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Abstract

The compressible Navier Stokes equations can be extended to model
multi-species, chemically reacting gas flows. The result is a large sys-
tem of convection-diffusion equations with stiff source terms. In this
paper we develop the framework needed to apply modern high accuracy
mimerical methods from computational gas dynamics to this extended
system. We also present representative computational resulis using
one such method.

The framework developed here is useful for many modern numeri-
cal schemes. We first present an enthalpy based form of the equations
that is well suited both for physical modeling and for numerical imple-
mentation. We show how to treat the stiff reactions via time splitting,
and in particular how to increase accuracy by avoiding the common
practice of approximating the temperature. We derive simple, exact
formulas for the characteristics of the convective part of the equations,
which are essential for application of all characteristic-based schemes.
We also show that the common practice of using approximate analyti-
cal expressions for the characteristics can potentially produce spurious
oscillations in computations.

*Research supported in part by ARPA URI-ONR-N00014-92-J-1890, NSF #DMS 94-
04942, and ARO DA AH04-95-1-0155




We implement these developments with a particular high accuracy
characteristic-based method, the finite difference ENO space discretiza-
tion with the 3rd order TVD Runge-Kutta time discretization [12],
combined with the second order accurate Strang time splitting of the
reaction terms. We illustrate the capabilities of this approach with
calculations of a 1-D reacting shock tube and a 2-D combustor.




1 Introduction

Chemically reacting, high speed gas flows arise in a variety of combustion
problems, such as the fueling of a scram-jet engine or the incineration of waste
in a dump combustor. The combination of energetic chemical reactions and
compressible gas dynamics yields the unique phenomena of detonation and
deflagration. The basic properties of these effects can be understood via the
Chapman-Jouget theory.

For theoretical modeling or numerical simulation of such flows, the com-
pressible Navier Stokes equations can be extended to include multiple gas
species and the appropriate chemical reactions. The standard approach is
to consider the total mixture as a single compressible fluid, with the species-
averaged density, momentum and energy evolving according to the corre-
sponding conservation laws. In addition, the mass fraction of each species
evolves according to a separate continuity equation. These continuity equa-
tions are strongly coupled through the chemical reactions, and they also
couple strongly to the equations for the mixture via the effect of reactions
on temperature and pressure.

Since chemical reactions can cause large localized temperature variations
during combustion, it is important to accurately include the temperature
dependencies in the equations of state used for the gas species. The most
tractable model that includes a realistic temperature dependence is that of a
thermally perfect gas, for which the heat capacities can be general functions
of temperature. In practice these functions are based on experimental data
and they differ significantly from the ideal gas law at the higher temperatures
encountered during combustion.

By considering the mathematical and physical character of the problem,
we can pose some general requirements for suitable numerical methods. The
resulting model equations form a large system of nonlinear conservation laws
with both first and second order derivative terms {from convective and dif-
fusive transport) and zeroth order source terms (from reactions). Because
the diffusive terms are weak, we expect that the spatial transport terms will
result in the development of steep fronts. Because the reactions proceed
rapidly once they are triggered, we expect that the source terms will be stiff
in time. Thus any numerical approach must effectively handle stiff time
integration and steep spatial fronts.




Since the stiff source terms require specialized and costly time integra-
tion, it is most practical to use a time splitting to isolate their treatment
from the rest of the problem. To handle the steep spatial fronts, it is natural
to apply modern shock-capturing numerical methods for the convective part
of the conservation laws. These methods typically require complete analytic
expressions for the characteristic data, i.e. the eigenvalues and eigenvectors
of the linearized convective flux matrix.

Based on these general considerations, we expect many numerical ap-
proaches will have a common need for a proper time split formulation and
analytic expressions for the characteristic data. Obtaining both these things
would seem routine, but in fact the complexity of the equations makes both
potentially difficult and has led to the use of a variety of simplifying proce-
dures which may cause unanticipated errors in the computations, as some
of our examples will illustrate. Our primary goal here is to show that, with
the equations properly formulated, both the time splitting and characteristic
data can be obtained without simplifying assumptions in an unambiguous
and practically useful form. We also show that with these in hand, modern
characteristic based methods do an excellent job of capturing the phenomena
present in chemically reacting gas flows. 4

We develop our framework as follows: first, we present an enthalpy based
formulation of the governing equations, i.e. the emergy equation for the
mixture is written in terms of the enthalpy. Various other equivalent forms
are possible, such as using temperature or internal energy as the explicit
variable, but the enthalpy formulation is advantageous for two reasons: it
is convenient for physical modeling, and it results in a system for which the
characteristics can be determined analytically in a compact and relatively
simple form.

Then, we show how to apply time splitting to these equations in order
to isolate the time evolution of the stiff reaction terms. In the previous
work there has been some ambiguity regarding what terms should be held
constant in the reaction portion this time split evolution. For example, it
has been a common practice to freeze the temperature during this step,
but this is not a true time splitting of the model equations. Given the
strong temperature dependence of the reaction rates, this is also a physically
questionable practice. Others have considered adding an additional ODE
for the simultaneous evolution of temperature with the reaction ODEs, but
this approach adds unnecessary complication and also requires a decision
about which thermodynamic quantities are being held constant during the
step. In contrast, we show that a proper time splitting of the stiff reaction
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terms unambiguously requires that certain thermodynamic quantities (not
temperature) be held constant during the solution of the reaction ODEs, and
further we show that a simple scalar root finding procedure, such as Newton’s
method, is all that is required to implement this proper time splitting.

Next, we derive simple expressions for the characteristic data, i.e. Ja-
cobian matrix of the convective fluxes, and the associated eigenvalues and
eigenvectors. These are the primary ingredients needed to apply a variety
of modern high accuracy characteristic based methods developed for gas dy-
namics.

Finally, we illustrate the capabilities of this numerical approach. We
implement this framework using thermodynamic and chemistry data tables
from CHEMKIN, and numerics consisting of second order Strang time split-
ting with a stiff ODE integrator (LSODE) for the reaction equations, 3rd
order TVD Runge-Kutta time integration for the convection-diffusion terms,
central differencing for the diffusive terms and 3rd order finite difference ENO
for the characteristic based discretization of the convection terms. We ap-
ply this to a one dimensional Sod shock tube in the presence of combustion
reactions, and to a two dimensional model of a toxic waste combustor, and
discuss the results.




2 Model Equations

2.1 Multiple Species

The 2-D Euler equations can be modified to account for compressible flows
with more than one species. The 2-D Euler equations for multi-species flow
are,
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where E is the energy per unit volume, h is enthalpy per unit mass, N is
the number of species being considered, and Y; is the mass fraction of the
ith species [16]. Note that Yy =1 — ZN 1Y

2.1.1 Energy and Enthalpy
The total energy per unit volume is designated by E. We can write

2 2

where e is the internal energy per unit mass. We write the enthalpy per unit
mass as,
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where ¢;, p;, and h; are the internal energy, partial pressure, and the enthalpy
per unit mass of the ith gas respectively. We can likewise define,
E p_ E+p_ u? + v

H==+%>= =h+
p P P 2

(6)

as the total enthalpy of the mixture. Using equation 5 fo eliminate e in
equation 4 we can write,

2 2
Ez—p—{—&w»;i)--l-ph (7)

as our energy equation.
In a perfect gas, the internal energy, enthalpy, and specific heats are
functions of the temperature only. In this case we can write,

h; = hy(T) e; = e;(T) (8)

tp; = p,(T) Co; = Cui(T) (9)

for a perfect gas, where c,, is the specific heat at constant pressure of the
ith species, and c¢,; is the speczﬁc heat at constant volume of the ith species.
Two other relationships which hold for a perfect gas,

dhi(T) = ¢, (T)AT  dei(T) = cyi(T)dT (10)

will be very useful {1].
We can integrate both sides of the first equation in 10 to get

M) = h0) + [ ylo)ds (11)

We can further classify perfect gases into two categories. A thermally perfect
gas is one in which the specific heats are non-constant functions of temper-
ature [1]. A calorically perfect gas is one in which the specific heats are
constant [1]. Thus, equation 11 can be simplified, in the case of a calorically
perfect species,

hi(T) = bl +¢,,T (12)

where h = h;(0) is the enthalpy per unit mass at 0K for the ith species.
This is also sometimes called the heat of formation. The heat of formation
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for a gas is a constant and can be found in the JANAF Thermochemical
Tables [13]. We can rewrite equation 11 for a thermally perfect species,

hi(T) = hi + f ' ¢y, (5)ds (13)

using the heat of formation.
The final result from equation 5,

N
h=3 Yih (14)
i=1
defines the enthalpy for a mixture of gases. Fach thermally perfect species
utilizes equation 13, while each calorically perfect species utilizes equation
12. The enthalpy formulation of the energy equation results in a convenient
form for physical modeling, because the enthalpy 1s tabulated as a function
of temperature for many gases. Also, this form allows us to readily model
a gas as thermally perfect in one temperature regime and calorically perfect
in another. Such flexibility can be used to investigate the effects of the
thermally and calorically perfect assumptions.
Two common examples are worth noting. If all the species are thermally
perfect,

N T N N T
W= Y + [ S Yicpi(s)ds = S Yikd + f ¢, (s)ds (15)
i=1 0 =1 =1 0

where ¢, is the total specific heat at constant pressure of the mixture. If all
the species are calorically perfect,

N
he=> Yl +¢,T (16)

i=1

2.1.2 Equation of State

For a mixture of perfect gases, each gas has partial pressure,
p; = pY; R, T (17)

where the specific gas constant R; for each species is,

R,= = (18)




where R, = 8314 J/(kmol K) is the universal gas constant, and W; is the
molecular weight of the ith species [13]. Next we define R as,

N
i=1

and we can write the equation of state for multi-species flow,

i=1 i=1

N N N
p=Y.pi=y pPYiRT=p (Z Yin) T = pRT (20)
i=1

which is valid for mixtures of calorically perfect and thermally perfect gases

[1].

2.1.3 Specific Heats and Gamma

We deline gamma,
y=-2 (21)

as the ratio of specific heats [2]. For a calorically perfect gas, -y 1s constant.
It is not unreasonable to assume that air at standard conditions is calorically
perfect with v = 1.4. For a thermally perfect gas, v = (T} is a function of
the temperature.

Another useful equation,

e~y =R (22)

can be used with equation 21 to get,

Cp
= 2
v cp— R ( 3)

which is also valid for both calorically perfect and thermally perfect gases

[2].

The specific heat and molecular weight of the mixture are given by,

N
e = _Yiey, (24)

i=1
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where the unexpected form of equation 25 is explained in [8]. Gamma, for
the mixture is given by,

W= (25)

t (26)

with ¢, and W defined in equations 24 and 25 respectively {16, 15]. Note
that for a mixture of calorically perfect gases, v = v(¥;) is a function of the
mass fractions. For a mixture of thermally perfect gases, v = ~(Y;, T) is a
function of both the mass fractions and the termperature.

2.2 Diffusive Transport and Chemical Reactions

The 2-D Euler equations for multi-species flow can be further modified to ac-
count for viscosity, heat conduetion, mass diffusion, and chemical reactions.
The modified equations are the 2-D Navier Stokes equations for multi-species
flow with chemical reactions,

d, + [F@), + G, = [F,O) + G}y + 5 (27)
B=—p+ __p(u2; ) s oh (28)

where U, F(U), and G([7) are given by equation 2, and the source term g
is defined as,

o o O
g

Ty
i

0 (29)
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\ &y_1 (T, Y2, Yar- > Ynoa)
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where w; is the mass production rate of the ith species [16]. Also F.(T) and
G, (U) are given by,

/ 0 \ / 0 )

T11 T12
Ti2 Taz
FU)= uTy + VT2 + Gh , G(U)=| YNz + vy + Q2 (30}
le,m(.Yl):c PDl,m(K)y
PO _1,m(YN-1)s ), \ pDy_1m(Ya-1)y /

2 2
Tir = g”(zum - Uy): T2 = ].L(‘U,y +v:z:)1 Tag = 5#(2% - 'u‘:c) (31)

N N
Q=K+ p S hDim(Yier  Qa=kT,+p) miDin(Ye)y (32)

=1 =1

where p is the mixture viscosity, k is the mixture thermal conductivity, and
D; , is the mass diffusivity of species i into the mixture [1]. For the detailed
forms of these terms, see [8].
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3 Numerical Methods

3.1 Numerical Approach

Consider the 2D Navier Stokes equations for multi-species flow with chem-
ical reactions given by equation 27. We solve these equations using a time
splitting scheme. We will use Strang splitting [14], which is 2nd order ac-
curate, to incorporate the chemistry. We do not use splitting for the fluid
dynamic equations. The method consists of solving two separate ordinary
differential equations which have right hand sides adding to the right hand
side of equation 27,

7, + [F(D)] + GO, = [F(D)]e + [Gu(@)]y (33)
U,=8 (34)

where the first of these is the 2D Navier Stokes equations for multi-species
flow without chemical reactions, and the second is a purely reacting equation.
In one step we allow a non-reacting fluid to convect and diffuse. In the other
step we allow a motionless fluid to react.

The success of Strang splitting depends on the operators being split apart
and on the smoothness of the underlying solution. As an extreme example,
one cannot split apart the two spatial convection terms of the discretized
2D Euler equations, because the truncation error due to noncommutivity of
operators causes a “blow-up” of the solution. In our case the gplitting works
well, since the the source terms are not overly stiff. If we had a much more
stiff source term, the time step for an accurate time splitting wotld become
overly restrictive. In that case, to use a practical time step and prevent
unresolved (in space and time) reaction fronts from propagating at incorrect
speeds, we would need to use a temperature minimizing procedure such as
that described in [5, 6, 16, 11].

Consider equation 33. We evaluate the hyperbolic terms, [F‘(ﬁ)]m and
[G(0)], with the ENO method [12]. The parabolic terms, [F, (0], and
[@v(ﬁ)]y are evaluated with standard conservative central differencing. Once
all terms have been computed, we update in time with TVD Runge-Kutta
methods [12, 9]. The viscosity, p; = p;(T), and thermal conductivity,k; ==
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E{(T), of each species depend on the temperature. The binary diffusion
coefficients, Dj; = Dy (T, p), are functions of the temperature and pressure.
All of these can be accurately evaluated with a chemical kinetics package,
such as CHEMKIN [10].

Consider equation 34. The first four equations of this system imply that
py = (pu)y = (pv), = By = 0. Thus, p, u, v, and I are constants. Using the
fact that p is constant along with equation 29, we see that solving equation
34 reduces to solving the following system of ordinary differential equations,

e (T, Y1, Y2, Y1)

Y

P
}/2 ap(T,0.Y1,Y2,.. Yivu1)
= : (35)
o1 (T, Y1, Yo, Y
YN—I : wrn—1{T.e, lp 2 ‘W 1}

where p is a constant. Note that we have replaced the independent variable
p in equation 29 with p, as is explained in [8]. We solve this system of
stiff ODE's with a numerical package [10]. For the full details on numerical
implementation, see [7).

Tt is important to note that T" is a function of the mass fractions when
solving equation 35. A proper procedure for evaluating this function for
temperature is described in section 3.2. However, as long as we follow the
procedure dictated by the time splitting, there is no ambiguity about how to
properly treat the temperature during the chemical reaction step. Contrary
to common practices, temperature should not be frozen during this step, nor
is there a need to derive an ODE with which to co-evolve the temperature.
Instead, temperature is an implicit function of the mass fractions, as well
as the other conserved variables that are held constant during this part of
the splitting. All that is required is to properly evaluate the temperature
as a function of these quantities, whenever a value is required. Since the
functional relationship is implicit, this amounts to finding the root of a scalar
equation for the temperature.

3.2 Solving for Temperature

It is necessary to compute the temperature from the conserved variables.
We get an expression for the temperature by combining the energy equation

13




with the equation of state. Combining equation 28 with equation 20 yields,
o —E+ M5 4 ph(T)

Iy (Eil Y?-'.Ré)
where C, and C, are constants if the conserved variables are fixed. Note
that A(T) is defined in equation 14.

If we have a calorically perfect gas, then equation 36 can be written in
the form,

— O, + Coh(T) (36)

Cs

T=—3
1“04(31,

(37)
where Cy and () are constants if the conserved variables are fixed. In this
case we have an explicit equation for the temperature.

However, if we have a thermally perfect gas, equation 36 is implicit for
the temperature. We rewrite equation 36 as,

f(T) =T = Cy = Ch(T) =0 (38)
for a thermally perfect gas. Note that,
df () dh(T) _ (T) -1
j.—ﬂ'.,——].’—'cz—&T———l—Gng(T)—l— R —m (39)

where + is a function of temperature. Since v is always greater than one,
this shows that f(T') is a strictly decreasing function of temperature.

We can solve equation 38 with Newton-Raphson iteration [3] applied to
the temperature. The iteration is of the form,

Tn — Tn——l
f(Tn) - f(Tn—l)

where the temperature from the last time step is used for To and we set
T, = To+1. Since Newton Raphson iteration is not guaranteed to converge,
it is better to use it for only a few iterations. We use it for 5 iterations, then
switch to bisection [3] if we are not within an acceptable error tolerance. In
practice, Newton Raphson has always converged in at most 5 iterations.

In order to do the above iteration for the temperature, we need to be
able to calculate the enthalpy h{T). To obtain a convenient form, integrate
equation 10 starting from T' = 298K to get

Ts =T~ F(T) | (40)

T
hi(T) = B2 4 f ¢, (5)ds (41)
298
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where h2% is the enthalpy per unit mass at 298K for species . This is also
sometimes called the heat of formation at 298K, which is a standard constant
that can be found in the JANAF Thermochemical Tables [13]. If we assume
that we have a calorically perfect gas, then we could use 298K to evaluate
our constant value for c,,, defining this notationally as ¢p3%. Then equation
41 becomes,

hi(T) = h3% + ¢, 7 (T — 298) (42)

for a calorically perfect gas with reference temperature of 298K.

To speed up the actual implementation, we construct a table of h,(T’) for
each species including every integer temperature between 298K and 4800K.
We approximate the integral to desired accuracy, using CHEMKIN to give
us the values of ¢, (T") when needed. This is done once at the beginning of
the code. During computation, if we need h;(T") for a non-integral value of
the temperature, we interpolate linearly.

Simple modification of this table for h;(1") enables calculations of calori-
cally perfect mixtures. One could also have certain gases be thermally perfect
with others calorically perfect. Further, a single gas could be thermally per-
fect in one temperature range and calorically perfect in another temperature
range.
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4 FEigenvalues and Eigenvectors

Many modern numerical methods for compressible gas flows require complete
characteristic data—i.e. the eigensystem of the linearized convective flux
matrix—as an essential part of the numerical discretization. For practical
calculations, analytical expressions are required for the eigensystem, rather
than general but costly iterative numerical procedures.

However, for equations describing the flow of many interacting species,
the convection terms for momentum and energy can be far from simple,
due to the complicated equation of state. Finding the Jacobian matrix of
the convective flux with respect to the conserved variables can be a tedious
calculation, and solving analytically for the corresponding eigensystem may
seem impossible. Thus, it is tempting to try and simplify these calculations
by dropping small terms or treating non-constant terms as approximately
constant. But this practice can lead to unexpected numerical difficulties.

The nature of these difficulties can be understood as follows. If the
eigensystem is slightly perturbed, the corresponding characteristic fields are
mixed. Consider a positive eigenvalue field which has been incorrectly mixed
with a negative eigenvalue field. One-sided upwind differencing on this mixed
field will result in one-sided downwind differencing on the field which is
incorrectly represented by the eigenvalue. This will result in fields that have
their convection discretized as a linear combination of upwind and downwind
differencing. Even though the downwind portion may be “small”, it can
still contribute a significant oscillatory error near discontinuities (shocks or
contacts).

4.1 Example: Separating Box Problem

Consider the following two one way wave equations and their respective
solutions,

Uy — tg = 0, u(m,t) = ""’0(m + t) (43)

v+uv, =0, v(z,t)=1vx—1) (44)

where the initial data u, and v, are given in figure 1. The solutions to
these equations move left and right as shown by the arrows in figure 1. Now
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consider changing the variables by letting w = v+ u and z = v —u. This
yields a system of differential equations

DRI

with initial data we = vy + U and 2, = vy — 4g. Also note that the solution
of this system is

w(z,t) = vo(z — ) + uo(z +1) (46)

#(x,t) = vo(x — 1) — uo(z +1) (47)

which is obvious from the change of variables. Figure 2 shows the initial
data for w which consists of two open unit boxes defined on (—1,0) (0, 1).
As time evolves the boxes travel in opposite directions, as depicted by the
arrows in figure 2.

Consider the following Jacobian matrix and associated eigensystem.

_ 0 (1-e?

J“((1+d2 0 ) (48)
M=—14ée, MN=1-¢ (49)

- 14+e¢ —1+4c¢ - l+¢e 1—¢

1 _ 2

L _( 2 ' 2 )’ L _( 27 2 ) (50)

- 1 o i
Rm(__) R=(_) 51)
1—¢ 1—¢

If we set € == 0, then this is the Jacobian and eigensystem for the convection
term in equation 45. Otherwise, a nonzero € gives a perturbation of the
Jacobian matrix. This yields a different eigensystem, and is designed so as
to mimic ignoring small terms when computing complicated Jacobians.

We will now solve equation 45 numerically with 3rd order ENO on the
convection terms, and 3rd order TVD Runge-Kutta in time. We set ¢ = 0,
which yields the true eigensystem. Figure 3 shows the results for the box
moving to the right. Results for the box moving to the left are symmetric.
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We also solve with €2 = .01, €2 = .05, and ¢* = .1. These give a 1%, 5%, and
a 10% perturbation of the eigenvalues respectively. Again figure 3 shows the
results for the box on the right. The box on the left has symmetric results.

One can see that ENO and TVD Runge-Kutta admit significant oscilla-
tions even on small perturbations of the Jacobian matrix. [t is therefore not
advisable to alter a Jacobian matrix in order to simplify the computation of
an eigensystem.

18




velocity=-1
T smarm———

velocity=1
— e

Figure 1: Initial data for the two independent wave equations, resulting in
simple translation to the left and to the right.
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velocity=-1 velocity=1

e ———r 0

Figure 2: Initial data for the separating box problem, as seen in one of the
mixed fields. The evolution will split this initial box into two separate boxes
traveling in opposite directions.
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true eigensystem 1% deviation

1.5 1.5}
it 1
0.5 0.5¢
0 . . . 0 . . . .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
5% deviation 10% deviation
15 15
1 1
0.5; 0.5;
0 , ) , . 0 , _ , ,
0 0.5 1 1.5 2 0 0.5 1 15 2

Figure 3: Numerical solutions for the separating box problem, showing the
oscillations that result from using an approximate eigensystem, deviating
from the true eigensystem by the amounts shown. The results for the box
to the right are shown, while the box to the left has a symmetric result.
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4.2 2-D Euler with Multiple Species

Consider the convective part of the conservation equations 1, 2, and 3. This is
a system of N+3 equations, so there will be N+3 eigenvalues with associated
eigenvectors. For the eigenvalues and eigenvectors of the Jacobian matrix of
F'([_J. } in equation 2, set A = 1 and B =10 below. For the eigenvalues and
eigenvectors of the Jacobian matrix of (_}"(L_’T) in equation 2, set A = 0 and
B =1 below,

Based on equations 14 and 13, we can calculate the following derivatives
of ph with respect to the conserved variables,

%f)' =hy+ pcp% (52)
% = Py d?;) (53)
j—((f;i% = pc,,d—?-s;—) (54)
if(‘sz_m N P%% (55)

s =+ ey 5

where equation 56 holds for ¢ =1to N — L

These derivatives of ph are valid for both a mixture of thermally per-
fect gases and a mixture of calorically perfect gases. Further, they are valid
for any mixture of gases in which ¢,; is defined as a function of temper-
ature for each species. One could construct a table of ¢,;’s which obeys
any combination of thermally perfect and calorically perfect assumptions.
We use CHEMKIN [10] to compute realistic values for ¢, ;. For some lower
temperatures where CHEMKIN does not have data, we extrapolate using a
calorically perfect assumption.
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From equation 3 we can write,

p=—E+

and take derivatives with respect to the conserved variables to obtain,

dp _
dp

2 4
+ v
plu® +o%)

3 ph

~(u? + v?) dT

dp dT

T AL D)

.ﬂ..—rv_i_ c,m_di
d(pv) P dpv)
dp dT
aE = " T P%aE

dp

= hy — hn + Cwﬂ
dpyy) TN T PR G0Y)

(57)

(58)

(59)

(60)

(61)

(62)

where equation 62 holds for i = 1 to N —1. Note that we have used equations
59 — 56. Now take derivatives with respect to the conserved variables of

equation 20 to obtain,

dp ar
dp T

Tow) ~ PRia(pu)

dp _ o dT
o) ~ "Rt

dp _ dTl
aE ~ PY4E
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dp dr
———— = (R; — Ry)T + pR—~ 67
A T+ PR GY) (67)
which we can use to eliminate the derivatives of T' in equations 58 - 62. We
can than solve for the derivatives of p to obtain,

dp u? + v? e RnT
L -1~ + ) (68)
dp
e = (y — 1)(—u 69
T = (7= () (69)
dp
d(pv) - (7 - 1)(_'”) (70)
d;
=== (71)
dp _ CP(R,; b RN)T
which we will need below.
The Jacobian matrix can be written as,
4l + JF + JB (73)
with,
IF=( 27, sl T BT s o widr ) (14
- - = P =+ —+ T
JB= (13, uf, oJ, B, YiJ, - Yeadi) (75)
where I is the N + 3 by N -+ 3 identity matrix, and
/0 [ i
A A )
B B
=8|, h=|0 (76)
0 0
\ 0 / \ 0
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The eigenvalues of this Jacobian matrix are,

M=id-c (77)
Ne=...= X2 =3 (78)
MW =g 4ec (79)
The left eigenvectors I_:P, are the rows of the following matrix.
(Gagey —wog Heof g o e
1 - b2 - b3 blu bl’u _bi 6121 e blzN—l
Y B —A 0 o .- 0
~¥ 0 0 0 (80)
: : : : I
—Yn_1 0 0 0
R R e T T el

The right eigenvectors Rr , are the columns of the following matrix.

[ 1 1 o o --- 0 1
u— Ac ) B 0 --- 0 wu+Ac
2 — Be v -A 6 - 0 w4+ Bc
H-tc H—3 -0 2z - zva H+ic (81)
Y, Y 0 Y
: : : I :
\ Yyoi Yy O Yvoa /

Here I is the N — 1 by N — 1 identity matrix, and

¢ =u*+0%, 4=Au+Bv, 9=Av— Bu (82)
P
c= [P 83
z )
71 2
b]_: 62 » b2=1+blq —b]_H (84)
N1
-1 dp
by =b S Yiz, z,.m—(m—) 85
v =h ) =1 \aT) (%)
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5 Numerical Examples

5.1 1-D Chemically Reacting “SOD” Shock Tube

We consider a one-dimensional test problem with chemical reactions. We
have a shock hitting a solid wall boundary and reflecting off. After a delay a
reaction wave kicks in at the boundary. This reaction wave picks up steam
and merges with the shock causing a split into 3 waves. From wall to outflow
(left to right) these waves are a rarefaction, a contact discontinuity, and a
detonation wave.

We apply the 1-D Euler equations for multi-species flow with chemical
reactions. Assume that we have a 2/1/7 molar ratio of Hy/O,/Ar. All
gases involved are assumed to be thermally perfect. We use a full chemical
mechanism , see [8] for details.

We use the following initial data

kg m
J

on the left side of the shock. Then we use a numerical algorithm [7] to
calculate conditions on the right side which are consistent with the Rankine-
Hugoniot equations for a shock. This yields initial data of

kg m
J

on the right side of the shock. We use a 12cm domain for a time of 230us,
400 uniform grid cells, and 2300 equal time steps. A reflective boundary
condition at the wall is implemented by adding ghost cells.

We will examine the solution after a total of 1900 time steps, and af-
ter 2300 time steps. The results are shown in figures 4 and 5. Next, we
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run the code under the calorically perfect assumptions. We use a reference
temperature of 298K . The results are shown in figures 6 and 7. The calori-
cally perfect assumptions drive the reaction, and cause a major difference in
evolution of the solution.

5.2 2-D Combustor Simulation

Consider the 2-D Navier Stokes equations for multi-species flow with chem-
ical reactions. All gases involved are assumed to be thermally perfect. See
{8] for details on the chemical mechanism.

We have a 4 cm by 3 cm domain, with 64 by 48 cells. The time step
taken was 10ps. The initial data was a motionless mixture with (T,p) =
(700K, 36100 Pa). The mixture consists of a 2/7 molar ratio of O, [ Ar gas.
There is an inflow of size .4375 cm at the bottom and an outflow of equal
size at the top. At the inflow, we inject a 4/7 molar ratio of I, / Ar, at
102 with (T, p) = (1166K, 121000 a).

The results for the velocity field are shown. The vectors are color coded
to better illustrate the solution. RED arrows are for regions of the flow
which have a high enough concentration of H, gas to be considered fuel.
BLUE arrows are for regions which have enough O, gas to dilute the fuel for
combustion. YELLOW arrows are for combustion regions. We use OH as
the detector gas, as is common in actual engineering experiments. GREEN
arrows are for regions of the flow which have undergone near complete re-
action. These regions are composed of ”waste” materials, primarily water
vapor. The color coding is adjusted using thresholds which give one the idea
of the underlying chemistry. A given cell may contain up to 9 gases.

Figure 8 (left) shows the initial injection of the hydrogen gas. The first
set of vortices split to the right and left in figure 8 (right), after impact with
the top of the container. They then continue in a circular type path as can
be seen in figure 9 (left). In figure 9 (right), one can see that the smaller
vortices are being destroyed by the global flow. In particular, note that the
second pair of vortices is now a "half moon” shape at the bottom of the
page.

Figure 10 (right and left) shows the ignition of the main vortices. The
ignition quickly spreads throughout the container as can be seen in figure
11 (left). The amount of fuel and oxygen which was wasted, not part of the
main reaction, can be seen in figure 11 (right).
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Figure 4: Thermally Perfect Solution (1900 steps). The reaction wave and
the shock are traveling form left to right. The shock is still in the lead, but

losing ground.
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Figure 5: Thermally Perfect Solution {2300 steps). The reaction wave has
overtaken the shock, with the result splitting into three distinct waves. From
left to right: a rarefaction wave, a contact discontinuity, and a detonation

wave.
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Figure 6: Calorically Perfect Solution (1900 steps). The calorically perfect
assumptions drive the reaction and cause the reaction wave to prematurely

overtake the shock.
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Figure 7: Calorically Perfect Solution (2300 steps). The calorically perfect
assumptions drive the reaction and force a non-physical accelerated evolution
of the solution.
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6 Conclusion

We have presented an enthalpy-based formulation of the equations for multi-
species compressible chemically reacting flow that is particularly well suited
to numerical modeling with modern high accuracy methods.

We have shown how to properly time split these equations in order to
efficiently integrate the stiff reaction terms while avoiding inaccurate or un-
necessary common practices such as freezing the temperature, or introducing
a temperature ODE.

We have derived new, simple expressions for the characteristics of the
convective portion of the equations, which allow the application of many
modern characteristic-based numerical methods.

We have used these equations, time splitting and characteristics together
with the finite difference ENO discretization to perform high accuracy cal-
culations of representative 1-D and 2-D problems.

The framework and numerical results presented here show that the mod-
ern high accuracy numerical methods developed for gas dynamics can be
usefully extended to the much more complicated problem of chemically re-
acting gas flows, and that these methods can effectively capture the complex
combustion phenomena present in these flows.
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