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Abstract. A combustion model which captures the interactions among
nounlinear convection, chemical reaction and radiative heat transgfer is studied.
New phenomena are found with radiative heat transfer present. In particular,

there is a weak detonation solution for each radiative heat loss coeffcient.
The speed of the weak detonation wave decreases as the heat loss coefficient

increases and the detonation wave does not exist when fthe heat loss coefficient
exceeds a critical value, as expected physically.

We study the time-asymptotic limit of solutions of initial value problem
for the same problem. We prove that the solution exists globally and the
solution converges uniformly, away from the shock, to a shifted traveling
wave solution as t— -+ 0o for certian ’compact support’ initial data.

Numerical results showing convergence are presented at the end.
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1 Introduction

We consider the combustion problem

wt Gt~ g2, = —olu—u) (1)



z, = Kolu)z®, (2)

©(u) has the ignition form

w(u)={é v

where u; > 43 > 0, 0 < @ < 1, g,K,q > 0 are constants and u and z
are functions of (z,¢). This model describes the motion of the combustible
gas in a tube. Emphasis is on the interactions among nonlinearity, chemical
reaction and heat radiation during the combustion process.

When there is no radiative heat transfer, this model was proposed and
studied by Majda and Rosales [8]. They computed the detonation waves
predicted by the analogue of the Z-N-D (Zeldovich-von-Neumann-Doring)
theory [2]: a detonation wave traveling at speed D has the internal struc-
ture of an ordinary percursor fluid dynamic shock wave traveling at speed D
followed by a reaction-zone. In particular, by assuming the Z-N-D hypoth-
esis, they found that weak detonations were impossible, also see Courant
and Friedrichs [3], only strong and CJ (Chapman-Jouguet) detonation waves

occurred.
Radiative heat transfer is important physwaliy It could cause up to 30%

temperature loss during the chemical reaction {9]. Suggested by Chen [1], we
include radiative heat transfer in the present model.

In Section 2, we prove that there is a weak detonation solution for (1)
(2). Furthermore, the propagating speed D decreases as the heat loss coef-

ficient increases and the detonation wave does not exist when the heat loss
coefficient exceeds a critical value, which is the case physically [9]. A weak

detonation is characterized by that the speed of the characteristic behind the
weak detonation is subsonic [2]. It occurs because the radiation effect.
Natural guestions come up: What is the stability property of the weak
detonation waves? Or, if we take the approach of large-time behavior of
solutions of initial value problem, what is the asymptotic limit (in case it
exists)? Since (1) is no longer a conservation law, how to determine the
phase shift? :
In this paper, we study the initial value problem (1) (2) with the following
data:
o w,(2) -dSmSO
u(m,o) { Uy elsewhere (3)

z(+o0,t) = 1 : (4)

where u, (z) satisfies certain conditions to be specified later.



We prove global existence of solution to the problem (1) (2) (3) (4) and
that the solution’s convergence to a shifted traveling wave solution. We
prove that the energy is congerved 'asymptotically’. A compactness argument
proves that such a shift exigts.

In Section 2 we prove existence of the traveling wave solution for (1) and
(2). Section 3 is the proof of the global existence for the initial value problem.
Convergence is proved in Section 4. We show numerical results in Section 5.

2 Traveling Wave Solutions

A traveling wave solution is a solution of the following form

(u(e,8), 25, 1) = (¥ = DY), 2(a — D)

where D is the speed of the traveling wave solution. Let £ = & — Dt and
(u(z, t), 2(x, 1)) = (¥(&), 2(£)). Then (v, z)(€) solves the following ordinary
differential equations

—Dy +py = q7 ~ o~ up) (5)
2 = Ko()z. (6)
The boundary conditions are
Jm 6,290 = w0 @
%, 2)(€) = (up,1), £>0. (8)

The result abrout t'raveling wave is the following.

Theorem 2.1 There is a unique solution ¢, Z to problem (5) (6) (7) (8).
The propagating speed D satisfies

mtuy g S — u)d

D=
2 Uy — Uy Up — Uy

and oo
[ w©) —u)de =~

provided
gK 2qK

—>D>u
Mt oy =%t g Tt 4K
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and o > 1.
Furthermore, the solution satisfies

W0, ¥ >0

except at the shock discontinuity. The structure of the traveling wave solution
is ¢ weak detonation wave followed by a non-reaction zone.

Proof.Let £ = 0 be the shock wave location.
Solving Z from (6) in the reaction-zone where u > u;, or ¢(u) = 1, we

have .
Z@) =Kl -a)f+1)7=, —1<{<0
1
where [ = m is the length of the reaction-zone.
Combining with the boundary conditions (7) (8), we have
1 <0
ZE) =4 (KQ-a)+1)7 —1<£<0 (9)
0 £E< -1

Plug (9) into (5) to have the equation for ¢

0 £>0
('¢—D)w’+o(¢-ue)={ gK(K(1—a)¢+1)T= —1<£<0  (10)
0 £ < -l

The solution consists of three parts: each part is on one of (—oo, —1), (—I,0)
and (0, +00). Physically, they correspond to the non-reaction zone after the
reaction-zone, reaction-zone and the non-reaction zone before reaction-zone.

Integrating equation {10) over (—I, +o00) and using (8) and (9), we have

pottt 4 __Uffl(’qb(ﬁ)—uo)dg

) (11)

2 U — Up U — Uy

which is onie relation between D and u, = 9 (—1).

Integrating equation (10) over (~o0,+00) and using (7), (8) and (9), we
have
+eo-

& [ (e~ Dt) ~ oz —q = —o [ (@ ~ D) - uo)d.



+oo
Noticing that f (¥(x — Dt) — ug)dz is independent of ¢, we have

T - was =2 (12

Condition (12) together with (11) determine D and ;.

It can be proved easily from (11) that D > u,.

In order to construct a nondecreaging v, we require uy, < ¥{§) < D for
¢ < —I. In particular

Uy < up < D, (13)

i.e., the speed at the end of the reaction-zone is subsonic. Condition (13)
determines the nature of the solution, i.e., it must be a weak detonation

ave.
On the other hand, there is a strong shock discontinuity at £ = 0. Let
$(0—) = u,. (14)

Then
’u.T = Z.D —’ng > D.

Hence, there is a point — < & < 0 such that (&) = D. Equation (10)
becomes degenerate at & = £;. We will show that the solution exists and it
is monotone and convex despite the degeneracy of (10) at £ = &;.

The proof of the theorem will be finishied following the lemmas. ]

Lemma 2.2 The solution to problem (10) (14) is nondecreasing on [—I, &g,

i.e.,
| P20, ~I<E<E.
Proof.: For § > 0 small, from equation (10) we see that
P(E) >0, <L ~1+6.

Assume that there exist —1 < & < &, < &, such that ¥(&;) > ¥(&).

And yet, (&) < D = 9(&).
Therefore there exist — < 5 < & < 1y < £, local maximum and

minimum points respectively, satisfying
W(m) = P'(m) =0
Y(m) > P(m).

Evaluating equation (10) at £ = and £ = 772, we get a contradiction since
the right hand side is nondecreasing in £. ]



Lemma 2.3 The solution to problem (10) (14) is convez on [—I, &, i.e.,
P20, 166

provided o > 1.

Proof.: Differentiating (10), we have

(% — DY + o + 9% = qK2a(k(1 — a)é + 1) T=

Noticing that the right hand side is a nondecreasing function when o > %
and 9" (=I) > 0, the lemma is proved by the same argument used in the
previous lemma. Details are omitted. ]

For solution of problem (10) (14) on [£;, 0], we prove the similar results.

Lemma 2.4 The solution to problem .(10) (14) is nondecreasing on [&,, O
provided

K
20

Lemma 2.5 The solution to problem (10) (14) is convez on [§,, 0] provided

2qK
30 + /o +4¢K?%a

Since 9(£) is convex on both sides of &, ¥(£) is differentiable at &, from
left and right. From (10), we get that the left and the right differential are
the same. So ¥(£) is dszerentlable at &. Hence &; is an ordinary point for
equation (10).

The proof of the uniqueness follows from the following lemma.

D>uy+

Lemma 2.6 If ¢, and i, are solutions to the following problems

(4, — DY, + oty — ug) = gK(K(L - @) +1)T7, 0>¢> —1 (15)

¢1(0) = Uy (16)
(%3 = D)y +o(thy — uo) = gK(K(1-a)é+1)75, 02¢2~1 (17)
7:[)2(0) = Uy (18)

respectively, then

P () =(€), 026> L



Proof.Subtracting (17) from (15), we have
(1 = D)(shy = 1hg) -+ (4P, + o) (3 — 9hp) = 0. (19)

Let us prove iy — 1)y > 0 first.
If not, then ¥, — 1, attains its negative minimum at some point &.

i. If 6}_ == """"l, then (’I,b]_ et ¢2)(€1) < 0 a»I].d ('{/)1 bt sz),(fl) > 0. Evaluating
(19) at £ = —! and noticing that 4;(—I) — D < 0 and ¢,(—I} + o > 0, we get

a contradiction. =~ ]
ii. If & is an interior point, then

(¥ - Yo ) (€1) =0, (¢ —¥)(&1) < 0.

Noticing that ’l,b; (é;) + 0 > 0, again we get a contradiction by evaluating

(19) at &.
In the same way, we prove that 1, — 1, <0.

The lemma then follows immediately. [

3 Global Existence

We prove the global existence of the initial value problem (1) (2) (3) (4) by

a constructive method.
Let us denote the shock wave position by z =s(t). From the Rankine-

Hugoniot condition and the initial condition, we have

ds 1 o '
ow E(u(s(t),f)”r,ua) (20)
.3(0) = 0. ‘ (21) -

Writing equation (1) in characteristic form, we have

dx
i u(z,t)
du ‘
it o{u — ug).
Hence, .
d?z  du

pril i qKp(u)z® — o(u — ug).



Noticing that lim,_, ., z(z,t} = 1, 2z can be solved as

0 r<s(t)—1
2(z,t) = { (K(L—a)(z —s{®)+1)=5  s(t) =<z < s(t) (22)
1 z > s(t)

where [ = is the length of the reaction-zone.

1
K(1 - )
Plugging z into (1), the system is reduced to
U + uty + o(u — uy) = Fx — 3) (23)

where F(z — ) = ¢Kz%(z,t) is s(t) — | < z < s(t) and it is 0 elsewhere.
Consider first the following auxiliary problem.

w v, +o(u—uy) = Flz—7) (24)
_ x> —d
uw(z,0) = { w %< —d (25)
where the initial data satisfies one of the following
(@) u; < uy <¥(=1I), 0<d<! (26)
®) v > (0), d2>1 (27)

And j € B,
B={i:4 € CO.TLI0) =070 = 31+, 0 < D
orjer, -
P={5:5€ 007,50/~ 0,70) = Jus +10)310) > D]

respectively, where 1/ is the traveling wave and D is the propagating speed.
Clearly, £ and F' are nonempty closed bounded subsets of C1[0, T.
We iterate on j to find a fixed point of

I .
() = 3 (u(7(2),1) + )
such that it is a solution of (20) and hence u is a solution of (23).

8



Lemma 3.1 There exists ¢ unigue entropy solution u of problem (24) (25)
(26) for all t > 0, which satisfies

o
£ >0, forz < j(t) (28)

wherever u 18 smooth.

Proof.The solution of (24) and (25) can be constructed through its charac-

teristic lines. Global solution exists if two characteristic lines never intersect.
Take any two characteristic lines #,(¢) and z,(t) of u(z,t), where z,(0) <

z,(0). We claim that the two characteristic lines z,(f) and z,(¢) never inter-

sect.
To prove the claim, suppose the contrary-that at time ¢ = ¢, > 0 they

intersect for the first time. Then =z, () = z,(f;) and z,(t) < z,(¢), 0 <t <
ty. Hence,

i) t) = 0 > L) i) 1), (29

On the other hand, from (24} and (25)
u(@y(to),bo) —uo = (u(2,(0),0) —ug)e™" +
et [ aR(E( = a)(a(s) — () + D ersds
< w(@y(to) to) —wo = (u(w(0),0) — ug)e~o* +
+ e " K (B (1 —)(zy(s) — §(s)) + 1) TFersds

which contradicts equation (29).

Thus z;(¢) and z,(t) never intersect. .

Given any two points (@1q,%) and (Zyg,%p), tg > 0 and Tyg < e, draw
characteristic lines z;(t) and z,(t) backwards in time. Since any two charac-
teristic lines never intersect, we have

oz () <wa(t), 0Lt <t
Integrating (24) along the characteristic lineé, we have
“ | u(w1(to), to) < u(za(to), to)-
Wherever u is smooth, we have
| ou ‘
— >0, fort > 0.
Oz :

) :



This proves {28).

Similarly, we have the following result in case () (27).

Lemma 3.2 There egists o unique entropy solution u of problem (24) (25)
(27) for all t > 0, which satisfies

— > 0, forz < j(t) (30)

wherever u s smooth.

We prove a comparison principle for solutions of (1) and (2).
In the following theorem the initial value has the following form

Uz z < s(0
u(z,0) = { Uy @) r > sf(()))

where u;5(z) > 0 is a nondecreasing function and s;(0} is the initial shock
wave position.

Theorem 3.3 (A Comparison Principle)
Suppose that ui(x,t) and uy(z,t) are solutions of (1) and (2) with non-
decreasing instial data uq(x) and uy(z) and shock wave positions s,(t) and

8,(t), respectively. If
51(0) < s,(0)

and
ugo(z) > ugp(z), r < 51(0),

then there is a T > 0 such that for 0 <t < T,
wy{z, t) > uy(z, t), x < 34(t).
Proof.Since s,{0) < s,(0), there exists a T > 0 such that
s:(t) < 5,(t), O<t<T

From point {z,;), where 0 <, < T and z < 8,(ty), draw characteristic lines
z1(t) and ,(t) of u; and u, backwards respectively.

We claim: u;(z,t5) > uq(x, tp).

Suppose the contrary that u,(z, %) < ug(z,tp).

Step 1. Suppose that (z,%;) is the first intersection point of the two
characteristic lines. Then, x,(f) > z,(t), for 0 < ¢ < #;. We also know that

10



51(t) < 8,(t), for 0 < t < ty. So, z1(t) — 51(8) > 2,(t) — 55(t) for 0 < ¢ < 4.
Integrating the equations for «; and u, along their characteristic lines z;(t)
and z,(t) respectively and noticing that u,(z;(0),0) > u,{z,(0),0), we have

uy(2,t) — g = (u1(21(0),0) — ugle=% +
t (=4
+ et [ " gK(K(1 = a)(wy() — 5,(t)) + 1) et
0
> uy(,te) —ug = (ua(22(0),0) — ugle™7% +
t {24
+ e [T R (K (1 — a)(ma(t) — sa(t)) + 1) et
¢
which contradicts our assumption that ul(ﬁc, to) < ug(m, ).
Thus, u;(z,ty) > uy(z, ty).
Step 2. If the two characteristic lines intersect more than once, let £ be

the last one before #5. Then u,(z,(£),&) > uy(24(£),€) and z,(t) — 5,(t) >
Zo(t) — 85(¢) for £ <t < t;. Hence

uy(z,ty) —ug = (ug(@1(6),€) — uﬁ)e_.ato
| + e [ R (KL= 0)(ay(8) - 51(8) + 1w esa
> up(m,ty) —ug = (ug(z,(€),€) —ugle % :
Ty 'e‘“"/ gK(K(1 - 05)(332( ) — 55(t)) + 1) T etdt

which is again a contradiction.

Therefore
uy(z,ty) > ug(, o)
for all z < si(tg), and 0 <ty <T.

Usmg the .comparison principle, we get an upper bound on the shock
location in case (a) (26).

Lemma 3.4

%(u(j(t),t) fug) <D, £ 0. (31)

Proof.From point (j (toj, t), draw a straight line with slope D. Since /() <
D, we have _

z(t) = j(te) + D{t — tp) < j(t ) for 0 <t<t0

11



z(t) can be viewed as the shock wave position of the traveling wave ¥/(z —
Dt+c) where ¢ = —j(to) + Dty > 0. Comparing initial data of ¢(z — Dt +c)
and u(z,t), we have

¥z +c) > u(z,0), z+c<0.

Applying the comparison principle in Theorem 3.3 to ¥(z — Dt + ¢) and
u(z,t), we get

W(x — Dt +¢) > u(z,t),  — Dt +¢ <0, for 0 <t < .
In particular, at point (7(ty), %),
2D — ug = %(0) > u(j(to), to).
That proves the lemma. |

In case (b) (27), we have the following lower bound on front of the
reaction-zone.

Lemma 3.5
. .
E(u(j(t),t) +ug) > D, t>0. (32)

Proof.Noticing that the characteristic line with 2/(0) = ¥(—{) and z(0) = -

never intersects x = Dt — [ for t > 0 (since ¥(—I) < D), the proof of the

inequality is similar to the proof in the previous lemma. [ ]
Now let s be the solution of

#) = Sli(0),0)+w)
s(0) = 0.

By Lemma 3.4, s'(t) < D. Therefore, s € E.
Define A : E — CY0,T] such that

s = Aj.

Clearly, AE C E,ie. A maps F into itself and is continuous.
Similarly, AF C F.

Lemma 3.6 The mapping A has o fized point.

12



Proof.We use Schauder’s fixed point theorem to prove the argument. To
this end, we show A is compact. By the Arzela-Ascoli theorem, it is enough
to prove that s = (Aj)" is bounded for all j € F

To get a bound of s7, we need to estimate u, first.

Differentiating equation (24) with respect to z and writing the equation
in characteristic form, we have

d .
CZ““ + 2 + 0wy = ¢K?a(K(1 — a)(@(t) — (1) + D ER < ¢k
du,,
If — >0, then 0 <u, < K, ffa=M.

dt
du
If —= < 0, then there exists 0 < #, < ¢ such that

dt
t du
Zdt <0
[ <

and
t du,

f3 dt

dt >0

for any t; < 1.

d to), 1t -
—%—E{é—fll—gl > 0 and hence 0 < u,{x(ty), t) < M.

(i) If ty > 0, then
So "

t du,

ua(o(t)t) = [ TRt u(olto) o) < walalto), to) < M.

(ii) If £ = 0, then

. R, S
wla(t),8) = [ Z2dt+ 1 (2(0),0) < wa(s(0),0) < M.
- 0 _

Therefore u, is bounded. |

Now come back to estimate s”,

1d. |
0<s" = o—(u(i{t)t) +u)
1 1 |
el — —{4! — -_— _
‘2qK+2(J (t) u)um 20(u Ug)
< M

13 .



where M > 0 is a constant.
Similarly, it can be proved that

M <" <0

in case (b) (27).
Using this fixed point, we construct the following solution of (1), (2), (3)
and (4):

w(z,t) = { zf;(w,t) ifzg (33)
0 z<s(t) -1

z(z,t) = { (K(1 — a}{z —s(t)) + 1)ﬁ s(ty—l<z<s(t) (34)
1 z > s(t),

where u; is the solution of (24) and (25).

It is easy to check that (u,z) is a weak solution of (1), (2), (3) and (4).
Now, we prove that the above defined solution is unique. This allows us
to extend the solution to ¢ = +o00.

Lemma 3.7 Solutions of form (33) and (84) are unigue.

Proof.Suppose that there are two solutions u(z,t) and v(z,?) with shock
wave positions s;{t) and s,(t) respectively.

Becaunse of the uniqueness of solutions of (24) and (25), we need only to
show that s;(t) = s,(t).

Translate s, along the x axis to the right of s; until they just touch. If
the lowest touch point is (s,(%;), ), then £, = 0.

Suppose for the contrary that t5 > 0. Let s; + 6§ be the translation of
s, such that (s,(tg), %) is on s, + 6. Then 6§ > 0 and s;(t) < sy(t) + 6 for
0< g < 4.

e

vi{z,t) = v(z—4,t),
z{z,t) = z{z—6,t).

Then (v, z,) satisfies .

Vi + ViV = G2
2. = Ko(vg)zf
U b—d<gzx
?)1(3":0) = { 'u,[l) <8 “_d
C oz (z,0) = L

14



It is easy to check that the conditions for the comparison principle hold.
Applying the comparison principle to u and vy, we have u(z,ty) > vi(z,t;)
for x < 34(%y) = s5(t) + 6. This implies

—+00 Sl(to)
/ (1 — vy ) (2, t5)dz = f (v — vy )(z,t5)dz > 0,

On the other hand, by (1) and (3)

%(e"t / :"(u — )z, £)dz) = 0.

Hence
+o0 “+co
gt f (v — v Wz, tp)dox = / (w —vy)(z,0)dz = 0

which is a contradiction, : )
Thus, t; = 0. This implies that § = 0. It follows from the assumption

that Sl(t) S Sg(t).
Similarly, we prove s,(t) < s,(%).
Hence s,(t) = s,(t).
|
We prove the important properties of u,(s(t),t) and s(t} in the next
lemma.

Lemma 3.8

WM < h©), (55)

) %u(s(t),t) > 0, for t>0, (36)
s"(t) > 0, for t>0. (37)

Proof.We estimate u,, first. '
Differentiating equation (24) with respect to x and writing the equation
in characteristic form, we have

‘Zf b + 0w, = gK2a(K(1 — a)(z(t) — s(8) + 1)E = Gla(t) - 5(1).
Fix a fg and compare .um.(:c,to) with ¥, (z — D(¢ —to) — s(tg)) at z = s(to).
Tf u, (s(te), to) > u((to), fo), then d’“’—(z(m < Hel@t)t)

]to
z(t) and x,(t) are characteristic of v and 1 passing point (s(ty), %), respec-
tively. Furthermore, there is a (take the first one) 0 < ¢; < #; such that

ug(w(t),t) — dulei(t),) > 0

l¢,» Where

15



for all t; <t < 1.

We assume u,(8(ty), 1) = ¥(s(ty),ty) for definitiveness by solutions of
ODE’s continuously depending on parameters.

On the other hand, noticing that v« satisfying

2_’: +o(u —ug) = gK(K(1 — a)(z(t) — s(t)) + 1)T5 = F(z(t) — () (38)

and the comparison principle, we have that u(x(ty), ) < ¥(z(ty),19). So

(@) = ()Y i = 5((5(2),1) — )l
< W00~ wl = (1(0) — 51OVl

Hence there is a ty < ¢y such that (z(t) —s(t)) > (z,(t) —s1(t)) for £, < t < g,
Let t3 = max{t;, t,}. Integrating the equations for u, and ¢, , we have

0 > _(um“'l/)m)ltg

t
(vatipato)dt
= (um - wm)efta :g

¢ t
= [ At (G oy Glay — 5y))dt
ta
0,
which is a contradiction.
Therefore u,(s{ty), t) < 1,(0).
To prove (36), noticing u(s(t),t) < ¥(0) and (35), we have

Lu(s(t),t) = gk — (04 ua(o(e), ) (u(5(2), ) ~ w)
> 0.

(37) is proved by its definition.

Now we have the following theorem.

Theorem 3.9 Solution of (1), (2), (3) and (4} exists globally and satisfies
Oé’MSM, US%SM, 'utlSMi

16



where M depends only on q, K, ug, o. All the estimates involving derivatives
are valid away from the shock curve (s(t),t).
Furthermore, s(t) satisfies

s'" > 0{or <0)

and ]
lim (1)
i—rto0
exrists.

Proof.From Lemma 3.1 and Lemma 3.7, u;(x,t) and s = s(t) are defined
for all ¢ > 0. Therefore, solution of (1), (2), (3) and (4) exists for all £ > 0.
u(s(t),t) < 2D —uy by Lemma, 3.4. In case (b) (27), u(s(t), ) < u(s(0),0).
From (28), we have that u(z,t) < u(s(t),t) for x < s(f). Hence, u is bounded.
1, 18 bounded by Lemma 3.8.
Using equation (23), we have

u, = K (K (1= e)(a(t) — s(t) + 1) — un, — o(u — u),

from which, the bound for u, can be obtained.
From (34}, clearly, z and z, satisfy the desired estimates.
For z,, we have

oy, 8) = — K5/ (E)(K (1 — o) (a(t) — s(t) + 175, s(t) — 1 < 7 < s(t)
which is bounded.

By definition of s and Lemma 3.1, we have

#() = S(ulst)t)+u) <D
'ty > 0.

Hence, lim,_, o, /() exists.
In case (b) (27), Hm,_,, s'(t) exists for similar reasons. ]

4 Con\}ergehce to the Traveling Wave

In this section we prove that the solution of the problem (1), (2), (3) and (4)
converges to a shifted traveling wave. It is difficulty to determine the shift
since equation (1) is not a conservation law now. Instead, we prove that the

energy is conserved 'asymptotically’. We will show that the shift is finite by
a compactness argument. '
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Lemma 4.1 If u(z,t) is solution of (1), (2), (3) and (4), then

d

400
(et L " (u(z,8) — $(z — DY)dz) =0. (39)

Or
+oo +oo
| ety = o — Dt)ds == [ (u(a,0) - h(z))da

Proof.The conclusion was proved in Lemma 3.1. ]
First, we prove the following asymptotic property of s'(t).
Lemma 4.2 If u(z,t) is the solution of (1),.(2), (3) and (4), then
t_ljglm s'(t) = _D.

Proof.From the previous section, we know that 0°< ¢/(f) < D and s"(t) > 0.
Hence hm s'(t) exists.

It the conclusmn does not hold, then there is a D' < D such that
3 ! o '3

and ¢'(t) < D' for all ¢t > 0.

For ty > 0, let
- s1(t) = D(t — ty) + (o),

then :
51(t) < s(t) for0 <t <.

Applying the comparison principle Theorem 3.3 to ¥(z — D(t — t;) — s(t;))
and u(z,t), we see that

Plx — s(ty)) > u(z,ty) forz < s1(tg) = s(ty),

and hence .

7wl st - oyt = [ (o = () — sl 1)z = 5> 0

Using the asymptotically conservative property in Lemma 4.1 and letting
ty — +oo, we get a contradiction.
Slmlla,rly we can prove the same conclugion for case (b) (27). ]
In the next lemma, we find a lower bound of s(t) in case (a) (26).
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Lemma 4.3 If u(z,t) is the solution of (1) (2), then there exists C > 0 such
that Dt —C < s(t) < Dt, for all ¢ > 0.
Furthermore

tEimm(s(t) —Dt+C)=0 (40)

provided o < ¢K.

Proof.We prove the boundedness first.

Let s,(t) = Dt. Then s(t) < s4(t) for all ¢ > 0 since s(0) = s,(0) and
s'(t) < s)(t) for all £ > 0.

We prove the other inequality by contradiction. If the conclusion were
false, then for each n > 0, thereis a ¢, = ¢,(n) > 0 such that s,{¢;) = s(t,)+n.
Since (s"(t) — s%(t)) > 0, we have

(8'() — 8,(£)) > (s(0) — &,(0)) = %(ul tuy)— D, fort>0.

Hence

51(0) — s'(0) T D- (ug + ug)

> 0. (41)

¢ >

Let z(t) be the characteristic passing (s(t;),%;). Since ©'(¢;) — 2D —u, >
D for ¢, large, then there is a t; < ¢; such that z(¢;) = s,{¢;) — n and

sl(f) —n<z(t) for 0 <t <ty
Hence
0 = z(ty) -—rsl(tg) +n
= (2(0) — 51(0) + n) + (¢'(0) — 51 (0Nt + (2" — 8’{)(5)?

for some t, > £ > 0, where both z(0) — 5;(0) and 2/(0) — s/ (0) are bounded
independent of n.

(1) If 27(€) > 6 > 0, then there is no solution for £; in the above equation
for n large enough.

(i) If 7(€) < —6 < 0, then £, = O(\/%),_ which contradicts with (41).
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(iii) If there is a subsequence £ — +00 as n — 400 such that z7(£) — 0.
Then

0 = (z—s+n)t)
= (3~ 51+ n)(t) + (&' = 8})(to)(tr ~ to) + (& — sV) (&)

= (@ = )t — 1) + (@ - (e B

(t1 —%)?
2

for some t; > £; > ;.

If 2/(ty) — 8! (ty) — 0 or t; -ty — 400, then 2/(£;) — 0 as n — +oo. On
the other hand it can be proved (in the following Lemma) that there is at
most one value of ¢ such that =”(¢) = 0. Hence

#'(to) — (k) < —8' <0

and ¢, — ¢y bounded. .

Let :r:l( ) be the characteristic of 4/(z — Dt + n) passing {s(t;),,). Since
#/(t;) — @) (t;) > D for t; large, there exists f,’'< 7, < ¢, and 51 > 0 such
that

g'(ry) > af(n)+6

!

ty ~ 1
There are twoocas L .
(A) If (z— s)(m1) > (xy — 81 +n)(ry) + 6, then there is 7, < 7, < ¢, such

that

> 0.

where §; =

0<o < (51— n = 5)() = (31 — 5)(n)
= (s1—n—38)(ty) —(z1 —z)(t1) +

(o= o)) — ) + (o1 — o))ty — ) —

— (3 =) (t)(n — 1) — %(% = z)"(1y) (1 — 1)

Hence -
(z = 8)"(1) > (w1 ~ 51)"(72) + by
where '
8y = 26, + z(f”z —z)(t1) — (51 — 8)'(t1) . 20 = >0,
.tl -7 t]_ - T1 (tl - TI)
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The reason is the following

(@) = s e, = 5(@(5(2),1) = vl
< %(T/J(Si(t)}t) - 'U«o)!tl = (ml(t) - Sl(t))lltl‘

Therefore
z"(1y) > 2l (13) + 6.

(B) I #'(7y) < = () — &, then there is 7y < 7, < t; such that
z"(73) > 2(1y) + ;.

In both cases, we find a point 7, which is closer to ¢, than 7; such that z”(7,)
is bigger than z%(7,). We continue this process until 7,, — #; as n — +o0
which is a contradiction since x”(t;) — 2¥(t;).

Therefore, there exists C' > 0, such that s;(¢) < s(¢) + C for all £ > 0.

Taking infimum of such C, (40) can be proved by boundedness and mono-
tonicity properties of s(t) — Dt.

In case (b), (40) can be proved similarly. =

Lemma 4.4 Let x(t) be ¢ characteristic of solution u(zx,t), then there is at
most one t > 0 such that 27(t) =0 if 0 < ¢K.

Proof.Let )
f(t) = gK((1 — o) K{x(t) — s(t)) + 1)<

e 9(t) = o(u(=z(t),t) — uo).

Then

2"(t) = f(t) — 9(0)-

If there were two zeros, t; and t,, of f(t) — g(t), then there exists £, which is
in between ¢; and {,, such that

g(&) = f(€) > 0.
Checking derivative of g(t), we have

7)) = o5 = ()~ 9(0)
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Hence

o(f(&) —9(&)) =g(£) > 0.

Assume that ¢, is the time z(t) enters s(f). Then f(%y) — g{ts) = 2"(t;) > O
by choosing ¢ < ¢K.

(i) If f(0) < g(0), then there must be at least three zeros of f(t) — g(%).
In particular, there is a point &; such that

0< f1(&) =g'(&) = o(f(&) —g(&1)) <0

which is a contradiction. . o
(ii) If f(0) > g(0), we arrive at the same conclusion similarly.

So there cannot be more than one zeros of f(t) — g(¢).
We prove that the solutions are asymptotically functions of one variable
x—Dt+C. : .

Lemma 4.5 There are Lipschitz functions u.,(§) and z.(€) such that

lim  sup |(w,2){z,t) — (e, 2o H{Z — Dt + C)| = 0.
t=+00 4 Dt+C<0 :

Proof.Let
£ = z-Dt+C
u(z,t) = U, L)
2(x,t) = Z(§1)

El) = s(t)-Dt+C.
Then E(t) decreases to 0 and s'(t) increases to D as t— + oo. Since E(t) >
0 > £, we have s(t) > z. By(34),
Z(E,1) = 2(,1) = (K(1 - a)(z — s()) + D= = (K(1 — )¢+ 1)7= +o(1)

where o(1)—0 ag t~ + oo.
Letting
2l€) = (K(1 - a)f +1)T7, -1 <0,
we have )
A, S 12(¢:1) = 2e0(8)] = 0.
We now look at the characteristic lines of U(£,¢) given by

¢ da
=== -D=U-D
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and
d2£ d?z  du
@ " aE s a T T
= gK(K(1 - a)(z—s(t)) + 1) — a(u — ug).

It is equivalent to

2§ df = -

w5 Toz =aK(K(1-a)¢+1) (D — up) +o(1)
or

dg

d.
B o= e o)1 - e
b [ GK(K(~ a)e + 1) — o(D — ug))erte-0ds

= Rt o)1 - e
+ (@K(K(1—a)+1)T= — (D — up))(1 — e~7t),

d
Therefore EE% and hence U(£,t) = u(z,t) is a function of £ as t— + oo.

Lemma 4.6

i (u, 2)(6,1) = (o, 1) = (eo(0), 260(6)),
where £ = — Dt +C > 0.
ProofIf £ > 0,1.e. z — Dt + C > 0, there is a T > 0, such that for ¢t > T,
0< E(t)=s(t)—Dt+C <z—Dit+C.

That is,
x — s(t) > 0.

From (34) and (33), we have that
2(z,t) = 1,u(z,t) = 4,

provided £ > T.
Evaluating (14, 2,) 8t £ > 0, we have

(uoo:zoo)(&) = (?,LO, 1)
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Lemma 4.7 (ty, 200 (&) is the traveling wave (¢, 2)(€) of (1) and (2), i.c.

(Uoor 200)(€) = (1, 2)(§), where{ =z — Dt +C.
Proof.1t is easy to prove that (Ug, 20 ) (z — Dt +C) is a weak solution of (1)
and (2).
We now show that (u, 2 )(x — Dt + C) satisfies (5), (6}, (7) and (8)
which are equations for the traveling wave solution.
Clearly, z.(£) satisfies (6) and is smooth for { < 0. By Lemma 4.5
(oo Zoo ){€) is Lipschitz for £ < 0, and hence absolutely continuous. Fur-

thermore, (u.., 2, satisfies (5) almost everywhere. Using Lemma 4.6, we
get .

(Yoos Zoo)(z — Dt + C) = (ug, 1) = (¢, 2){(x — Dt + C), x — Dt + C > 0.
That 18, (U, 2. ) satisfies (8). ' ' |
Using Lemma 4.3, we have
ug < u(z,t) < Plx— Dt+C), x — Dt +C <0,
Noticing that 9¥(—o00) = u,, we get |

im ez = Dt+C) =u,.
w4t —c0

From Lemma 4.5,

lim Zoolx — Dt‘—i— 0) =0.
r— D C——o0

Hence (7) is satisfied.
' Using the uniqueness of solution of (5), (6) (7).and (8),
(Zoos Ze0) (& = Dt + C) = (Y, 2)(z — Dt + C). n
Now we summarize our results in the followmg theorem

Theorem 4.8 The solution of (1), (2), (3) and (}) converges uniformly to
the traveling wave and the shock front is asymptotically linear:

t-l—lf-l[-lmw DSE-pC [(u, 2) (=, 1) ~ (¢, Z)(m - Dt+0)| =0,

tll);iloo(u,z)(m,t) = (ug, 1), forz - Dt+C>0

and . .
tglfm(s(t) —-Dt+C)=0

provided 0 < ¢K, a > L and .
- 2K :
30 + /0?2 + 4qK%a

gK
u9+—>D2u0+
_ _20
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Proof.If the initial data satisfies the conditions (26), the conclusion is proved.
If the initial data satisfies the conditions (27), the conclusion can be
proved similarly.
If the initial data is ’compact support’ and is in between a data satisfies
(27) and an initial data that satisfies (26) , then the conclusion can be proved
by using the comparison principle Lemma 3.3.

Therefore, the conclusion holds for certain compact support’ initial data.
) n
We also have the convergence result in L? norm ( p > 1).

Corollary 4.9
lim |(u,2)(z,t) — (¥,2)(z — Dt +C)|p» =0, p > 1.

t—r+o0

Proof.We only prove the results for p = 1. Results for p > 1 are easy
consequences of p = 1 and Theorem 4.8.

Let 8,(t) = Dt — C. By the asymptotic conservative property, we have
that for £ large

f_ s;(t)(y)(x _ Dt +0) — ulz,)de

s(t)

= / (V@ = D+ 0) — u(z,0)dz +o(1)
81{% )

where 0(1)—0 as t— + oco. Therefore,

lu(z, t) — ¥{x — Dt + C)|

= fsj(t)(qp(a: _ Dt + C) — u(z, t))dzx

bt o}

+ / :;(u(:c t) —(z — Dt + C))de

= 2]:5:))(11,(‘%, t) — ¢Y(x — Dt+ C))dz + o(1)
< 2(s(t) — 51 (O)2D — up) + 0(1)—0, t— + 0.

Similar result for z directly follows from s(t) — 8, (t)—0. |

5 Numerical Results

In this section, we present the numerical results showing convergence for
certain 'compact support’ initial data.
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We use fractional step to treat the transport term and the reaction and
radiation terms. For the transport term, we use first order upwind scheme.
Since in our problem the term u is always nonnegative, the upwind scheme
gives

b AL
uy = uf “"A";(f(uj) )

2

U
where {jAz,nAt) is the discrete point in zf plane and f(u) = 5
We then evaluate the reaction and radiation terms.

U 1 At !
uptt = — Ato(uf —ug) + Eq(p(u;? ey — 2 ).

z is updated by the motion of the front and the equation (2). Here the
position where z achieves its maximum value is chosen to be the same as
where % achieves its maximum value. This choice is in the same spirit of the
numerical induction mechanisims introduced in Engquist and Sjogreen [4].
The purpose is to avoid spurious solutions. :

We show four examples. The physical parameters are as following: k = 3,
g = 0.3, a"075 =05, u;,=0.1, u; =0 and CFL = 0.25. Conditicns in

Theorem 4.8 are satisfied.
Ast — 400, all solutions converge to the same tra,vehng wave as predicted

in Theorem 4.8:
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