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Abstract

This paper provides a users’ guide to a new, general finite difference
method for the numerical solution of systems of convection domi-
nated conservation laws, We include both extensive motivation for
the method design, as well as a detailed formulation suitable for direct
implementation.

Essentially Non-Oscillatory (ENO) methods are a class of high ac-
curacy, shock eapturing numerical methods for hyperbolic systems of
conservation laws, based on upwind biased differencing in local char-
acteristic fields. The earliest ENO methods used control volume dis-
cretizations, but subsequent work [12] has produced a simpler finite
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difference form of the ENO method. While this method has achieved
excellent results in a great variety of compressible flow problems, there
are still special situations where noticeable spurious oscillations de-
velop., Why this occurs is not always understood, and there has been
no elegant way io eliminate these problems.

Based on the extensive work of Donat and Marquina [1], it appears
that these difficulties arise from using a single transformation to local
characteristic variables at cell walls in the course of computing wall
fluxes. In concrete terms this is the practice of evaluating the flux Ja-
cobian matrix at cell walls using an average of adjacent cell states, such
as the Roe average or linear average. When the states differ greatly
across the cell wall, using such an intermediate state in the transforma-
tion adds subtle spurious features to the solution. As an alternative,
Donat and Marquina recommend obtaining the wall flux from a split-
ting procedure based on fluxes computed separately from the left and
right sides. This approach avoids introducing artifictal intermediate
states, and seems io improve the robustness of many characteristic
based methods.

Applying their splitting in the ENO framework, the left and right
sided fluxes are evaluated by the ENO interpolation technique, i.e. us-
ing the smoothest high order interpolations from each side. In the
resulting method, the spurious oscillations are eliminated without sac-
rificing high resolution. Thus this seems to be an ideal scheme for
general hyperbolic systems: it provides high accuracy and shock cap-
turing without numerical artifacts, problem dependent “fixes”, or free
parameters that must be “tuned”. (Of course, for scalar equations thig
“fix" is unnecessary and nonexistent.)

This paper is intended as a self-contained guide to this new ap-
proach, in the context of solving general systems of convection-diffusion-
reaction conservation laws. We provide all the conceptunal background
needed to understand the design of numerical methods for systems of
hyperbolic conservation laws in general, and the finite difference ENO
method and Marquina’s flux splitting procedure in particular. We then
give a detailed presentation of the preferred form of ENO with Mar-
quina’s splitting. We conclude with one example where this eliminates
a severe, non-physical oscillation in a complicated ENO basged calcula-
tion.



1 Introduction

Essentially Non-Oscillatory (ENO) methods were developed to address the
special difficulties that arise in the numerical solution of systems of nonlinear
conservation laws, such as those arising in high speed gas dynamics and other
convective transport problems. Numerical methods for these problems must
be able to handle steep gradients—shocks and contact discontinuities—that
may develop spontaneously and then persist in these flows. Classical numeri-
cal schemes had a tendency to either produce large spurious oscillations near
steep gradients, or to greatly smear out both these gradients and the fine
details of the flow. An excellent introductory discussion of these difficulties
and the methods developed to deal with them can be found in Leveque’s
book [8l.

The primary goal of the ENO effort has been to develop a general purpose
numerical method for systems of conservation laws that has high accuracy (at
least third order) in smooth regions and captures the motion of unresolved
steep gradients in the flow, without creating spurious oscillations and without
the use of problem dependent fixes or tunable parameters. An additional
priority has been to formulate the methods within a systematic mathematical
framework.

The philosophy underlying the ENO methods is simple: when recon-
gtructing a profile for use in a convective flux term, one should not use high
order polynomial interpolation across a steep gradient in the data. Such
an interpolant would be highly oscillatory and ultimately corrupt the com-
puted solution. ENO methods use an adaptive polynomial interpolation con-
structed to avoid steep gradients in the data. The polynomial is also biased
to extrapolate from data from the direction of information propagation—
“upwind”— for physical consistency and stability. In the case of a system,
this interpolation must be done in the local characteristic fields, since it is
these quantities—not the primitive conserved variables such as mass, mo-
mentum and energy—that are properly thought of as propagating in various
directions. The ENO approach is completed by combining this interpolation
method with a discrete conservation form for the equations. This form in-
sures that shocks and other steep gradients in the flow are “captured”, i.e.
move at the right speed even if they are not fully resolved.

The original ENO schemes were based on the conservative control volume



discretization of the equations, which yields discrete evolution equations for
grid cell averages of the conserved quantities, e.g. mass, momentum and en-
ergy. This formulation has the disadvantage of requiring complicated trans-
fers between cell averages and cell center nodal values in the algorithm. In
particular, the transfer process becomes progressively more complicated in
one, two and three spatial dimensions. The formulation also results in space
and time discretizations that are coupled in a way that becomes complicated
for higher order accurate versions.

To eliminate these complications, Shu and Osher [12] developed a con-
servative finite difference form of the ENO method, which uses only nodal
values of the conserved variables. Their method is faster and easier fo im-
plement than the cell averaged formulation. In addition, the finite difference
ENO method extends to higher dimensions in a “dimension by dimension”
fashion, so that the 1D method applies unchanged to higher dimensional
problems. They also use the method of lines for time integration, which de-
couples the time and space discretizations. To complete the scheme, Shu and
Osher developed a special family of Runge-Kutta time integration schemes
that are easy to implement, have good stability properties, and also have a
“Total Variation Diminishing” (TVD) property. The TVD property prevents
the time stepping scheme from introducing spurious spatial oscillations into
upwind-biased spatial discretizations. We emphasize that this is not dimen-
sional splitting in time, which has accuracy Hmitations unlike the “dimension
by dimension” approach.

While both the cell averaged and finite difference formulations of ENO
perform well on a great variety of compressible flow calculations, there are
still special circumstances under which they produce spurious oscillatory
results. Some of these situations are well known, such as the case of a slow
moving shock. In this case, the cause of the oscillations is largely understood,
but this has not resulted in a general, elegant way to eliminate the problem.
In other cases, such as the examples provided in section 8, the cause of the
oscillations is not understood due to the complexity of the physical problem.

1t is apparent now—based mainly on the work of Donat and Marquina
(1], as well as a model problem described in [2]—that the manner in which
the transformation to local characteristic variables is evaluated within the
cell wall flux calculation is responsible for these occasional spurious oscilla- -
tions. In particular, the problem is due to evaluating the transformation—or,
equivalently, the flux Jacobian matrix—at a cell wall that separates two very
different states. The common approach in all characteristic-based methods
is to evaluate this transformation at some reasonable average of the adja-



cent states. However, there is clearly a great deal of ambiguity in choosing
this average, and any particular choice seems to introduce subtle spurious
features into the solution. To avoid this ambiguity, Marquina introduced a
flux splitting technique based on the unambiguous data on the left and right
sides of the cell wall, There, the transformations to characteristic variables
and subsequent flux calculations are well defined, Marquina combines. the
results in an upwind fashion to determine the cell wall flux. The details of
these old and new approaches are described in section 2.7.

When the Marguina’s splitting technique is applied to the standard ENO
flux calculation, it fixes all known problematic cases. Thus the resulting
finite difference ENO method with Marquina’s splitting seems to meet the
original goal of an elegant, general, accurate, robust, parameter-free method
for hyperbolic systems of conservation laws. If this turns out to be the case,
it may be the ultimate conservative difference scheme (3, 4, 5, 6, 7]. Since
only further experience can determine its Hmitations, for now we propose it
as the penultimate method. In any case, it is an important enhancement of
the original ENO method, and should replace it for future applications.

Our primary goal here is to present—in a self-contained, accessible form—
this new hybrid method consisting of Shu-Osher finite difference ENO with
Marquina’s flux splitting technique. We hope this will encourage widespread
application of this technique.

This paper divides naturally into two parts. The first part is a tutorial on
scheme design for hyperbolic systems of conservation laws, and is directed
mainly at those not familiar with this field. The goal is to motivate the
many details that go into the final scheme design described in the second
part. The second part of the paper is a users’ guide for the preferred form
of the new method.

The first part provides the conceptual background needed to appreciate
characteristic based methods for systems of convective conservation laws.
This includes both the basic ingredients that go into the numerical method
design, such as CFL restriction and shock capturing, as well as the advanced
igssue of conservative finite difference discretization, the upwind biased ENO
interpolation technique, and the Jacobian evaluation problem that motivates
Marquina’s splitting and distingnishes it from previous practice.

In the second part, we start by showing how this method fits in as part of
a comprehensive space and time discretization that can handle general sys-
tems of conservation laws that arise in physical problems. Next, we present
the preferred form of the new method in a concise, detailed fashion suitable
for direct application in numerical calculations. We finish with a few new




examples illustrating the effectiveness of this approach.



2 Background and Motivation

In order to make this presentation self-contained, we provide some concep-
tual motivation and background for the various ingredients used in the new
scheme. We will motivate the use of characteristic based schemes, discuss
the form of the fintte difference discretization used in the ENO methods, and
discuss ENO interpolation. We then contrast Marquina’s splitting with the
traditional approach used in characteristic based schemes.

A general introduction to the properties of systems of conservation laws
and their associated numerical methods can be found in LeVeque’s book [8].
Comments on the original motivation and development of finite difference
ENO can be found in the first paper of Shu and Osher, [11]. Marquina’s
splitting is ‘motivated and introduced in the papers of Donat and Marquina,
[1, 9].

Our goal here is to introduce convective—or hyperbolic—systems of con-
servation laws, and understand how their fundamental features impact the
design of appropriate numerical methods.

2.1 General Conservation Laws

A continmum physical system is described by the laws of conservation of
mass, momentun, and energy. That is, for each conserved quantity, the rate
of change of the total amount in some region is given by its flux (convective
or diffusive) through the region boundary, plus whatever internal sources
exist. The integral form of this conservation law is

%LUdv+LRﬁ(U)-dA=AS(U)dV (1)

where U is the density of the conserved quantity, F(U) is the flux, and
S(U) is the source rate, and the volume and surface integrals indicated are
over the region R and its boundary 0R. By taking R to be an infinitesimal
volume and applying the divergence theorem, we get the differential form of
the conservastion law,

%—f +V - FU)=5(U) (2)




which is the basis for the numerical modeling of all continuum systems. Any
physical system will be described by a system of such equations, i.e. a system
of conservation laws. These also form the basis for their numerical modeling,
We will write most equations in one dimension, in which case our notation
for the differential conservation equation 2 takes the more compact form:

Uy + F(U), = S(U) (3)

2.2 Convective (Hyperbolic) Conservation Laws

A conserved quantity, such as mass, can be transported by convective or dif-
fusive fluxes. The distinction is that diffusive fluxes are driven by gradients in
density, while convective fluxes persigt even in the absence of gradients. Here
we will concentrate on the convective transport, ignoring diffusion (mass dif-
fusion, viscosity and thermal conductivity) and also the source terms {(such
as chemical reactions, atomic excitations, and ionization processes). We
take this simplified approach because the convective transport requires spe-
clalized numerical treatment. H present, diffusive and reactive effects can be
treated by standard numerical methods that are independent of those for the
convective terms. Stiff reactions, however, do present numerical difficulties.

Conservation laws with only convective fluxes are known as “hyperbolic”
conservation laws (a more careful definition is given is section 2.5). A vast
array of physical phenomena are modeled by such systems. The physics
of explosives and high speed aircraft were two major driving forces in the
development of these models, They also provide the basis for modeling
astrophysical and fusion reactor plasma, mixed phase flow in fission reactor
cooling systems, and combustion in jet engines, to mention a few of the
important technological applications.

2.3 Convective Phenomena, Models and Numerical Implica-
tions

QOur goal here is to mention the most universal aspects of the physics of
hyperbolic systems, and relate it to the design of appropriate numerical
methods.

The important physical phenomena exhibited by convective conservation
laws are bulk convection, waves, contact discontinuities, shocks, and rarefac-
tions. We will briefly describe the physical features and mathematical model



equations for each effect, and most importantly, note the implications they
hawve for numerical method design.

Bulk Convection and Waves - Bulk convection is simply the bulk move-
ment of matter—carrying it from one spot to another, like water streaming
from a hogse. Waves are small amplitude smooth rippling disturbances that
transmit through the system without any bulk transport—Ilike ripples on a
water surface or sound waves through air. Whereas convective transport
occurs at the gross velocity of the mafterial, waves propagate at the “speed
of sound” in the system (relative to the bulk convective motion of the sys-
tem). Waves interact by superposition, so that they can either cancel out
{interfere) or enhance each other.

The simplest model equation that describes bulk convective transport is
the linear convection equation

P + Vo, = 0: (4)

where v is a constant, equal to the convection velocity. This has the equiv-
alent, but less often used, conservation form

pi + (vp)s =0, (5)

The solution to this is simply that p translates at the constant speed v. This
same equation can also be taken as a simple model of wave motion, if p is a
sine wave and v is interpreted as the sound speed.

The linear convection equation is also an important model for under-
standing smooth ransport in any conservation law: as long as U has no
jumps in it, and F' is smooth, the general law U, + F(U), = 0 can be ex-
panded to

U, + oU, = 0, (6)

where v = F'(I). Thus, locally in smooth parts of the flow, any conservation
law behaves like bulk convection with convective velocity F'(U). This is
called the characteristic velocity of the flow.

Bulk convection and waves are important because -they imply that sig-
nals propagate in definite directions at definite speeds. This in contrast to a
phenomena like diffusion which propagates signals in all directions at arbi-
trarily large speeds depending on the severity of the driving gradients. Thus




we anticipate suitable numerical methods for hyperbolic systems will also
have directional biases in space—which leads to the idea of upwind differ-
encing, see section 2.4—and a definite relation between the space and time
step (discrete propagation speed)-—which will roughly be that the discrete
propagation speed Axz/At must be the same as the physical propagation
. speeds (characteristic speeds) in the problem. The general form of this rela-
tion is called the Courant-Friedrichs-Lewy (CFL) restriction, and it says the
discrete speed must be at least as large as any characteristic speed in the
problem,

Also, note that wave motion and bulk convection don’t create any new
sharp features in the flow. The other remaining phenomena are all spe-
cial because they involve discontinuous jumps in the transported quantities.
Because smooth features can be accurately represented by a polynomial in-
terpolation, we expect to be able to develop extremely high accuracy nu-
merical methods for the wave and convective effects. Conversely, since jump
functions are poorly represented by polynomials, we expect little accuracy
and perhaps great difficulty in numerically approximating the discontintous
phenomena.

The Linear convection model also has an important implication for the
time integration numerical method, i.e. the numerical method used to dis-
cretize OU /. If we Fourier transform the linear advection equation we end
up with an ordinary differential equation needing only time integration:

ﬁt - 'bkvﬁ = O: (7)

where (k) is the Fourier transform of p(z). The important thing to note is
that this is an ODE of the form ¥, = Ay, where the growth rate A is purely
imaginary. Thus we must use an ODE integration method that is stable for
imaginary growth rates. This is true for standard third order and fourth
order Runge-Kutta methods, for example. But it is not true for common
first order (“explicit Euler”) or second order (“Heun’s method”) Runge-
Kutta schemes. Use of these common low order schemes is not compatible
with an accurate spatial discretization of convection. That is, using these
methods with standard hyperbolic spatial discretizations would lead to the
development of severe grid point to grid point oscillations, due solely to the
poor choice of time stepping procedure. For explicit time stepping stability,
a third or fourth order Runge-Kutta method should be used.

Contacts A contact discontinuity is a persistent, discontinuous jump in
mass density moving by bulk convection through the system. Since there is
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neghligible mags diffusion, such a jump persists. These jumps usually appear
at the point of contact of different materials, for example, a contact discon-
tinuity separates oil from water. Contacts move at the local bulk convection
speed, or more generally, the characteristic speed, and can be modeled by
using step-function initial data in the bulk convection equation 4. Since
contacts are simply a bulk convection effect, they retain any perturbations
they receive. Thus we expect contacts to be especially sensitive to numeri-
cal methods—any spurious alteration of the contact will tend to persist and
accummlate.

Shocks A shock ig a spatial jump in material properties—like pressure
and temperature—that develops spontaneously from smooth distributions
and then persists. That is, the shock jump is self-forming and also self-
maintaining. This is unlike a contact, which must be put in the system
initially, and will not re-sharpen itself if it is smeared out by some other
process. Shocks develop through a feedback mechanism in which strong
impulses move faster than weak ones, and thus tend to steepen themselves
up into a “step” profile as they travel through the system. Familiar examples
are the “sonic boom” of a jet aircraft, or the “bang” from a gun. These
sounds are our perceptions of a sudden jump in air pressure.

The simplest model equation that describes shock formation is Burgers’
equation

u+ () =0. (®)

Formally, this looks like the convection equation 4, with a non-constant
convective speed of v = u. Thus larger u values move faster, and they will
overtake smaller values, ultimately resulting in the development of a right-
going shock if the initial data for v is any positive, decreasing function, e.g.
1 — tanh(z).

Shocks move at a speed that is not simply related to the bulk flow speed or
characteristic speed, and is not immediately evident from examining the flux,
in contrast to contacts. Shock speed is controlled simply by the difference
between influx and outflux of conserved quantity into the region. Specifically,
suppose a conserved quantity U with conservation law 3 has a step function
profile with one constant value extending to the left, U}, and a lower constant
value to the right, Ug, with a single shock jump transition between these two,
and this jump location is moving with speed s to the right. Then the integral
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form of the conservation law 1, applied to any interval containing the shock,
gives the relation

s(Up —Uy) = Fp — Fy, (9

which is, of course, just another statement that the rate at which U7 appears,
3(Up — Uy), in the interval of interest is given by the difference in fluxes
across the interval, However, it also determines the shock speed s in terms
of densities and fluxes well away from the shock itself.

Thus we see that the proper speed of the shock is directly determined
by—and only by—conservation of U via the flux F'. This has an important
implication for numerical method design: namely, a numerical method will
only “capture” the correct shock speeds if it has “conservation form”, i.e. if
the rate of change of [/ at some node is the difference of fluxes which are
accurate approximations of the real flux F'.

The self-sharpening feature of shocks has two impHcations for numeri-
cal methods. First, it means that even if the initial data is smooth, steep
gradients and jumps will form spontaneously; thus our numerical method
must be prepared to deal with shocks even if none are present in the ini-
tial data. Second, there is a beneficial effect from self-sharpening, because
modest numerical errors introduced near a shock (smearing or small oscil-
lationg) will tend to be eliminated, and will not accumulate. The shock is
naturally driven towards its proper shape. Because of this, computing strong
shocks is mostly a matter of having a conservative scheme in order to get
their speed correct—the basic jump itself will be preserved by the physical
self-sharpening.

Rarefactions A rarefaction is a discontinuous jump or steep gradient in
properties that dissipates as a smooth expansion. A common example is
the jump in air pressure from outgide to inside a balloon, which dissipates
as soon as the balloon is burst and the high pressure gas inside is allowed
to expand. Such an expansion also occurs when the piston in an engine
is rapidly pulled outward from the cylinder. The expansion (density drop)
associated with a rarefaction propagates outward at the sound speed of the -
system, relative to the underlying bulk convection speed.

A rarefaction can be modeled by Burgers’ equation 8, with initial data
that starts out as a steep increasing step, for example u(z) = tanh(2), where
¢ is a small (perhaps 0) width for the step. This step will broaden and smooth
out during the evolution.

12



A rarefaction tends to smooth out local features, which is somewhat good
for numerical modeling. It tends to diminish numerical errors over time and
make the solution easier to represent by polynomials, which form the basis
for our numerical representation. However, a rarefaction often connects to a
smooth (e.g. constant) solution region and this results in a “corner” which
is notoriously difficult to capture accurately.

The main numerical problem posed by rarefactions is that of initiating the
expansion. If the initial data is a perfect, symmetrical step, such as u{z) =
sign(z), it may be “stuck” in this form, since the steady state Burgers’
equation is satisfied identically (i.e. the flux —"; is constant everywhere,
and similarly in any numerical discretization). However, local analysis can
identify this stuck expansion, because the characteristic speed u on either side
points away from the jump, suggesting its potential to expand. In order to
get the initial data unstuck, some small amount of smoothing must be applied
to introduce some intermediate state values and thus have a non-constant
flux to drive expansion. In numerical methods, this smoothing applied at a
jump where the effective local velocity indicates expansion should occur is
called an “entropy fix”, since it allows the system to evolve from the artificial
low entropy (i.e. very symmetrical) initial state to the proper increased
entropy state of a free expansion.

Systems of Equations In general, a hyperbolic system will simultane-
ously contain all these processes: smooth processes of bulk convection and
wave motion, and discontinuous processes involving contacts, shocks and rar-
efactions. For example, if a gas in a tube is initially prepared with a jump
in the states (density, velocity and temperature} across some surface, as the
evolution proceeds in time these jumps will break up into a combination of
shocks, rarefactions and contacts, in addition to any bulk motion and sound
waves that may exist or develop.

Based on these considerations, in a general system we expect that the
density of mass, momentum and energy will be smooth in large regions, sep-
arated by these discontinuous jumps in properties. Further, these jumps are
moving through the system, interacting in complex ways. What we can gen-
erally hope for is numerical methods that are high accuracy in the smooth
regions, don’t distort the jumps too much (smear them or add oscillations),
and move the jumps at the correct speeds, which are usnally not known a pri-
ori, We want high accuracy methods to effectively model smooth convection
and wave motion. We expect contacts to be the most sensitive indicators
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of mumerical errors on discontinuities. We expect the shocks to be robust
features; and we expect rarefactions to not be a problem as long as their
initial expansion from a jump can be made to occur.

The simplest system of physically realistic model equations for convective
transport is the Euler equations for gas dynamics, which describe the con-
servative transport of mass, momentum and energy in a gas in one spatial
dimension (e.g. in a long tube):

pet+(pv)e = 0 (10)
(pv)i + (pv* +p). = O (11)
E,+((E+p), = 0 (12)

where p is the mass density, v is the flow velocity, p is the pressure and E is
~ the total energy (kinetic plus internal} density. To be completely specified,
these equations require an “equation of state” for the pressure, i.e. a relation
p == p(p, E). One of the simplest reasonable forms is the gamma law gas
relation, p = py(p/py)”, where v > 1 is a constant and py, py are the reference
pressure and density.

Desgpite their simple form—looking like linear convection and Burgers’
equations—the Euler equations support extremely complex dynamic behav-
ior which can be difficult to understand and predict, due to the nonlinear,
coupled form of the equations. However, it is true that any isolated jump
discontinuity in the state variables will, as time goes on, break up into some
“combination” of a gshock, & contact and a rarefaction. This justifies a simple
intuitive model for the structure of this system: a “toy” version of the Euler
equations consists of three independent scalar equations: one convection (for
representing the effects of bulk convection, waves and contacts), one Burgers’
equation (for shock formation) and another independent Burgers’ equation
(for independent rarefaction formation):

(ug)e +(ug)e = 0 (13)

(w)ﬁ(%%) =0 (14)

(ug)e + (%%) = 0 (15)

where the initial data are step functions with jurps at = 0 as follows: an
arbitrary jump in u; (a contact, moving right at speed 1), a decreasing jump
in u, (& shock, or shock precursor if smoothed out slightly), and an increasing
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jump in us (a ravefaction). Since these three equations are independent, the
-subsequent; evolution is obvious. However, let us form a new, equivalent
system by multiplying this system by a 3 x 3 invertible matrix R. If the
original system in vector form is written as

U, +[F(D). =0 (16)
then the new system can be written as
V. + GV, =0 (17)

where V = Rﬁ,@ = RF. When considered in terms of the “mixed” vari-
ables V = {v1,v2,v3), the behavior of this system is not at all obvious, and
the simple contact, shock and rarefaction present in the system will cause a
rather complicated evolution of V. The intuitive point to understand is that
the real Euler equations, as well as other hyperbolic systems we encounter
in physical problems, are written in what are effectively the mixed variables,
where the apparent behavior is quite complicated. It requires some trans-
formation to decouple them back into unmixed fields that exhibit the pure
contact, shock and rarefaction phenomena {as well as bulk convection and
waves). In this toy model here, there is a single linear transformation that
perfectly decouples the mixed equations, namely the inverse R™!. In a real
system, this perfect decoupling is not possible because the mixing is non-
linear, but it can be achieved approximately-—over a small space and time
region—and this provides the basis for the theoretical understanding of the
structure of general hyperbolic systems of conservation laws. This is called
a transformation to characteristic variables, and we will present it in detail
in section 2.5. As we shall see, this transformation also provides the basis
for designing appropriate numerical methods.

Summary of Numerical Implications As we have examined the proper-
tieg of hyperbolic systems, we have compiled a list of associated implications
for numerical method design. For clarity, we will summarize these here.

e CFL Condition to correctly model the propagation of information, - .

the space and time grids must satisfy Az/At > 8,,0,, Where §,,,, I8
the largest propagation speed {characteristic speed) in the problem.

e Upwind Biasing the directed propagation of signals implies there will
be directional biases in the choice of spatial nodes—in the “upwind
direction” —used to discretize the equations.
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e High Accuracy modeling of weak wave propagation and smooth con-
vection benefits greatly from numerical methods based on high order
accurate polynomial interpolation.

e Time Integration A third or fourth order accurate Runge-Kutta
method (or other method stable for imaginary growth rates) must be
used for the numerical time integration, to avoid instability.

o Entropy Fix proper numerical modeling of rarefactions require a small
amount of smoothing of a jump where the nearby characteristic speeds
indicates potential for expansion.

e Sharp Contacts the most sensitive indicator of how well a numerical
method handles jumps is the treatment of contacts discontinuities (in
a linear convection equation).

o Conservation Form in order to capture shock speeds, the numerical
method must have conservation form, i.e. be written in terms of a
discrete difference in fluxes.

o Characteristic Decomposition systems of conservation laws can be
best understood by transforming to local characteristic variables that
display largely decoupled scalar behavior.

By addressing all these points, we can design methods that accurately
and efficiently compute the behavior of hyperbolic systems of conservations
laws, or the hyperbolic parts of general systems of conservation laws.

2.4 TUpwind Biased ENO Inferpolation

Here we give a more detailed motivation for upwind biased discretization, and
the Essentially Non-Oscillatory (ENO) interpolation technique that forms
the basis for our numerical methods.

As noted in the summary of section 2.2, to assess the quality of our
numerical method we can focus on the treatment of contact discontinuities
in the linear convection equation 4. Since the time discretization can be
handled by a high accuracy Runge-Kutta method, we will focus on the spatial
discretization and assume the time evolution takes place exactly—i.e. at each
time step At, the spatial profile just translates rigidly by the amount vAt.

Spatially, the contact is initially represented by a discrete step function,
i.e. nodal values that are constant at one value p; on nodes z,,...,z,, and
then constant at a different value, pg, at all remaining nodes £ ;44,...,%x.
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To update in time the value p; at a given node z;, we first reconstruct
the graph of a function p(x) near z; by interpolating nearby nodal p values,
shift that p(z) graph spatially by vAt (the exact time evolution), and then
reevaluate it at the node z; to obtain the updated p;, We require our local
interpolant be smooth at the point x;, since in actual practice we are going
to use it to evaluate the derivative term (vp), there.

The simplest symmetrical approach to smooth interpolation near a node
x; 18 to run a parabola through the nodal data at z; ,,z;,z;;. This inter-
polation is an accurate reconstruction of p(z) in smooth regions, and this
approach will work well there. However, near the jump, at z; and ©;.4, the
parabola will greatly overshoot the nodal p data itself, by an amount com-
parable to the jump p; — pg, and this overshoot will show up in the nodal
values once the shift is performed. Successive time steps will further enhance
these spurious oscillations. In this way, repeated parabolic interpolation and
shifting infroduces severe oscillations that totally destroy the structure of the
contact. This approach corresponds to standard central differencing applied
to the convection equation 4.

To avoid the oscillations from parabolic interpolation, we could instead
try o use a smooth linear interpolation near z;. However, there are two to
choose from, namely the line through data at nodes #; and z;_,, or through
data at z; and z;.;. The direction of information propagation determines
which one will result in a non-oscillatory reconstruction. Assuming the con-
vection speed v 18 positive, the data is moving from the left to the right.
Thus, for a short time, the only p values that will arrive at node z; in the
exact solution are those over the interval (x,_,,z;). If we use a linear inter-
polation based on these two upwind nodes, when we shift it right by vAf
we will not introduce any new extrema in p at z;, since the result will lie
between p;_; and p; (as long as the shift vAt is less than the width of the
interval Ax = z; — z;_;, which is exactly the CFL restriction on the time
step). In contrast, if the linear interpolation were based on the “downwind”
nodes (z;,2;,,), a shift right would cause a part of this line not between p;
and p;4; appear as the new p value at x;, and this can and will introduce
new, spurious extreme values and oscillations into the nodal data. In this
way, we see clearly why it necessary to base the linear interpolant on the up-
wind point z; ;: interpolating from that direction represents the data that
is supposed to arrive at the point of interest, so that no spurious values are
introduced.

The main problem with the linear upwind biased interpolant is that it
has low accuracy. Each interpolate and shift step will smear out the contact
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jump over more nodes. If we naively go to higher accuracy by using a
higher order upwind biased interpolant, such as running a parabola through
T;, Ti1, Ti_g t0 advance p;, we will run into the spurious oscillation problem
again—at nodes z;,; and z;,, this upwind parabola will interpolate across
the jump and thus have large overshoots just as for the centrally interpolated
parabolas. By forcing the parabola to cross a jump, it no longer reflects the
data on the interval (z;, z,_;) that will be arriving at z; during the next time
step.

A solution to the problem of achieving more accuracy while avoiding spu-
rious overshoots in the interpolant is to use the upwind biased, Essentially
Non-Oscillatory (ENOQ) interpolation technique {11, 12}. The motivation for
this approach is that we must use a higher degree polynomial interpolant
to achieve more accuracy, and it must involve the immediate upwind node
to properly represent the propagation of data. But, as we saw, we must
also avoid polluting this upwind data with spurious oscillations that come
from interpolating across jumps in data. Thus the remaining interpolation
nodes are chosen based on smoothness considerations. Specifically, to up-
date p; using a degree k interpolant requires & + 1 interpolation nodes. We
will choose k+ 1 consecutive nodes that include the immediate upwind node
from x,, which is 2, ; if v > 0. Still, that leaves k different lists of nodes—
“stencils”—to choose from. Of these, we will use the one for which the
resulting interpolating polynomial is the smoothest, by some measure. (For
example, we can measure smoothness by the size of the k™ derivative, or the
total variation, or by any other convenient means. For more detailed consid-
erations see [10].) In particular, this approach will—if at all possible—not
run an interpolant across a jump in the data. Thus, it avoids introduc-
ing large, spurious overshoots. However very small interpolation overshoots
do occur near extrema in the nodal data, as they must, since any smooth
function will slightly overshoot its values as sampled at discrete points near
extrema. This is the sense in which the method is only Essentially Non-
Oscillatory (ENO)—it is not a failing; it simply reflects the real relation
between smooth functions and their discretely sampled values.

In practice, there are simple, efficient ways to generate the upwind biased
ENO interpolant of any desired order, baged on the divided difference table
of the nodal data.
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2.5 Characteristic Based Schemes for Hyperbolic Systems

In this section we describe the use of characteristic decomposition for de-
signing suttable upwind biased numerical schemes.

Consider a system of ¥V convective congervation laws in one spatial di-
mension,

U, + [F(O). =0 (18)

The basic idea of characteristic numerical schemes is to transform this
nonlinear system to a system of (nearly) independent scalar equations of the
form

1y + vty =0 (19)

discretize each scalar equation independently in an v-upwind biased fashion,
and then transform the discretized system back into the original variables.

In a smooth region of the flow, we can get a better understanding of the
structure of the system by expanding out the derivative as

where J = %g— is the Jacobian matrix of the convective flux function. Note
that if J were a diagonal matrix, with real diagonal elements, this system
would be decoupled into NV independent scalar equations as desired.

In general J is not of this form, but we can hope to transform this system
to that form by multiplying through by a matrix that diagonalizes J. If this
is possible, we call the system hyperbolic. The fortunate thing is that most
physical convective transport equations turn out to be “hyperbolic”. In this
case, the necessary matrices turn ous to be the matrices of left-multiplying
and right-multiplying eigenvectors of J. Specifically, for a hyperbolic system
we require following properties (which allow our strategy to work): first, we
require that J have N real eigenvalues A?,p = 1,..., N, and that there be
N eigenvectors for multiplying against J from the right. If we use these as
columns of a matrix R, this is expressed by the matrix equation

JR = RDiag(\") (21)

where Diag(A\?) denotes a diagonal matrix with the elements *,p=1,..., N
on the diagonal. Similarly, we also require that there be N eigenvectors for
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multiplying against J from the left; when these are used as the rows of a
matrix L, this is expressed by the matrix equation

LJ = Diag(A\*)L (22)
We finally require that these matrices I and R can be chosen to be inverses ..
LR=RL=1 (23)

These matrices transform to a system of coordinates in which J is diagonal-
ized as desired:

LJR = Diag(N) (24)

Suppose we want to discretize our equation at the node z,, where L and
R have values L, and Ry. To get a locally diagonalized form, we multiply
our system equation by the constant matrix Ly which nearly diagonalizes J
over the region near z, (we require a constant matrix so that we can move
it inside all derivatives):

[Loﬁ]t + Ly J R, [Lﬂﬁ]m =0 (25)

We have inserted I = RyL, to put the equation in a more recognizable
form. The spatially varying matrix LoJ R, is exactly diagonalized at the
point zg, with eigenvalues A}, and it is nearly diagonalized at nearby points.
Thus the equations are sufficiently decoupled for us to apply upwind biased
discretizations independently to each component, with A} determining the
upwind biased direction for the p-th component equation. Once this system
is fully discretized, we multiply the entire system by Ly = Ry to return to
the original variables.

In terms of our original equation 18, our procedure for discrefizing at
a point z, is simply to multiply the entire system by the left eigenvector
matrix Ly,

[LoT]e + (Lo F ()], = 0 (26)
and discretize the p = 1,..., N scalar components of this system
(LoD )p)e + (Lo F (U)),)e = 0 (27)

independently, nsing upwind biased differencing with the upwind direction
for the p-th equation determined by the sign of A\?. We then multiply the
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regulting spatially discretized system of equations by Ry to recover the spa-
tially discretized fluxes for the the original variables:

U, + RyA(LyF(0)) =0 (28)

-where A stands for the upwind biased discretization operator.

We call A\” the p-th characteristic velocity or speed, (I ﬁ)p = L2 T the
p-th characteristic state or field (here L? denotes the p-th row of L, i.e. the
p-th left eigenvector of J), and (Lo F (D)), = L& F(U) the p-th characteristic
flux. According to the local linearization, it is approximately true the p-th
characteristic field rigidly translates in space at the p-th characteristic veloc-
ity. Thus this decomposition corresponds to the local physical propagation
of independent “waves” or “signals”.

2.6 The Conservative Finite Difference Form

To ensure that shocks and other steep gradients are captured by the scheme—
i.e. they move at the right speed even if they are unresolved—we must write
the equation in a discrete congervation form. That is, a form in which the rate
of change of congerved quantities is equal to a difference of fluxes. This form
guarantees that we conserve the total amount of the states U (e.g. mass,
momentum and energy) present, in analogy with the integral form given
by equation 1. More importantly, this can be shown to imply that steep
gradients or jumps in the discrete profiles must propagate at the physically
correct speeds [8] as discussed in section 2.3.

Usually, congervation form is derived for control volume methods, that
is methods that evolve cell average values in time rather than nodal values.
In this approach, a grid node z; is assumed to be the center of a grid cell
(:U,,;,%_,:Cpr%), and we integrate the conservation law 3 across this control
volume to obtain (set the source to 0 for simplicity)

Oy + (F(Uy) = F(Uiy)) =0 (29)

where U7 is the integral of U over the cell, and Uiy are the (unknown)
values of U at the cell walls. This has the desired conservation form, in
that the rate of change of the cell average is a difference of fluxes. The
difficulty with this formulation is that it requires transforming between cell
averages of U (which are directly evolved in time by the scheme) and cell
wall values of U (which must be reconstructed) to evaluate the needed fluxes.
While this is manageable in 1-D, in higher dimensional problems the series of
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transformations necessary to converi the cell averages to cell wall quantities
becomes increasingly complicated. The distinction between cell average and
midpoint values is usually ignored for schemes whose accuracy is no higher
than second order (e.g. TVD schemes). This is because the cell average and
the midpoint value differ by O(Az?).

Instead, we seek a fully finite difference scheme—i.e. a scheme that
directly evolves nodal values in time. For the finite difference approach, the
derivation of comservation form is less obvious. We define the “numerical
flux function”, F, by the property that the real flux divergence is a finite
difference of numerical fluxes:

(30)

at every z (here Az is some constant spacing). We call it the numerical
flux since we require it in our numerical scheme, and also to distinguish it
from the closely related “physical flux”, F(U). It is not obvious that the
numerical fux function exists, but from relationship 30 one can solve for its
Taylor expansion (or, using a Fourier transform gives a quick derivation).
The result is

(Az)? 5 = T(Az)*
24 F(U)es + 5760

Note that to second order accuracy in Az the physical and numerical flux
functions are the same. As described in section 6.2, direct use of the Taylor
series is not the most convenient way to compute the numerical flux in the
ENO algorithm. The series is simply useful for understanding the relation
between physical and numerical fluxes.

The finite difference discretization is not based directly on the differen-
tial form of the conservation law 18; rather, it is based on the equivalent
conservative finite difference form

5,4 P+ 49— Fa %)
Az

=0 (32)

The discretization is based on characteristic upwind differencing, but now it
is the numerical flux F that must be discretely approximated, rather than
the physical flux derivative, F (T),. To accomplish this, we generalize the
conclusions of the previous characteristic variables analysis to the following
procedure: to determine Fata point x5, we should multiply all the local
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nodal physical flux vectors by Ly, and then use these, component by compo-
nent, to construct scalar characteristic numerical fluxes in an upwind biased
fashion. We then project these back to original variable numerical fluxes by
multiplying by Ry.

2.7 Comments on Jacobian Evaluation

We will briefly outline the significance of the Jacobian evaluation for char-
acteristic based methods, and how Marquina’s procedure differs from the
evaluation commonly used in the ENO method [11, 12].

The Jacobian matrix of the convective flux vector is quite important to
any characteristic based scheme, as it defines the local linearization of the
nonlinear problem. As previously described, it determines the transforma-
tion to the local characteristic fields, and thus what the upwind directions
are as well ag what quantities are to be upwind differenced.

In finite volume methods it is natural that the fluxes—and thus the
transformation to characteristic fields needed to evaluate them in an upwind
way—be evaluated at cell walls. The analogous situation occurs in the con-
servative finite difference formulation as well. There we want to discretely
approximate the conservation equation, 18, at grid nodes, z;. Thus, by the
numerical flux relation, 30, we require values of the numerical fluz at the
midpoint between nodes, zp = ;1. We refer to these midpoints as “cell
walls”, in analogy with the finite volume case.

Thus, in order to transform to characteristic fields to evaluate the nu-
merical fluxes, we require values of the Jacobian (and its eigensystem) at
cell walls. In the finite difference setting, we only know values for U at the
nodes, so evaluation of a Jacobian at the cell walls requires some form of in-
terpolation. In standard ENO schemes it was thought that the precise form
of this interpolation wag not so important. But recent developments show
that in fact it can make a great deal of difference in causing or eliminating
spurious oscillations.

The standard ENO method uses a single Jacobian evaluated at the linear
average of the states at nodes adjacent to the midpoint,

Tuy=17 (EW%U—) (33)

In smooth regions, this centered linear approximation is second order ac-
curate. Moreover, in a smooth region it makes little difference whether the
derivatives are computed in an upwind biaged fashion or in some combination
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of upwind and downwind. Thus the precise determination of the Jacobian
{and the transformation to characteristic fields)—in addition to having little
uncertainty anyway—is not so important. It is between nodes in an un-
resolved steep gradient that the centrally averaged Jacobian might cause
problems. 1t can differ significantly from the left and right Jacobians inter-
polated from left and right nodal state values, and there is no clear reason
why this central Jacobian value is the proper choice for a midpoint Jaco-
bian. The only justification for its use is that in practice it seems to work
well for many problems. However, based on the following considerations we
can see that it has the potential to allow spurtous oscillations under special
circumstances.

In the Separating Box Problem [2], we showed that small perturbations
{0 the Jacobian matrix can lead to large oscillations in an ENO numerical
solution. The intuition developed there was that small errors in the Jaco-
bian would cause one to transform into the wrong characteristic variables,
i.e. ones which were mixtures of the true characteristics. Upwinding on these
slightly mixed fields amounts to a small amount of downwind differencing
on the “true” characteristic fields, combined with the desired upwind differ-
encing. This small amount of downwind differencing can create noticeable
oscillations near unresolved steep gradients in the flow. We used this exam-
ple to argue that one should use the exact formulas for the Jacobian and
associated transformation to characteristic variables, rather than simplified
approximate expressions that often seem attractive in complex problems.

Donat and Marquina [1, 9] independently took this idea much further.
They realized that near an unresolved steep gradient in the flow, in which the
states vary by a large amount from one node to the next, there is no clear way
to determine “the” value of the Jacobian midway between the nodes (where it
is required for ENO and other methods). There may be unambiguous values
of the Jacobian when extrapolating from nodal data from the left or from the
right of the midpoint, but these left sided and right sided Jacobians can differ
substantially. They propose to make use of these two Jacobians separately,
in an upwind fashion, rather than attempt to define a single representative
midpoint Jacobian. In doing so, they seem to have avoided the substantial
uncertainty in the value of the Jacobian that results from $rying to choose
a single one from the large range of possible values “between” the left and
right Jacobians. This uncertainty insures that any single choice of Jacobian
will be a large perturbation from the true Jacobian of the exact solution
of the underlying flow problem, and, as before, the result is an inaccurate
transformation to characteristic fields. This allows for a mix of upwind and
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downwind differencing with the associated potential for oscillations.

Donat and Marquina make use of the left and right Jacobian in a con-
sistent upwind way to compute the discretized convective flux terms. In the
context of ENO methods, they propose to evaluate the left Jacobian with the
left side biased interpolation of the conserved variables, and the right Jaco-
bian with the right side biased interpolation of the conserved variables. Each
of these interpolations is done in a high order accurate ENO fashion, e.g. the
left interpolant is chosen as the smoothest possible polynomial interpolant
of the desired degree that includes the left node in its stencil. Using each of
these two Jacoblan matrices separately, we are to compute convective flux
derivatives in each characteristic field using the ENO method. Of these, only
the right moving fluxes from the left and left moving fluxes from the right
are actually used, the rest are discarded. The fluxes are then taken out of
the characteristic fields, yielding two vector flux functions for the conserved
variables. Adding these two vector fluxes together gives a consistent, high
order accurate numerical flux function.

In {1, 9], the authors show many examples illustrating the advantages of
using Marquina's Jacobian. In section 8 we present one more, since it is of
special interest to us and also illustrates how their technique can be of value
in more complicated applications.

We note a special case that could occur when using a second order ac-
curate approximation to the conserved variables. If the smoothest possible
approximation to the conserved variables from the left and from the right
both happen to be the central linear average, then the resulting scheme is
equivalent that using the standard ENO Jacobian evaluation.

It is tempting to think that some other way of constructing a Jacobian—
or a U value—at the midpoint would yield a more appropriate value for
the ENO scheme. Some form of interpolation must be used, since only
nodal variable values are available; the linear average is merely a symmetrical
choice. Omne might suppose that instead an upwind biased interpolation
should be used to determine a midpoint value of the variables, since this
would better reflect what information actnally reaches the midpoint during
the course of a time step. However, this idea is complicated by the fact that
the upwind directions are only defined for the characteristic fields, while the
conserved variables to be interpolated are mixtures of those fields, Thus, it
is not possible to pick an upwind direction for a single conserved variable.

Still, this idea can be developed to determine a more physically reason-
able midpoint Jacobian evaluation: based on the value of the Jacobian at
the left and right adjacent nodes, one can transform to characteristic fields

25



on the left side and the right side using these respective Jacobians. Then,
one can interpolate all right moving characteristic fields from the left side
to the midpoint, and all left moving characteristic fields from the right side
to the midpoint, combine them into a single characteristic state vector, and
transform this vector back to primitive variables to obtain a properly “up-
wind interpolated” midpoint state vector. The Jacobian evaluated at this
state provides a single Jacobian for use with the ENO method. Our exper-
iments show that this is indeed a superior choice over the standard linear
average, in that it does greatly reduce spurious oscillations in those special
cases when they occur. However, it does not perform as well as Marquina’s
procedure for making use of separate left and right Jacobians. It seems that
no single midpoint Jacobian adequately represents the situation when the
left and right nodal Jacobians differ greatly.

26




3 Model Equations and Discretizations

The numerical method we will present can be applied to a general system of
convection-diffusion-reaction conservation equations in any number of spatial
dimensions. For example, in two spatial dimensions (z,y) the vector form of
the equations s

T, + [F(@)], + G, = [Fa(VD), + [Gu(VD)], + S(T) (34)

where U = U(z,y,t) is the vector of conserved variables, F(T) and G(T)
are the vectors of convective fluxes, Fy(VU) and G,(VT) are the vectors of
diffusive fluxes, and S (ﬁ ) is the vector of reaction terms. Subscripts #,z,y
denocte the corresponding time and space partial derivatives. Note that our
techniques can also be extended to apply to systems that have convective
or diffusive terms that are not in conservation form. For example, non-
conservative convective terms arige as the “thermal forces” in the Braginskii
equations describing transport in a multi-species plasma.

4 Spatial Discretization

The diffusion terms can be evaluated with standard second or fourth or-
der conservative central differencing. The reaction terms, which involve no
derivatives, are simply evaluated at point values.

The finite difference ENO method is used to evaluate convection terms.
It is applied independently to [F(T)], and to [J(ﬁ)]yma “dimension by
dimension” discretization. On a rectangular 2-D grid, we sweep through the
grid from bottom to top performing ENO on 1-D horizontal rows of grid
points to evaluate the [£({)], term. The [G(T)], term is evaluated in a
similar way by sweeping through the grid from left to right performing ENO
on 1-D vertical rows of grid points. The ENO method will be fully described
in subsequent sections.

The spatial discretization can be extended to cover equations that include
first and second derivative terms that are not expressible in conservation
form. Second derivative terms can still be treated with standard central .
differences, second or fourth order. For non-conservative convective terms,
the ENO procedure must be based on a linearized convective matrix of the
entire first order system, not just the part that is in conservation form. We
will describe this extension in detail in a future report.
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5 Time Discretization

Once we have a numerical approximation to each of the spatial terms in
equation 34, we can write it abstractly as a system of Ordinary Differential
Equations (ODEs)

7, = f(0) (35)

This equation could be discretized in time by any ODE integrating method
that has suitable accuracy and stability properties. If the spatial reaction
or diffusion terms are particularly strong, to the point where their time step
restrictions are much more limiting than that of the Courant-Friedrich-Lewy
(CFL) restriction for the convective terms, it is better to handle them sepa-
rately via a time splitting procedure and a stiff ODE integrator as described
in [2].

For the general time integration of this ODE, the Total Variation Dimin-
ishing (T'VD) Runge-Kutta methods of Shu and Osher [12] are particularly
well suited. In addition to the simplicity of Runge-Kutta methods, they
are specially designed for time integrating spatially discretized convection
equations in a way that will not create spurious oscillations in the solution.

First order TVD Runge-Kutta is simply the forward Euler method,

gt = U+ Atf(0™) (38)

Second order TVD Runge-Kutta is Heun’s predictor-corrector method,

U* = U™+ Atf(0™) (37)

FFatl §2d 1z . 1z,

A third order TVD Runge-Kutta method is given by,
J* = U~ + Atf(T™) (39)

F ok Fin 1o, 1= Tk
U =U"+ At Zf(U)+Zf(U) (40)

a4l T 1 Ferin 1z Tk 2 Pk

Unt =U" 4+ At gf(U)+—6f(U)+§f(U ) (41)
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There are no convenient fourth order or higher TVD Runge-Kutta meth-
ods; they do exist, but they only maintain the TVD property when used
with special, more complicated spatial discretizations. The standard fourth
order accurate Runge-Kutta method can be used, but it is not TVD. This
means it could cause spurious spatial oscillations, though in practice this has
not been a problem.

The third order TVD method is generally recommended, since it has the
greatest accuracy and largest time step stability region of the TVD schemes.
Due to its large stability region (which includes a segment of purely imagi-
nary linear growth rates), for a sufficiently small time step it is guaranteed
to be linearly stable for the entire class of problems considered here. In con-
trast, the first and second order methods both reguire some spatial diffusion
terms in order to be stable. Without that, no matter how small the time
step is they may be mildly unstable (although it turns out the ENO spatial
discretization can prevent this instability to some extent). For this reason,
they should not be used unless there is substantial spatial diffusion in the
problem.
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6 The Finite Difference ENO Scheme

We are now ready to proceed with the precise presentation of the ENO finite
difference discretization.

. 6.1 Reducing a System to Independent Scalar Equations

First, we show how the discretization for a system is reduced to that of
independent scalar problems.

Consider the Jacobian matrix J of the F({/) term in equation 18. We
agsume that this N x N Jacobian matrix has a complete eigensystem consist-
ing of eigenvalues , A?(/), left eigenvectors, I¥(0), and right eigenvectors,
Ry (ﬁ), for p = 1,..., N that satisfy inversion and diagonalization relations
23 and 24.

At a specific point ;4 1 midway between two grid nodes, we wish to find
the numerical flux function F‘i”%. We evaluate the eigensystem at ﬁi0+%.
Our method for approximating the value of ﬁiw% for use in the left sided
and right sided Jacobian evaluations is explained in section 7.1.

In the p-th characteristic field we have an eigenvalue )\P(U',;O +1 ), left eigen-
vector LP (ﬁiﬁ%), and right eigenvector R'P([Z-ﬁ%). We put U values and

g

F(U) values into the p-th characteristic field by taking the dot product with
the left eigenvector,

u=E(g) U (12)
Jw) = P (Tyuy) - F(O) (43)

where u and f(u) are scalars. Once in the characteristic field we perform a
scalar version of ENO, obtaining a scalar numerical flux function Fj,, 3 in the
scalar field. We take this flux out of the characteristic field by multiplying
with the right eigenvector,

—+

By = By B () (44)

i+

. where ﬁ, ol 41 18 the portion of the numerical flux function ﬁio+% from the p-th
field.
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Once we have evaluated the contribution to the numerical flux function
from each field, we get the total numerical flux from summing the contribu-
tions from each field,

Fin—i—%— = ZFiz.{_% (45)

P

6.2 Finite Difference ENO for Scalar Equations

Once the system has been reduced to independent scalar conservation equa-
tions, we need only develop ENO in this simple setting.

ENOQ is performed in each scalar characteristic field, on the scalar equa-
tion

u + f(v), =0 (46)
where © and f(u) come from equations 42 and 43 respectively.
We define the numerical flux function F' through the relation
Fi+-}; e

Jlug)y = T2 (47)

where the F.1 are the values of the numerical flux function at the cell walls.
To obtain a convenient algorithm for computing this numerical flux function,
we proceed as follows: define A(z) implicitly through the following equation,

f0@) =77 [, Wy (43)

-
taking a derivative on both sides of equation 48 yields,

Asy_ iy Oz
Flula)), = M) e 5 (49)

which shows that h is identical to the numerical flux function F at the celi
walls. That is Fiy1 = h(z;41) for all &. We can in turn calculate h by finding
its primitive

H@)= [ Ay (50)

and then taking a derivative. From relation 48, it turns out that f(u(z;))
provides values for the first divided differences of H on the grid, which allows
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us to accurately and efficiently interpolate the derivative of H to any other
necessary points.

We will calculate H af the cell walls with polynomial interpolation. Our
goal is to calculate h = H’, so we do not need the zeroth order divided
differences of H that vanish with the derivative. The zeroth order divided
differences, Df+%, and all higher order even divided differences of H exist
at the cell walls and will have the subscript ¢ & 5. The first order divided
differences D} and all higher order odd divided differences of H exist at the
grid points and will have the subscript .

The first order divided differences of I are,

pigr = 2t ZHE) o) 1)

where the second equality sign comes from

Heap) = [ )ty =3 ( [ h(ymy) =AY flute;) (52

Jau =0 i-%

which follows from equations 50 and 48. The higher divided differences are,

_ flulzaa)) — flulz:) 1,
DYy H = A =305/ (63)
D = %D? f (54)

and they continue in that manner.

According to the rules of polynomial interpolation, we can take any path
along the divided difference table to construct H, although they do not all
give good results. ENO reconstruction consists of two important features:

1. Choose D}H in the upwind direction.

2. Choose higher order divided differences by taking the smaller in abso-
lute value of the two possible choices.

Once we construct H(z), we evaluate H'(z;;1) to get the numerical flux
FH%-

It is important to note that there are other ways to choose the higher
order divided differences. For example, in step 2 one can bias the decision
towards the more central divided difference, which lowers the truncation
error of the scheme in smooth regions.
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6.3 The ENO-Roe Discretization (Third Order Accurate)

For a specific cell wall, located at z;,,1, we find the associated numerical
flux function £, 1 as follows:

If )\p(ﬁi[ﬁ_%) > 0, then k = 1y. Otherwise, set k = iy + 1. Define

Q(z) = (DyH)(z - -’Bin+%) (55)

If |D,2P%Hi < {Dﬁ+%H|, then ¢ = Di_%H and k¥ = k — 1. Otherwise,
c= DL%H and k* = k. Define

Qa(z) = oz — $k-—§)($ - $k+%) (56)
If |Di.H| < |DE. .1 H|, then ¢* = D} H. Otherwise, ¢* = Dj.,H. Define
Qs(x) = (2 — T _1) (T — Tpa 5. 1) (T Tpoy 3) (57)
Then,
Fiors = H'(o41) = Qs t) + Qa(@igi3) + Qa(@ige 1) (58)

which simplifies to
Fiopy = DEH + 0(2(ig — k) + 1) Az + ¢* (3(ip — k) — 1) (Aa)?  (59)

by using equations 55, 56, and 57.

6.4 The Entropy Fix

The ENO-Roe discretization can admit entropy violating expansion shocks
near sonic points. That is, at a place where a characteristic velocity changes
sign—a “sonic point”—it is possible to have a stationary “expansion shock”
solution with a discontinuous jump in value. If this jump were smoothed out
even slightly, it would break up into an expansion “fan” (i.e. rarefaction)
and dissipate, which is the desired physical solution. For a specific cell
wall, i, 1, if there are no “nearby” sonic points, then we use ENG-Roe.
Otherwise, we add high order dissipation to our calculation of Fj 1 which
is extremely small if the solution is locally smooth, but is large enocugh to
break up an expansion shock. We explain when a sonic point is considered
“nearby” in the next section. This approach retains a uniformly high order
accurate scheme in smooth regions, and eliminates any “entropy violating”
expangion shocks,
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Consider two primitive functions HY and H~. We compute a divided
difference table for each of them. Their first divided differences are,

1 1
DIH* = 5 f(u) £ S0 3w (60)

where a1 is defined in section 7.4. We define the second divided differences .
D2, yH * and the third divided differences D}H* in the standard way, like
those of H.

For H*, set k = 4. Then, replacing H with H* everywhere, define

Q1 (z), Qalz), Qs(z), and finally I’ . by using the algorithm above. For
H~, set k=1, + 1. Then, replacmg H with H~ everywhere, define @, (z),
Q2(z), Qs(z), and finally F, 1 by using the algorithm above. Then,

Fipy = wl +F L (61)

Is the new numerical flux function with added high order dissipation.
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7 Marquina’s Flux Splitting
7.1 Finding U, , 1 (Third Order Accurate Algorithm)

We will need two appreximations for the value of U at the cell wall Tigtd-
The value from the left, ﬁfﬂ 1 is interpolated from the z;, side. The value
from the right, [75: 1 is interpolated from the z; ., side.

We need the divided differences of I/ for polynomial interpolation. This
takes no extra work, since we have already computed the divided difference of
U for use in the entropy fix portion of the ENO algorithm. The interpolation
is done for each conserved variable, v, and we phrase the algorithm in terms
of v. The divided differences of v are: Div = v, Dil%v, and D?v. For each
conserved variable, v, we choose the zeroth order divided difference in the
left or right direction based on whether we are looking for v* or v#, Then, we
choose the higher order divided differences by taking the smaller in absolute
value of the two possible choices.

For a specific cell wall, located at z;,,;, we find the approximations to

L, and v, as follows:
o+ 3

ig+3
If we are looking for v 11, then & = 4. If we are looking for vl 41 then
k =15+ 1. Define

v

Qo(z) = ng =V (62)

If ]Df;_%vi < |D,1c+%v|, then ¢ = D,lﬂ_%fv and k* == k—1. Otherwise, c = D,lc%'u
and k* = k. Define

Qi(z) = clz — my) (63)
If |Di.v} < D v, then ¢* = Diu. Otherwise, ¢* = Di. . v. Define
Qa(7) = (@~ T {T — Tir 1) (64)
Then,
Vigrd = Qo(Tigr1) + Qu®isy) + Q2(Zipr 1) (65)
which simplifies to cone of the following
A 1
vhyy = v+ 4 e (o~ - ) (Bay (66)
eAx i . 1
by =t — S5 e ((zg . Z) (A)? (67)

depending on which one was being computed.
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7.2 Constructing Marquina’s Left and Right Jacobians

Consider a cell wall, z,. 1, where we wish to calculate the numerical fux

function f‘,;c +1. We have two estimates for 5}-0 +1: one estimate from the left,

Ui{; Y and one estimate from the right, i = 5 We use these estimates to
compute two Jacobian matrices,
—aL —
JL:J(in%): TR = J(Ui§+%) (68)

and their associated eigensystems.
In the p-th characteristic field, we have an eigenvalue, left eigenvector,
and right eigenvector for each of the two Jacobians:

(WYE = X(TL,), )R = (UER,,) (69)
(InE =In0LE,y, (@) =I0E,) (70)
(B =Rr(0E,,), ()R =R (0F,) (71)

7.3 Constructing Left and Right Numerical Flux Functions

Consider a cell wall, x;,,1, where we wish to find the numerical flux in the
p-th characteristic field: }3‘;’; +1. For each of the two Jacobiansg, we find a
3
numerical flux in the p-th characteristic field: (¥7,,)" and (F} ,,)". Then
2
we sum them,
Py = (F )+ (Fm?;+%)R (72)

1 3

to get the total numerical flux in the p-th field. This is done for each field,
and then the total numerical flux is defined by equation 45.

7.4 Constructing the ENO Numerical Scheme

Consider a cell wall, 2;,41. If the left and right eigenvalues evaluated at this
cell wall agree on the upwind direction then there is no sonic point “nearby”,
and we use the ENO-Roe discretization. If the eigenvalues disagree at the
cell wall, then there is a sonic point “nearby”, and we use the version of
ENO with the entropy fix. There are 3 cases:
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1. ¥ (O > 0 and (A?)F > 0, then upwind is from the left. We calculate
(Fi’;Jr%)L using ENO-Roe. We set (F:;Jr%}R = (),

2. T (A)* < 0and (W)" < 0, then upwind is from the right. We calculate
(F?, 5)® using ENO-Roe. We set (F} ;)" =0.

10

3. If (W) (A?)E < 0, then the eigenvalues disagree. We use the entropy
fix version of ENQ. For this, we define

@y = max (|2, 1)) (73)

as our dissipation coefficient. In the evaluation of (F‘t DL -, we evaluate
2

F;: +1 normally, but set F~ L= 0. Thus, equation 61 becomes F; ;1 =

i +1- In the evaluation of (F} +%)R, we evaluate F,_, ; normally, bus

o : -
set B +1 7 0. Thus, equation 61 becomes £ 41 = PR

This completes the description of the finite difference ENO discretization
using Marquina’s Jacobians.
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8 Examples

8.1 Example 1: Reflecting Shock in a Thermally Perfect Gas

We are currently developing numerical methods for treating an interface
separating a liquid drop and a high speed gas flow. The droplet is an in-
compressible Navier-Stokes fluid. The gas is a compressible, multi-species,
chemically reactive Navier-Stokes fluid. A level set is used for domain de-
composition. (This research will be described in detail in a future UCLA
CAM report.)

In this example, a 1D “Sod” shock tube was set up i the middle of
the domain, with the generated shock moving from left to right. The water
droplet is off to the right hand side of the domain, The shock hits the
water droplet, reflects off in the opposite direction, and proceeds toward
the contact discontinuity. We implement standard 3rd order ENO with the
Jacobian maftrix evaluated at the linear average of the points adjacent fo
the flux. This is a second order accurate, central approximation to the
Jacobian. Using standard finite difference ENO, there is a great deal of
“noise” generated when the shock approaches the contact discontinuity, after
reflection off the water droplet. See Figure 1. Note, however, that standard
2nd order ENO (which is a TVD scheme) with the Jacobian matrix evaluated
at the linear average does not generate much noise at all.

We run the same problem with 3rd order ENQO, but this time we used
Marquina’s Jacobian evaluated with 3rd order accurate left side and right
side biased approximasions to the conserved variables. There is no significant
ncise. See Figure 2.

(Note that the actual values for the density and the pressure of the water
droplet are not shown. We use “place holder” values in the figures. However,
the values for the velocity and the temperature are unaltered.)

8.2 Example 2: Importance of High Order Accurate Jaco-
bians

We emphasize that it is important to use Marquina’s Jacobian with a high
order accurate approximation to the conserved variables at the cell walls.
To illustrate this, consider the previous problem with 3rd order ENO. The
Jacobian is evaluated with 1st, 2nd, and 3rd order accurate approximations
to the conserved variables. The results are shown in Figures 3, 4, and &
respectively. Note that all the ENO algorithms are 3rd order, only the
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approximations to the conserved variables for the left and right Jacobian
evaluations vary in order. Based on these results, we recommend using 3rd
order ENQO with Marquina’s Jacobian also evaluated to 3rd order.

8.3 Further Examples

See {1, 9] for more numerical examples using Marquina’s Jacobian to fix a
variety of spurious oscillatory effects.

9 Conclusions

ENO methods are a class of high accuracy, shock capturing numerical meth-
ods for general hyperbolic systems of conservation laws. They are based
on using upwind biased interpolations in the characteristic fields without
mterpolating across steep gradients in the flow.

The finite difference formulation of the ENO method allows an efficient
and convenient implementation that readily applies to any number of spatial
dimensions.

This method works well on a great variety of gas dynamics problems, as
well as other convective problems, but there are still special circumstances
in which spurious oscillations develop.

Based on recent work, we have identified the source of these oscillations as
the centered linear average interpolation used to evaluate the Jacobian and
eigensystem of $he convective flux at the midpoints between nodes, prior
to transforming to characteristic fields. This effect can be understood infu-
itively as well, in terms of unintentionally performing downwind differencing
of the true characteristic fields near steep gradients.

Marquina recently devised a way to make use of left side and right side
Jacobians at the midpoint, without the need to construct a single Jacobian.
The general technigque seems to fix all known cases in which serious spurious
oscillations have occurred.

We presented a detailed description of the preferred (third order accu-
rate in space and time) finite difference ENO scheme using Marquina’s Ja-
cobian evaluation procedure, so that others can readily make use of this
(pen)ultimate scheme.

We presented examples demonstrating that this approach fixes a large,
nonphysical oscillation in a complicated gas dynamics problem. We also
showed that it is important to evaluate the Jacobian and eigensystem to
high order accuracy from the left and from the right at the midpoint, as this
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has a large impact on the practical resolution of the scheme. This is contrary
to what one would naively expect, since the formal order of accuracy of the
scheme is unchanged by the Jacobian evaluation strategy.

More analysis is required to understand why this two sided approach
works so well, and why it has such a large effect on regolution without altering
the formal order of accuracy. For now, however, it does seem to allow a
robust, general, accurate, parameter-free ENO scheme which we expect will
have wide application for problems which include a hyperbolic system.
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Figure 1: 3rd order ENO, Jacobian matrix evaluated at the linear average.
Note the large spurious oscillations near x = 0.06.
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Figure 2. 3rd order ENO, 3rd order Marquina’s Jacobian. The spurious
oscillations of EN( are eliminated.
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Figure 3: 3rd order ENO, 1st order Marguina’s Jacobian. Note the smoothed
out features, particularly near z = 0.04, due only to the low accuracy of the
Jacobian evaluation.
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Figure 4: 3rd order ENO, 2nd order Marquina’s Jacobian. The features at
x = 0.04 are sharpened as the Jacobian accuracy is increased.
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Figure 5: 3rd order ENO, 3rd order Marquina's Jacobian. The features at
x = (.04 are now well resolved, due only to the high accuracy of the Jacobian
evaluation.
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