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Abstract

We propose a new definition of the total variation norm for vector
valued functions which can be applied to restore color and other vector
valued images. The new TV norm has the desirable properties of (3) not
penalizing discontinuities (edges) in the image, (%) rotationally invariant
in the image space, and (i#i} reduces to the usual TV norm in the scalar
case. Some numerical experiments cn dencising simple color images in
RGB color space are presented.

1 Introduction

During gathering and transfer of image data some noise and blur is usually
introduced into the image. Several reconstruction methods based on the total
variation (TV) norm have been proposed and studied for intensity (gray scale)
images, see [9, 14, 21, 26, 29].

Since these methods have been successful in reducing noise and blur without
smearing sharp edges for intensity images, it is natural to extend the TV norm
to handle color and other vector valued images.

Why do we need color restoration? It can be argued that since color literally
only is in the eye of the beholder, color image processing is not important for
computer vision in terms of edge detection and targeting. However, in any
application where the images are to be viewed by a human, color is an important
factor; also, intensity based processing fails to detect iso-luminance edges, i.e.
edges where there is a “jump” in color, but the intensity (or luminance) is
constant.

Any attempt to extend the scalar TV norm to the vector valued case should
at least preserve two of the basic advantages of TV; namely (i) not penalize

*This work is supported by the ONR under contract ONR N00017-96-1-0277
tThis paper is available in color postscript at http://www.math.ncla.edu/applied/cam
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against edges, and (ii) be rotationally invariant in image space. Moreover, it
is also desirable to have the extension reduce to the usual TV norm in the
scalar case. There have been several attempts to extend TV related restoration
techniques and edge detection to vector valued images; see [10, 12, 16, 22, 23].
Most of these, however, do not satisfy all of the above criteria. Our approach is
most closely related to that of Sapiro’s [22, 23, 24], who proposed an anisotropic
diffusion model {for vector valued images. We will compare our approach to that
of Sapiro’s in section 3.

In section 2, we extend the TV norm to vector valued functions, and we
explain why we choose this extension of the norm. In section 4, we compare
our definition to other possible extensions and approaches to the color image
restoration problem.

In section 5, we make some remarks regarding the color space used in our
numerical experiments, and how a different choice of color space may improve
image reconstruction.

In section 6, we present some numerical results showing that denoising using
the extended norm give us good reconstruction for (4} a space-curve in B3, (i)
a one-dimensional RGB color image, and (74} two two-dimensional RGB color
images.

2 The Multi Dimensional Total Variation Norm

2.1 Important Properties of the One Dimensional Total
Variation Norm

Before stating our definition of the multidimensional TV, ;, norm, we first re-
view the definition of the one dimensional TV, ; norm, and its properties.

Definition 1 (The One Dimensional TV, 1 (®} Norm)
The TV,,1(®) norm is defined (see [21]) for scalar valued functions & : R — R

TVa1(®) ¥ f IV®|dx, QcC R (1)
Y]

One important property is most evident when 1 = 1;

Property 1 {Total Variation of Monotone Functions in One Dimension)
All 1D functions satisfying:

® € BV([a,b])

B(a) 2
B(b) B,
B(x) monotone in fa, b]

have the same total variation, TV 1(®) = |{®, — ®|; see figure 1. BV{[a,b]) is
the class of functions with bounded variation on the interval [a,b], i.e.
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if ® is monotone.
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Figure 1: Functions with the same Total Variation in 1D.

Property 2 (Rotationally Invariant)
The TV, 1 norm is rotationally invariant in image space. This is clear, since the
norm of the gradient |V¢| = [|[V¢]|;z is rotationally invariant.

This means that when we are solving the nonlinear minimization problem

A 2
min TV, :(®) - = [& - &° 2
i TV (®) = & - 2| )
which arises in denoising, no monotone function is preferred over another, so
edges will not be smoothed. Another important implication is that even though
the norm preserves edges it is not overly biased in favor of edges, i.e. it will not
introduce artificial jumps in the function {over-sharpening).

2.2 A New Definition of the Total Variation Norm for
Vector Valued Functions

We are now ready to state our extension of the definition of the TV norm to
the vector valued case.

Definition 2 (The Multi Dimensional TV (%) Norm)
Let TV, be the usual one dimensicnal total variation norm, then for any
function @ : R — R™, the multi dimensional TV norm is

TVom(®) & i [TV, (89
i=1
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The TVym(®) norm is preserved for the class of vector valued functions with
monotone components, ®*. Furthermore, the total variation of such a function
is the Buclidean distance between ®(a) and ®(b), see figure 2.

Theorem 1 (Total Variation Preservation for Monotone Functions)
Let ‘I'.: [a,8] € R — R™ be a vector valued function with monotone components,
i.e. ®*(z) are monotone for all 7, then TV (®) = d(B(a), B(b)).
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Figure 2: Functions with the same Total Variation (left), and their projections
to ®-space (right).

Proof of Theorem 1.
Since the vector components are monotone, we have

TV1,1 (&) = |8*(b) — 2(a)| = d (2*(a), (D))

by Property 1 of the scalar TV norm. Therefore

TVim(®) = \JZ [TV1,1 (29 = J i [84(8) ~ 2¥(a)]” = d(B(a), B(B)).
i=1

g=]
0

As in the gray scale case, this definition of TV, ,(®) allows discontinuities
(edges). Since all component-monotone functions have the same norm it pre-
serves edges, in the sense that no monotone function is preferred over another
in the minimization problem

. A an2
+58 TVom(®) ~ 5 @ —@°;. (3)

Furthermaore, it is not biased against smooth functions so artificial edges will not
be introduced, and it is also rotationally invariant in image space. The rotational
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invariance follows from the fact that the TV, norms of the components, &,
are rotationally invariant.
We notice that if m = 1, TV, n(®) = TV,,1($) i.e. we recover the TV

norm for a scalar valued function.

3 Other Approaches

Other approaches to the vector valued restoration problem, e.g. anisotropic
diffusion [2, 3, 5, 18, 24, 30}, edge detection and segmentation [2, 5, 12, 16, 27, 32]
as well as segmentation methods related to level-set methods [4, 15, 17, 22,
23] can be found in the literature. Here we will briefly describe the general
anisotropic diffusion approach, and Sapiro-Ringach’s [22, 23, 24] approach in
particular.

We view the restoration problem in terms of solving the nonlinear optimization
problem
A 2
i Slle — = [0 — B° 4
seBV(O) I ®llry 2 | I2 (4)
where ®° is a given initial (noisy) image, A a Lagrange multiplier associated
with the noise level, and || - ||7; an appropriate definition of the norm.
Notice that solving the nonlinear system of equations

&
%ME- =F(®,8/8z1,...,0/0x,; \) (8)
where F(-) = 0 is the Euler-Lagrange equations associated with (4), is a form
of anisotropic diffusion.

However, before comparing TV, », and the anisotropic diffusion approach, we
explore the relationship between TV, and the simplest extension of the total
variation approach to the vector valued case — channel-by-channel TV restora-
tion.

3.1 TV, and Channel-By-Channel TV

A common belief in the image processing community is that when processing
vector valued images, there should be a coupling between the channels. In
general, however, it is not clear what the correct coupling is. Here we describe
the nature of the coupling of the channels in the TV, norm and give an
indication of how the performance of this norm is different from the channel-
by-channel TV norm.

Consider the following denoising problems:
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Channel-By-Channel TV

; iy A g i,0|[2
v {89 G0t 2}, ©
Color TV N
. o2
. . {Tvn,m(q») -sle-2 ||2} , (7)

where ||®|3 is the channel-mixed-I; norm, 37, [|8*]|3.

The corresponding Fuler-Lagrange equations are

Channel-by-Channel TV

o V8 Y (5 a0 =
v (nwii;) A& - 2) =0, ®
Color TV

TVﬂsi(éi) V@i

Wosul®) (HV«ls,-n) —A (3 -20) =0. 9)

The TVy 1 coupling takes the form of a global channel-wise modification of the

Lagrange-multiplier X:

 TVom(®)
TVa1(®:)

This has the implication that a channel with large TV will be smoothed more
than a channel with small TV. Consider the simple model example, with m =
2, n =1, depicted in figure 3; we see that for a particular A the Channel-By-
Channel TV almost completely wipe out the weaker of the channels, whereas
the TV, m regularization maintains a balance of how much each channel is
smoothed. Figure 4 shows reconstruction from a noisy signal.

In both these examples we are measuring the noise, or allowed deviation from
the initial signals, in the channel-mixed-I; norm. In cases where we have sepa-
rate noise measures for the separate channels, the channel-by-channel approach
may be more successful. For a more complete discussion of how the choice of
regularization parameter A affects the scale of TV smoothing, see Strong-Chan
[26].

A A (10)

3.2 Anisotropic Diffusion Based on Riemannian Geome-
try

We describe the the Riemannian Geometry based anisotropic diffusion in gen-
eral, and Sapiro-Ringach’s {22, 23, 24] approach in particular, since their ap-
proach is closely related to ours in the sense that the implied definition of the
vector valued TV norm is closely related to our definition.
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Figure 3: Application of the denoising (TV smoothing) to a simple model prob-
lem where the two channels have different strength. Here A = 10. The upper
two pictures show the result of the Color TV regularization, and the lower pic-
tures show the result of Channel-By-Channel application of the TV norm. The
dotted line shows the initial data.
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Figure 4: Comparison of Color TV, and Channel-By-Channel TV. Regular-
ization parameter A = 2. Left-to-right: The initial signals, the Color TV
reconstruction, and the Channel-By-Channel reconstruction. Notice that chan-
nel #1 is about 5 times as strong as channel #2.

The Riemannian geometry framework for edge detection in vector valued
images was first suggested in [32], see also [12, 16, 27, 30, 32]. Given a multi
dimensional image ®, then the first fundamental form [10, 11}

2 < 0% dry r g1 g1z | | dzy

§ :z d.:x:l (11)

— dy g1 g2 | | dm2
——

G

or 22 as 1
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is the squared norm of the arc element d®. Here,
0% o o
$ig = 631,‘ a:l:j ’
The idea is to preserve edges by smoothing in the direction of minimal change,
§—. The anisotropic diffusion model is described by the evolution equation

(12)

o _\ 0%®
“5t“=9()\+,)\ )BEQ—, (13)
where, for n = 2,
PE g11+ g+ \/(9;1 — g22)* + 44, (14)

are the largest, resp. smallest eigenvalues of G, and ¢_ the direction of minimal
change, the eigenvector corresponding to A™:

&y, = %arct&n (_Z_qL) (15)

g11 — G2z
&~ L & (16)
g(-} is any decreasing function of either (A* — A=) or At /A~, used to penalize
against smoothing edges.

It can be shown that in the gray scale case g—z;?: = 0 is the Euler-Lagrange

equations for the total variation norm, which can be written as:
TVa1(®) = f X dx. (17)

feR"

For a general g(-}, (13) is not a time marching scheme associated with the
Euler-Lagrange equations of a norm.

An alternative, but equivalent, formulation is given by Chambolle in [8], who
suggests using the diffusion equation (13) with the directions

(Ve &)
¢t = arg max || (V82, ¢) (18)
LR (73, ¢)

l§[=1
and £~ 1L £F. It is straight forward to show that equations (11) and (18) define
the same directions, £+,
3.3 Sapiro’s Generalization of the TV Norm

In [22}, Sapiro suggests the most general extension of the TV norm based on
Riemannian geometry:

@y = [ FOF,0 (19)

8
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whors ATt ars the sivanvalues af the matriv (7 in (11}, and f{.} iz a n(_m-rlnprpagin_g

U AT QT bl TIRTA Y Qe wtal Ul VAT LISV LA LR ST il A=l ivasil

function of Ay; the most natural choice is f(-) = v A+ 4+ A—, i.e. the square root
of the trace of the matrix G, see section 4. This choice is equivalent to the TV
norm in the scalar case (A~ = 0). We shall show, however, that this definition of
the norm has a tendency to smooth edges, and is therefore not the optimal choice
for vector valued image reconstruction in applications where edge preservation
is important. In this paper we do not discuss the norm proposed by Sapiro [22],
generated by the function f(-) = ¥(A* — A7).

We can give an intuitive explanation for the smoothing caused by this defi-
nition of the norm: a function (A, A_), non-decreasing in both arguments, is
essentially f{d®?) where d® is defined in (11). d® is the arc element in ®-space,
and the norm [ f(d®?)dx is a measure of the arc length. Minimizing using this
norm will give a preference to curves with shorter arc length in ®-space, which
leads to a smoothing of edges. The key difference between our approach and
the “Riemannian Geometry” approach is that our definition avoids an inner
product like the one in (11) and is therefore not concerned with the arc length.

As shown in figure 2, the projection of the embedding of the map ® : R* —
R™ in R™™ projected into B™ (P-space)} can be a discrete set and therefore
the arc length is not well defined. It turns out that the norm measures the
generalized arc length, where jumps in @ space are connected by straight lines,
see figures 6 and 7.

We give three simple examples which illustrate the differences between our
approach and the Riemannian geometry approach.

Examplel
Let @ : [0,1] C R — R? be monotone in its components:
d(z) = =
0 T <y
o2 =
@ = { e oo

We get:

| VR =+ T3P 1= NGo)

and we have

lim N 3
lim N() V2
2

lim NV =
Jim N(v)
As shown in figure 5 this definition of the norm “prefers” solutions with

small gradients. Since the components are monotone, our extension of the TV
norm would yield the same value independent of +.
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Figure 5: Functions with the same Total Variation in the Blomgren-Chan TV-
norm and different (increasing in ) VAT + A—-norm (left); and their projections
to ®-space (right).

Example 2
Consider a discontinuous ®, e.g.

P’ =@ ={] 2Sia

which has the projection {(0,0), (1,1)} into ®-space. In this case the Blomgren-
Chan TV norm and the v/AT + XA~ norm coincide with value v/2; see figure 6.

Now, consider the perturbed problem

0 z<1/2~¢
¢1("’)={1 2>152—-e

0 z<1/2
<3’2("“')={1 2>1§z,

which has the projection {(0,0), (1,0), (1,1)} into ®-space. In this case the
Blomgren-Chan TV norm takes on the value v/2 and the +/AF A~ norm the
value 2; see figure 7.

We observe that the +/ A+ + A~ norm is biased in favor of vector valued functions
whose projections into ®-space are closer to the line parameterized by ®(s) = s,
i.e. functions with small arc length in ®-space. In RGB space this means that
the norm prefers gray scale images over color images!

10
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Figure 6: A function for which the Blomgren-Chan TV-norm and the
VAT 4+ A—-norm coincide. Notice that the projection only contains the two
points (0,0) and (1,1), the {generalized) arc length is the straight line connect-
ing those two points.
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Figure 7: A for which the Blomgren-Chan TV-norm and the +/A* + A~-norm
are different.

Example 3
We compare numerical restorations using the TV, m and AT + A~ norms. We
choose the functions $!+%(z) as in example 1 with y = 0.5. We solve the problem

. 1 on2
Jmin ol - 5|2 -2,
&i(0)=0, ®i(1)=1

for some values of o.. Figure 8 shows the restorations visualized in the ®$-space,
and figure ¢ shows the visualization where the (R, G, B) = (8!, %, 8%). We
notice that, as expected, the v/At 4+ A~ norm has a tendency to smooth the
kink in the curve much more than the TV, , norm does, especially for large a.

11
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aipha=0.01 , alpha= 0.1 wpha={ nipha = 1000
1 1
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Figure 8: Restorations visualized in ®-space for some values of @. {SNR = o0,
no noise) The upper graphs correspond to the v/ AT + A~ norm, and the lower
to the TV, m norm, the small “lift” from the exact solution for the TV, ,, norm
depends on the numerical regularization parameter 8, here 8 = 1078, (See
section 6.1 for explanation of 8.)

Figure 9: Restorations visualized in RGB color space, the upper two pictures
show the TV (left) and +/A+ + A~ (right) reconstructions for @ = 0.01, and the
lower two pictures show the reconsiructions for & = 1000. We observe a clear
shift toward a gray scale image for the +/A*+ 4+ A~ norm when « = 1000. (This
is a color figure)

4 A General Framework for Vector Norms

Our definition of the vector valued TV-norm as the [2-norm of the TV-norm of
the separate channels may seem arbitrary. It may seem possible that there exist
other definitions which also preserve the stated desired properties of a vector
TV-norm. In this section we will show that our definition is the most natural
within a quite general class of norms.

First, we notice that we can write the norm as a composition of I?, and

12
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TV, (8) & )0 (@) o P 5) (G- )
Zj

In this framework, the six permutations of
1P (m, i) o LP*(Q2) o IP™(n, §)
define six three-parameter families of norms.

Lemmal
Composition of two norms || - [|1,5, and [} - Jl2,p, commute if and only if p; = p,.

Proof of Lemma 1.
Let £; and £ be the linear operators defining || - |1, and || - ||2,p,, and let
1 =p2 =p. We get:

H “‘I’”Lp”%p

G
Y La(L1(12]P)) = /L1(L2(127))
Y /ETTRY = 1leplip D

Using this general characterization, we argue as follows (see also [1]): a neces-
sary, but not sufficient, condition for rotational invariance in physical space is
prn = 2; for rotational invariance in projection (#) space, we need p,, = 2*, and
finally, for any choice pn # 1 there is no hope of defining a composition norm
which is unbiased with respect to discontinuous functions (edges). Therefore the
correct composition norm from this collection of norms is one of the following
four possibilities:

1. (2(m,j) o LX) o (n,i))(®) Blomgren-Chan

2. (LX) 0 2(m, 7)o IP{m,i))(®) Sapiro [22], with F(AT,A7) = VAT + A~
3. (I*(m,) o L'(Q2) 0 P(m, ))}(P)

4. (BB(m,j) o 2(m,i) o L}{2))(®).

The choice f(AT, A7) = /At + A~ is the most natural in the sense that it fits
into this general framework. Other choices of f(A*,A™) do not fit. In an image
where n > 2, f(AL, A%, ,A") = VAT + X2+ + A" = /trace(G) is the most
natural choice of f(-).

It is worth noticing that when m = 1, the first two reduce to

*This property is not crucial, since vision, and hence color-spaces are non-linear; i.e rota-
tional invariance in color space has no meaning.

13
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Figure 10: The (i%(n,i) o L*(Q2))-norm takes the value 2+/2 for the image to the
left, and 4 for the image to the right. The classical T'V-norm takes the value 4
for both images. (The function value is 0 in the white region, and 1 in the gray
region.)

o (LMNQ) o P(n,i))(@),
which is the “clagsical” gray scale TV-norm, and the last two reduce to

o (B(n,i) o LNQ))®) =/ (J,, [2:] dudy)® + (J, 1,] dw dy)?

which is an alternate definition for the gray scale TV-norm; however, this defi-
nition is not rotationally invariant in physical space, see figure 4.

Our choice of definition is based on the two requirements that the norm should
reduce to the gray scale TV-norm for m = 1 and monotonicity invariance for
n =1, see Theorem 1.

Finally, we note that, in our notation

o (LX) o I1(n,i))(®), is the “taxi,” or “Manhattan-distance” TV-norm of
Li-Santosa [14}; see also LeVeque {13, chapter 15].

Summary of Properties of the Norms

In Table 1, we summarize the properties of the different definitions of vector
TV-norms. We see that the definition proposed in this paper is the only one
(from this class) which satisfies all four of the desirable properties.

5 Color and Ceolor spaces

The human retina has three types of color receptor cells which respond to in-
cident radiation with different spectral response curves. Color is the perceptual

14
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Norm Reduces to | Rotationally | Allows | Unbiased
Scalar TV Invariant Edges | wrt. Color

Blomgren-Chan, TV, ;m Yes Yes Yes Yes
(B(m,4) o L' () o I(n, 1))
Sapiro VAt 4+ A—

(LY(2) o I2(m, §) o I3(n, 1)) Yes Yes Yes No
(L' () o P(n, ) o PP(m, j))

(12(n,7) o L}(Q) o I2(m, j)) No No Yes No

(12(m, 7) o I*(n, 1) o L}(2)) No No Yes Yes
(P(n,1) o I(m, §) 0 L*())

Table 1: Properties of different vector valued TV norms. Rotational invariance
refers to physical (image) space. Since all the compositions include L'({2), they
are all unbiased with respect to discontinuities. The Sapiro, and (I%(n,i) o
L)) o I2(m, 7)) norms have a tendency to smooth colors {bias against color
images)} as discussed in Examples 1 and 3 in section 3.3.

result of light in the visible region of the spectrum, having wavelengths between
400nm and 700nm. Since there are three color receptors, we can describe color
using three numerical values.

Intensity is a linear measure of the total energy over some interval of the
electro-magnetic spectrum.

Luminance is a measure of the radiant power weighted by a spectral sensi-
tivity function characteristic of vision, denoted by Y.

Human vision responds nonlinearly to luminance; the perceptual response
to luminance is called lightness, denoted by L*.

i
L* = 116 (K) T 16, Y > 0.008856Y,
Ye
where Y;, is the luminance of the white reference, for Y < 0.008856 Y,, the L* is
a linear function of L.

There exist several color specifications, including CIE XY Z, CIE zyY, CIE
L*u*v*, CIE L*a*b*, linear RGB, nonlinear R'G'B’. [6, 7, 25, 31]

A color system is perceptually uniform if a perturbation, § to a component
value is equally perceptible across the entire range of component values. The
naive XY Z and RGB systems are far from uniform, i.e. the perceptibility of
a perturbation (AR, AG, AB) is dependent of the value of (R,G, B). The CIE
L*u*v* and CIE L*a*b* spaces are first approximations for perceptually uniform
color spaces. Formulas for transforming between RGB and CIE L*a*b* can be
found in [22] and the very accessible introduction to color [19].

15
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The computations in section 6 were performed in linear RGB space, which
is a perceptually nonlinear space. Perceptually better results conld be obtained
by performing the calculations in CIE L*g*b*,

6 Numerical Experiments

6.1 Noise Reduction Using TV, ()

Given an initial, noisy, image ®° on a domain © C R"*, we are interested in
minimizing the total variation norm, TV, ,,(®) subject to constraints on &
given by the variance of the noise, 0>. We want to solve:

. A
BT {TVn,m(é[)) ~zlle- @°[|j} : (20)

It is straight forward to show that the corresponding Euler-Lagrange equations

are
TVna(8;) ( Vo, ) 0
15 Vo (8- 30) =o0. 21

Wom@) ©° \vag) ~ 2 &%) (@)

The following numerical experiments were all performed in Euclidean spaces,
which for color images represent the linear RGB space. As discussed in section 5
this is not the optimal space for perceptual uniformity, but the results are of
interest anyway.

The solutions were computed using an explicit time marching scheme, a
slight modification of the one introduced in [21], applied to the system of equa-

tions
d®;  TVy1(®:) U8, .
= ¥ —— | — A (@ — B}, 22
Bt TVam(®) ' (, /8 + ll—_V@in) ( ) (22}

where 3 is a small numerical regularization parameter, introduced to avoid
division by zero.
The signal-to-noise ratio (SNR) is defined by

m, —
= (nh)*

where @ is the average of ® over all data points (enumerated by the subscript
i}, and all channels (superscript k). In all the computations the Lagrange mul-
tiplier, A, is determined by gradient projection, c¢f. [20, 21].

; (23)

Example 1. Reconstruction of a Space Curve

In our first numerical experiment we define a curve (with several discontinuities)
embedded in B? by defining a mapping ® : [0,1] C R — B?. We add Gaussian
noise (SNR = 2.90) to the data, and apply the TV-denoising to the noisy curve.
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The fime step was dt = 7.75- 1078, and the iteration was stopped after 7290
iterations when the Iy-norm of the correction was less than 1.5 105,

Admittedly, this is a very artificial setting. The rationale for this experiment
was to convince ourselves that denoising using the extended definition of the TV
norm would indeed preserve sharp edges. Also it provides a computationally
“cheap” example which is easy to visualize.

As shown in figures 11-12 the reconstruction is quite good. Since we are
dealing with a space curve in R®, we are pushing the question of perceptual
uniformity aside.

The hilal Space Curve. “Tha Holey Space Cunie Tha Raecoversd Bpace Crave

Figure 11: The initial, noisy (SNR = 2.90}, and recovered space curves. Notice
how the edges are recovered.
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Figure 12: Channel separation for initial, noisy, and recovered data. (Same data
as in figure 11.)

Example 2. Reconstruction of a One-Dimensional Color Image

A one dimensional image was created in RGB space, i.e. ® : R' — R® where
each channel represents a color intensity. Gaussian noise (SNR = 0.5) was
added and an explicit time marching scheme was applied to reduce the noise
(see figures 13-14).

The images are visualized by extending the one dimensional lines into two
dimensional strips.
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Figure 13: Channel separation for the initial and noisy (SNR = 0.5) images.

The Recovared Dala Iniial, Nalay, and Recoversd Color kmages:
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Figure 14: Channel separation for the recovered image, and color visualization
for the original, noisy and recovered images. (This is a color figure)

Example 3. Denoising of a Two-Dimensional Color Image

For the full two-dimensional denoising we created a test image in RGB space, i.e.
& : B> — R?*; Gaussian noise was added (SNR = 2.5), and we ran the explicit
time marching (dt = 1.0- 10~°) with the regularizing parameter 8 = 1.0-10~°.
After 4150 iterations, the TV-norm of the noisy image had been reduced by
82%. Channel separated initial, noisy, and restored images in figures 15-17,
color realization in figure 18,

Example 4. Reconstruction of the Color Lena Image

Our final example is denoising (SNR. = 2.0) of a 128 x 128 color “Lena” image.
We used the parameters dt == 107% and 8 = 1079, the results are shown in
figures 19-20.

We observe that the reconstructions do not smear edges. The quality of the
reconstruction increases as the size of the regularization parameter 8 and the
timestep dt in the explicit time marching shrink. It is well known that the
steepest descent approach we are using here has less than optimal convergence

18
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ods, e.g. fixed point (cf. Vogel [28, 29]) and primal-dual {cf. Chan-Golub-Mulet
[9]) methods.

t 'mpipmﬁmt more efficient numerical meth-

7 Concluding Remarks

We have introduced a new definition of the total variation norm, TV, ,(®),
for vector valued functions, ® : B* — R™. This definition has a number of
properties which may be desirable in applications, (i) it allows discontinuous
functions — edges, (i) it is rotationally invariant in physical space, and (%) it
reduces to the classical T'V norm in the scalar case.

‘We have compared the properties of the norm to other definitions, in partic-
ular to the approach of Sapiro [22]. By studying simple examples, i.e. reduction
to one dimension in either physical, or color space, we have illustrated some
differences between the norms.

A general framework for vector norms was introduced. We show how our
norm fits into this framework, and explain why the +/ A+ 4+ A~ norm of Sapiro is
the most “natural” choice from the class of norms f(A*,A™). Many promising
possible norm definitions fall ouiside this framework, and are not discussed in
this paper. We show how the classical gray scale TV, as well as Li-Santosa’s
[14] norms can be described in this framework.
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Figure 15: RGB intensity separation for the initial image.
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Figure 16: RGB intensity separation for the noisy {SNR = 2.5) image.
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Figure 17: RGB intensity separation for the dencised image.
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DaNaisad Calor Image

Figure 18: The initial, noisy, and dencised color images. (This is a color figure)

Figure 19: The noisy (SNR = 2.0) image (left) and two stages of denoising: 40%
and 60% TV, ,-norm reduction. (This is a color figure)

Figure 20: Two stages of denoising: 70% and 80% TVyn-norm reduction, and
the initial image (right). We notice that even when we demand a big reduction
in the norm, edges (main features) are preserved. (This is a color figure)
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