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Small beam nonparaxiality arrests self-focusing of optical beams
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A new equation for self-focusing in the presence of small
beam nonparaxiality is derived. Analysis of this equation
shows that nonparaxiality remains small as the beam propa-
gates. Nevertheless, nonparaxiality arrests self-focusing when
the beam width becomes comparable to its wavelength. A
geries of focusing-defocusing cycles of decreasing magnitude
follows, ending with a final defocusing stage.
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The model equation for propagation of a laser beam
in a media with a Kerr nonlinearity is the nonlinear
Schrodinger equation (NLS)

i, + A+ PP =0 (1)

where ¥(z, y, z) is the electric field envelope, z is the dis-
tance in the direction of the beam propagation and A
is the two dimensional Laplacian in the transverse (z,y)
plane, Based on this equation Kelley predicted the possi-
bility of catastrophic self-focusing of optical beams whose
power is above a threshold value. [1]. Although this pre-
diction was later confirmed in experiments [2], the use of
NLS as & model equation for the advanced stages of self-
focusing has been often criticized. The singularity forma-
tion in NLS is clearly non-physical and it implies that a
description of physical self-focusing near and beyond the
singularity point should include an additional stabilizing
mechanism which is initially small but becomes impor-
tant near the blowup peint, much like the role of viscos-
ity in shock waves formation. Beginning with Feit and
Fleck [3], it was argued that the paraxial approximation
used in the derivation of NLS from Helmholtz equation is
inconsistent with the large focusing angles during the ad-
vanced stages of NLS self-focusing and that no singular-
ity wilt form if beam nonparaxiality is included. Indeed,
in the numerical simulations of Feit and Fleck [3] self-
focusing is arrested before the beam diameter goes below
the order of one wavelength, followed by several focusing-
defocusing cycles. Similar behavior was observed in nu-
merical simulations of a ‘paraxially modified’ NLS [4].
However, there was no analytical theory that explains
this behavior, nor was it clear how to reconcile the ‘non-
paraxial’ criticism with the ability of NLS theory to pre-
dict the existence and value of a critical power threshold,
above which self-focusing is not compensated by diffrac-
tion.

Tn this letter we show that NLS and beam nonparaxi-
ality can be combined into a single model. Qur starting
point is the scalar Helmholtz equation for the propaga-
tion of a laser beam of the form E = ¥(z,y, z)ezp(ikz)

through a Kerr media:
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where (z,y) and z were scaled by the initial beam radius
o and twice the diffraction length 4xr?/A, respectively.

Since the beam wavelength A is much smaller than rg
0<egl

Therefore, the ¥,, term is usually neglected (the parar-
ial approzimalion), in which case equation (2) reduces to
(1). However, from the expression for € it is clear that as
the beam is self-focusing the nonparaxial term increases
and it becomes comparable to the other terims when the
beam width is of the order of a wavelength. In faet, the
nonparaxial term has a large effect on self-focusing even
when it is still small, since as solutions of NLS seif-focus
the Laplacian and the cubic nonlinearity balance each
other almost completely. As we will see, this key obser-
vation will allow us to treat nonparaxiality as a small
perturbation.

We now briefly review NLS self-focusing [5,6]. A self-
focusing beam can be written as ¥ = s + ¥, where
tps is the non-focusing part of the bearn which is ‘left
behind’ as the focusing part of the beam 1, approaches
the radially symmetric asymptotic lens profile:
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Bl ) ~ V€ exp(iC +im )
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The resulting equation for V' is

1
iV + ALV =V + VPV 4 288V =0 (5)

f=-LL,, . (6)

As the beam is focusing 8 ™, 0 and V approaches the
Townes soliton, which is the positive solution of

AiR—-RE+R*=0, R(0)=0,
Jim R(£)eM?ef = Ap = 3.52

The Townes soliton has exactly the critical power for self-
focusing N, = [;° R*(r)rdr = 1.86 .



When 7 is small, it is related to the excess power above
critical of #,:

prts e No= [, @

M—1 [~ SR*(r)dr = 0.55
_zjo P R*(r)dr = 0.55 .

Similarly, the ‘energy’ of v, is given by
y:a
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The rate of power loss of ¥, (to ¥ns} is given by
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0 g<0 .

Returning to equation (2), if we multiply it by ¥* and
subtract the conjugate equation, we obtain an eguation
of power balance for nonparaxial NLS:

d
a/ [} rdr = —-26/Im(1,b*1bzz) rdr . (11)
We now make the assumption {that will be justified later)
that the nonparaxial term remains small compared with
the other terms in (2). Therefore, the left-hand-side of
(11) can still be approximated using (7) and (9):
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= [t rir~ v+ Zvie) (12)
To approximate the right-hand-side of (11) we use (3, 4)
and the fact that # is small to get

[y ~n ()

Combining (11)-(13), nonparaxial self-focusing is de-
scribed by

fo=-g)- 2 () @

together with (6). Equation (14) can be also derived from
a golvability condition for V.

Since A is small, power losses of 1, to tns are small
compared with nonparaxial effects. Therefore, we begin
the analysis by considering the adiabatic version of (14}

= —2eN. ( 1

!
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Direct integration gives

2€N 1

7 (16

B = fo ~

2eN, 1

Bo = (0)+ 7 L2 s L():L(O) ,
We are interested in the case where in the absence of non-
paraxiality the solution will become singular. Therefore,

Bo > 0 . Equation (16) shows that § becomes negative

once L goes below /2eN,/Ms. To see that this is fol-
lowed by the arrest of self-focusing we multiply (16) by
L'L3, use (6) and integrate one more time to get:

2 —4H,

y :T"(yM Wy —wm), y=L* , (17)
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and if ¢ is sufficiently small so that [6] <1,
Ym
—_—~0 . 21
e (21)
If By > 0 and Hy < 0 then 0 < ¢ < yu. In this

case the solution of (17) is periodic, oscillating between
ym and yar. The period of the oscillations is (17):

AZ= \/EjiM \ﬂyM - yjy(y — Ym) a

or (substituting (y — ¥ )/(¥ar = Ym) = cos? u)

AZ=2 yME( yM), (22)

where E is the complete elliptic integral of the second
kind. The first arrest of self-focusing occurs at

2
Zp = ff: [zy|dy. In the case of a collimated beam

L;(0) = 0, LZ = ya and zp = AZ/Q Therefore, as
e O, 2o approaches the blowup pomt in the absence of

nonpa,ra.xw.hty Z. = Li//B(0) [
When £y > 0 and Hy >0 equa,tlon'(l7) can be rewrit-

ten as

2 4 Ym
0" = 25 (yue) 4 (1— 7)



Therefore, focusing is still arrested at y = ym but from
then on the solution will defocus. Note that in both cases
the minimal value of L is

Len = yM% ~ \feN./MBo , (23)

which in physical variables corresponds to a beam width
~ 0.15/+/Bo wavelengths. Even at this stage the non-
paraxial term is only O(f#) compared with the other
terms in (2), providing an a-posteriori justification for
treating it as a small perturbation.

In the analysis up to this point we have neglected non-
adiabatic effects. When these are included, after each
cycle there is an overall power drop of (14):

tTAZ U(ﬂ)
Aﬂ :ﬁﬂ(Z+AZ)“ﬁ(Z)2—/ """"y—dz . (24)
H
Therefore, beam propagation is quasi-periodic if
188
By
In order to estimate A we first use (6, 17) to get:

€1, Bu=Bym) - (25)

1, 1,
ﬂ:ZyZ_Eyyf:ﬂM(l—Qa%) . (26)

The integral in (24) can be approximated using Laplace
method [7] and (10, 26), showing that most power radi-
ation occurs when y ~ yar and that

AB ~ 2ARﬁ—1/4 (yM 1) v exp (%ﬂw ) (27)
Ym VBM .
The overall ‘energy’ increase per cycle is given by (27)
and

AH = H(z+AZ)— H,(z) ~-MAS ,

which follows from (8) and the fact that ' = 0 when
Y=UM.

The analysis up to this point suggests that beam power
will eventually go below critical, at which point the final
defocusing stage will begin. In fact, the last defocusing
stage will begin much earlier when the power is still above
critical, since N, > N, is only the necessary condition for
blowup whose physical interpretation is that for blowup
to occur the Kerr nonlinearity should be stronger than
radial dispersion. However, for a defocusing beam to
refocus, the focusing nonlinearity should overcome both
radial dispersion and beam divergence, which will only
occur when H, < 0.

To solve equations {6) and {14) numerically we define
A = 1/L and use Runge-Kutta methods to integrate an
equivalent system of equations:

2N, (Ag)( . A(c = Af, Z = =A"% |

B = ~v(B) -

In the following simulations the parameters used are
B(0) = 0.1, L(0) = 1 and L'{0) = 0. Self-focusing ar-
rest due to small nonparaxiality is seen in Figure 1. As
expected, as ¢ ™, 0 the minimal value of L decreases
(23) and the location of the first arrest approaches Z,.
The difference between adiabatic (15) and non-adiabatic
(14) nonparaxial self-focusing increases as ¢ ™\, 0 (Fig-
ure 2): Beam propagation is quasi-periodic when ¢ = 0.01
but not when ¢ = 0.0001, in agreement with (25) and
AB ~ ¢=1/2 (20,21,27). The evolution of L, § and H for
these two cases is seen in Figures 3 and 4 for € = 0.01 and
0.0001, respectively. In both cases, with each fucusing-
defocusing cycle the maximum of § is decreasing, the
minimum of H is increasing and the extreme values of L
are higher. In the case of stronger nonparaxiality (Fig-
ure 3) the focusing-defocusing cycles are almost periodic
and less intense. Overall changes in # and H between
iterations are small, resulting in a large nuinber of cy-
cles before the final defocusing stage. However, only two
focusing cycles are observed in the case of very weak non-
paraxiality (Figure 4) after which the beam will defocus
without focusing again. Although at this point beam
power is still above critical, it is not strong enough to
overcome both beam divergence and diffraction (i.e. H,
remains positive).

The results in this letter are in qualitative agree-
ment with previous numerical studies: Self-focusing ar-
rest due to beam nonparaxiality followed by focusing-
defocusing cycles with decreasing intensity were observed
by Feit and Fleck in numerical simulations of the scalar
Helmbholtz equation [3] and by Soto-Crespo and Akhme-
diev in simulations of a ‘paraxially modified” NLS [4].
Simulation results in [3] also show abrupt power loss
at the self-foci and more gradual power loss in between
that eventually lead o cessation of self-focusing. While
the gradual power loss agrees with the first term on the
right-hand-side of (14) (which peaks when y ~ ya), the
abrupt power loss in [3] has to do with the way that back-
scattering is incorporated into the numerical model which
“gimply removes power that cannot propagate in the for-
ward direction without accounting explicitly for where it
goes” [3]. In our model we have implicitly assumed that
back-scattering is negligible when we represented the so-
lution using only its forward propagating cornponent (3).
Our model also does not included power loss due to the
vectorial nature of Helmholiz’s equations in physical self-
focusing. Lax, Louisell and McKnight have shown that
NLS is only the leading order equation for the transverse
component of Helmholtz’s equations and that the solu-
tion also has an O(c?/L?) axial component [8]. Therefore,
self-focusing is accompanied by power transfer from 1
to the axial component. Indeed, recent numerical simula-
tions suggest that self-focusing is arrested in the vectorial

. case [9].

Although more accurate models should include vecto-
rial effects and back scattering, our analysis shows that
both effects’ will remain small (O(8)) even when L as-
sumes its smallest value and that self-focusing would still



be arrested when L ~ L,,. Since both effects will lead
to additional power losses (peaking when L ~ Ly, ), the
number of focusing-defocusing cycles will be sinaller. In
our model the exponentially small power loss term plays
an important role, providing the only mechanism for the

decay of the oscillations. However, its effect will be prob-
nhlv naskicihla anee thaoa additional effacts are included.

Ly nvsxxaxuu.a LU0 valhl QUi Caetluds et 22202280

We have seen that small nonparaxiality has a large
effect on self-focusing. However, there is very little dif-
ference between self-focusing in NLS and in Helmbholtz
during the first focusing cycle until the arrest at L = Ly,.
For that reason, NLS may still serve as the model equa-
tion for self-focusing in the prefocal region even though
nonparaxiality is neglected.
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FIG. 1. L{z) for various values of beam nonparaxiality ¢. The parameters used are §(0) = 0.1, L(0) = 1 and L(0) = 0.
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FIG. 2. Adiabatic (eq. (15), dotted line) and non-adiabatic (eq. {14), solid line} nonparaxial sel-focusing. The parameters
are as in Figure 1.
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FIG. 3. Nonparaxial self-focusing (eq. 14) for ¢ = 0.01.
The other parameters are as in Figure 1.
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FIG. 4. Nonparaxial sell-focusing (eq. 14} for € = 0.0001.
The other parameters are as in Figure 1.



