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Abstract

Global existence of measure solutions to the equations of pressureless gases
with sticky particles is shown in one space variable. In higher dimension,
the equations are related to the general Hamilton-Jacobi equation.

Introduction

There has been a recent interest for the model of pressureless gases with
sticky particles. This model can be described at a discrete level by a finite
collection of particles that get stuck together right after they collide with
conservation of momentum. At a continuous level, the gas can be described
by a density and a velocity fiels p(t, ), u(t,z) that satisfy the mass and
momentum conservation laws

O+ V. (pu) =0,

Oupu; + V. (puu)) =0, Vi=1,..,4d.

This system can be formally obtained from the usual Euler equations for
ideal compressible fluids by letting the pressure go to zero, or from the
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Boltzmann equation by letting the temperature go to zero. The model was
introduced by Zeldovich [Ze],[SSZ] as a gravitational model. Important pa-
pers have been devoted to its geometrical [Ar] and statistical properties, for
which we refer to {Si],[SAF]. Bouchut [Bo] has pointed out the mathematical
difficulties to get a rigorous derivation of the model. In the present report,
we discuss the existence of global solutions to the initial value problem by
two very different approaches.

1) The first approach, due to the second author, starts from the elementary
discrete sticky particle model and leads to a direct and elementary proof
of convergence when the number of particles goes to +oo. This provides
a global existence theorem of measure solutions to the system of pressure-
less gas dynamics for rather general initial conditions. In addition, a useful
stability result is obtained for the discrete sticky particle model.

2) The second approach, due to the first author, deals directly with the
continuous model and provides a simple derivation of he model, at the
multidimensional level, from the general Hamilton-Jacobi equation

B,V + ©y(8,7) = 0,

In the special case considered in {Ze], when the initial density pq is constant
and the initial velocity field is potential, namely vy, = V&, for some scalar
potential @y, it is confirmed that the simpler Hopf equation

1
80 + 5|VO[? =0,

is sufficient to describe the model, as already explained by Zeldovich [Ze].
However, the proof uses a geometric result on convex hulls, for which we
give only a rather naive proof that needs unclear strong smoothness as-
sumptions on the initial data. A complete proof would probably require
geometric measure arguments. This is why, we do not claim that a fully
satisfactory global existence theorem comes out from this second approach.
In the one dimensional case, the Hamilton Jacobi equation can also be con-
sidered in the kinetic framework of [LPT]. This leads to an alternative
formulation of the sticky particle model which seems also of interest.

The paper is organized in two parts.

Part 1 is devoted to the discrete approach. The convergence of the dis-
crete solution is proved when the number of particles goes to -+oo which
shows that the pressureless gas equation have global measure solutions for
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general prescribed initial conditions (subsection 1.1). A stability result is
obtained for the discrete solutions (subsection 1.2) and generalizations are
finally considered (subsection 1.3).

Part 2 is devoted to the continuous approach. A suitable characterization
of the model is first decribed (subsection 2.1). The derivation from the
Hamilton-Jacobi equation is stated (subsection 2.2) and the particular case
of a constant initial density is discussed (subsection 2.3). Then follows a
geometric proof of the derivation (subsection 2.4). The one dimensional
kinetic approach is finally introduced (subsection 2.5).

1. The discrete approach to the sticky particle model

At the discrete level, we consider a set of sticky particles, that is particles
which go straightforward with constant velocity until they hit other parti-
cles. Then they remain together (they get stuck) in such a way that their
impulsion remains constant through the shock ([Bo]}. This way appears to
be successful in order to prove global existence of solutions. In fact we will
discretize the initial data and approximate p(0,z) by Dirac measures. We
then have to let the number of Dirac masses go to infinity. To describe the
limit, we immediately see that even if the initial data are smooth, singular-
ities (that is concentration of p) can occur in finite time (which is related to
the formation of shocks in Hopf’s equation), so we have to look as in [Bo]
for a time continuous positive measure p (with no additionnal regularity)
and a pdt measurable function u defined pdt almost everywhere

p(t, z) € C([0, 00, M (R)) 1)

u(t,z) € L>(]0, oo XR, pdt) (2)

Theorem 1..1 Let p%(z) be a positive Borel measure on R, and u®(z) be
a pO- almost everywhere defined bounded function, of bounded variation on
every compact interval, then there exists

p(t, :t) € C([O, 00{: M+(]R))}

q(t, ) € C([0, oo, ML (R)),
with
lq] < [u0]pegoyp  aee int, (3)
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which allows us to define u(t, z) € Lo(pdt) by

q(t, ) = u(t, z)o(t, z)

such that :
p(0,z) = p°(z) (4)
Q(Ga .'12) = POU‘O(‘,L.)’ (5)
and
atp + a:npu = 0

Ohpu + d pu* =0

in the sense of the distributions.

In the first subsection, we prove Theorem 1..1. Then in the second subsec-
tion, we prove a stability result, before investigating other systems in the
last part.

1.1. Existence of a global solution

Let us first assume that p® has a compact support, in [~ A, A] for some
A > 0 (in fact this is not a restriction, since the velocity u will be uniformly
bounded in time, see the remark at the end of the section 1.1.3.).

1.1.1. Discretization of the initial data

If u9(x) were continuous, we could simply discretize p°(z) by

where i € Z and n is the index of discretization. But as u® is only of bounded
variation, we have to be a little more careful. First let us set M = |u®{po0(,0).
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Let V(z) be the total variation of u® between —A and . V is an increasing
function, with V(—A) = 0. We then define the nt* discretization. For that,
let

J
y; = sup{V(z) < S7V(4)}
with 0 < j < 2n. We define y? for 2* <j < 2+l by

-2
2n+1

y;":—A+2A

Some y? can be equal, so let (97 )i<icm(ny the ordered list of y?, with
m(n) < 2n, where m(n) = Card {y;.‘,l < j < 271} and where the gp
are all distincts.

We approximate (p®, u0) by Dirac masses {“particles”) in the following way
: we consider 2m(n) particles PP(0) (1 <1 < 2m(n)) defined by

o if 7 =21 — 1, P(0) has initial position z?(0) = (Fr +97,)/2,
initial mass m? = po(]ﬂ?_l, ?;’?[)
initial velocity —v?(0) = (g, gr ) fme
if mt # 0 and 0 else,

o if ¢ =2[, 22(0) = i7,
mi = p°({§}'})
vP(0) = ¢°({7}})/m}
if m? # 0 and 0 else.

So we approximate p9 by

2m(n)
pr(0) = ) miben)
1=1
and ¢° by
2m(n)
¢"(0) = > mpvP(0)dzn()

i=1



BRENIER-GRENIER : STICKY PARTICLES

Lemma 1..2
pr(0) — p® in M (R) (6)
£(0) = 0 in M) )

Proof By construction, we have sup, |7, (0) —27#(0)| < 24/2~, which goes
to zero as n — 400, so the proof of Lemma 1..2 is obvious, d

1.1.2. Sticky particles dynamics

We sa;y that P;(t) defined by (m;(t), z;(t),v;(t)) has a sticky particles dy-
namics with initial conditions (m;, z;,v;), if

m;(t) = m; for all ¢ > 0,

[ ] ZE,({]) = x; a,nd 'Ui(O) = u;

3

e the speed of P, is constant as long as it meets no new particles : if
on [ty,t,], #;(t) = z;(t) implies z;(t,) = x,(t;) for all j, then v,(?) is
constant on [¢;,1,],

e the speed changes only when shocks occur : if at ¢y there exists j such
that z,(to) = =;(to) and x;(t) # x,(t) for all £ <1y then

i fai(to)=ri(to) T3V3 (t0—) ®)
2/ {to)=x:(to) T

vi(tet) =

Notice that only a finite number of shocks can occur because particles re-
main together after a shock.

We have immediately (we have only to deal with a finite number of particles)

Lemma 1..3 Let P;(m;(0),z;(0),v,(0)} (1 <4 < n) be given, then there
exists a unique solution P(t)(m;(t),z;(f),v;(t)) of the sticky particles dy-
namics problem. Moreover, let

oty ) = 3 mibus (9)

i=1
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0(t,9) = 3 mint)iego (1)
and v(t,z) defined only in z;(t) (1 <1< n) with
U(tami(t)) = U:’(t)a (11)

then (p,q,v) solves the system pressureless gas dynamics with initial data
p(0,2) = Ly, ) and ¢(0,x) = Zmw;i(0)é,,(q)-

(For the second part of this Lemma, see [Bo]).

Remark if jv;(0)| < M for every i, then |v;(t)] < M for every i and for all
£> 0.

1.1.3. Limit of pm and ¢»

Let Pr(t) be the solution of the sticky particles dynamics problem with
initial data P?(0) (defined in 1.1.2.). Let

pr(t,z) = Zm?5m;=(t) (12)

and
¢ (t,z) = 3 mPvE(t)8ong- (13)

Proposition 1..4 There ezist p € C([0, 0o[, M (R)) and ¢ € C([0, oo, M(R))
such that, for a subsequence ;

pr—p in D'(}0,00[xR), (14)
g* —q in D0, oo[ xR}, (15)
and O,p + 0,9 = Q.

Moreover |¢} < Mp, where M = [u®|;«, so we can define by the Radon-
Nikodym Theorem the velocity u, defined pdt almost everywhere, and bounded
by M, by

g = pu.
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Proof Lett > 0 and ¢ > 0, and let ¢ € C{[0, +oo[xR). Since |z?(#') —
z?(t)| < M|t' — 1|, because the velocities are bounded by M,

| < (), 6> — < (1), $ > | < MIt' — t]1.8 1, (16)

and similarly for ¢». Moreover p(t,R) = p*(R) < +oo and |g|(¢,R} <
[0 100 pP (R}, s0 p7 () and ¢»(t) are bounded measures, uniformly in time.
The Proposition is then straightforward. By taking the limit of 8,p"+0,¢™ =
0, we get
dp+0,9=0.
As p and ¢ are continuous in time by (16), we recover the initial data p°
and pPu?:
p(0,2) = P(z) and g(0,2) = P(@)u(a).

Remark Since the particles move with bounded velocities (bounded by
M = |u®], ), we see that the values of p and g on [—A, A} at a time £ only
depend on ¢% and p° restricted to [-A — Mt, A + Mt].

So in the general case (p° of unbounded support), the former proof can be
fullfilled, provided we first localize properly the initial data.

1.1.4. Discontinuities of the velocity

Let p® be compactly supported in [—A, A]. We will introduce for ¢ > 0
and ¢ > 0 the set P¢ of points where the velocity of the particles is “e—
discontinuous” in any neighbourhood :

Pe = {z [ Vn,¥Ym > 0,3In > m and 1,7 with
z—q <ap(t) <zi(t) <z+n, and lwp(t) — vi(t)] > €}

The aim of this section is to prove

Proposition 1..5 Up o the extraction of a subsequence, the cardinal of Pg
is bounded by 8A/[(et) for allt > 0 and all € > 0,

The points y; of P¢ will need a special treatment when we will take the
limit of p»(v?)?, because the velocity is not continuous near these points.
If p(t,{y;}) = 0, it is of no importance, but we have to take care of points
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y; such that p(t, {y;}) > 0. If almost all the mass of p comes from particles
which have the same velocity (up to ¢), it is always possible to take the
limit of pn(v®)? (it is the case when in the limit n — +oo, a Dirac mass
meets a diffuse measure of different speed). But if we can find two groups
of particles of non vanishing total masses and whose velocities differ from
more than ¢, it is no longer possible to take the Limit of p(v")? (it is the
case when two Dirac masses meet). These points will be called meeting
points.

Lemma 1..6 Let Pi(t) (1 <1 < n) be a set of particles with sticky dynamics
Bi(t) = (my(t), z;(t),v; (). Let 1,5 € {1,..,n}, and t > 0. If z,(t) < x4()
then A

vi{t) < v(t) + % (17)
and  vi(t) > v;(t) — fz—(t)”;—“”(” (18)

Proof Let I = {i',zy(t) = z;(t)}, and J = {j/,z,(t) = z;(t)}. Let ip €[
such that V¢ € I, z(0) > z,,(0), and j, € J such that for all 7/ € J,
z(t) < z;,(t). Then v; (1) is decreasing and v, (t) is increasing because i
only have shocks with particles on its right, and j, with particles on its left.
So z;(t) — tvy(t) > w;,(0), and z;(t) — tv,(t) < z;,(0). So

z;, (0) + t; (1) < z4(t) < w;(t) < 25 (0) + twy(2),

that is
> $io(0) - wio(g) > —24

B/

v;(t) — vi(t) ,
so v;(t) < v,(t) + 24/t

On the other side, let ¢y € I such that ¥4 € I, z;4(0) < z;,{0) and j; € J such
that 2;,(0) > z; (0) for all j* € J. v, (t) is increasing so z;(t) —tv;(t) < z;,(0)
and z,(t) — tv;(t) > =;,(0), but =, (0) < z; (0), so

and v;(t) — v;(t) > (z;(t) — ;())/L. O

Remark This Lemma is a discrete way to write that the total variation of
u is decreasing, and that the spacial derivative of u is less than 1/¢, which
1s a well-known result for Hopf’s equation.

Now let B > 0. Let us split [~ B, B} in N intervals of equal length.
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Lemma 1..7 As n — +oco, the number of intervals I such that there ez-
ists two particles in I whose velocities differ from more than € is bounded

uniformly in n by 2A/et, if N > 2B/et.

Proof It is a more elaborated version of Lemma 1..6. Let I be an interval
such that there are two particles P* and PP in I with [vP(t) — vr(t)] > e
Let us assume that z7(t) < 27(t).

Is is impossible that v}(¢) < v?(t) because v}(1} < v () +(z;(t) —2i(t))/t <
vr(t) + 2B/Nt < vr{t) + ¢ (by (18)) and N > 2B/et.

So vP > vl But with the same notations as in Lemma 1..6, at a such couple
(Pp, Pr), one can associate the interval [x;,(0), z,,(0)] whose lenght is more
than e, in [—A, A]. At two different couples, we associate two different
intervals, so the number of such couples is less than 24/et. O

Let ¢ = 2-™ with m an integer, let r > 0 be a positive rational, and
N > 2(A + Mr)/re be an integer. At ¢ = r, let us consider the intervals
I, = [-A~ Mt +2kA/N,—A — Mt +2(k+2)A/N], with 0 < k < N(2A +
2Mr)/2A. By Lemma 1..7, the number of such intervals in which there
exist two particles whose velocities differ from more than ¢ is bounded by
4A/et. So, up to the extraction of a subsequence, one can assume that this
number converges, to «, with a < 4A/et, and that there exists exactly o
intervals I ,.., I such that for all n large enough,

{ky, oo b} = {k, 30,4, 27(t), 23(1) € Iy, and |o2(t) — v} (t)] > €}

Up to a diagonal extraction, we can do this for all r > 0 and all N, and all
m (e = 2-m). We denote again by PP the extracted subsequence.

Lemma 1..8 For all €, for all t > 0 and for all N > 2({A + Mt)/[te, there
exists o < 8A/te and {ky,..., k,} such that

{k1 - ka} D {k, 30,5, 27(2), 27(t) € Iy, and lor(t) — v;l(t)l >e}

for n large enough

Proof Just use that if two particles P and P’ at time ¢ are separeted by a
distance d and have velocities which differ by more than ¢, then they steem
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from particles at time # < ¢ at a distance less than d + M(# — 1) and which
velocities differ by more than £/2. il

Roughly, Lemma, 1..8 says that the number of jumps of size bigger than ¢
in the velocity v™ is finite and bounded uniformly in n. More precisely, we
deduce from Lemma 1..8 that the cardinal of P is less than < 8A4/te, which
ends the proof of Proposition 1..5.

1.1.5. Meeting points

Let € > 0 be fixed in this section.
Definition 1..9 A point (t,2) is a meeting point if

o p(t,{z})>0

e there exists v and €,,,,, > 0 such that, for allp > 0 and all N > 0,
there exists n > N, with

M > Epass (19)
el () Ele—na+n], vl () >vte

and

Z ML > Epgssr (20)

aP(t)efz—nztn), vF{t)<v—e

We then say that (t,x) has a meeting mass greater than €,,,,,.

Proposition 1..10 There is af most a countable set of meeting points.
In fact, we will prove Lemma 1..11 which is a little more precise.

Lemma 1..11 Let ¢, > 0 be fired. At each meeting point (t;,z,) of
meeting mass greater than €,,,,, one can associate a square Ry . such thal
there is no other meeting points of meeting mass greater than e, ... in Ry 4,

11
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By letting € to zero, we easily obtain Proposition 1..10.

mass

Let us turn to the proof of Lemma 1..11. It is a play with barycentres. Let
(to, 2o) be a meeting point, and v as in Lemma 1..11. We have by (19,20),

P(tﬁ, {mﬂ}) > 2€muss > 0. (21)

There exists 7; such that
Emﬂ'.ss
plto, [Zo — 201, 2o + 2m]) < p(to, {zo}) + 1 (22)

So, for n large enough,

Emass E'm.a,ss
P(to, {-'30}) - T < Pn(tm [zo — 1,20 + 7?1]) < P(t(}a {mu}) + i (23)

Now let n, > 0, with 5, < n,/2, and 5, < 7, /4[v|g«. For n large enough,

mass

gmass 6
P(toa {3’0}) B < Pn(tm [% = Tlgy Lo + ’72]) < P(tog {330}) + i

Let us assume that (,z) with |z — 2o} < 5, and ¢, <t < {5+ 29, satisfies
the assumption of Lemma 1..11. If ¢ = ¢;, as by (22),

Ema,ss

4: 3

plto, [Zo — 2m1, 20 + 2} \ {20}) <

we see that necessarly z = z4. So f; < t <1y + 2n,. Let v be given by the
definition of a meeting point, and let 7 > 0. Let

I, = {ifle2(t) — ol < m,o2(t) > v+ €},

and
I_ = {if|e?(t) — | <m0t} <v-—e}

We have : for all N, there exists n > N with

Z m:l > Emﬂ.?s a'nd Z m? > Smassl
el el

Let G,(I,,¥) be the barycentre of the particles I, at time {’. As particles
¢ € I, collide only with particles j which are in I, between t' = 0 and
t =, the total impulsion of the particles of I, remain constant through

12
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the shocks and the point G.{I,,%') has a constant velocity between ¢ = 0

and ' =, so

G (I, to) <z +n—(v+e)(t—1)

and similarly
Gr(f——atﬂ) >T—n - (U - 5)(t - ta):

so there exists I, CJ  and I’ C 1, with
smﬂ-ss .
> me > 5 and z™t,) < G,(Iy,t) Viell,
iell

and .
m? > =2 and @3 () = G (I_,t) Viel'.
i€l 2

For n small enough, we have from (24, 25),
G, (I_,t5) — G, (I1,tg) > —2n + 2e(t — to) > e(t — to)-

So we get from (26,27),

E Emass

p™(tos [zo — My 2o + M) \ [0 — %(t — tg), o + 2(15 —t4)]) > 5

which is in contradiction with

£ £ Eimass
p(ty [zo ~ 21y, To + 2m] \ [0 — E(t — 1o}, 2o + Z(t —t)) < ——.

4

for n large enough.

1.1.6. End of the proof of Theorem 0.1

(24)

(25)

(26)

(27)

(28)

(29)

It remains to study pn(v")2. For that, let ¢ € D(R% x &). We want to take

the limit of

[t @)t e) = [ d [ ot 20 )80 )

(30)

for the whole sequence v™, so we will no more extract subsequences of v” in

this section. Let € > 0 be fixed till the end of the section.
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As| [ pr(t, 2)(vm)2(t, 2)g(t, )| < |Blrep®([—A, A])M?, it is sufficient to take
the limit of | [ p*(t,z)(v*)2(t,z)¢(t,z)| at times ¢ such that there is no
meeting point at this time, by Proposition 1..10 and by Lebesgue Theorem.
So let £ be fixed in what follows.

We will at first deal with the points of P¢. The set Pf has a finite number
of elements yy, ..., y,, with p < 8A/te.

— If p(t,{1;}) = 0, then there exists an interval I; = [y; — &;,y; + 6] with
p(t, [y; — 26, y; + 26,]) < e/2p. We have

lim sup p™(t, I;} <

n—o0

3

b~ Y

so if ¢ € D(I,), .
| O] < o u?

for n large enough, and
2 ()2 — uld 2_8 M?
| [ orwmyé - [ oteyrdl < (31)

— I p(t,{y;}) # 0, let ¢’ < &/100(M + 1), and I; be an interval centered
on y;, with

plt, 1) < p(t, {w: )1 + &), (32)
Let ®» € D(I;) be a positive function, less or equal 1, with ) = 1 on a

neighbourhood [y; — 1/, y;+7'] of y;. Let vr = [q(t)p/ [ ()9 ( p™{t)9 #
0 for n large enough), and v* — v = [¢{t)y/ [ p(t)¥ as n — oo. Notice
that v depends on I;, on 1 and on &, and is not directly linked to wu.

Let us prove that for 5 small enough and n large enough,

> m} < ep(t, {y:})- (33)

eFElyi—nwitnl, [P —v|>3e

For that, let
a= 71?1_5% %Ei, sup > ml. (34)
o (t) =z (t)| Smvf (8) 2 v+ 3e

If « > 0, then there exists 7 < 5’ such that for all N there exists n > N

with
o

|2 () =2 ()] <nul (£} >u+3e

14
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But, for n large enough, v, < v + €, so let
I_={ifa? € [y;—n,y; + nl,v} <v+e}

We have, by (32), Ticr. m? > 8p(t, {1:}), for some é > 0, which implies
(with (35)) that (¢,z) is a meeting point, which is not the case, so o = 0,
and similarly for the velocities less than v — 3¢, which gives (33).

Let us bound now u(t,y;) — u. For that, let ¢ be a positive continuous
function, bounded by 1, with support in J;, and with ¢(y;) = 1.

(v— 36)]9 (t)¢—Mep(t, {v:}) jq )¢ < (v+3e) fﬂ ¢+Mep(t, {y:}),
by (32) and (33). By letting n — oo, one obtains

(v~ 3~ Me) [ p(t)é < [ al)é < (v + 3¢ + Me) [ p(2)s,

50

v—3c - Me <ult,y;) < v+3e+ Me. (36)
Now we can bound | [ p»(v™)2¢ — [ pu?}, where ¢ € D(I,):
| [orpd—o [md) < > [mpd(ar) (o7 — )
ifzlelzi—na;+n]juf—v|<L3e
+ > Im7 (e} (vy? — v?)]

ifztelzi-mwitn],[vf—v|>3e

< 6eMp(t, [y (1 + &)1l + 4M2ep(t, {y;})|$lre

(by (32) and (33)), and
vz/ﬂ”&ﬂvzqug
and (by (36))
prvsz—/puzcgl < p(t, {g )2 — 2ty )8t )| + €'p(t, {3:})2M2 (4] 1

< plty {9:))lpe= (26 M? + B M + 26 M),

S0
| [ o= [ ot < ealt, () Bl C (M) (37)

15
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(where C is a constant which depends only on M), which ends the study of
the points of P¢.

Now let us look at [ = [—A — Mt, A+ M)\ (U;[;/2) where ;]2 is the
open interval with the same middle as [;, previously defined, and of hall
lenght. Let N > 0. [ is a union of closed intervals Jy,...J,. Let us consider
Jy = [a,8] to fix the ideas, and split it in 2N — 1 parts, JN, = [a + k(b -
a)/2N,a+ (k+2)(b— a)/2N], of equal lenghts (b—a)/N. Suppose that for
all N and for all m > 0 there exists n > m and ¢, j, k such that z7, 3% € J{‘fk,

and |v? — v7| > e. Then there exists a sequence :cf((;)), :n;’((:}) for some non
decreasing finction o such that

0% =50 > &

and
a(n) a(n)

|25y — Tim | = 05
and :cf(%) — 2 as n — oo.
Then, by definition ,  is in P¢, so in U,‘fz-/Q, which is impossible.
So AN > 0, 3m > 0, forall n > m, forall ¢, , &,
7,27 € JY implies [v} — v} <e. (38)
That is : the velocities of the particles are nearly continuous on I.
Let us consider Ji‘i forl1<k<N-1l,and1<:<gq.

— I p(t,{!‘\]’c) = 0, then for all ¢ € P(Ji“,’c),

f pr(v")24 — 0
and
/ pud =0,
50
| [y [ourdl < - (39)

for n large enough.
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— If p(t, JN) # 0, let pf, € D(J]) be a positive function, less or equal

one, let
o et T ()
Jo(t, I )¢ ()
and
LI

T Tt SR (2)’

We have that v — v and for n large enough, as the velocities of two
particles in JN differ at most by ¢ (by (38)),

(v —2e)p™ < ¢ < (v + 2)p™.

So, on Ji}:‘;c,

v—2 <u<v+2e, (40)
and, (by (38)}, for n large enough, for all particle P? such that z2(t) € I,

v—2e S vt} S vt 2. (41)
We will now bound | f pn(v*)2¢ ~ f pu?d|, where ¢ € D(J,).
| [remd = [l < [ gl - <de [ 54,
by (41). But [ p~§ < 2p(t, JN)|$lr for n large enough, and
fﬂ“v2$ - fpv"‘q3 as n — 00,
| [p2d— [ pwdl < 4eMplt, TN,
by (40), so
| [ o8 = [ pudl < 16eM1lzeeplt, T1) (42)

for n large enough.

We will now put all the convergence estimates {31,37,39,42) together to take
the limit of provn2,

17
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Let ¢ € D(R). We consider a partition of unity (¢;) with support in the
intervals I; and J;"fc We study | [ pn(£)(v™)2()dsid — [ p()u?(t)¢; | with the
help of the bounds above and we find :

limsup| [ p(O)(0")()éi6 — [ pt)udig] < ep(—A, ADI4]1=C"(MD),

(43)

(where C'(M) is a constant which depends only on M). We can then let
g — 0 to find that

zim [ormyre = [ e, (44)

8,(pu) + 8,(pu?) = 0 is now obvious, which ends the proof of theorem I..1.
]

Remark In fact, we can prove in the same way that for all ¢ € D(R), for
all ¥ continuous function on R,

lim [ o(,2)8(, 2007 2) = [t pb(ut ). (45)

T+ O0

In particular, the solution obtained is entropic {Bo.

1.2. A stability result

We will prove the following stability on sticky particles dynamics.

Proposition 1..12 Let F,(t) (1 <4 <n) and Pi(t) (1 < j < n) be two sets
of particles with “sticky” dynamics, such that

|20) — z;(0)] < e (46)
[vi(0) — v;(0)| < € (47)
m:;. =m; (48)
then
|(t) — 2;()] < € + et (49)

First we will introduce some notations.

18



BRENIER-GRENIER : STICKY PARTICLES

1.2.1. A barycentric Lemma

Let P(t) (1 < i < n) be a set of particles defined by their mass m;, their
velocity v;(#) and their position z;(t).

Definition 1..13

o Free barycentre : let J be a subset of {1,..,n}. We define the “free”
barycentre G;(J,t) by :

— its mass mg (J) = Xjerm;
— dts velocity vg ;(J,t) = (Cjer mivi(0))/(X;es m;)

— its position

¥ ;e m;%5{0)

za(Si1) = mg,;(J, 1)

+ t'UG’f(J, 0)

o and the “real” barycentre G.(J,t) by :
— its mass mg,(J) = mg (J) = 2jesm;
— its velocity vg,(J,t) = (Zjeq mv; () (Ejes m;)
— its position zg,(J,t) = (Z;es m;z;(1))/(Zses ™m;)

We have immediately
Lemma 1..14 Let J be a subset of {1,...,n}, let T >0

o if J is “isolated” till T that is if YVt < T, z,(t)

= z;{t) and j € J
implies 1 € J, then xg (J,1) = 2g ((J,t) for all t < T,

o if J is isolated till T and if J' C J, such that at t = 0, ¥Vj € J',
Vi e J\J', z;(0) < 2,(0) then zq,(J't) <z (J1).

To prove this Lemma, just use the conservation of the impulsion through

the shock.
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1.2.2. Proof of Proposition 1..12

Let 1 < i< n,lett >0, let I ={izi(t) = x2(t)}, let J = {5,F €
Iz%(t) = m;"(t)} Let J, .., J, be the equivalence classes of J with respect
to : 7 = 3" if and only if :c;.‘,'(t) = a:;."(t), such that if p; < p,, j € J,, and
j' € J,, implies 27'(0) < z7/(0).

If p = 1, either I = J, and thus as G,(P,1,1) = G;(P,1,t) because [ is
isolated and the same for P!, and as

!Gf(P',I,t) - Gf(P,.lr,t)I <e+et
fromn the assumptions, we have

|27 — 2| = |G, (P, [,t) — G(P, [,t)| <e+et

Or I # J. We then permute P and P’ (that is we consider I' = {#, z?'(t) =
ar(t)} = J, and J' = {5, € I,z3(t) = 22(1)}, and J},..J},). We then

i
have p' # 1, and we can follow the proof exactly as in the case p # 1.

Hp#1:I¢J. Let Jy=JyN1and J, =J, —J,. J; can be void, but for
all i,7,7 € J, and j € J, implies z'(t) < .’B;.'"(t).

mG,r(P‘) Jd,t) = ‘T"G,T(P: I,t) = (E:L(t)

and
'T’.G,f(P) Jd,t) > (ICG‘.,,(P, Jd,t) = .’L'?(t)

by Lemma 1..14. On the otherside,
2, (P', Jy,t) > g (P, Iy t),
by the same Lemma, but
|z (P, Iy t) — x4 (P, Jy )| <€ +et,

50
mG,r(Pra Jg,t) = ;E:L(f) —e—¢t

and by Lemma 1..14
o (P, Jy,t) > 2P (t) — e — et
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By similar arguments, one has

g (P, J,,t) <xM{{) + e+ et

Now
.’EG‘,,.(P", Ji,t) < a:?’(t) < SIIG’T(P', Jp,t),
0
lz2(t) — 2t (t)| <e + et
which ends the proof. O

1.2.3. Rate of convergence of the discretization

Let us go back to the discretization of section 1.1.1.. We again assume
that p® has its support in [—A, A], for some A > 0. When we go from the
nt* discretization to the n'® (with n' > n), we go from m{n) particles to
m(n') particles. So we want to link each particles of the n/®* discretization
to a particle of the n** which has nearby characteristics. Of course the
correspondance will not be injective.

So let Pr(mp,z7,v}) be a particle of the n** discretization. Then (with the
notations of 1.1.1.), at ¢ = 0, we have either z = yr for some 7 < 27! or
zr = (y? + y;?_l)/2 for some j < 2nt1,

In the first case (a7 = y7), if n’ > n, there exists j' such that y% = y?
and their exists a particle Pg}' with initial position Y It is easy to see that
vl = v;}' and m? = m% . This particle is unique and we set

t
L

In the second case, there exists 7; and j, such that y;?l' =y, and y;.‘; =y7
by construction. Forall particles Pg}' such that y;.‘; <y < y};’, we set

});'1," = 13:1
We have
Y. mi=mr (50)

ot —n_ D
'
T /P'., =P
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, 24
23 — 27l < 5o (51)

, A
o = upl < 202 (52)

because the total variation of u® between y? | and y7 is bounded by V(A)/2".

So at each particle of the n/®" discretization, we can associate a particle of
the nt* discretization satisfying (50,51,52).

So by Proposition 1..12, we have for all time {,

. 2A  2V(A

e(t) — an(o)] < 22 4 2, (59)
1 t on 271

which gives the rate of convergence of the approximation of p by p : for

all derivable function ¢, if n’ > n,

, 24 2V(A
6 [ ol < 810 Com 4 2L, (54)
and by taking the limit n — oo,
2A  2V(A
[ oo [ oral < 810 Ca + 2 (59

There is a similar convergence estimate for ¢* and q.

1.3. Extension to other systems
The same methods lead to the global existence of a “measure-valued” solu-

tion for two related systems : relativistic sticky particles and charged sticky
particles.

1.3.1. Relativistic particles
A Theorem similar to Theorem 1..1 holds for the following system
0ip + Oppv = 0 (56)
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0.Bpv+ B,pv* =0 (57)
where 8 = 1/4/1 — (v/c)? ( ¢ being the speed of the light).

In fact, we discretize the initial data in the same way, and we define “rela-
tivistic sticky particles dynamics” in an obvious way. The two key Propo-
sitions (1..5, 1..10) still hold. The corresponding Lemmas are just a little
more complicated because of the difference between impulsion and pv.

1.3.2. Charged particles

We consider the coupling between zero pressure gas dynamics and a Poisson
equation

Oip + 0ppv =0 (58)
dpv + 0. pvi=E (59)
8,E=p—p (60)

with j(z) € L}(R), and with suitable boundary conditions on F' like
e in the periodic case [ I =0,
e on B, lim,_,_ E(z)=0,or E(0) =0.

A Theorem similar to Theorem 1..1 holds provided that p®(R) < co.

To define the sticky particles dynamics, we have to take care of E, which is
not properly defined where there is a particle P;. So we set

B(e:) = o{E(wi-) + B(ait), (61)

which is just to say that P; does not interact with particles which are at the
same place. The main point is then that

Bl < o)+ [ 17] < oo, (62)

so the electric field is uniformly bounded and can be treated as a perturba-
tion. A Lemma similar to Lemma 1..6 holds (the bounds being differents
and more complicated), and Proposition 1..5 is true. It is easy to see that
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Proposition 1..10 holds too. Moreover there is no difficulties in taking the
limit of the electric field. So we can adapt the proof of Theorem 1..1 to this
case.

2. The continuous approach

2.1. A characterization of the continuous sticky particle
model

Let us label the particles by m € R¢, with position X(¢,m) at time ¢t > 0,
initial position Xy(m) and initial velocity Vo(m). We assume velocities
3,X(t,m) to be uniformly bounded. The density and momentum fields
plt,.) > 0, ¢ft,.) € R? are defined as Radon measures by :

[ 1@ott,d) = [ J(X(t,m)dm, V€ CUARS. (63

/f(:c)q(t,da:) = /atX(t,m)f(X(t,m))dm. (64)
The vector measure g¢(t,.) is absolutely continuous with respect to p(t,.)

and can be written as ¢{t,.) = u(t,.)p(t,.), where u(t,.) € Lo(R?, p(t,.))
can be seen as the mean velocity field of the gas.

;From definitions (63), (64), we get the continuity equation

O+ V.(pu) =0 (65)

in the distributional sense. Let us now define another vector measure

g,(t,.) = u,(t,.)p(t,.) defined by :

[ $@au(t d) = [ Vom)F(X(t,m))dm, V€ CHRY).  (66)
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It gives at (t,z) the total initial momentum of all particles located at z at
time ¢t. A crucial observation is that the sticky particle model is character-
ized by :

0, X (t,m) = u,(t, X(tv m)), a.e., (67)

which means that the particles having the same position moves together
at the same speed and their total momentum is the sum of their initial
momentum.

In the particular case d = 1, it is not a restriction to assume that Xy(m) is
a monotone non decreasing function and formula (67) is strongly reminis-
cent of the Lagrangian description (including the Rankine-Hugoniot jump
conditions) of the non-linear scalar conservation law

atM + 8:1:((1)0(M)) = 05

where ®(mn) is an integral of Vy(m) and the initial data = — My(x) is
the reciprocal function of m — Xg(m). The unique entropy solution of
this equation is a non decreasing function of z and its reciprocal function
X (t, m) precisely obeys (67). This will be shown in the next sections, in a
more general multidimensional setting.

2.2. Reduction to the general Hamilton-Jacobi equation

Assumptions on the data

We assume, in an essential way, that both X et Vj ate maps with potentials,
namely X, = V®,, V; = VO,, and @ is the dual convex function of a Ls.c.
convex function ¥, so that

Py(m) = sup (x.m — Yo(z)). (68)

zeRd

®, and ©,. The assumption on Vj is restrictive, except in the one dimen-
sional case. However, it is always possible (up to technical assumptions) to
consider a given initial density field p(0,.) > 0 as the image measure of the
Lebesgue measure dm by a map with convex potential @, characterized
as the dual convex function of the solution ¥, (in a suitable sense) of the
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Monge-Ampére equation detD?WU; = p(0,.}. For more details, we refer to
[Br],[Ca],[Mc]. For simplicity, it is assumed that © is bounded and

Bo(m) = s’

for large ||, which implies that pg(z) is constant and ug(z) vanishes, when
|z| = +o0.

Remark

The case of a finite number of particles can be recovered when ®, and
O, are piecewise linear on simplicial cells C,,, each of them corresponding
to a particle with initial position and velocity X .o, V,o. Then, assuming
that V; and X, are maps with potential requires the following compatibilty
condition : for each pair of neighbouring cells C,, Cp, X 0 — Xpo and
Vo — Vo must be colinear, which is a collision condition. This a severe
restriction on the data (except in the one dimensional case !).

The Hamilton-Jacobi equation

Let W = W(t,z) be the unique viscosity solution [Li] satisfying ¥(0,.) = ¥,
of the Hamilton-Jacobi equation

OV + 0y(V¥) =0, (69)
By the Hopf formula [BE]
U(t,z) = sup (z.m — @y(m) — tOy(m)). (70)
meRY
Let us set _
X(t,m) =V sup(z.m — V(¢,z}), (71)
zeRd
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which, geometrically speaking, means that X(¢,.) is the gradient of the
convex hull of function @, + {0;. Under regularity assumptions on @, and
© that will be detailed later, we get

Theorem 2..1 If the map X is defined by (70),(71), we recover the sticky
particle model (67) and the fields p el u satisfy in the distributional sense

Bip + V.(pu) = 0, (72)

Opu; + V.(puu) =0, Ve =1,..,d. (73)

2.3. The case of constant initial density and the Hopf
equation

Our result envolves a general Hamilton-Jacobi equation (69). However, as

indicated by Zeldovich [Ze], it is possible to reduce the sticky particle model
to the special Hopf equation

1
86 + Ve =0, (74)

in the particular case when the initial density p(0,.) is constant, namely

Xo(m) =m, ®y(m)= §|m{2 (75)
Indeed, we get from (70)
[m?
U(¢,z) = sup (z.m — — t0y(m)), (76)
meﬂd 2

thus L lep | ;

z , T—m

J( —¥(be) = inf (= +O(m))
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According to the second Hopf formula (see [BE]), the right hand is precisely
the unique viscosity solution ©(t,m) of (74) such that 8(0,m) = 84(m). A
further calculation shows that, as a matter of fact, VO(Z, ) is nothing else
than the velocity field u(t, z).

2.4. Geometric proof in the multidimensional case

In the multidimensional case, we use a geometrical proof based on the fol-
lowing lemma on convex hulls.

Lemma 2..2 Let |a, [ be a finite interval and (t,m) € {a, b] x R* — h(t,m)
be a bounded sufficiently smooth function. Let H(t,m) = 5%& + h{t,m) and
X(t,.) = Veonv(H(t,.)) (where conv denotes a conver hull). Then, there
is @ Borel vector function u(t,x) such that

8, X(t,m) = u{t, X(t,m)), p.p. (77)
and, for any test function f(t,z),

/ wlt, X (8, m))f(t, X (£, m))dmdt = f B,V H(t,m)f(t, X (t,m))dmdt.
(78)

Let us first show Theorem 2..1 from Lemma 2..2.

We have X (t,.) = Veonv(H(t,.)) where
H(t,m) = ®y(m) + 18y(m).

Thus
OV H(t,m) = VOy(m) = Vy(m).
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Lemma 2..2 shows that there exists u such that
8,X (t,m) = u(t, X (t,m))
and, for all test function f,
[ utt, Xt m) £, X (t,m))dmdt = [ Vo(m) (2, X (8, m))dmds.
By definition (63),(66), this is equivalent to
/ £t o)u(t, 2)p(t, de)dt = f F(t, 2)u,(t, 2)p(t, dz)dt.

Thus, the fields v and u, are p— a.e. identical. This shows that we have
recovered the sticky particle model, defined by (67). Moreover,

[ 2t 2)p(t, da)dt = f O,f(t, X (t, m))Vo(m)dtdm

= [ X m)Vim)didm — [ (95, X(t,m)).0X (1)) Vo)
=0— [(V£(t, X (t,m)).u(t, X (t,m)))Vo(m)dtdm
—_ / (V (L, )ult, @))u,(t, @)p(t, dz)dt
(by definition of )
__ f (V(t,).u(t, 2))ult, 2)p(t, dz)dt

(as just shown), which completes the proof of Theorem 2..1. Let us now
prove the geometric lemma 2..2.

Proof of the geometric lemma

We believe that the lemma can be proved without severe restriction on
H(t,m) by properly using the tools of geometric measure theory. Here,
we limit ourself to a very naive proof, where the structure of the convex
hull of H(t,.) is a priori supposed to be simple enough for most ¢, in a
sense that will be made precise socon. Since, in the case we are interested,
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H(t,m) = ®y(m) + tOy(m), this only affects the choice of data ®y and
O, in some generic class of smooth functions, as it is usual in singularity
theory [Ar], that we will not even try to characterize. Let us consider the
set

U ={(t,m) €la,b{xRY; H(t,m}> conv(H(t,m))}.
and the interior W of R¢ — U. Since H(t,m) = J%E + h(t,m) where h

is bounded and continuous, U is a bounded open set. Each slice U(t) =
{m, (t,m) € U} is either empty or is a countable union of disjoint open
(not necessarily connected) subsets Uy(t), k ranging from 1 fo K(f) < +oo,
such that in each Up(?)

Veonv{H(t,m)) = pi(t)

and the p, (1) € R¢ are distinct,.
We suppose that h is smooth enough so that almost every time ¢, belongs
to an open interval I such that, for all ¢ € I, the slices U(¢) and W({t) are
smooth, JU(%) is Lebesgue negligible in R¥, K (t} is finite and constant, the
pi(t) are smooth, the U,(t) have smooth boundaries, m — VH({,m) is a
one-to-one map between W (t) and a subset Z(t) of B¢ that does not contain
the p.(?).
For every t in I, we set J
u(t:m) = apk(t)

if z = p;(t) and

u(t,z) = O,VH(t,m)

if z € Z(t), where m € W(t) is uniquely defined by = = VH(t,m).
Almost every (tg,mg), with ¢, € I, has a neighborhood B such that ei-
ther (case a) B is contained in W, or (case b) B is contained in {(t,m}); t €

I, m € Ug(t)} for some k. In case a, we have X(f,m) = VH(t,m) and we
immediately get

8, X(t,m) = 8,VH(t,m) = u(t, X(t,m))
for all (t,m) € B. In case b, we have X(t,m) = p,(t) and, thus
d
X(t,m) = —
BX(t,m) = (0),
which, again, shows that

3X(t,m) = O, VH({E,m)=u{t, X(t,m))
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for all (t,m) € B. This proves the first part of Lemma 2..2. Let us now
compute u(t, ) more precisely. On the boundary OU,(t) we have

H(t,m) = conv(H(t,m)), VH(t,m)= Veonv(H(t,m)),

everywhere. For each t € I, p,({) satisfies

[ u(8) = VH(E, m)) gy (m)dm = 0

Indeed, by the Green formula
fU o (V(cono(H(t,m)) = VH (5, m))dm = 0,
Kt

since H(t,m) = conv(H(t,m)) on the boundary dU(t). Thus, we deduce

d
_/(Epk(t)_ath(t:m))lUk(t)(m)dm‘}‘ < Oly, y(m), pp(t) =V H(t,m) >= 0,

where < .,. > denotes the distributional bracket on I x R?. But, 9,1y, (y(m)
is supported by {(t,m), t € I, m € dU.(t)} where p(t) — VH(t,m) =
V(conv(H(t,m))) — VH(t,m) vanishes. So, we obtain

f (%pk(t) — 8,V H(t,m)) 1y, gy(m)dm = 0

which means that £p,(t) is the mean value of 8,V H(t,m) on Uy(t). Thus,
for all test function f(¢, z) compactly supported in [ x R%, we get

/ 8,X (¢, m) f(t, X (¢, m))dmdt = j O,V H(t,m)f(t, X (t,m))dmdt
— t, X(t L.

E/mEUk(t) dtpk 1t X(t,m))dmd

But, for all ¢t € I and m € U.(t), we have
X(t,m) = Veonv(H(t,m)) = p(t)

and y
o Gget) = O H(t,m)dm =0,

which implies

d

[ e OF (6 Xt m))dmds = | OV (L,m) [ (2, X (8, m)dmat
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and finally shows
] 8,X (£, m) f(t, X (t, m))dmdt = / 8,V H(t,m)f(t, X (t,m))dmdt,

which completes the proof of lemma 2..2.

2.5. A kinetic formulation in the one dimensional case

In the one-dimensional case, we can use the kinetic formulation of scalar
conservation laws as in [LPT]. Instead of dealing with Hamilton-Jacobi
equation (69), we deal with the scalar conservation law

BM + 0,(0g(M)) = 0. (79)

In this subsection, we assume that Xy{m) is defined on a bounded interval
[0, L] (which implies that here p, is compactly supported in [0, L] !}, is non
decreasing and has limit By (resp. Aq < By) when m goes to L (resp. 0).
Then we consider the inverse function m = My(z), extended by 0 for z < A,
and L for z > By, as the initial condition for (79). Notice that My(z) is
nothing but the integral from —oco to z of density p; ! For each t > 0,
the unique entropy solution M(t,z), is non decreasing and there are finite
numbers A(t) < B(¢) such that

0 < M(t,z) < L, Yz €]A(t), B{t)[

M(t,z) =0, Yo < A(t), M(t,z)=L, Yz > B(t).

Thus, we can define m € [0, L] — X(¢,m) € [A(¢), B(t)} as a non decresing
function by setting

f(t,z,m) = HM(t,2) —m)H(m), Y(z,m)e Rx[0,L].  (80)

where H denotes the Heaviside function. Following {LPT}], we know that f
satisfies the kinetic equation

0uf + Vo(m)0,f = Ot (81)
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where Vy(m) = O/ (m) and g = p(t, z,m) is some nonnegative measure. We
believe that this formulation can lead to an alternative proof of global exis-
tence. Let us show, for example, how easily can (78) be recovered without
geometric arguments. Let us consider A(t) and {(z), two smooth nonneg-
ative compacty supported function in £ > 0 and z € R, respectively, and
1p(m) a smooth nondecreasing function on [0, L}. ;From (81), we get

< 8f + Vo(m), f, h()((z)y(m) >< 0,
where < .,. > denotes the distribution bracket, wich leads to
0>1= I(h,Cﬂf)) =1+ I,

where

- [ RO (m) (@ - X(t,m))dtdwdm,
— [ B¢ b(m) Vam) H (e = X (¢, m))dtddm.
We have
= - [ ) f C(y)dyyp(m)dtdm = [ BEYC(X(E,m))BX (¢ m)h(m)dtdm

(integrate by part in t) and

I = [ BEC(X(tm))(m)Vo(m)dtdm
(integrate by part in z). Thus we get

= f RBC(X (8, m)) o (m)[8.X (£, m) — Viy(m)]dtdm > 0

for all non decreasing function ¥. Notice that, in the special case when
is constant (that is both ) and — are non decreasing), I vanishes.

Thus
[ Rt m))0,X(t,m) ~ Vo(m)dtdm = 0,

which leads to (78).
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An additional remark on kinetic formulations

The kinetic formulation in the (,z,m) is not the more natural one. If we
deal with the usual phase space (f,z,v) it is natural to model, in the one
dimensional case, the sticky particle dynamics by a phase density function
F(t,z,v) > 0 subject to

O F + 00, F 4 8%v =0, (82)

for some nonnegative measure v(t,z,v), and

F(t,z,v) = p(t,z)6(v — u(t, z)). (83)

Related kinetic models are discussed in [BC]. The relationship between
the (¢,z,m) and the (¢, z,v) kinetic formulations deserves, in our opinion,
further investigations.
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