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STIFF SYSTEMS OF HYPERBOLIC CONSERVATION LAWS.
CONVERGENCE AND ERROR ESTIMATES*

A. KURGANOV!T AND E. TADMOR!?

Absiract. We are concerned with 2 X 2 nonlinear relaxation systems of conservation laws of the form,
up+ f(w)e = —35(u, v), ve = $5(u,v), which are coupled through the stiff source term, 18(u,v). Such systems
arise as prototype models for combustion, adsorption, etc. Here we study the convergence of (u,v) = (1%, %) to
its equilibrium state, (1, 7}, governed by the limiting equations, @ + 0: + f(#)s =0, S(@,7) = 0. In particular,
we provide sharp convergence rate estimates as the relaxation parameter § | 0. The novelty of our approach is
the use of a weak W™!(L!)-measure of the error, which allows us to obtain sharp error estimates, It is shown
that the error consists of an initial contribution of size ||S(u5,v3)|| 1, together with accumulated relaxation
error of order (). The sharpness of our results is found to be in complete agreement with the numerical
experiments reported in [STWI.

AMS(MOS) subject classification. Primary 35L65; Secondary 58G16, 58G18.

Keywords. Conservation laws, stiff source terms, relaxation, Lipt-stability, convergence rate
estimates.

1. Introduction. We are concerned with one-dimensional systems of conservation laws
which are coupled through a stiff source term. The purpose of this paper is to study a con-
vergence rate of such systems to their equilibrium solutions as the stiff relaxation parameter
tends to zero.

Our system takes the form

(11) wt fw), = ~38(u0),
(1.2) v = %S(U}U):

where § > 0 is the small relaxation parameter, The stiff source term, S{u, v}, and the convective
flux, f(u), are assumed smooth functions. We consider the Cauchy problem associated with
(1.1)-(1.2), subject to periodic or compactly supported initial data

(13) u(:f"? 0) = ’Uo(m); ’U(fB,O) = Uﬂ(m)'

Here u(z,t) := u®(z,t), v(z, ) :=v%(z,t) is the unique entropy solution of (1.1)-(1.3}, which

can be realized as the vanishing viscosity limit, = 1ii'51 ub?, ¥ = lii‘lﬂl v*" where (u%,v%")
v . v

is the solution of the regularized viscosity system,

(1) W ), = —3S, ) il

(15) o = %S(u's"’,v‘s'”).

By standard arguments (which we omit), this regularized system admits an unique global
classical solution (see e.g., [HW],[Lul]).
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2 A, KuRcANOV AND E, TADMOR

Once we identify the-unique entropy solution, (uf,1%), we seek its equilibrium state as
6§ 1 0, (@,%). Formally, our equilibrium solution is governed by the limit system obtained by
letting 6 | 0 in (1.1)-(1.2),

(1.6) (@+9):+ f(#). = 0,
(17) S(ﬂ,ﬁ) =

To obtain the limiting equation (1.6), add {1.2) to (1.1); to obtain the constraint equation
(1.7), multiply (1.2) by é and pass to the formal kmit as 6 — 0.

The two main questions that we address in this paper are concerned with the convergence
of the entropy solution (u’,v°) to its expected equilibrium state (4, 9):
#1. Convergence. We prove the convergence to the expected limits,

(1.8) 7= lim«™, 7= lim".
swlo 5w 10

Moreover, we provide
#2. Error Estimates. We estimate the convergence rate as » — 0, and in particular as § — 0.

Assume S, # 0 so that we can solve the constraint equation (1.7) and obtain its solution
in the explicit form,

(19) 7 = v(a).

Inserted into {1.6), we obtain that @ is governed by the limiting equation,

{(1.10) [@ + v(@)]; + f(@), = 0.

Equivalently, if we denote @ = (i) := @ + v(%), and let its inverse’, @ = @(w), then

we conclude that the limiting equation (1.10) can be rewritten as a single conservation law,
expressed in terms of the combined flux F(w) := f(a(@)),

(1.11) @, + F(wm), = 0.

We obtain our convergence results under the assumptions of convexity — of both f(-) and
F(.), and the monotonicity of S(u,v). In addition, we assume we start with ”prepared” initial
data, in the sense that u, = uf and v, = v§ approach their equilibrium state (1.7), as 6 | 0,
ie., '

15 (ud (@), 08 (@)l 3oy = 0.
Specifically, we let € = €(6) | 0 denote the vanishing snstial error
(1.12) IS (ug (@), 3 ()] p1(my ~ €(6) | 0.

Equipped with these assumptions, we formulate in §2 our main results, which we summarize
here as

L The inverse exists since by our monotonicity assumption below, v'(u) = —8./5, > 0.
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THEOREM 1.1. [Main Theorem]. Consider the system (1.3)-(1.5) subject to W*(L')-
“prepared” initial data, (1.12). Then (u®”,v>") converges to (4,7) as v — 0, § — 0, and the
following error estimate holds ¥p, 1 <p < oo,

i-sp

(1.13) 1uf (1) — @, O)llwe(zo@y < Constp - (@) +6+v) , —1<s<

"3

Thus, (1.13) reflects three sources for error accumulation: the initial error of size (),
the relaxation error of order §, and the vanishing viscosity of order ». For example, in the
inviscid case (v = 0) and with ”canonically prepared” initial data such that (&) ~ 4, we
set (s,p) = (0,1) in (1.13) to conclude an L'-convergence rate of order O(V8); in fact, in
Corollary 2.3 below we extend this L'-estimate to the v-variable, stating

(1.14) (-, 8) = ()l o + 07 (1) = B(, )| 22 = O(VE).
The two-step proof of the main theorem is presented in §3 (- stability) and §4 (— consistency).
We close this introduction with three prototype examples.

Ezxample 1. Combustion. We consider a combustion model,l proposed by Majda in [Ma).
This model was consequently studied in e.g., [Le],[TY],{Lu]. It takes the form

1
EA(u)'v + Vg,

(1.15) v = —2Aduw.

Uy + f(u)w

Here u = v*” is a lumped variable representing some features of density, velocity and

temperature, while v = v®" > 0 represents the mass fraction of unburnt gas in a simplified

kinetics scheme, % is the rate of reaction and the parameter » > 0 is a lumped parameter

representing the effects of diffusion and heat conduction.
In this model, S{u,v) = —A(u)v and our convexity and monotonicity assumptions (2.1)-
(2.3) below hold, provided

(1.16) Au) <0, Alw)>n>0; ffluy>a > 0.
The limiting equation (1.10} in this example reads

y + f (ﬁ)m =90,
and hence u®” — 4 satisfies the error estimate (1.13).

Ezample 2. Adsorption. We consider the following stiff system:
, ‘
ot fWe = —5(Aw) —v),
(1.17) v, = %mm_m.

In this example u = u® denotes the density of some species contained in a fluid flowing
through a fixed bed, and v = v® denotes the density of the species adsorbed on the material
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in the bed, § > 0 is referred to as the relaxation time. Different forms of adsorption functions,
A(n), are discussed in [STW],[TW1],[TW2] and the references therein.

The source term associated with this adsorption model, S(u,v) = A{u) — v, yields a
limiting equation of the form

[@+ A(#)], + f(@), = 0.
Under the monotonicity assumption and convexity condition (consult (2.1)-(2.3)),

; fiw) v

(1.18) Alu) >0, [m] > >0,
we conclude the error estimate (1.13) with » = 0. In particular, for ”canonically prepared”
initial data such that ||A(u§) — v§]| .. = ©O(6), (1.14) yields a convergence rate of order O(V5).

In this context it is interesting to contrast our above error estimates with those of [STW].
Schroll et. al. in [STW], studied the error estimates for the adsorption model (1.17) subject to
? canonically prepared” initial data, ||A(ud) — vi||,. = O(6), and concluded an L'-convergence
rate of order O(6%). Their reported numerical experiments, however, indicate a faster conver-
gence tate of order @(+/8). Our results, consult e.g. (1.14), apply to their numerical experi-
ments, and confirm this optimal O(v/6) convergence rate. It should be pointed that the O(5%)
error estimate in [STW] was derived by interpolation between L*- and L'-error bounds. It is
here that we take advantage of our sharper interpolation between the weaker O(8) Lip’- and the
O(1) BV-bounds. This enables us to improve over [STW] in both — simplicity and generality,
and conclude with the sharper estimate of order Q(+/$).

Ezample 3. Relaxation. Let us consider the following semilinear stiff system (see e.g.
[IX], [Li]): |

Uy + Vg = OJ
1
(1.19) v+ au, = ES(u,’U),
where S(u,v) == f(u) —v and o is given positive number. The limiting equation, with
v{u) = f(u), is then
s + f(@), = 0.

To study this system we rewrite it in the form of (1.1)-(1.2) by means of two changes of
variables. First, we define the characteristic variables w = y/au+v, 2 := y/au—v. The
gystem (1.19) then takes the form:

z—Vaz, = —%S(z,w),
(1.20) wAvav, = 3S(zw)

with S(z,w) = S(u{z,w),v(z,w)). Next, we make the second change of variables, &' :=

¥ — +/at, obtaining
1
Z—Maz, = —ES(z,w),

(1.21) wy = %S(z,w).
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In this model, the flux is linear and hence our first convexity assumption, (2.2), holds. The
second one, (2.3), is satisfied for convex f’s. In addition, the monotonicity of S, S, > 0,5, <
—n < 0, amounts (in terms of S, and S,) to the inequalities

5,<-n<8, S4a<8,<-5va
Thus, S{u,v}= f(u) —v should satisfy Liu’s sub-characteristic condition (e.g. [Li]),
—va £ f'(u) < va.

In this case, our main theorem with p = 1 for example, yields

&

1—
2

148 — @llgpe ) = Const - (|1 f(wd) — 0]l +6) 7, —1<s<1.

2. Statement of Main Results. We seek the behavior of the solution of regularized
system (1.4)-(1.5) towards the limit solution as § — 0, as well as v — 0.
Throughout this section we make the following two main assumptions.
(1). Monotonicity: S(u,v) is monotonic with respect to u and strictly monotonic with respect
to v,

(2.1) S.(u,v) >0, S,(u,v)<—-n<0.

(2). Convexity: f(-) is convex and F(-) is strictly convex function,

(2.2) f(u) 20,
I
f'(a)

2.3 F'(w) > 0 = |[—F——=1] = 0.
(2.3) (w) > a> (1+v’(ﬁ) >a>

Remark. Our first assumption of monotonicity guarantees, by classical maximum principle,
see e.g. [PW], the L*-boundedness of (u®*,v%") (proof is left to the reader).

Equipped with the two assumptions above, we now turn to the main result of this paper.
To this end, our error estimate is formulated in terms of the weak Lip'-(semi)norm, ||-||,,*
As we shall see, such weak (semi)norm has the advantage of providing us with sharp error
estimates, which in turn, will be converted into strong ones.

THEOREM 2.1. Consider the system (1.3)-(1.5) subject to W2(L')-"prepared” initial dota,
(1.12). Then (u*,v%¢) converges to (@,7) as § — 0, v — 0, and the following error estimate
holds,

(24) Huﬁ’y(')T) - ﬁ(':T)“L,;p-'(m) < Consty - (6(5) + 4+ V).

Let us consider the particular inviscid case, v = 0. Then the entropy solution of the stiff
system (1.1)-(1.2), (uf,v°%), converges as § -+ 0 to its equilibrium solution, (%,7), and we
obtain the asserted convergence rate, in terms of the initial error €(§), and the vanishing
relaxation parameter 6,

(2.5) 16" () = (s TH| iy () < Clomstr - ((€(6) + 8).

* Here, as wsual, 4]l = 50Bl(6 — o, ) IWllyaal doi= [ &

suppd
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Remarks. 1. Our assumption of "prepared” initial data means that at the initial moment,
15 (ug, vl 12 =3 0. In §4 we will show that, in fact, ||S(u®,v™)||,; 250 for all t > 0.

2. What about "non-prepared” initial data? in this case the initial layer formed persists in
time, i.e., the initial error propagates and prevents convergence of % v®" to their equilibrium

state,

The proof of the main theorem will be given in §3 and §4. To obtain this result we utilize
the framework of Tadmor and Nessyahu [[Ta],[NT]]. To this end, we need the two ingredients
of consistency and stability. Here, consistency - evaluated in the Lip’-norm, measures by how
much the approximate pair (u®”,v(u®)) fails to satisfy the limiting equation (1.10); and
stability requires the Lip™-stability® of u®¥, that is, we seek a One-Sided Lipschitz Continuity
(OSLC) of the viscosity solution, u®",

(2.6) sup [ug” (z,1)], < C, - sup fud”(z,0)],.

By interpolation between the (weak) Lip'-error estimate (2.4) and the (strong) BV-boundedness
of the error (— which follows from the Lip*-boundedness due to (2.6)), we are able to convert
the weak error estimate stated in Theorem 2.1 into a strong one. As in [NT], we conclude

COROLLARY 2.2. [Global estimate]. Consider the inviscid problem (1.1)-(1.3),(1.12).
Then the following convergence rate estimate holds,

(2.7) e (&, T) — @iz, T)||,, < Consty - (e(8) + 5%, 1<p< oo,
L

Remark. The above-mentioned LP-estimates in (2.7} are, in fact, particular cases of the
more general error estimate in the W*(L?)-norm

2.8 W2, T) = 6@, T)|l e oy < Comsty - (e(8) +6) 7, —1<s5<
Wa(L?)

The special cases, (s,p) = (—1,1) and s = 0 correspond, respectively, to the weak Lip/-
estimate (Theorem 2.1), and the global LP-estimate (Corollary 2.2).

Taking p = 1 in (2.7) we obtain, in particular, the L!-error estimate which reads

(2.9) i (z,T) — #(w,T)|| ;1 < Consty - 4/e(8) + 6.

In this L'-framework, we are able to extend the last estimate and obtain the same O(+y/e(8) + 6)
convergence rate of v° towards #. This brings us to

COROLLARY 2.3. [L-error estimate]. Consider the system (1.1)-(1.83) subject to
"prepared” initial data, (1.12). Then we have

(210) (e, T) - (e, Dllg: + 1v°@, T) — 5@, Tl|;s < Consty - /e(6) + 6.

% Here ||¢1] Lip+ ' €885Up [—(%_ME)-} where, as usual, (-}, denotes the "positive part of”. For convenience
oy +
we shall use the equivalent definition of the Lip™ norm — [i¢|| . — sup [¢>’ ()], where the derivative of ¢ is

taken in the distribution sense.



STIFF SYSTEMS OF HYPERBOLIC CONSERVATION LAWS 7

In particular, for ”canonically prepared” initial data, ||S(uf,vd)ll;: = €(6) ~ 6, we obtain a
convergence rate of order /6,

(2.11) 148(2,T) — (2, D] ;x + I1o* (=, T) — (2, Tl < Consty - V.

Proof. We first note that due to the strict monotonicity of S(u,v) w.r.t. its second
argument and the L®-bound of uf,v?,% and ¥, we have
W' ~3] = o o) +u(’) - 9] < o — )|+ o(v’) - 9] =

ul,v?) — §(uf, v(u’
S( ) ;v(uf,(ﬁ): ( )) ~ |U6‘ﬁ§+|3(u6:'ﬂﬁ)|-

|v'(@)] - v’ ~af +
Here % and § are appropriate midvalues, @ = §,u’ + (1 —8)a, o = 6,0° + (1 — 6,)8. And
we now obtain the desired estimate, (2.10),

”’I)a(:B,T) - 'a(m:T)”Li < OOTLStT ! (”us(w:T) - ﬁ(m’:T)HLI +
+”S(u6($aT):UE("T:T)HLT) =

(2.12) = O(/e(6) +8) + Oe(6) + 6) = O(/e(8) + 6).

Indeed, the first O(y/e)-upperbound on the right is due to (2.9), the second upperbound,
1S (18 (3, T), v*(z, TH)|| ;2 = O(e(8) + 8), is outlined in §4 below. W

Finally, arguing along the lines of [3; Corollary 2.4}, we also obtain the poinfwise conver-
gence towards the equilibrium solution away from discontinuities.

COROLLARY 2.4. [Local estimate]. Consider the inviscid problem (1.1)-(1.3),(1.12).
Then the following estimate holds,

(2.13) u® (2, T) ~ @(z, T)| < Const, ¢ - (e(6) + 6)° .
Here, Const, r is a constant which measures the local smoothness of u(-,T') in the small neigh-

borhood of z, Const,p ~1+ max |g,(y,T)|.
' ly=a}< V5

3. Lip™- stability estimate. We now turn to the proof of our main theorem. We begin
with the Lip*-stability of the solution of (1.4)-(1.5).

ASSERTION 3.1.  Consider the system (1.4),(1.5) subject to Lip"-bounded initial data
(1.3). Then there exist a constant (which may depend on the initial data) such that

(3.1) [ (-, T gy < Comst.

Remark. We highlight the fact that our proof below is independent of whether the initial
data are "prepared” or not.

Proof. The proof is based on the maximum principle for (u%*) .
Differentiation of (1.4) and (1.5} with respect to = implies

(82) (), + [V + )W), = —g[Sad” + 5,08+ v,

1 ,
(3.3) ('ug”’)]t = g[Suug'”+Sﬁv£"’].
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‘We now multiply (3.2) by Lt:’;ﬂ;ﬁi‘iﬁ).; using the monotonicity of S(u,v) and convexity of f(u)

we obtain the following inequalities:

[(u3"),], + F™) [(u2”),], <

1 1 &
(3.4) —5 | Sulul®), + 503 -“*—g;—(“)) +ol(ug”), 1,
1
(3.5) we"), < F[Su(u2"), + Suv2*).

Solving the second inequality we find (with S,(7) = S,(z,7) = 8, (" (z,7),v*"(z,7)) and
B(t) := [} 8,(r)dr) that

(3.6) W2V (8) < 252087 (0) + f B g (r) (b (1)), dr.

0

Plugging this into (3.4) and denoting m(t) = max (u3*(2,1)),, we end up with

£
oAt B SﬂbI B(t)—B{r
(3.7) m(t) < —S“T(t)m(t) - i}le”él(vg’”(ﬂ))_l_ - 69&) /e 7 8, (T)m(T)dr.
0
The first and the third terms in the RHS of (3.7) add up to a perfect derivative, so that

(3.8) lt) < (—eiﬁﬂ(vgw(om)t - %( j ewsu(T)m(T)dT)t.

Integration of (3.8) over (0,7") yields
1 T
(3.9) m(T) < m(0) + (W5*(0), 1 - "] - 5 / EOED o (m(r)dr.
0

In view of the positivity of S, we obtain that
(u" (2, T)) < (ug”(2,0)), + (157 (3,0)).;

and the assertion follows with Const = [[u®*(-,0){| 5,4 () + W57 (5 Ol it (oy- B

We close this section by noting that the proof of Assertion 3.1 is based on the straightfor-
ward, formal maximum principle for the positive part of u®; alternatively, it could be justified,
for example, by L? iterations in (3.4).

4. Lip’- consistency and proof of the main result. In this section we prove the
promised error estimate {2.4) in the Lip’-norm. According to the results of [Ta],[NT], the error
|4 — ||, is upper bounded by the truncation errer,

[ R ,v ,
(4.1) [ + o™, + 7™, N
This quantity measures by how much »*" fails to satisfy the limiting equation, (1.10). To
complete this proof we have to show, therefore, that the truncatlon error is of order O(e(6) +
&+ v). We proceed as follows.
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Adding the two components of the regularized system (1.5) to (1.4), we obtain that
gt + fut), = vugy,
which we rewrite as
[P o), + Fu), = 4 of + F@), + o) 0], = vl + ) - o),
Thus, the RHS of the last equality tells us that the truncation error in (4.1} does not exceed

gy + (™) = vl oy <

IA

ConStT : [V”ui,ylle(m’t) + HU(UJ.V) - 'vﬁ’ylng(m,t)]

Consty - [I+II].

(4.2)

We proceed with estimating the two terms on the right. First, since u® is Lip*-bounded,
(3.1), it has a bounded variation, ||ul¥|| Loy < Ok (with Cx may depend on the Lip*-bound,
K, and the finite support of u®¥), and therefore I < O(v). Next, we find that the second
term, I, is of order

(4.3) II = {lo(u™) - 'US’VHL,l(m,t} ~ HS(UE’V,'UE’V)”LI(:,;J) ‘

Indeed, since 0 <9 < -8, € Const, we have

1 u(u®) — v
n =[S, v(ub¥)) — Subr, vov)| = Const,

and hence, |[v(u¥*) —v5| ~ | S, v(ut)) — S, v®)| = [Su®,v*¥)|, and (4.3) follows.

Returning to (4.2) we find that

”L-"u,g";:’ + ['U(uﬁ,v) -~ MWL“L-;;:*(wJ) < Constp - [ I+1II ] <

(4.4) < Constr [v + [1S@™, )| pa )

To conclude with the promised O(e(8)+8+»)-bound, it remains to prove that || S(u®, v )| 11,
— or utilizing (4.3), that &][vy" (-,1)]| [,y » is of order O(e(8) + 6),

(45) HS(U’J'V(’:t):U&y('at))”Ll(m) = 5”'{)5’”(-,t)HL1(w) = 0(6(6) + 6)

To achieve such an estimate, we differentiate (1.4) with respect to ¢, multiply by sgn{ul"),
and obtain
v 13 H v 1 1 124 v v 7
]+ (P ) sgn(@®) = = (S,Jul] + Sl agn(us)agn(vf)) +
(4.6) +e(ur”), sgnlue™).

The same treatment of equation (1.5) yields

1

(4.7) |'Uf’v|t s

(Sulud |sgn(ud*)sgn(vf”) + S, [oi*1).
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Next, we integrate these equations with respect to x,

d 174 1 t v v v
(48) i, < —g(/ Suluf*\do + [ 8,108 |sgn(uf*)sgn(v} )dw),

d v
(4.9) P [ 1P

IA

1
5 (f S, |ul® | sgn(ud” )sgn(v)” Ydz + fS,,|vf"’|d:c).
Finally, we add up (4.8) and (4.9), obtaining

d v v 1 v v v

G sy + 10l < 3 [ [ Sulu | (som(ut)sgniof) — 1) +

%/Sv{vf"ﬂ(l — Sgn(uf‘")sgn(vf’”))dm < 0.

It follows that

(410) g (Dl agay + 108 C Bl ey < Mg (5 Ol gy + 1027 (5 Ol gagays
¢

and in particular,

8llve” ()l ey S Ol1u™ (5 Ol pagay + 81105 € O gy

To conclude this proof, we show that the upper bound on the right does not exceed the promised
O(e(8) + 6). Indeed, by equations (1.4),(1.5), uf” = —vp* — f(u®"), + vul¥, and hence

8lue” (- Ol gaay +Olloe (O oy < 2018 @™ (00,9 (, 0Dl gy +
6] £ (6™ (-, 00l 1oy + |1z (-, Ol sy

The three terms on the right are upper-bounded by O(e(§)+§), since, by our assamption of the
"prepared” initial data, (1.12), [[S(u®*(:,0),v*(;;00)||11¢,y = O(€(6)); the BV-boundedness
of u® yields &||f(u®"(-,0))s|| ;2 () = O(6), and finally, since the initial data are assumed to be
in W3(LY), then 8v|july (-, 0)[| 11,y = O(6v) << O(8). This completes the proof of Theorem
2.1. m

Remark. We close by noting that the W?({L!) regularity of initial data used in the last stage
of the proof can be relaxed. In fact, it is sufficient to assume |lug, || + ¥||togel| 2 < Const.
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