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Abstract

This is the second of two papers on the zero-viscosity limit for the incompressible Navier-Stokes equations
in a half-space in either 2D or 3D. Under the assumption of analytic initial data, we construct solutions of
Navier-Stokes for a short time which is independent of the viscosity. The Navier-Stokes solution is constructed
through a composite asymptotic expansion involving the solutions of the Euler and Prandtl equations, which
were constructed in the first paper, plus an error term. This shows that the Navier-Stokes solution goes to
an Euler solution outside a boundary layer and to a solution of the Prandtl equations within the boundary
layer. The error term is written as a sum of first order Euler and Prandtl corrections plus a further error term.
The equation for the error term is weakly nonlinear; its linear part is the time dependent Stokes equation.
This error equation is solved by inversion of the Stokes equation, through expressing the solution as a regular
(Euler-like) part plus a boundary layer (Prandtl-like) part. The main technical tool in this analysis is the
Abstract Cauchy-Kowalewski Thecrem.
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1 Introduction

This is the second of two papers on the zero viscosity limit of the incompressible Navier-Stokes equations
_ in a half-space with analytic initial data, and in either two or three spatial dimensions. Under the analyticity
restriction and for small viscosity, we prove that the Navier-Stokes equations have a solution for a short time
(independent of the viscosity). In the zero-viscosity limit, we show that this Navier-Stokes solution goes to an
Euler solution outside a boundary layer and to a solution of the Prandt! equations within the boundary layer.
As argued in the Introduction of Part I {6], we believe that the imposition of analyticity is needed to make this
problem well-posed, by preventing boundary layer separation, but there is no proof of this.

In the first paper {6], we proved short time existence of solutions for the Euler equations and the Prandtl
equations with analytic initial data. In this second paper, we construct the Navier-Stokes solution as a sum of
the Euler solution, the Prandtl solution and an error term. Existence and bounds of size € (the square root of
the viscosity) for the error term are the main results of this paper. The error equation is weakly nonlinear, since
its solution is small. Its linear part is exactly the time-dependent Stokes equation, with forcing terms and with
boundary and initial data. As for the solution of the Euler equations in [6], the incompressibility of the solution
is ensured by use of the projection method in order to avoid dealing directly with the pressure.

The main technical tool here is the Abstract Cauchy-Kowalewski (ACK) Theorem, which is invoked to establish
existence for the error equation. As discussed in the Introduction to Part I, the abstract version of this theorem
applies to dissipative equations, even though the classical version does not.

A discussion of related references from the literature is presented in the Introduction to Part L.

In Section 2 we state the Navier-Stokes equations and discuss how the Euler equations and Prandt! equations,
in the limit of small viscosity, can be formally derived from Navier-Stokes through different scalings and asymp-
totic expansions. The introduction of two different scalings, typical in singular perturbation theory, is formally
necessary to describe two different regimes of the flow: the inviscid regime (far away from the boundary) and the
viscous regime (close to the boundary) where the viscous forces cannot be neglected even for small viscosity. The
meaning of Theorem 2.1, which is the main result of this paper, is to rigorously establish this formal result; i.e.
to show that the Euler and Prandtl equations are each a good approximation of the Navier-Stokes equations in
their respective domains of validity. In particular, the solution of the full Navier-Stokes equations is divided into
Euler, Prandtl and error terms, and the error term is further divided into first order Euler, first order Prandtl
and a higher order correction.

Section 3 contains an analysis of the time-dependent Stokes equations with prescribed boundary data. For this
linear problem, which we shall solve explicitly, we also show that the solution is the superposition of an inviscid
part, a boundary layer part, and a small correction. In Section 4 contains the decomposition of the error equation
Egs. (4.1)-(4.4) into first order Euler and Prandtl equations, which are solved in Sections 5 and 6. The analysis
of the equations for the remaining error takes all of Section 7. These “Navier-Stokes error equations” contain
terms of size O(£™!) due to the generation of vorticity at the boundary. They are solved using what we call the “
Navier-Stokes operator,” which solves Stokes equations with a forcing term (see Eqgs. (7.22)-(7.25)). It is suitable
for solving the error equation {and thus the original Navier-Stokes equations) with an iterative procedure. With
the bounds on this operator, and with the use of the abstract version of the Cauchy-Kowalewski Theorem, we
can prove existence, uniqueness and boundedness (in a suitable norm) for the error.

Final conclusions are stated in Section 8. The function spaces that are used in this paper are all defined in
Part 1. For convenience, tables of function spaces and operators are presented there. As in Part I, the exposition
is presented for the two-dimensional problem, but the results are all expressed for 3D as well as 2D.
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2 Navier-Stokes equations

2.1 A singular perturbation problem

The Navier-Stokes equations on the half plane for a velocity field u ¥ = (u™¥,v™5) are

(0, —vA)u ¥ +u ™ . Vu ¥ VphS =0 (2.1)
V.ul=0 (2.2)

u ¥ =90 : (2.3)

uMt=0=ud’. (2.4)

* Here, v == g? is the viscosity coefficient, and + is the trace operator, i.e. vf(z,t) = f(z,y = 0,t). The initial
velocity u &% (z,y) must satisfy the incompressibility condition and the compatibility condition with the BC
Eq. (2.3):

Vulds =0 (2.5)
s = 0. (2.6)

In this paper we are interested in the behavior of the solution of N-S equations in the limit of small viscosity
v << 1. As usual in perturbation theory, it is natural to write the solution as an asymptotic series of the form

u=uteul+luit (2.7)

where all the terms u * satisfy equations that are independent of € (the reason for expanding in € = /v comes
from the boundary layer expansion, which is described below). The equation for the leading order term u ® comes
from just neglecting the viscous term in the Navier-Stokes equations, which yields the Euler equations

duf+uf vuf4+vpf=0 (2.8)
V-uf=0 (2.9)

Tat E=0F (z,y =0,t) =0 (2.10)
ufz,yt=0=uf(zy . (2.11)

This procedure works well, at least for short times far away from the boundary, but gives unsatisfactory
answers close to the boundary. Comparison of the boundary conditions Egs. (2.3) and (2.10) for the Navier-
Stokes and Euler equations, respectively, shows the cause of the failure. For Euler equations we can only impose
zero normal velocity, since the equations are first order; while for Navier-Stokes the no-slip condition requires
both normal and tangential velocities to vanish. We must therefore allow a region in the vicinity of the boundary
where viscous forces are comparable to inertial forces, and where there is an adjustment of the tangential velocity



from zero at the boundary to the value predicted by the Euler equations. This boundary layer should have size
€ = /v, so that the viscous term vu,, is of size O(1).

Thus it is natural to write all quantities in terms of a rescaled normal variable Y = y/e. Next, the incom-
pressibility condition requires that v, = e~lvy = O(1), which requires the vertical velocity v to be size O(¢).
Imposing this scaling in the Navier-Stokes equations, and again neglecting terms which are first order in ¢, one
gets Prandtl’s equations for the fluid velocity u ¥ (x,Y,t) = (u¥,ev”) in the vicinity of the boundary; i.e.

(8, — Byy) u” +uF8,u” + vFOyu’ +8,p" =0 (2.12)
oyp¥ =0 (2.13)

au’ + 0yt =0 (2.14)

yuf = yf =0 (2.15)

uf (z,Y — 00) — yu® (2.16)

v (2, Y, t =0 =uf (z,Y) . (2.17)

Equation (2.16) is the matching condition between the inner (viscous) flow and the outer (inviscid) flow. This
condition is equivalent to the existence of an intermediate region (e.g. a region where y = O(e*) with 0 < a < 1),
where there is a smooth transition between the viscous and inviscid regimes.

As already noticed (see Subsection 5.2 of [6]), it is natural to introduce the new variable % P = (aP,ebF)
defined as

it = uf — yuP (2.18)
Y
5 = of + Yyl = — f 4Y'8,i" (2.19)
Q
and write Prandtl equations in terms of 4% as
(8, — Byy) @ +aF0,uF + yuPB,a” +aF 80" + [° — YO, yu"| 9yi” =0 (2.20)
vt = —yu® (2.21)
#F (2, Y — 00) —— 0 (2.22)
@ (z,Y,t =0) =uf (z,Y) —yuy = . (2.23)

We also define the normal velocity ¥ to be the velocity #¥ minus its value at infinity; i.e.
= =]
() =P (¥) - P (Y = 0) = f dY'a, i’ . (2.24)
Y

In [6] we have proved that, under suitable hypotheses on the initial conditions, i.e. analyticity, incompressibility
and compatibility with boundary conditions, both the Euler and Prandtl equations admit a unique solution in
the appropriate space of analytic functions {see Theorems 4.1 and 5.1 in [6]). To be more specific, we found
the existence and the uniqueness of an analytic solution for Euler equations which is L? in both the z and y
variable. For Prandtl, on the other hand, we proved existence and uniqueness for a solution #" which is L? in the
r variable, and exponentially decaying in the ¥ variable (i.e. outside the boundary layer); the normal component
#* of the velocity is O(e), but not decaying in Y, and in fact goes to a constant outside the boundary layer.

At this point, a natural question is whether one can use the solutions of the Euler and Prandtl equations to
build a zero-th order approximation to the solution of Navier-Stokes equations. The following Theorem, which is
the main result of this paper, gives a positive answer to this question:



Theorem 2.1 (Informal Statement) Suppose that u §(z,y,t) and u §(z,Y,t) are solutions of the Buler and
Prandtl equations, respectively, which are analytic in the spatial variables z,y,Y. Then for a short time T,
independent of €, there is a solution u V*(z,y,1) of the Navier-Stokes equations with

(2.25)

y NSl U E 4+ O(e) outside boundary layer
T | u¥+0(e) inside boundary layer.

A formal version of this result, with a complete specification of the possible initial data for the Navier-Stokes
solution is given in the following Theorem:

Theorem 2.1 Suppose the initial condition for the Navier-Stokes equations is given in the following form
ud =ug(z )+ (YY) +elwolr,y) + R o(n,Y)+e oz, 1)) (2.26)

where
(i) w § = (uf,v¥) e H"? and

V-uUEmO , qﬂuf=0
(i) Wy = (a&f ,eTF) € Khotw gnd
o= [ avieaf , yif = -yl
Y
(ii) w ¢ = (wh,w}) € Nb0,

V-woe=0, '7“)3:_75{
(iv) R = (Q§,e02) € K'»%* gnd

02 = f dY'9,0} | Y0 = —yuwh
Y

(v) € ¢ = (e}, €d) € L' and
Veeo=0, veq=(0,—7%)

with | > 6. Then there exist 5 < p, 8 < 0, G < pt, B > B, and T > 0, all independent of ¢, such that the solution
of the Navier-Stokes equations can be written in the form

u ™ =u ¥,y ) +T (Y t) +elw (,,1) + 0 (3,Y,1) + e (z,Y,1)] (2.27)
in which .
(i)u®e Hf-'” # is the solution of the Euler equations (2.1)-(2.4),

(i) &t (u ev’) € K""' * {s the modified Prandt! solution as defined in (2.18) and (2.24), ezponentially
decaying outside the boundary layer,

(i) w € N "’ % §s the first order correction to the tnviscid flow; it solves Eqs. (4.7)-(4.10) below
() € K ""' # {3 the first order correction to the boundary layer flow; it solves Egs. (4.11)-(4.14) below
v)e € L'-’"’ is an overall correction; it solves Eqs. (4.15)-(4.18) below.

8T

The norms of w , 2 and e in the above spaces are bounded by a constant that does not depend on the viscosity.



2.2 Discussion of the Theorem

Since TF is exponentially decaying for large Y = y/e, then the expression (2.27) shows that u ¥5 = u £+0(¢) for
y outside of the boundary layer (i.e. y >> £). For y inside the boundary layer (i.e. y < €), u £ = (yu?,0)+ O(g),
so that u ¥ = w ¥ 4+ O(¢). This shows that the informal statement of the Theorem follows from the rigorous
statement. .

In this theorem the Navier-Stokes solution is represented in terms of a composite expansion of the form (2.27),
which includes a regular (Euler) term u #, a boundary layer term @ ¥ and a correction term. Since the Euler
solution has non-zero boundary values, the Prandtl solution must be modified so that the sum of the two is zero
at the boundary and approaches the Euler solution at the outer edge of the boundary layer. The Theorem says
that if the initial condition is a function L? in transversal and normal component (together with its derivatives
up to order I, then the solution of the Navier-Stokes equations will have the composite expansion form given in
Eq. (2.27), at least for a short time.

There are several other ways to represent the Navier-Stokes solution for small viscosity. The most common
method in perturbation theory [3] is to write the solution as a matched asymptotic expansion in which

u =u¥f4+0() for y small enough (2.28)
u =uf+0() for y not too small. (2.29)

The formal validity of this representation is usually demonstrated by showing that the O(g) terms are small, and
that there is a region of overlap for the validity of the two expansions. While this representation is more easily
understood than the composite expansion, it is much more difficult to rigorously analyze due to the two spatial
regimes,

A second method for representing the solution, which has been used for example in [4, 8], is to introduce a
cut off function m = m(y/e*) with m(0) = 1, m(oo) = 0, and 0 < @ < 1. The solution is then written as

u =muf + (1 -muf +0(E*). (2.30)

This method has two difficulties: It introduces an artificial length scale ¢* which makes the error terms artificially
large. It also requires error terms in the incompressibility equation, since mu ¥+ (1~m)u ¥ is not divergence-free.
For these reasons we have found the composite expansion method to be the most convenient for analysis.

The rest of this paper is devoted to proving Theorem 2.1. Unless otherwise stated, [ > 6 throughout.

2.3 The error equation

If we pose
: uNS = uF + iF + ewt
vV =0F e [ dY'0,8 + ew® = vF + ¥ +ew® (2.31)
PV =p" +ep¥,
and use these expressions in the N-8 equations, we get the following equation for the error w = (w!,w?):
B, -Aw +w -Vu'+u’-Vw +ew -Vw +Vp* = f + (g'a,,ﬁ”,o) (2.32)
V-w = 0 (2.33)
o = (0,9 (2.34)
W(t=0) = w0+ﬂ°+eg (2.35)

in which u ° = (u?,v%) is defined by

u® = uf +@F
v = vFf +evF = 0B + e [0 dY'8,47 . (2:36)

6



The forcing term is f = (f*, f?) given by

f1 = = (@7 (80" - 8w®) + (8,5 (v — ) + (8,87) (v° +¥0.7") }

-7 8,u® + eAu® + ed2i” (2.37)
fP=- [a,'ﬁ'“ +u°3,7" +°8,7" + @Pava] — e 8,0% + eAd® (2.38)
and also o
g= [ aroe (2.39)
0

We want to show that the forcing term f igin LE?&!’ 141 and that in this space it has O(1) norm, namely
that

2
| li—zp1.00.7 S € (l“ ﬂl.p.ﬂ + iﬂ'{l!,p,ﬂ,n + 1) . (2.40)

where the constant ¢ does not depend on ¢. Let us consider f!. From Theorems 4.1 and 5.1 of Part I [6], it
is clear that the terms cAuf and 82" satisfy the estimate (2.40). Each of the remaining terms in f has a
similar form: They are each ¢! times the product of a function which is exponentially decaying (with respect
to Y = y/e) outside the boundary layer (terms containing " and 7¥), and a function that is O(e) inside the
boundary layer (e.g. uf — yu®). It follows that they all satisfy (2.40). In an analogous way one can see that f2
is O(1) and satisfies the estimate (2.40).

Thus Egs. (2.32)-(2.35) for the error term w (z,Y,t) have bounded forcing terms. In the Sections 4-7 we shall
prove that this system admits a solution w which can be represented in the following form:

w=w+0 +e, (2.41)

where the norms (in the appropriate function spaces) of w , 2 and e remain bounded by a constant independent
of . The difficulty of this proof is the presence in Eq. (2.32) of terms like 8,4, which are O(¢™!) inside the
boundary layer.

3 The Boundary Layer Analysis for Stokes Equations

Before addressing the problem of solving Eqgs. (2.32)-(2.35), it is useful to consider a somewhat simpler problem,
the Stokes equations with zero initial condition and boundary data g . This problem is of intrinsic interest, and
the results will be used in the analysis of the Navier-Stokes equations. The time-dependent Stokes equations are

B ~vA)u®+VpS = 0 (3.1)
Vu® =0 (3.2)

Tu® = g(z1) (3.3)
uw¥(z,9,t=0) = 0. (3.4)

Here g is a vectorial function g = (g¢',9,)- Primed quantities denote the tangential components of a vector,
while the subscript n denotes the normal component. The compatibility condition g (z,t = 0) = 0 is required for
the boundary data.

In this section we shall show that the solution of the above problem has a structure similar to that for the
Navier-Stokes solution Eq. (2.27); i.e. it is the superposition of an inviscid (Euler) part, a boundary layer (Prandtl)
part which exponentially decays to zero outside a region of size £ = /v, and a correction term which is size O(¢)
everywhere. The Stokes problem Eqgs. {3.1)-(3.4) has already been addressed by Ukai in [7], (where even the case



of non-zero initial data was considered), without making the distinction between inviscid part, boundary layer
part and correction term.
We seek a solution of the form

u¥ = uf + @ +wt, v° =0 + T +u?, P =pF +p¥, (3.5)

so that (u”,v%) represents an inviscid solution, (#¥,%") is a boundary layer solution decaying (in both compo-
nents) outside the boundary layer, (w',w?) is a small correction, and the pressures p and p* are bounded at
infinity. Please note that in this section u®, &* and w refer to the “Euler”, “Prandt!” and correction components
of the Stokes solution; everywhere else in the paper, this notation is used for the usual Euler and Prandtl solutions
and for the correction in the Navier-Stokes solution. These quantities solve the following equations:

uf+VpF =0 (3.6)

V-ufF=0 (3.7)

Tnl F= In (38)

u®(z,y,t=0)=0 (3.9)

(8, — vA)a* =0 (3.10)

aa" +0yT" =0 (3.11)
7' —= 0 asY — o0

it = g' — yu® (3.12)

af (z,y,t =0) =0 (3.13)

(8, —vA)w +Vp, =0 (3.14)

V-w =0 (3.15)

yw = (0, -7 ) (3.16)

w (z,y,t=0)=0. (3.17)

Note that Eq. (3.10)-Eq. (3.13) use the fast variable Y = y/e with v = €, in terms of which A = €28,, + dyy.
Also, there is no term Awu %, since it is identically zero. We now solve explicitly these equations.

3.1 Convective equation

Take the divergence of (3.6) to obtain Ap® = 0. Then apply A to (3.6) and use the initial condition u * = 0, to
obtain

Auf =0. (3.18)
Therefore the solution of Euler problem is
u®=VNyg,, (3.19)
where the operator N = —1/|¢'| exp (—|€'|y) solves the Laplace equation with Neumann boundary condition; i.e.
ANg, =0
3.20
'YauN Gn = Un- ( )



3.2 Boundary Layer Problem

To solve Egs. (3.10)-(3.13) it is useful to introduce the operator E; acting on functions f(z,t) defined on the
boundary

Y exp[-Y?/4(t - s)] /°° s el WA )

Bf@Y0=2 | ot o e (ner(t— )"

F(a',s) . (3.21)

This operator solves the heat equation with boundary conditions f and zero initial conditions

(at - Ezazz__"' aYY) El.f = 0
YEL f f (3.22)

B f(z,Y,t =0) = 0.

i

Note that the operator F,; differs from the operator E; (defined in Section 5.1 of Part I) by the fact that it involves
an integration on the transversal component x also. Define

Mg =g +N'g,. (3.23)
The solution of the boundary layer equations is written as
@’ = E,\Mg . (3.24)

Using the incompressibility condition and the limiting condition, the normal component is

o = f dY'9,4" . (3.25)
Y

3.3 The Correction Term

Here we shall use the Fourier transform variable with respect to z. As in Part I, the corresponding transform
variable is denoted £'. As in Subsection 3.1, Ap” = 0. Since p* is bounded at oo, then

(0, + &) p* = 0. (3.26)
Define 7 = (9, + |¢'|) w?, so that Egs. (3.14)-(3.16) imply

(6, —£e*A)r = 0 (3.27)
o= 70+
= 7 (-V'v' +|{'lv?)
€' (3.28)
in which o
a=—¢ f dY'8,i" . (3.29)
0
Since 7 solves the heat equation with the above boundary condition, then
r=|¢|EBe. (3.30)
From the definition of 7, w* satisfies ;
8,0’ +|¢'|w? = |¢'| Brar, (3.31)

9



which leads to

w?(z,Y,t) = e ¥ + UE o (3.32)
in which U is defined as v
THE,Y) =<le| [ e g, vay” (3.93)
4]
Notice that a operator occurs in Eq.(4.12) in {6]. Finally, the incompressibility condition implies that
w'' = —N'e o+ N'(1-T)E\ 0. (3.34)

These above results can be summarized as follows: The solution of the Stokes problem Egs. (3.1)-(3.4) is
denoted by Sg , with

u’=8g = 8Fg +8Fg +8%
_ ( ~N'Dg. E Mg 4 ~N'e W + N'(1 - T)E, N
- Dy, £y dY'8,E\ Mg el L TR,

(3.35)

After some manipulation, this can be simplified, as in [7], to
—N'e~l'lvg, 4+ N'(1 - T)E,V,
s _ — On AL 1 V14
wesoe ( e €lvg, +TE Vig ’ (3.36)
in which
Vig =g, —N'g". (3.37)

3.4 Estimates

In this subsection we prove some basic simple estimates on the operators 8%, S, and S€. Propositions 3.1, 3.2
and 3.3 are presented as results on the time-dependent Stokes equations, but are not used in the sequel. For
analysis of the Navier-Stokes equations, only Proposition 3.4 and Lemma 3.2 will be used.

We cannot in general give an estimate for the operator S in a space involving the L? norm in y. Nevertheless
it is possible to give such an estimate for a special class of boundary data.

Proposition 3.1 Suppose that g satisfies

o0
b= IE1 [ 56,4 ORE V) (3.38)
with |&'] ;7 dy'|k(¢',y')| <1 and f € Hg,”rjf. Then Sfg € H ;;f%a, and the following estimate holds
1S%g 10080 < €l flipo.0.7- (3.39)

Using Jensen’s inequality and replacing a factor of (€'} [;° dy'|k(¢',4")| by 1,

o0 2

t ,pl€'] T4 P ')

sup [ dy [ et [ ayieien ke v)scen )|
< sup fr - f dg'e?’! jo dy'|€'le” ¢ WR(¢', ) 7€, ¢)
= [age® [“ayhe ) 15€ 0P

< oo, (3.40)

10



Analogous bounds can be proved for the differentiated terms in the norm.
Now consider the “Prandt]” part. We first state an estimate for the operator E1
Lemma 3.1 Let f € ;,‘;; with f(t=0)=0. Then E,f € L"”‘” for some 8, and the following estimate holds in
L ,P,
IEIfII,p,B,,G,T < clflpp1 (8.41)
A much stronger estimate actually holds. One can in fact prove the exponential decay of E F in the normal
variable away from the boundary; see the proof given in the Appendix.
Using Lemma 3.1, the following estimates on S*’ and S (respectively the transversal and the normal com-
ponents of the operator S¥ ) are obvious:
Proposition 3.2 Suppose g € K7 """ with g (t = 0) = 0. Then 8F'g € Lfc;f}a and Sfg € Li{}""a for some 8,
and
1S7'g ip0.8r < clg lipp,r (3.42)
18529 li—1,00.87 < €lg lipps.r- (3.43)
Again a stronger estimate could be proved, namely that §Fg is exponentially decaying when ¥ — oo (i.e.
outside the boundary layer). The loss of one derivative in the normal component is due to the incompressibility
condition (see e.g., Eq. (3.25)). _
The estimate on 8¢ will be a consequence of the following bound on the operator U:

Lemma 3.2 Let f € L “" . ThenUf € L "” and

U o087 < clflipo.07: (3.44)

The proof of the Lemma. 3.2 is like the proof of Proposition 3.1, and is based on the fact that U f can be written
as a derivative with respect to the normal variable. Lemma 3.2 leads to the following Proposition for S¢:

Proposition 3.3 Suppose g € Kz ”"’ Then 8%g € LE%"’ e for some 0, and

IS8 lic1,p0.81 < €72¢lg o1 (8.45)

This estimate on the size of the error is not optimal. In fact, a more careful analysis of S¢ would reveal that
the error term is made up of two parts: a Eulerian part (namely e~¢lva) depending on the unscaled variable y,
which is of size € in Hy 1. L7 and a part (namely U E, o) depending on the scaled variable Y, which is of size ¢ in

LE}"”G . Something smﬂar occurs in the analysis of the error for the Navier-Stokes equations (see Section 4); to
prove that the error w is size £ we shall break it up in several parts (see Eq. (4.6) below) and estimate them in
the appropriate function spaces.

We now give an estimate on the Stokes operator S. Combine Lemma 3.1, 3.2 with the representation (3.36)
to obtain the following bound on §:

Proposition 3.4 Suppose that g € K"Bf’T, with g (t = 0) = 0 and g, = |&'| f;" dy'F€, ¥, )k(¢',y) with
€] J° dy' [k (€, y")| < 1 and f € L. Then Sg € Ly, and

189 8.8 < (|9 1080+ |flip0.87) - (3.46)
In addition, for each t < T, Sg € K", and satisfies
sup |S o <c(lg + 3.47
ogtgrl 9 i L ({8 lppr + | flipor) (3.47)
inwhich0<p' <p—pPtand <8 < 8- pt.

The proof of this Proposition uses Jensen’s inequality as in the proof of Proposition 3.1. Proposition 3.4 and
Lemma. 3.2 are the only results from this section that will be used in the rest of this paper.
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4 The error equation

The equation for the error is

@ —-A)w +w - Vu'+u® Vw +ew -Vw +Vp* = f +(g-6,,ﬁp,0) (4.1)
V-w = 0 (4.2)

yw = (0,9) (4.3)

w(t=0) = wo+Qo+e,g (4.4)

in which the forcing term f is in L;;l"‘g._,’f’ 141 and is O(1) (see Eq. (2.40)). Notice that in Egs. (4.1) and (4.2), and
in the rest of this paper, the divergence and the gradient are taken with respect to the unscaled variable y; i.e.

YV =(2.,,) - (45)

The rest of this paper is concerned with proving that equations (4.1)-(4.4) admit a unique solution, and that this
golution is O(1). We shall prove the following Theorem:

Theorem 4.1 Suppose thatwu £ € Hﬁ"i‘w , that ¥ € Ky bebk 0 that f has norm in L},"z"’ " bounded by a constant
independent of €. Then there exzist p, < p, 6, < 8 and B2 > B and py > 0 such that Egs. (4.1)-(4.4) admit a
solution which can be written in the form:

w=w+0 +e , (4.6)
where
o w € Ny %% satisfies Egs. (4.7)-(4.10);
e} € Kgﬁ"””a”““ satisfies Egs. (4.11)-(4.14), and
o e € L 4" satisfies Egs. (4.15)-(4.18).

The quantity w represents the first order correction to the Euler flow. It satisfies the following equations:

Ow +w Vuef+uf . Vo +Vp® = 0 (4.7)
Viw = 0 (4.8)

T = g (4.9)

w(t=0) = wo (4.10)

In addition the initial data w 4 is required to satisfy the condition (iii) of Theorem 2.1.
The quantity @ = (1!, ?) represents the first order correction inside the boundary layer, with the convective
terms omitted. It satisfies the following equations:

(B, —Byy)¥ = 0 (4.11)
P = e f ” dy'a,0! (4.12)

¥ = -'y:" (4.13)
P(t=0) = 0. (4.14)
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The third part of the error e satisfies the following equations:

(0,—c?A)e +e Vu+e(w +92)]+[u+e(w +02)] Ve +ee -Ve +Vp* = E (4.15)
Ve =0 (4.16)
ve = (0,-70%) (417)
e(t=0) = e,. (4.18)
The forcing term = is given by:
E = —[u' VR +w V(@ T+ )40 Vu'+ (TP +e0 +ew ) Yo +e0 VO]
+6* [Aw + (8,.0%,0)] ~ (0,(8, — £A)) + £ + (9-8,57,0) . (4.19)

The initial data 0 and e , are required to satisfy conditions (iv) and (v) of Theorem 2.1.

The reason for the complicated representation Eq. (4.6) for the error w is the following: To solve Egs. (4.1)-
(4.4) one has to use the projection operator due to the incompressibility condition. The natural ambient space
is therefore the space of functions which are L? in both transversal and normal components. In the right hand
side of Eq. (4.1), there are terms which are are rapidly varying inside the boundary layer, and thus depend on
the rescaled variable Y. So, in taking the L? norm with respect to the normal variable we are forced to use
the variable Y instead of y. The boundary condition (4.3), on the other hand, gives rise to terms which depend
on the variable y. Their L? norm evaluated using the rescaled variable Y would be O(e~*/%). To avoid such a
catastrophic error, we use the decomposition (4.6): w , which is L? in y, takes care of the boundary condition
(4.3) (see Eq. (4.8)); e , which is L? in Y, takes care of the rapidly varying forcing term; {3 cancels the transversal
component of w at the boundary (see Eq. (4.13)).

5 The correction to the Euler flow

In this section we shall prove the following Theorem:

Theorem 5.1 Suppose that g € Kgl}l"’. Then there exist p, < p, 8, < 6 and B, > B such that Egs. (4.7)-(4.10)
admit a unique solution w € N;,;"‘;:“ %3 The following estimate in Né;'f;.:"”s’ holds:

i-2,p3,0: E ~P
|w {7 < ¢ (l‘“ 0 lp0 + 10 |1p0 + |0 a|z.p.a) ; (5.1)
where the norms of u §, 45 and w o are taken in HWP8 Khefk gnd N'#P yegpectively.

The structure of Eqgs. (4.7)-(4.10) is somewhat similar to the structure of Euler equations and the proof of the
above theorem closely follows the proof of Theorem 4.1 in [6]. The functional setting here is slightly different; in
fact the Theorem 5.1 above is stated in the space N;,’ffa, where only the first derivative with respect to time is
taken, instead of the space Hé'ﬁ:” where time derivatives up to order ! are allowed. This is due to the presence of
the boundary condition g deriving from Prandtl equations. We shall prove the above Theorem using the ACK
Theorem.

The solution of Egs. (4.7)-(4.10) can be written as

w=wo+(-N,1)elW(g—g)+ Pw*, (5.2)

where the operator P, is the integrated (with respect to time) half space projection operator defined in Eq.(4.35)
of {6]. The first term in this expression provides the correct initial data, the second term the correct boundary
data, and the third term the correct forcing terms. '

The projection operator P, satisfies the following bounds in N, f,’,",_,’-":
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Proposition 5.1 Let u * € Ng% bP Then Pu* € N7 Lot and
|Pew Ii,p,ﬂ,ﬁ,T < clulip,8T - (5.3)

Proposition 5.2 Let u * € Nf,’ﬁ:g. Let o) < p— BT and §' < 8 — BT. Then Pau* € N forall0 <t < T,
and

t
|Pewt *|i,pr,00 < € fo dsfu(; s 8)li,p.00 < clttlip0,8 - (5.4)
Using Eq. (5.5) one sees that (4.7)-(4.10) are equivalent to the following equation for w *:
w*+H'(w*t)=0, (5.5)

where
H'(w*t) = [w o+ (=N", 1) (g — g0) + Pw "] -Vu £
u®V[wo+ (=N, De¥¥ (g~ g) + Pw ] . (5.6)

Using the Cauchy estimate, and with the same procedure we used to prove existence and uniqueness for Euler
equations in [6], one can see that the operator H ' satisfies all the hypotheses of the ACK Theorem; therefore
there exist p, < p, 9, < 8 and B, > B such that Eq. (5.5) admits a unique solution w * € Ny, -2 "”9’ Equation

(5.2) and Proposition 5.1 also imply w € N, Iz,z"" 4% Theorem 5.1 is thus proved.

6 The boundary layer correction

We prove the following Theorem:

Theorem 6.1 Let w be the solution of Egs. ({.7)-(4.10) found in Theorem 5.1. Then there exist p) > p,,
6, > 6,, 8% > B,, and py > 0 such that Egs. (4.11)-(4.14) admit a unique solution £ € Kgi’f" Fabs satisfies

the following estimate in K o 'Pzaea,#n

E P
12 li-2,0,00.8,7 < € (lu 0 li,p,0 F 180 l1,0,0. + |@ olt,0 + [ n|x.p.e,u=) ; (6.1)
where the norms of u £, @f, w o and § o are taken in HY? Ktebw NULrO gnd Khed8 respectively.

The proof of this theorem uses the following Lemma:

Lemma 6.1 There ezists ph < p, such that the boundary data yw' is in Kg 2105

in Kﬁz 20z, ;

. The following estimate holds

Yt li—2,04,80,7 S €lw i-2,00,00,80T - (6.2)

The above lemma can be proved using a Sobolev estimate to bound the sup with respect to y of w', and then a
Cauchy estimate on the x derivative to bound the term 8,8, %w'.
The solution of Egs. (4.11)-(4.14) can be explicitly written as

Q! = By (1) — Byt = Eo(t) (9 + yw) — By (W' — wh) ~ yusg - . (6.3)

where the operator E,(t) and E; have been defined in [6]. Proposition 5.1 and Proposition 5.3 of [6], imply that
e KL’"%"”&“‘“’ Using the expression (4.12) for £* and again shrinking the domain of analyticity in z, and

renaming ph, we obtain also * € K fg 2628242 The proof of Theorem 6.1 is thus complete.
By a redefinition of p,,#,, 8., we may take ph = pg, 85 = 0;, B3 = fs.
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7 The Navier-Stokes operator

In this section we shall prove the following Theorem
Theorem 7.1 Under the hypotheses of Theorem 4.1, there exist py, 0,, B, such that Eqs. (4.15)-(4.18) admit o

unigue solution e € Lg?r_,'!’ 203 This solution satisfies the following estimate in L;,:?if’“ 1

1 I - Ei ~ P | y v i ry 4%
€ li-gonontar < € {1t Flupo + 188 lpon + 10 olips + 1 oltpos + 1€ olipe) (7.1)
where the norms of u £, @, w o, 0 o and € y are taken in H0?, Khelw Nhel#  ghobs gnd Lhed respectively.

We shall prove this Theorem using the ACK Theorem. In the same way as for the Euler and Prandtl equations,
we first invert the second order heat operator, taking into account the incompressibility condition and the BC and
IC. This is performed using the heat operator,defined in Subsection 7.1, which inverts (8; — Oyy — €°8,,). Then
in Subsection 7.2 we insert the divergence-free projection and obtain the operator . Using the Stokes operator
from Section 3 to handle the boundary data, in Subsection 7.3 we define the operator A, which is suitable for
iterative solution of the Navier-Stokes equations (i.e. treating initial data and nonlinearities as forcing terms).
Bounds on this operator are given in Propositions 7.6 and 7.7. With the use of this Navier-Stokes operator, and
taking into account initial and boundary data Eq. (4.15) and Eq. (4.18), in Subsection 7.4 we finally solve the
error equation. In Subsections 7.5 and 7.6 we prove by the ACK Theorem that this iterative procedure converges
to a unique solution.

7.1 The heat operator

We have already introduced the operator E, in (3.21) which solves the heat equation with boundary data. We
now want to solve the heat equation with a source and with zero initial and boundary data on the half plane
Y 2 0;ie.
(8, — %0, — Oyy)u = w(z,Y,t)
u(z,Y,t = 0) = 0 (7.2)
yu 0 .

First introduce the heat kernel Ey(z,Y,t), defined by

i

—z2 f41e? e--Y" J4t

Eoy(2,Y t) = ——s ——. 7.3
o ) Virte? ant (7.3)
We solve the problem (7.2) on the half plane with the following operator:
u(z,Y,t) = B
t o0 5] - -
= / ds/ dY'f dz’ [Eﬂ(a: -2 Y ~Y' t—8)—Efz—-2 Y +Y',t - s)] w(z',Y', ). (7.4)
1] o —o0
We now state some estimates on this operator. In these estimates w is defined for ¥ > 0.
Proposition 7.1 Let w € Ly, Then E,w € LYY and
|Eawip0,8,0 < eltwlio0,6,7- (7.5)

Proposition 7.2 Suppose w € Lgfif with yw =0 and that o' < p— Bt, & < 0 — Bt. Then Eyw(t) € LY and

t
Byl <o [ dslul,-, 9o < clwlpnnr. (7.6)

The proofs of these two propositions are given in the Appendix.
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7.2 The projected heat operator

In [6] we introduced the divergence-free projection operator P, Here we employ a smnlar operator with the nor-
mal variable rescaled by a factor €, The projection operator in the z and Y variable, P, is the pseudodifferential

operator whose symbol is

% 1 & —efé,

P = €281 4 £2 ( :Eﬁrfn 22 | (7.7)
where ¢’ and £, denote the Fourier variables corresponding to & and Y respectively. For all w this operator

satisfies
V- Pw =8P 'w +e8y P ,w =0. (7.8)

In [6] to avoid Fourier transform in y we expressed P™ as an integration in the normal variable. For P” one can
similarly see that

Y oo
P = [5151 f dY'e” I _N'w' + ) +l€| / dY’e""'(Y"’Y')(N’w‘ +w2)] ; (7.9)

P'w =uw' + 1[ elé't | dY' =~ =YD (! 4 N'w?) — e)¢| [ dY'es 1Y) (! . N 2)] (7.10)

Next we present estimates on the projection operator. In these estimates w is defined on Y > 0, but we write
P w to mean the following: First extend oddly w to ¥ < 0, i.e.

w(z,Y) = ~w(z,-Y) when ¥ <0; (7.11)

then apply P*, and finally restrict the result to ¥ > 0 for application of the norm. The resulting expressions for
P are

Y
PP ow = %€|§'| [f dy! (eus|e'|(yuy') - emsjc'[(Y-i-Y’)) (—N'w' +w?)
0

+f dy’ (EEFE‘I(Y—Y')(NI,wl + w2) _ ezlf‘l(-—Y—Y‘)(MN!wl + w2))] , (7.12)
Y

Y 1] 4
ﬁmf.w = ,wl _ %Elﬂ [-/0. dy’ (e—elf y-y')y _ e—elf {(Y+Y )) (wl +N"w2)

+/ dy’ (eslf'I(Y-Y')(,wl - N:wz) _ eeEElI(—]r’-y!)(,wl + Nr,wz))] ) (7.13)
Y

The following estimate is easily proved

Proposition 7.3 Let w € L withyw =0. Then P w € L'*? and

;-ﬁmw ll,p,ﬁ s Ciw |T,ﬁ,9 * (7-14)
We are now ready to introduce the projected heat operator M, acting on vectorial functions, defined as
No=P"E, . (7.15)

One can easily show that P commutes with the heat operator (8, — 8yy — £28,,). It then follows that for each
w such that yw =0

V- Nw = 0 (7.16)
(8, — dyy — 20, ) Mow = Pow . (7.17) .

The following estimates are a consequence of the properties of P~ and E, separately:
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Proposition 7.4 Suppose w € L% . Then Now € L%y and

|Now |1p0,81 < €W |1,0,87 (7.18)

Proposition 7.5 Suppose w € Lg?]"? with yw =0 and that p' < p—0t, &' <6 — pt. Then w and Nyw are
in L' for each t, and

t
|Now 1000 < C/o dsjw (-, )00 < clwlip0,8,7- (7.19)

Note that E, has zero boundary data; thus the conditions in Proposition 7.3 are all satisfied.

7.3 The Navier-Stokes operator

With the Stokes operator defined in Section 3 and the projected heat operator of the previous subsection, we now
introduce the Navier-Stokes operator A'* defined as

N* =Ny — 81N, . (7.20)

This operator is used to solve the time-dependent Stokes equations with forcing, which is equivalent to the
Navier-Stokes equations if the nonlinear terms are put into the forcing. In fact

w =Nuw* (7.21)
solves the system
(6 — Oyy — 28w +Vp* = w?* (7.22)
V.w = 0 (7.23)
yw = 0 (7.24)
w(=0 = 0 (7.25)

and satisfies the following bound:

Proposition 7.6 Suppose w € Lgfi?_ Then N*w € Lg:}e and
!N*w |I.P,9.ﬂ,T S ciw h,ﬂ.e,ﬂ,T' (7.26)

We already know, from Proposition 7.4, that A, obeys an estimate like (7.26). Therefore the only part of ™
which has to be estimated is that involving the Stokes operator §. To bound this term it is enough to notice
that vApw is boundary data for which the assumptions of Proposition 3.4 hold. In fact since E,w has been
extended oddly for Y < 0, then y,Npw =P, Eyw is (see Eq. (7.12) )

~ o0 ] ] o~
FP” Eyw = el¢] fo dY'e~ sl N' Eyut (7.27)

According to Proposition 7.1, this is of the form required in Proposition 3.4 for the normal part g, of g = NMyw .
The tangential part ¢’ satisfies the bound

|9l o087 < Bt |1 00,87 (7.28)

Therefore 5
|SYNow 16,81 < elEow |ip0,81 < €lw [i00,60 (7.29)

which concludes the proof of Proposition 7.6.
We shall also use the following Proposition, which is proved in the same way as the previous result, using
Proposition 7.5:
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Proposition 7.7 Suppose w € Lf;f}" with vw =0 and that o < p— fpt, & < 8 — pt. Then in e

22
IN*w I;,pa'g: < Cj; dsi'w (.!'FS)II,P',W < C‘T.Ul;’p,g"@,T. (7.30)

7.4 The solution of the error equation

We can now solve the Eqgs. (4.15)-(4.18). If one looks at these equations one sees that they are of the form
(7.22)-(7.25) (where all forcing and nonlinear terms are in w *, see Eq. (7.37) below) plus boundary and initial
data. We therefore express e as the sum of two terms: the first involving the Navier-Stokes operator and the
second where all boundary and initial data are. In fact we write

e =Ne*+o (7.31)

where o solves the following time-dependent Stokes problem with initial and boundary data:

(0, —Oyy)o +V¢ = 0 (7.32)
Ve =0 (7.33)
yo = (0,eG) (7.34)
oc{t=0) = ey, (7.35)
having denoted: -
G=-— fu av'a,0t (7.36)

and where e * satisfies the following equation:
e*=E~{e Vu'+e(w +2)]+[u’+e(w +Q)]-Ve +ce -Ve —£*d,,0 } . (7.37)

Equations (7.32)-(7.35) can be solved explicitly. First note that ¢ is harmonic, so that, imposing it to be bounded
at infinity,

@, +iEhe=0. (7.38)
Apply (8, + |€']) to the normal component of Eq. (7.32), and define
=0, + ¢ (7.39)
which satisfies
(at - 6yy) T = 0 (740)
v = e|l¢'|G (741)
t=0) = [¢'|Vie,, (7.42)

in which Vje ; = €2 — N'e}. Denote G, = G(t = 0). Then the solution of the system (7.40)-(7.42) is

Eo(t) ([€'|Vie o — €l€'|Go) + By [vel'|G — £l€'|Go] + €l€'|Go
17 . (7.43)

T

The initial condition e 4 is in L"*; this obviously implies e € L*~2#%% | One has the following Proposition:
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Proposition 7.8 Given that e , € L"2#3% that G € Ky 2%, and the compatibility condition y.e o = £G,
then 7 € L5 and
17li-2,00.00.80.7 < € (€ oli-2,00,0 + [Glicz,pa,0,7) - (7.44)

The proof of this Proposition is based on the estimates on the operators Eo(t) and E; given in Propositions 5.2

and 5.3 of [6]; regarding the estimate in Proposition 5.3, we notice in fact that if a function is in K:,‘f,’f"‘" itis a

¥, 3 = '!lplg
fortiorn 1n "L’ﬁ,T .

Now, the expression (7.43) for 7 in (7.39) and the boundary condition (7.34) on ¢”imply that
o =ee” G + U7 (7.45)
where U has been defined in (3.33). The incompressibility condition then leads to
o' = —eN'e~ VG + N'(1 - T)F. | (7.46)
A bound for ¢ is given by

Proposition 7.9 Suppose that G = [ |G, with G € K ’:?,L"’, then o € Lfa'n'zq’!’”“’ and

10 bzpatagr < (1€ oliznpne + 1Gli-2,p0,07)

< o (lu Blipo + [0 lipon + 19 ol + 12 olr0s + 1€ olips) - (7.47)

The proof of this Proposition is based on Lemma 3.2 and Proposition 7.8 for the estimate of the terms involving
#, and on the fact that if G € Kj, 2™, then |¢'|e~I¢ ¥ G € L, %%,
We are now ready to prove existence and uniqueness for Eqs. (4.15)-(4.18). Use Eq. (7.31) in (7.37), interpret

this equation as an equation for e *, and use the abstract version of Cauchy-Kowalewski Theorem, in the function

spaces X, = L'? and Y, 5 = Li#?  to prove existence and uniqueness for the solution. This is similar to the
2 P8, 8,7

procedure used in [6] to prove existence and uniqueness for the Euler and Prandtl equations. Rewrite Eq. (7.37)
as
e*=F(e*t) (7.48)

where F (e *,1) is
Fle*t)=k —{[u’+e(w +02 +0)] VN'e*"+N'e* Vu'+e(w +0 +0)]
+eN*e " - VN'e "} (7.49)
and k is the forcing term
k = E—{[u+e(w +0Q)]-Vo +o -V[u'+e{w +2)] +eo Vo }
= f —{[(u°+e(w +Q +0))-VQ +(w 'Vu_P—(gB,ﬁP,O))+(ﬂ +o')'VFP]
[(ﬂ +a’)-VuE+(ﬁ"P+s(w +Q +cr))-Vw +(ul+e(w + 02 +cr))-Va]}
+62 [Aw +8,, (92',0) + 8,.0 ] — (0,(8; — 2A)0Q?) . (7.50)

The rest of this section is concerned with proving that the operator F' satisfies all the hypotheses of ACK
Theorem.
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7.5 The forcing term

In this subsection we shall prove the following proposition, asserting that the forcing term is bounded in L‘fi? 2,82

and O(1):

Proposition 7.10 There exists a constant Ky such that

|F (Ort)h"zvpz“ﬁzfyen*ﬁzt < RO . (751)

Equation (7.49) shows that

FO,t)=k (7.52)
with & given by (7.50). We already know that f € LL:?%”"H’ (see the discussion after Eq. (2.40)). The terms in
the first square brackets are exponentially decaying outside the boundary layer. Inside the boundary layer they
can be shown to be O(1) with a Cauchy estimate on the terms where 9, is present: this is possible because they
go linearly fast to zero at the boundary. All terms inside the second square brackets are more easily handled
because no O(¢~!) appear. Proposition 7.10 is thus proved.

7.6 The Cauchy estimate

In this subsection we shall prove that the operator F' satisfies the last hypothesis of the ACK Theorem. Here
and in the rest of this section

p < p(s) < ps—Pas
0 < 8(s) < By — Bas.

Proposition 7.11 Suppose p' < p(s) < ps — 8 and &' < 8(s) < 0, — B,5. Ife*! and e ** are in L:,:?-I’f"'a’ with
le i spa 0001 SR, € "2 1e2p000,8,7 < R (7.53)
then
i ’etl_e-2|:m \ |e¢1me-2|_ ,
wl _ 2 < 2,p(a},0 12,07 ,6(8)
P (e )= F (e % app <0 [ { St Ttar  le D22 Tl

* & **lizpme , € " lima,p o)
+ce*1_e¢2_ e .[ds WoL8), + Wy 7’.54
i II 2,0',6', 82,8 0 i§2 p(s) —_ p' 8(3) —_— 0’ ( )

in which all the norms are in L»*® and L};f’r_;f.

The proof of the above Proposition occupies the remainder of this section. First introduce the Cauchy estimates
in Lh#8,

Lemma 7.1 Let f(z,Y) € L'"?. Then for0<p <pand0< ' <@

f Ay
|0z flore < c';'—_‘—ﬂj | (7.55)
IX(Y)0y fliper < Clg%pé—f- (7.56)

In the above Proposition x(Y) is a monotone, bounded function, going to zero linearly fast near the origin (see
e.g. Eq.(4.28) ) of [6]. The Sobolev inequality implies the following Lemmas:
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Lemma 7.2 Let f(2,Y) and g(z,Y) be in L"#?. Then for0< p' < p

|90: flipr0 < Clgh,p',ol’;f#;f‘- (7.57)

Lemma 7.3 Let f(z,Y) and g(z,Y) be in L' with g(z,Y =0) = 0. Then for 0< 8 < ¢

| £
198y Flupar < clglipar gy (7.58)

Lemmas 7.2 and 7.3 then imply

Lemma 7.4 Supposee ! and e ? are in LL‘:;.”"’ with ypw ' = y,w > =0, Then for 0 < p' < pand 0 < & < ¢

|e 1_ € 2!]_2,p,gl |8 1_ e 2|i__2lpf,9
o + — (7.59)

where the constant ¢ depends only on le *|;_g 057 and |€ ?|;_y 0,57

le!.Ve'-e? . Ve?_ppp<c

*

We are now ready to prove Proposition 7.10. We first take into consideration the nonlinear part e * VAN*e *.
From the estimates (7.26) and (7.30) on the Navier-Stokes operator, the estimate (7.59) on the convective operator
and the fact that y,AV*e * = 0, it follows that

Wee*! . VA*e ! — N'e *? . VNTe **| iy e

¢ e 8) e "2 8)h2 le **(c18) — e 20, )i
< 37y ) ,p(8),82 K EE) 2,p2,8(2)
“ch4 Oy ¥ ) -

! le **(y -y 8)i-2 002,00 , 1€ " (v SHi-2,0000
+Ce *1 —e Y] —2,a.85.50 / ds r "y ,0(8),02 + TR 2,8(8)
| -2pnta02 |, ,2;,,. p(s)—p' 8(s) — 0"
v Tle* (- 8)— e (s i paa , 1€ (075 8) — € *2(y s 8)li-2,000
S Cf ds 10 LR 5 P ")s 3 + LR LR 183 (-’) 7.60
: [ O TORL (7.80)

using Lemma 3.1 from Part L Since v, (u ° + e(w + 0 + ¢ )) = 0, one can estimate the term
(w®+ew + 0 +0))- VA"w* in a similar fashion. The term N*w* -V (u %+ e(w +0Q +o ) is easily
estimated. The proof of Proposition 7.11 is thus achieved.

7.7 Conclusion of the Proof of Theorem 7.1

The operator F (e *,t) satisfies all the hypotheses of the ACK Theorem. Therefore, there exists a 8, > 0 such
that the equation (7.48) has a unique solution e * € LL’;%""E’. Because of Proposition 7.6, then A*e * € LL‘Q?‘,’H"“"“.
Given the expression (7.31) for the error e and Proposition 7.10 for & , the proof of Theorem 7.1 is achieved.

7.8 Conclusion of the Proof of Theorem 2.1

We have thus proved that u 2 € Hgﬁ:’ (Theorem 4.1 of [6]), that &% € K ;’;””3"‘ (Theorem 5.1 of [6]), that
w € Ngi’f””’ (Theorem 5.1), that 8 € K %**#> (Theorem 6.1), and thate € L:;;z'«"”e’ (Theorem 7.1). By a
redefinition of the parameters, we may take (py, 85, 85, s) = (p, 8, 8, i), and the proof of Theorem 2.1 is achieved.
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8 Conclusions

In the analysis above, we have proved existence of solutions of the Navier-Stokes equations in two and three
dimensions for a time that is short but independent of the viscosity. As the viscosity goes to zero, the Navier-
Stokes solution has been shown to approach an Euler solution away from the boundary and a Prandtl solution in &
thin boundary layer. The initial data were assumed to be analytic: although this restriction is severe, we believe
that it might be optimal. In fact separation of the boundary layer is related to development of a singularity
in the solution of the time-dependent Prandtl equations, as discussed in [2]. We conjecture that the time of
separation (and thus the singularity time) cannot be controlled by a Sobolev bound on the initial data, unless
some positivity and monotonicity is assumed as in [5]. It would be very important to verify this by an explicit
singularity construction, or to refute it by an existence theorem in Sobolev spaces for Prandtl.

This result suggest further work on several related problems: Analysis of the zero-viscosity limit for Navier-
Stokes equations in the exterior of a ball is presented in [1]. An alternative derivation of this result may be possible
by a more direct analysis of the Navier-Stokes solution. In two-dimensions, a solution is known to exist for a
time that is independent of the viscosity. Thus by writing the solution as a Stokes operator times the nonlinear
terms and analysis of the Stokes operator, it should be possible to recognize the regular (Euler) and boundary
layer (Prandtl) parts directly.

We believe that the method of the present paper could be used to prove convergence of the Navier-Stokes
solution to an Euler solution with a vortex sheet, in the zero viscosity limit outside a boundary layer around the
sheet. Note that the problem with a vortex sheet should be easier because the boundary layer is weaker since
tangential slip is allowed, but it is more complicated since the boundary is curved and moving.

Appendix A: The estimates for the heat operators

Proof of Lemma 3.1 To prove Lemma 3.1 it is useful to introduce the following changes of variables into the
expression (3.21) for the operator F;:

Y ' —=x
=G 0 T W= (A1)
Oxne has 5 o .
El.f = ;‘/}.’/\/(_‘“) dce'—c [m dﬂe"‘ﬂ f(-’E + TIY/CJ _ Y2/4<-2) ) (A.?)

To get an estimate in Lk'}e one has to bound the appropriate L? norm in z and Y of 8 E fwithi<l, 8,00E f
with ¢ < 1 —2 and 8.8} E,f with i <1 —2, j < 2. We shall in fact prove a stronger estimate; we shall in fact
prove that these terms are exponentially decaying in the Y variable. Let us first bound G E f:

sup sup PP qup  [IOLE, f | L2(ne)
01T YET(8-p51) {9zi<p—pt

] 0 -] 2 2
= sup sup eWHTPORY  oyp dRz 2 of(e":2 dne~" 9 f [z + H—}:,t-— K—Cz
n
0<I<T Y €T(8 1) |Sej<p—pt | =00 TS —co ¢ 4
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2 (oo
< sup sup e PORY  gup - ] d¢e=¢ f dne™" || 0L f f(+iSz,t - Y24 |13 12(Ra)
0<t<T Y ER(6—51) [ozigo-pt | T Jy//(40)

0<I<T Y €5(6—p1) {ai<p-pt | [0<t<T |9a|<p-p1

< sup sup [OLf(- +iSx, llLamz) sup  sup
0<t<T |Yo|<p—Ft 0<t<T Y €X{f—pt) \/— Y/\/Ed.t)

< Ia flo.p.& A8,

In passing from the second to the third line, we used Jensen inequality to pass the square inside the integrals in
¢ and 5, and performed the integration in éR:c We now bound 8,8LE, f with ¢ <1 — 2 by

2
< sup sup €FPRY  gup {[sup sup ﬂaif(-+i3m,t)ﬂymz)] W Y/\[ﬂ) }
7  (A3)

sup sup e PR gup [19,0iF, f lza¢ga)
0<I<T Y es(6—p1) ISz }<p—Bt

. 1/2

L 2 [+ =] a

< su su 8,0t f(- + 19z, sUL su — d¢e™*
0<t§T ;gz[<£) iy 10,05 )"L’(Rw)ﬂqu ygg(ep —Bt) { VT Y/+/(41) ¢ }

< 18,32 flo,s0.8.r - (Ad)

The procedure forr'.the above bound is essentially the same that was used for 8iE, f. The only thing to note is

that the derivative with respect to time passed through the integral in ¢ because f (z,t = 0) = 0. We now bound
OyOiE, f withi <1—2by

sup sup eFURY  gyp uayaiﬁ'ﬁ L2 (ne)

0<t<T YeL(¢-pt) |¥z|<p—Bt
= sup sup eFFIRY  gyp
0<t<T YEE(6—51) |Sz|<p Bt
2 oo 00 2 .
2 e [~ ane=r" [ 205 o+ 1¥/¢,8 = Y*/4C) (o + ¥ /G, =Y /4|
T Sy /lat) —oo ¢ 2¢

< sup sup ePFFORY gup
0<t<T YEX(0—5t) |¥a|<p—Bt

_2-90 *(,Y 42 gf v ey . .,..2221/2
{\/ﬁ Ymﬁ)dce 5 [ua,, FC+ 92,6 - Y240 + 805 (- + Sz, t Y/4g)n]}

¥

2 [= 2 Y

A + 0,0, su sup eWmPIRY | f die ™ —=
(i f'o:ﬁ: 8,8,T I 4 flo,P, 8,8, T) <t£TYEE(91-)—ﬁt) Y/'J(-‘“) C 2(2

< ¢|flipo.8.7 (A.5)

In passing from the second to the third line of the above estimate, we first integrated by parts in 7 the term 8+ f
and then used Jensen’s inequality to pass the L? norm in Rz inside the integral in ¢ and 5. To bound dyy8iE, f

with ¢ < [ — 2, note that B, f satisfies the heat equation and use the bounds above. The proof of Lemma 3.1 is
thus achieved.

Proof of Proposition 7.1 To prove Proposition 7.1, it is useful to make the following changes of variables into
the expression (7.4) for the operator Ej:
¢ = Y'-Y g Y'+Y _ x-z (A.6)
S VAG-s T VAt-s ' Vil=9) '

23



These lead to

= ds / ‘: dne™"" { / : = dee< F(w + /At - 8), Y +¢ /4t — 5),9)

- L/\/md('e“c f($+n\/4(t—.s),—Y+(' 4(t-s),3)] . (A7)

To get an estimate in L%’ , bound 85 E, f with i < I, 8,0LE,f with ¢ <! —2 and 8i0{ E,f withi <1~-2j<2.
First bound 8iE, f by

sup Naiszf "u(nz)
|Sz{<p—pt

sup sup
0<t<T §' <o—pt

L3(T(8'\a/e))

< sup sup { f sup / dRz
0<IST 0'<6— Pt r(ef,a/s) ;sz|<p-,at

[/Ot ds (ft:/ e d¢e=< ” dne"'za;'f(x-i—m/ci(t-s),Y+C«‘/4(t —3),8)

oy 1/2
- d _cﬂf dne™™ 8 f(z + /4t — 8),Y + (1 J4(t — 3),
f}’f\/4(t_—a) (™ [ dne™ Bof(z+ny/4t - 8), Y + (YAt~ 5),9)
T 00 o0 2
= bro f de @ f de™" [ dne™ sup |18'f(-+iSe,Y +(4/4(t - s
Uﬁi,gTﬂ‘gﬂEﬁt{ L(#",a/e) 0 8[ ~o00 ¢ 00 7 IS‘zISf—.@t f( NE ¢ ( ))

oo oo 217 1/2
+ f dze™* f dne‘“"2 sup ||8'F(- +14Sz, =Y + 24/4(t - 3)) ] }
00 —~00 {Sx|<p—01
. (A.8)

<csup sup || sup [10iflliema)
05tST @' <51 | |Sai<p—pt L3(I(6",a/c))

In passing from the second to the third line of the above estimate, we used Jensen’s inequality and overestimated
the integrals in s, ¢ and z. Now bound 8y 8. E, f with i <1—2 by

sup ||3Y3;E'2f||L=(m)
[$z[<p—1t

sup sup
0<t<T ¢ <0—Ft

L3(r(8',a/c})

o
< sup sup {/r{a ”dY sup dRz
’.afe

0<t<T 0" <o—pt |Szi<p—Gt S —
t -5 [=5]
—¢2 ol i _
[ /0 ds ( f_ s e [ dne 8040+ /4t —3),Y + (4t — 5),8)

- [Y 7 — de=s" f : dne " By 051 (z + m/fA(t - 8), Y +(4/4(t - ), s))

—Y 4(t—s 2 "
+2j ds\ﬂ:_iﬁ)/ dne™" 8% f(z + ny/4(t — )08)] }

8up ||3yai.f||u(m)
[9z|<p—at

< ¢ sup Ssup
0<IST 0/ <o-1t

L3(T{(¢" a/c))
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%
oY /4t 2
d?R:c f ds == f dne"0; Hon
< By i flopsar

1/2
1
+¢ sup sup { sup sup ||&Lf(-+iSz,0 t)ﬂ,,mz)]w o dYe —yﬂ/u] dsr__}

0<t<T 6'<o—pt | 0H<T |9z|<p—pt 4(L~s

< c|6y 0L f +e n
l YUy |0,p,9.ﬁ.T osgz';l ngtsl.)‘l"

sup 168 fllzaca)

joz|<p-pt

LE(T(9'=0.a/c))

S cfliposr - (A9
In passing from the third to the fourth line, we estimated the value of 8:f at the boundary with the L* (in Y')
estimate of 8 f and 9y f. Now bound 3yy3 E.f withi<1-2by

sup  [|030LE; il 1asey
f@z|<p—Bt

sup |85 f |l za(nay

|$z|<p—0t

sup sup
DI T 8 <ot

L3(r(0',0/e})

< ¢|8yyd: te p
| YY zflorpog'ﬁ’T 1%2 US’ST

L3((8'=0,a/e))

oo Ye""Y f4{t—2) poo . \/_ q2) 4
+ sup su f dY su dRz / d ] dne™ 9, f(x + /4t — 8),0, s
ngtgrergal—)ﬁt T(8',a/¢) |32|S§)—-ﬁt - [ A =) 4tw—3 ¥ J m f Y4 )0 )

S c!fh,p,ﬂ,,@,T

oa o0 . f - 12y %

+ sup sup { f dY sup f IRz [ ] dte* f dne™" 84 f(z + 7Y /¢, 0, 3) }
0<t<T 0'<o-pt § JT(8,afe)  |Sa|<p—pt J~o0 Y/VEE —e0 ]

< elflipopr (A10)

In passing from the third to the fourth line, we used Jensen’s inequality to pass the square inside the integral in
¢ and 5. Then we used the fact that the integral in ¢ from Y/v/4 V4t to infinity is an exponential decaying function
of Y to perform the integration in Y. Finally we estimated the value of 8% f at the boundary with the L? (in Y)
estimate of 8. f and Oy 8t f.

Proof of Proposition 7.2 The proof of Proposition 7.2 uses the same calculations as in the previous proof,
except that in Proposition 7.2 the boundary terms with Y = 0 are all zero. With these terms absent, the result
(7.8) follows from the estimates (A.8)-(A.10).
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