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SUMMARY.

A method for the numerical simulation of diffusive transpdrt with moving bound-
aries is developed and tested. The variable domain is mapped onto a fixed region, which
introduces a term of convective form to the transformed governing equation. The result-
ing convection/diffusion equation is solved by a finite-difference method. An “immersed
interface” method (IIM) is introduced in order to retain second-order accuracy near
discontinuities in material properties, where the solution is not smooth. The method
performs well in benchmark calculations against an analyﬁicai solution. The IIM scheme
is capable of treating a strong discontinuity in the gradient, and it is readily extended
to two or three dimensions. The methods are illustrated through a calculation for the
temperature profile in a growing continental ice sheet, in which the thermal properties

are discontinuous at the rock/ice interface,
INTRODUCTION

Problems that involve diffusive transport of a conserved quantity in a domain with
one or more moving boundaries arise frequently in the Earth and environmental sciences.
Examples include: the expulsion of water from a growing column of sediment undergoing
consolidation {e.g., Gibson'}; chemical transport iﬁ oceanic sediments undergoing accu-
mulation or erosion at the sea floor (e.g., Lerman and Lietzke?); solidification of magma
in an intrusive body (e.g., Delaney and Pollard®); and heat conduction in a. growing ice
sheet (e.g., Heine and McTigue*). The last of these examples motivated us to consider the
moving-boundary problem in some detail, and provides a context for the dévelopmenté
pfeséntéd here. |

A challenge for numerical analysis .of such problems is that the boundaries of the
computational domain are not fixed in space. In some cases, the location of at least
one interface is itself part, of the solution. One of a number of artifices must be intro-
duced in order to handle the evolution of the domain. For example, one may choose to
remesh at each time step in order to retain the same treatment of interfacial conditions
throughout a calculation. This approach, of course, introduces considerable complekity,

and is computationally intensive. A second numerical challenge arises because material
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properties are often discontinuous at an interface, so that the solution sought is not
smooth. Conventional difference methods introduce error by smoothing out the profile
in the neighborhood of an interface. '

In this paper, we discuss methods that address each of these difficulties. The moving
boundary is handled, in the one-dimensional problems considered, by a “front-fixing”
scheme, in which a change of coordinates fixes the spatial domain, but changes the
character of the governing equation. For either this approach or for “front-tracking”
schemes (e.g., Li®) that are more easily generalized to two—‘or three-dimensional domains,
error due to the discontinuous gradient at the interface is reduced through an immersed .
interface method (IIM).>® 7 Benchmark calculations that illustrate the effectiveness of
the IIM are presented. F inally, an application is discussed in which the transient, thermal

profile in a growing, continental ice sheet is simulated.
DIFFUSIVE TRANSPORT

For present purposes, we consider one-dimensional, diffusive transport of a conserved
quantity, although the methods discussed can be applied to a much broader class of
problems. Heat conduction provides a generic context for the discussion. It is convenient

for the development to state separately the conservation equation:

ar 1 0q
8t pedz (1)

and the constitutive model (Fourier’s Law) for the heat flux, ¢:

aT , '

where T is the temperature. The heat capacity, pe, and thermal conductivity, k, may, in
general, vary spa,tiaHy due to material heterogeneity or due to temperature dependence,

The usual types of boundary conditions, such as specified temperatures ahd Jor fluxes,
are stipulated on the: ends of the domain. In general, the end boundaries may be mov-
ing. In addition, there may be internal, material interfaces at which the properties are
discontinuous and jump conditions on the teniperature and flux are specified. Such an

interface may also move. We consider here, for the sake of illustration, a single moving
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boundary located at z = «(t), a point that can be on one end of the domain or on an

internal interface.
FRONT FIXING

The front-fixing scheme employs a coordinate transformation to map the evolving
domain onto a fixed region. Conventional, fixed-grid methods are then directly applica-
ble. Front fixing is a well-established method; a more detailed discussion and historical
perspective are provided by Crank.® |

Consider a domain with a stationary boundary at z = 0 and a moving boundary at
z = a(t). Define a new coordinate

such that the domain in ¢ remains fixed betwgen ¢ =0 and ¢ = 1. Equations (1) and

(2), written in terms of ¢ rather than z, become:

T (dadT 1 1aq'

B ad A peadl (4)
kOT
=05 (5)

One consequence of the transformation is the appearance of a term in the conservation
equation (4) of convective form, with “effective” velocity proportional to —da/dt, and
varying linearly across the domain. In addition, the heat capacity and conductivity are
rescaled by the time-dependent length, . Thus, the thermal diffusivity, & = k/pc in the
untransformed problem, is replaced by an “effective” diffusivity, proportional to & /a? in
the transformed domain. For a growing region (da/dt > 0), then, the effective diffusivity
decreases with time, and the characteristic time scale for the transport correspondingly

increases.
NUMERICAL TREATMENT NEAR THE INTERFACE

When we use a difference scheme to discretize equations (1)-(2) or {4)-(5), we lose

accuracy near an interface between contrasting materials. This is because the physical



properties (here the thermal conductivity and heat capacity) are, in general, discontinu-

ous. We require that the temperature be continuous, i.e.,
[T)=T(= )~ T{(z",1) =0 . (6)

We discuss the treatment of the interface in terms of a generic coordinate z in order to
emphasize that the method can be applied either to the original problem posed (egs. 1-2)
or to the transformed problem {egs. 4-5). In the former case, we can make the ident'ity
T = z; in the latter, z = (. If we choose -the formulation in the original frame, we also
need to implement a numerical scheme to track the motion of the interface through a
fixed grid (e.g., Li®) or to remesh at each time step. In the examples presented here, we
choose the front-fixing scheme.

Assuming there is no heat source on the interface, we also have a natural jump

condition on the flux: -

8T 8Tt . _ar-
lg) = (ko] = -k 5. Th g =0 (7)

across the interface, where + and — stand for the limiting value from the right hand
side and the left hand side of the interface z = o(t), respectively. It is evident that, if
kt # k=, then Tf # T, at the interface, i.e., the temperature profile is not smooth.
Direct difference discretization will produce large error near the interface when [k] is large
or when the net flux [g] is not zero.

A new approach, the immersed interface method (IIM),® 7 has been developed to solve
general PDEs with discontinuous coefficients and/or singular sources with second—brder
accuracy at all grid points, including those which are close to or on the interface. The
main idea is to iﬁcorpora,te the-kpowrll jumps in the solutibn or its derivati;fes into the
finite difference scheme, obtaining a modified scheme whose solution is second-order accu-
rate throughout the domain, even for quite arbitrary interface conditions. This approach
has also been applied to three-dimensional elliptic equations,® parabolic equations, 10
hyperbolic wave equations with discontinuous coefficients, ! 2 and incompressible Stokes
flow problems with moving interfaces.'® 14 Below we briefly explain this method for our
model problem. Readers are referred to Li® 7 for a more general treatment of moving-

interface problems.



For simplicity in the present developrﬁent, we assume that the interface is fixed at
Z = o, an interior point in the solution domain, and that the governing equation is linear.
Under these conditions, equations (1)-(2) or (3)-(4) can be written
or ., 8T . T
a7 = Sl + 12(75)%‘5 : (8)
Equation (8) is only valid in the interior of the solution domain, Across the interfa,cé,r

there are jump conditions, which typically take two different forms:

1. The jump condition is known:
T]=0 , (9)

d = [k 2] = S(1) (10)

where S(t) is the strength of the interfacial source, due, for example, to latent-heat

release. .
2. The temperature is known on the interface:
(rl=0 , (11)
T{a,t) = Tolt) (12)
where Tp(t) is a gi'ven function of time,

In our example problem for a growing ice sheet, we have the first kind of relation at the
rock/ice interface (with S(t) = 0), and the second kind on the surface of the ice sheet,
where, in general; the mean atmospheric temperature decreases as the surface elevation
“increases. We cast our discussion of the IIM in terms of the first type of interface relation.*

. Assume we use a uniform grid with the spatial step size A, such that T =9 +1ih,
¢t =0,1,---, and the interface is between z; and z;4q, T; < @ < 2j41. At a regular grid

point z;, ¢ # j,j + 1, the explicit difference scheme can be written as

. ﬂn.«}.l T’ﬂ. n ; 1":‘1_ n :I';ﬂ _21":’1 +1‘:11
= f(t)““T‘l-"Ffz(f) = 7 : (13)

where At is the time step size. At the irregular grid point z;, the difference scheme can
be written as
+1
T - Ty

At = ’Yngﬂ 1+ ’YJzT" + 7;3T311 + Cn . (14)



" We need to determine the coefficients Yi1s Yiz+ - Yia» and the correction term C? so that

’Y;IIT(‘EJ'—I’ tn) + 7;2T($J'1 tn:) + 7?3T($j+11 tn) + C_;L
(15)

The idea is simple; we expand T(z;_y,t") and T'(z;,t") in Taylor series about o from

the left, and T(z;41,1") from the right of a. Then the left hand side of (15) becomes

. — 2 ;T 2
o (17 2 eim = TR g (1 (- )

. - 2
+ 7% (T+ + TH(zjp1 — @) +T;£ﬂii§—-‘f‘l~) +CP 4

(16)
where all quantities are calculated at (o,t"). From the interface relations (9) and (10),
we have
TH=T", o an
kT -8
L (18)

Also.from the differential equation (8), we have

T RTL=RT; + 5T (19)
Here we have used the assumption that T'(z,t) is continuous and the interface « is fixed.
From (17)~(19) we obtain

+_ froe f1 - f S—k~T;
o= Tt et i —

Substituting (17), (18), and (20) into (16) and arranging terms we have

(20)

k
(7?1 7t 7?3) T~ + {7}'1(%—1 —a)+ (2 —a) + 9% (7;;(’*"”1 — a)+

- - o 1 —a)? g
(fi_k S ) ($J+12 )2)}Tz—+ (711(33: - a) +7?2( 3 20)2+.

&kt
J7 (@i — ) = ’(f‘j+1-0) I (2541 — a)? n
+‘f;3f2 5 e N I o +O7+ -

(21)



Comf)aring (21) with the right-hand side of (15), we obtain three equations for 47, Vs
and 77, as follows:

T+ +va=0 , : (22)

(e — e} + 5z - o)
' (23)
. JE T kY (i — a@)? n
+ Ya {“]“c“;(mjﬂ —a)+ (E T 5 = fH{t")
w (@1 —a)? o (z;—a)? 7 (zje1 — @)? n
.,jl(__gugg__)_Jr,,ﬂ(_;,_ém_)_ 7;3}:?(_:-*1_2__2,, = K (24)

and the correction term is determined as

n__.n (‘TJ‘ 1 0!) f+ (m.‘f'l'l - 0:)2
C; _71'33( +k+ - }:T 5 ) , (25)

which is known after 4% is obtained from (22)-(24). If S(t) = 0, as in our model
problem, then C} = 0. Similarly, we can derive the modified difference scheme at the

regular grid point z;4,.
IMPLEMENTATION: METHOD OF LINES

The development of the IIM was outlined in the previous section in the context
of the linear PDE given by (8), and in difference form by (13) and (14). In a more

general treatment allowing for continuously varying, temperature-dependent properties,

we discretize (4) and (5) at regular grid points in the form:

I -7 _GdaTh,-To, 1 1% =4y 26)
At T wdt 20 (pchia h | |

where a and da/dt are evaluated at t*, and the fluxes are evaluated at midpoint nodes
corresponding to & £ Zh: ‘.

o h .Y lea--_ o h ?

iyl = (27)

with all quantities in (27) evaluated at time n. For irregular grid points, adjacent to
interfaces across which the gradient is discontinuous, we implement the IIM, modified to

account for the nonlinearity in the two contrasting materials.



The temperatures are computed for grid points, while, from (27), we must com-

pute the temperature-dependent conductivity at the midpoints. We invoke the following

approximation:!®

_ 2k;‘ki+1 k | = Qk;_lk,-

= 1 ) ) £ o H )
Ki + Ki41 ‘ Ki-1 + Ky

ki-i- s (.28)

B

where, for example, the conductivity k; is computed from the temperature I, The
weightings given in (28) are constructed by matching the heat fluxes at the midpoints,
which are ;a,pproximated by backward and forward differences over the adjacent half-
intervals. In the special case of piecewise-constant properties, equations (26)—(28) reduce
to the form of (13). |

We call the SLATEC backward-difference solver DEBDF!¢ to perform the time in-
tegration. This is a variable-order, variable-step routine that utilizes a Newton-type
algorithm to solve the system of coupled, nonlinear, algebraic equations for the nodal
temperatures given by (26)-(28). This general scheme is a particular form of the method

of lines (see, e.g., Schiesser'”).
BENCHMARK PROBLEM

In order to verify that we have implemented the solution scheme correctly, to test its
performance, and to demonstrate its merits, we construct a relatively difficult numerical
problem having an analytical solution. We consider two materials, separated by a moving
interface. The material properties are assumed to be piecewise constant, so that equations
(1) and (2) are linear. However, we consider an arbitrary contrast in the conductivity,
k, across the material interface. This implies. that, while the temperature and heat flux
are continuous at the interface, the temperature gradient may be strongly discontinuous
(differing by the ratio of the conductivities, ¢f. (7)), providing a rigorous test for the
numerical method.

We consider a finite domain, 0 < z < L, in the interior of which is a moving interface
located at z = oft). Denote the domain 0 < z < « the “minus” (—) region, and
a<z<L the “plus” (+) region, with material properties for each region correspondingly

designated, e.g., k= and k*. The interface is assumed to be located at

z="a=2VK-t . _ (29)



A solution satisfying (1) and (2), as well as satisfying continuous temperature and heat

flux at the interface z = q, is:

erf(n)
, [ 1_erf(l)’ 0szsa
T = ko) - (30)
erf( Ry
1 C[I—M], a<z<L ,
" where n = z/2vk—t,
7 erf(R)

C = BRexp(R? ~ 1) , (31)

_ erf(1)
B = (pc)~/(pe)t, and R* = x~/x*. This solution satisfies the Dirichlet conditions at
z=0and z =L:

ST,y =1 , - | 7(%)
T(L,t)=C 1-%32 . (33)

In this example, we solve the problem with the fr'ont—ﬁxing scheme. With reference
to equation (8), E ¢, i =((/a)da/dt, and f; = &/a®, the rescaled thermal diffusivity,
is plecewise constant at any particular time.

We compare our method with a conventional approach iln discretizing the diffusion
term £1},, the smoothing method. Here, we solve the untransformed problem, so that
in equation (8), z = z, f; = 0, and f, = &, where, again, the diffusivity is piecewise

constant. The smoothing method is defined as follows (Figure 1):

k- fz<a—c

. - Lkt Rt ke - :

k= k ;k +k 2k sin (z 2:)’” if.[zHQz]Se | (34)
kt ' fz>a+e

The smoothing method is only first-order accurate and is difficult to extend to two
dimensions, an exception being the level-set formulation (e.g. Sussman, et all”). If we

let € a,pproa,éh zero, then we have

k- fz<a

. -1kt A

k= k -; ifz=a . (35)
kt fz>a .
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This approach is crude, but simple and widely used. One advantage of this scheme is that
it can be used in two dimensional problems. It usually gives less accurate results than
the smoothing method. A more subtle discretization is obtained by harmonic averaging;

see Li7 for a detailed discussion.

Table 1: Comparison of the IIM with the smoothing method. N is the number of grid

points. -
N ||| Enllo, IIM || En|,, Smoothing
80 5.10'x 10~° 7.32 x 1073
160 2.00 x 10-° 9.18 x 10‘"4
320 | 2.98 x 10-¢ 6.77 x 104

Table 1 shows a comparison of the error in the computed solution in the infinity norm
defined as
| En i = max | T2, tout) = Tin‘ B (36)

where n* is the final time step corresponding to the time ¢,,;. The parameters are
to =05, tm=06, =1 R?=0.05

where the initial condition, at ¢ = #, is computed from the exact solution. We take
(pe)™ = (pc)t = 1, and k™ = 1, k* = 20 in order to consider the twenty-fold contrast
-in the diffusivity indicated at the interface (R? = 0.05). We see that our method, the
immersed interface method (IIM), gives a much better result. Figure 2(a) shows the
- solution near the interface for a calculation with 160 grid points, while Figure 2(b) shows |

the error for the IIM and the smoothing method for N = 320.

EXAMPLE: THERMAL EVOLUTION IN A GROWING ICE SHEET

We use the model described to simulate the temperature profile at the center of an
ice sheet throughout the course of a glaciation. The base of an ice sheet is either frozen

to its bed (“cold-based”), or at the pressure melting point (“warm-based”). According
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to theory, an ice sheet becomes warm-based when the geothermal heat flux and internal
heating by viscous dissipation provide enough heat to melt the base of the ice sheet,
while the overlying ice mass insulates the base against the very cold air at the surface
(Paterson'®). Determination of the basal éonditions of ice sheets is of paramount impor-
tance for the reconstruction of their topography and flow characteristics. Slip at the bed
of a warm-based ice sheet results in far greater erosion than that produced by ice frozen
to the substrate. We consider the center of the ice sheet, where horizontal flow vanishes
and the heat transfer may be approximated by a one-dimensional model.

The model accounts for conduction in both the ice and the underlying rock. In
previous calculations,’ we have considered temperature-dependent thermal conductivity
and heat capacity for the ice. However, this introduces only a weak nonlinearity that
has minimal inﬂuen(:e on the final results. Here, we restrict our sample calculation to
the linear problem for piecewise constant properties. For the bedrock, we take £~ = 2.5
W/m/K and (pc)~ = 2.3 x 10° J/m®/K; for the ice we take k* = 2.3 W/m/K and
(pc)* = 1.8 x 10° J/m®/K. At the start of a model run, subsurface temperatures are in
equilibrium with the geothermal heat flux and a given ground surface temperature. The
geothermal heat flux is applied at a depth of 4000 m, which was found, in the present
context, to be effectively an infinite boundary. Ice is deposited on the surface at the
surface temperature. Ice sheet growth is exponential, a/a, = 1 — exp(—t/t,), allowing
for fast growth at its inception, decreasing with time. The characteristic rise time, f,, is
6000 years (i.e., at this time 63% of the final thickness has been reached), and the final
ice sheet thickneés, Qoo, 18 3000 m. The surface temperature is held constant at —20 °C.
The geothermal heat flux warms the bedrock and ice, until basal melting occurs at about
—2 °C, the melting point at a pressure corresponding to 3000 m of ice. |

Figure 3 displays the temperature profile within the ice/rock body at various times.
Note that at 0 years, no ice sheet exists, while the rock domain displays a linear, geother-
mal profile. After 6,592 ‘years, the ice sheet has reached 2000 m thickness and is still
growing. The basal melting point is reached after 64,000 years (Figure 4). For a more de-
tailed description of the ice sheet model, including the effects of temperature-dependent

thermal properties, vertical advection due to accumulation and divergent, horizontal

12



flow, and adiabatic cooling of the surface, see Heine and McTigue.* Although this sim-
ple model neglects several processes that affect the thermal regime in an ice sheet, the
qualitative result is significant. Because the thermal diffusion time, o2 /k, and the time
scale for a typical glacial cycle are both of thé order of 10° years, the transient evolution
of the temperature profile must Be considered. In the past, some models have assumed a
steady-state thermal balance, For reasonable surface temperature and sufficiently thick
ice, this inevitably leads to the conclusion that the ice sheet is ‘warm-based,” i.e., it
reaches the melting point at the rock-ice interface. However, the transient model dis-
cussed here suggests that the time required for the base of the ice sheet to approach its
steady-state temperature is so long that the center of the ice sheet remains “éold-based,”
at least through a large portion of a glacial cycle. This conclusion is consistent with
some geomorphological evidence that indicates relatively little glacial erosion under past
continental ice sheets. .
In the context of this particular application of the numerical methods discussed. here,
the handling of the moving boundary is particularly important, The time scale f;)r the
growth of the ice sheet, of order 10 years, approaches that for thermal diffusion across
the layer. Therefore, the thermal profile is evolving at the same time that the domain
is changiﬁg its scale, and an accurate method that accounts for the moving boundary is
essential. The IIM, a technique tlha,t maintaing accﬁra,cy even in the case of a strongly
discontinuous gradient at an interface-, is not as critical to the problem considered here,
in that the conductivity contrast at the rock /ice interface is small: ¥~ /k* = 1.09. Thus,
conventional methods that result in some smoothing of the temperature profile near the
interface ma;y be satisfactory in this context. However, the IIM is of increasing utility as .
the contrast in material properties increases, as demonstrated in fhe benchmark problem

treated in the preceding section.
CONCLUSION

A front-fixing scheme and an immersed interface method (IIM) have allowed us to
solve a class of problems involving moving boundaries and discontinuous material prop-

erties with second-order accuracy throughout the domain. The front-fixing approach is
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quite siraightforward in one dimension, but is considerably more difficult to implement
for multidimensional domains. In contrast, the IIM can be embedded in any number
éf schemés for treating the moving interface, and therefore is readily adapted to two-
or three-dimensional calculations, We also note that the IIM has been applied success-
fully not only to parabolic equations, as in the present case, but also to elliptic® and

1112 equations. The accuracy maintained by the IIM in the neighborhood of

hyperbolic
a strong discontinuity in conductivity (or, equivalently, in the temperature gradient) is
demonstrated in a benchmark comparison to an analytical solution. Finally, the methods
prove to be quite successful in simulating the evolution of the thermal profile through an
accumulating continental ice sheet. In this application, the temperature history at the

material discontinuity is the central issue, and accuracy near the interface is of particu-

larly importance.
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FIGURE CAPTIONS

Figure 1. Coefficient smoothed over a finite thickness 2e,

Figure 2(a). Local solution plot. The result obtained with the IIM is so close to the
exact solution that they appear identical on this plot. N = 160,

Figure 2(b). Error plot for the IIM and the stnoothing method. N = 320,

Figure 3. Temperature proﬁlés through the ice sheet at times corresponding to 1000 m
increments of growth. Final profile is for 64,000 years, when the interface reaches the
melting point (—2 °C). The thermal properties are discontinuous at the rock/ice inter-

face, at elevation = 0.

Figure 4. Temperature rise at the rock/ice interface. The melting point, —2 °C for an

overburden of 3000 m of ice, is reached after 64,000 years.
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