(Pku Plu) ZZ a(vg, vi)
(H]Lk iv, ) 1(2 oLk k ) 1/2
< (%;a(ﬁu Pku)) (;ﬂ DO 4 |02 )) ,

and further by using Lemma 5 and (6), we obtain

) < (XS abnn) (g(ﬁleu'lﬁﬂu’ﬁ))m

=0 k=1

IA

_ L 1/2
CalPuyu)'*( (a6 + DI'R))

=0

C(1 + D) 2a( Pu, u)¥(u"1]) 2,

IA

that implies
au,u) < C(1 + L)a(Pu, ),

which concludes the proof of Theorem 5.1.

REMARK 1. We are not able to improve the condition number bound in Therorem 5.1
to be independent of the number L of mesh levels as for structured meshes (cf. Zhang
[11],Oswald [9], Bramble and Pasciak [8]). In fact, it is still an open question whether
this independency of the mesh level number is true for unstructured meshes. [
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