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CAPTURING MULTIVALUED SOLUTIONS

Yann Brenier<Lucille Corrigst

Abstract

Multivalued solutions with a Hmited number of branches of the inviscid
Burgers equation can be obtained by solving closed systems of moment
equations. For this purpose, a suitable concept of entropy multivalued so-
lutions with K branches is introduced.

1. Introduction

It is a classical idea to solve, at least approximately, kinetic equations, set in
a phase space (f,,v), with the help of finite systems of moment equations
set on the reduced space (¢,z). A well known example is Grad’s closure of
the Boltzmann equation. There has been a new interest for this approach
in the recent years. Let us quote in particular Levermore’s work on the
Grad approximation [Le]. In the present paper, we consider an academic
problem, that can be seen as a model for realistic applications such as
multiple arrival times in ray tracing for geophysical problems [TS], [EFO]
or multiple beams in optics or plasma physics [FF], [Co]. We are interested
in the multivalued solutions of the inviscid Burgers equation

u2

?) =0, (1)
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where the initial condition is a function ug(z), supposed to be valued in
some bounded interval [0, L] for simplicity, or, equivalently, in the solution
f(t,z,v) of the free transport equation

8,f +v8,f =0, (2)

with

F(0,z,v) = fo(z,v) = H{up(z) —~ v)H(v), (3)

where H denotes the Heaviside function. The exact solution is very simple

flt,z,v) = folz — tv,v) = H(ug(z — tv) — v)H(v) (4)

and is the characteristic function of a domain D(t) of the plane (z,v) in-
cluded in the slab 0 < v < L. If u, is given in C}(R), then there is a finite
time 1% = T™*(ug) < +oo such that, for 0 <t < T,

f(t,:L',’U) = H(u(t! ﬂ:) - U)H(v)

where u(t,z) is the unique smooth singlevalued solution to (1). For larger
values of ¢, the upper boundary of D(t) is a curve with many projections
onto the real axis and can be seen as the "graph’ of the multivalued solution
to the Burgers equation corresponding to the initial condition u,. The num-
ber of branches of this multivalued solution can grow in time and is limited
by the number of extremal points of u,. We are interested in finding these
branches without working in the phase space (¢,z,v). It is worth consid-
ering a slightly more general framework when fy(z, v} is the characteristic
function of a domain D, contained in the slab 0 < v < L, not necessarily
limited by the z-axis and the graph of a singlevalued function. For instance,
we can consider Dg to be the circle of center (0, L/2) and radius L/2... An
elementary but key observation is that, if we a prior: know, on a given time
interval [0,7], an upper bound K <1 for the number of branches, then it
is theoretically possible to recover the entire solution by solving a closed
system of K moment equations, More precisely, the moments

L
mk(t,x)zjo vk f(t,z,0)dv, k=0,1,2,.. (5)
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satisty

Oymy, + Gy = 0. (6)

This system can be closed at order k = K — 1 since, for every (t,z), the
knowledge of the K first moments is sufficient to determine the K branches

of the solution and then, express my(t, z) as a function of mq(t, 2), ..., mx_y(t, ).
Let us consider a simple example, when the solution has two branches

f(t,z,v) = H(b(t,z) — v) — H(alt,z) — v)
where 0 < a(t,z) < b(¢,z) < L are smooth functions. Then, for all (2, z),
mg=">b—a, m;= %(bz—cﬁ)

which immediately leads to

my My b my Ty
t=——-— b=—+—
mg 2 my 2
thus : \ !
m, = —(b® —a%) = e R,

If we set p = myg et ¢ = m,, the resulting closed system is nothing but

2
dp + 8,0 =0, dq+ ax(% +5(p)) = 0, (7)

namely the isentropic gas dynamic equations with p(p) = $5p7 and v = 3.
This system is hyperbolic with a degeneracy at p = 0, which corresponds
to the case ¢ = b when the solution is singlevalued. The goal of this paper
is to build up a closure formalism for the X moment system allowing us to
recover all multivalued solutions having at most K branches by solving a
non linear hyperbolic system of conservation laws. OQur method is very close
to Levermore’s work [Le], since we are going to define ad hoc 'maxwellian’
functions through an entropy maximization principle. This will also lead
in a natural way to a kinetic formulation for multivalued solutions with af
most K branches, in the spirit of [LPT], [Br], [GM]. When K = 2 the
formulation does not differ from Lions Perthame Tadmor kinetic formulation
of the isentropic gas dynamics with ¥ = 3. We call these solutions entropy
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K — multivalued solutions : they will differ from the regular multivalued
solutions as soon as the number of branches becomes larger than K, exactly
as in the well known case K = 1, when shock waves form !

The paper is organized as follows : In section 2, we define K— branch
maxwellian functions as functions of the v variable that maximizes suitable
entropy functions with prescribed K first moments. In section 3, we intro-
duce a kinetic formulation and its equivalence with an hyperbolic system of
K nonlinear conservation laws. In section 4, we get an existence theorem
for entropy multivalued solutions by introducing a time discrete approxima-
tion, which generalizes the "transport-collapse’ method of [Br2] for K > 1,
and showing the convergence of the approximate solutions when the time
step goes to zero, by using the averaging lemmas of {LPT}]. The detailed
proofs will be published in a forthcoming paper [BCl. In sections 5 and 6,
we discuss numerical issues and various possible extensions.

2. K branch maxwellian functions

Let us consider the class

C={fel>(0,L]), 0<f(v)<Lpp} (8)

Let 8 be a smooth function on R with an everywhere positive K-th deriva-
tive. For any f € C, we denote by m(f) € RX the moment vector

L
mk(f):/o vFf(v)dv, k=10,1,2,...

Then we define the set of all ’attainable’ moments

My = {m(f) = (mo(f), ...y mi—i(f)) € BE, f €O}, (9)

which is compact and convex, and, for all m € My,
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Crl(m) = {g € C, mylg)=my, Yh=0,.,K—1}, (10)

Sorclrm) = int{ [ 0(w)gv)do, g € Cclm)) )

Our first result shows the existence and uniqueness of a function reaching
this infimum.

Theorem 2..1 For all K > 1 and m € My, there is a unique function
v — Gg (v) such that m(Gg,,) = m and

[ 00) Gt (0} = 3 (m) (12)

for all smooth functions & with everywhere positive K —th derivative, More-
over, Sy c(m) is continous on M.

Sketch of the proof

The existence of an optimal function, depending on # and (temporarily) de-
noted by Gy, follows from elementary weak compactness considerations.
Then we use (see [BC] for more details) Rockafellar’s duality theorem and
get

Sp x(m) = mf sup. Lox(g,A,m) = sup inf Lyrc(g, Aym),  (13)
! 9€C yeR reRkK 9€€C

where

Losclg hm) = [ (0)(00) = oR)dv + hmsy (14)
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with implicit summation performed on repeated indices k =0,..., K —1. A
straightforward calculation shows that

Sor(m) = sup Aymy, — Bg (A), (15)
MeRK
where
L
Sy x(h) = / max(0, —8(v) + Avk)dv. (16)
4

Moreover, there is A € RE such that (Gj j . A) satisfies the saddle-point
condition

Gy rm(v) = H(—0(v) + Mo*), (17)

where H denotes the Heaviside function. Since the k—th derivative of 4 is
positive,

K-1
v — —0(v) + > Aok
k=0
has at most K zeros on the real line and goes to —oo when |v| — +oo0.
Thus, on [0, L], v — 1 — Gy g (v) is the characteristic function of at most
K disjoint interval [by_y,ax], k= 0,..., K — 1, with

0=b_; <a, Lb <ap Sagy =L

Then, Gy g (v) is entirely determined by its K first moments

L
f G m(0)dv = my, k=0,.., K 1,
0

which algebraically reads

P
(BF+1 — ab+l) = my,
k41

Thus Gy g is unique, does not depend on & and can be now denoted by
Ggom-
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3. Entropy K- multivalued solutions

Following, we define an entropy K — multivalued solution to be any mea-
surable function f(t,z,v) on R, x R x {0, L] valued in [0, 1] such that

Opf +v0.f +(=8,) =0, (18)

for some nonnegative measure u(t, z, dv), subject to

f(t,:r:,v) - GK,m(f(t,a:,.))(v)i p-p- (19)
This formulation can already be found [LPT}, [LPT2], when K = 1 and

K = 2, with a clear connection with the Burgers equation only in the case
K = 1. In the same way as Lions, Perthame and Tadmor, we get

Theorem 3..1 f(t,z,v) is an entropy K — multivalued solution if and only
if, for every smooth function 0, the distribution

5/ tmvdv—l—@/ vB{(v) f(t, z,v)dv (20)

is nonpositive if the K —th derivative of 0 is everywhere positive and null if
this derivative is identically zero, Moreover, the moments

my(t, z,v) = m(f(t,z,.)), £=0,.,K-1
are solutions to the non linear hyperbolic system of conservation laws ob-
tained from (6) by closing
mg = Spx (Mo, - Mic-1) (21)

with 0(v) = vk,
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Remark 1

The hyperbolicity property comes from the fact that, for all smooth function
8 with positive K—th derivative, m € My — Sk o(m) is a convex entropy
for the system.

Remark 2

Clearly Kruzhkov entropy solutions correspond to the case K = 1, as shown
in [LPT] and isentropic gas dynamics with v = 3 corresponds to K =2 as
in [LPT2]. Any ’classical’ multivalued solution with K branches to the
Burgers equation is a trivial solution to (18) (19). If, after some time, new
branches develop, then this multivalued solution will differ from the entropy
K — multivalued solution, just as in the well known case K = 1, when shocks
develop [Br2], [LPT].

4. Existence of solutions and time discetization

We introduce the following time discrete scheme where At > 0 denotes the
time step and, for n = 0,2, ..., f{{n + 1)At,z,v) is approximated by

L
fra(,0) = Grelma(@)),  ma(e)= [ fule ~vALv)dv.  (22)

In the special case K = 1, we recover the ’transport collapse’ method of
[Br2]. By using averaging lemmas, as in [LPT], one shows [BC]

Theorem 4..1 For all initial condition fy(z,v), measurable on R x [0, L]
and valued in [0,1], there exists a sequence of time steps At — 0 and a K—
multivalued entropy solution f such that the approzimate solution of (22)
converges to f.
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Remarks

1) The detailed proof is given in [BC].

2) An analogous result can be obtained from the "BGK” approximation, as
in [LPT].

3) As long as the ’classical’ multivalued solutions has no more than K
branches, the semi-discrete scheme provides the exact solution. (The same
phenomenon was already pointed out in [Br2] when K =1.)

4) The uniqueness problem is open.

5. More general equations and numerical experiments

In this section, let us consider a more general transport equation
O.f +9.(f9,H) - 8v(f8mH) =0, (23)

where the unknown function f(t,z,v) > 0 is the density function of particles
in the phase space (z,v) € R x R and the Hamiltonian H(t, z,v) is given.
This equation describes the evolution of f when the particle trajectories
solve the first order differential system of Hamiltonian type

dz dv
8 H e . 24
7 9, H(L, z,v), 7 O H(t, z,v) (24)

The solution f is constant along each of these trajectories. Our purpose
is to solve numerically the initial value problem, where f{t = 0,z,v) =
fo(z,v) is prescribed, by gridding only the z— space. Let us assume that
the Hamiltonian has the special form

1
H(t,z,v) = 5"02 + o(t, z), (25)

where @ is the potential, so that the Liouville equation reads as the classical
Vlasov equation

O f +v0,f ~3,9(t,z)d,f = 0. (26)
Then the moment equations are

Btmk + Bzm,-c“ + k@x‘l)(t, .r)mk_} - 0, (27)
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for £ = 0,1, 2, ..., with the conventional notation m_; = 0.

Numerically, we consider the very simple case when the potential is
1 2
B(t,2) = 8(z) = ; Jal,

so that the Liouville equation reads as

of+vd,f—=z8,f=0. (28)

and describes a rigid rotation in the phase space at angular speed 1. The ini-

tial condition is chosen as the characteristic function of the square [—0.75, —0.25] x
[0.25,0.75]. The exact solution at time ¢ = x/2 is given by the characteristic
function of the symmetric square [0.25,0.75] x [0.25,0.75]. To compute the
sohition, we use the 2-th moment closure and reduce the Liouville equation

to the 2 x 2 system of conservation laws

2

Qo+ 859= 0, 0 +0,(% + p(p)) +2p = 0 (29)

with p(p) = 55p°. Then we discretize in space time on a uniform grid with

the simplest first order upwind scheme. Some troubles can be noticed when

p approaches 0, which makes sense since then the eigenvalues of the system

merge and the source term, namely zp, generates instabilities. (As a matter

of fact, this problem does not occur when there is no source terms, as in the

case of the free transport equation.) So, we introduce a cutoff parameter
e > (0 and modify the pressure law by setting

plp) = %pez, Vp € [0,¢].
We believe that the extension of our method to more realistic problems
requires such a regularization to deal with possible changes in the number
of branches. A theoretical device is shortly decribed in the next subsection.
We subsequently show two computations with 100 (resp. 200} grid points
along the interval [—1,+41], 157 (resp. 314) time steps for the time interval
[0, 7] and we set € = 0.01 in both cases.
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Regularization of the moment equations

At a theoretical level, there is a rather simple regularization technique that
we may consider. Let us fix ¢ > 0 and introduce a mollification k, of the
real function r — max{r,0), typically

1
ho(r) = 5(r+(r* + V7).
Then, we consider the polar function

his) = sup(rs — h(r))

which is smooth in 0, 1[, infinite outside and goes to zero uniformly on any
compact subset of ]0,1[ when ¢ — 0. Now we get a smooth penalty for the
constraint 0 < f(v) <1 in the entropy maximization principle, by setting,
for a fixed function 8, for instance 0(v) = vX,

L
S5 relm) = inf{ [ Th2(9(0)) + 00)a(o)ldv, g € L=([0,1]), m(g) = m).
(30)
A straightforward computation shows that the corresponding regularized

K —th maxwellian function is of the form

Gl () = (=0(0) + A0, (31)

4,K,m

Here A! can be seen as a mollified Heaviside function. The interest of this
theoretical approach is that, by closing up the moment equations with

L -
mI(I./C; 'vkGB,I{',(mu,u.,mK—l)(U)dv, (32)

we automatically enforce the hyperbolicity of the resulting system. Notice
that, because of the regularization, the maxwellian functions are no longer
f— independent.
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6. Extension to delta functions

Let us consider a ’classical’ multivalued solution of the Burgers equation.
Instead of recovering it by using characteristic functions (valued in [0, 1]) as
we have done, we may try to use finite nonnegative sums of delta functions
as

K/2-1

ftyz,o)= 3 pult,2)é(v — uy(t, ) (33)

k=0

(where K is a given even positive integer), subject to be (measure) solutions
of the free transport equation (2). Actually, this is a much more realistic
point of view for applications to geophysics. Then, it is possible to introduce
an entropy maximization principle very similar to the previous one. Indeed,
we can define

Soxclm) = ni{ [ 0@)go)do, 920, mg)=m).  (34)

In other words, we drop the imitation g{v) < 1 and keep g{v) > 0. Then,
again by using duality arguments, we obtain that, for each attainable set of
moments (myg, ...,Mxg_q), and each smooth function 6 with positive i{~th
derivative, there is a unique 'maxwellian’ function, independent of 8, of the
form

Kj2-1
GEm(v)= > apb(v—wy). (35)

k=0

This leads to a related kinetic formulation of the Burgers equation, where
f satisfies (18), as earlier, but now subject to (33). Unfortunately, the
averaging lemma analysis of [LPT] is no longer adequate to get an existence
theorem. As a matter of fact, even for the case K = 2, which corresponds
to the model of pressureless gases with sticky particles, a global existence
theorem is not a trivial issue [BG].
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