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In this thesis, we develop the appropriate equations for bubble motions de-
pending on curvature using the level set methodology. Our method consists of an
appropriate finite difference scheme for solving our model equations, and a level
set approach for capturing the complicated motion between the bubbles. Resulis
indicate that this method can handle topology changes and complicated interfa-
cial shapes, and that it can numerically simulate many of the physical features of

bubble motions.

xii



CHAPTER 1

Introduction

In this paper, we will derive the proper equations and numerical algorithms for
a soap bubble.

It is generally accepted that many researchers in the field of CFD have difficul-
ties in dealing with singularities of fluid interfaces . To resolve these difficulties,
we will use a level set approach to compute the motion of soap bubbles. We intend
to capture the interface using a level set approach instead of explicitly tracking it.

Front tracking methods usually require that we add or subtract points dy-
namically. In [2], an interesting front tracking method which does not explicitly
reposition the points of interface was devised. The investigators cited good results,
but it seems hard to implement in three space dimensions. Moreover, topological
changes cause difficulties, as with all tracking methods.

In [4], a level set formulation for moving interfaces with curvature dependent
velocity was introduced. The level set function is typically a smooth function,
denoted as ¢. The level set formulation eliminates the problem of repositioning the
points to a moving grid and is capable of capturing geometric properties of highly
complicated boundaries including topological changes without explicitly tracking

the interfaces. An application of the level set formulation was used in ({1],[7]) for



incompressible fluid flows. They found that it was best, at least close to the front,
to keep ¢ as the signed distance from the front to prevent the development of steep
or flat gradients in ¢p. This can be done by solving a simple initial value problem
for ¢ which leaves the front location unchanged for fixed time.

We will use the level set approach to solve the problem for motion of soap
bubbles in 2D and 3D. This includes area preserving motion by velocity or by

acceleration.



CHAPTER 2

Equations of Motion

In our study, we shall consider area preserving motion for soap bubbles with

curvature dependent velocity or acceleration.

2.1 Motion with curvature dependent velocity
Consider the equation
(2.1) u=—cokn— [pn

where w is the velocity, o is the surface tension, « is the mean curvature, n is the
normal vector at the front and [p] is the jump of pressure across the interface. We

need to find [p] to preserve the area. The change of area is given by

(2.2) ]r w - nds = fr (—ok — [p])ds

where I' is the front of a bubble. From this, [p] can be rewritten as

_o’fr*ﬁ;ds_

(2.3) [p] = [ ds

= -0k
where % is the average curvature at the front. Now, our governing equation becomes

(2.4) u=—o(k—E)n



This equation is valid both 2-D and 3-D. It is simple to model this motion numer-

ically.

2.2 Motion with curvature dependent acceleration

In this section, we will derive the proper equations of motions for a soap bubble
in 3-dimensions(which gives the 2-dimensional results as a special case). We derive
the basic equation of bubble motion by applying Newton’s law dP/dt = F where
P = particle momentum, F = force on particle to a small element of the bubble
surface. Care is required when doing this, because F' must include all sources of
momentum to the element —in particular, the source due to mass transfer. This
can cause confusion, because most applications of Newton’s law do not include
mass transfer to the element under consideration, while some of our bubble models
do(due to migration of mass on the surface). Let ds be a small piece of the bubble

surface, with mass dm, velocity u, momentum P = dmwu. Then Newton’s law is

d{dmu) _

F
dt

(2.5)

and we must specify F. If ds does not exchange any mass with other parts of
the bubble, (e.g., a rubber sheet, where surface mass is not free to move within
the surface) then the only momentum sources are the standard forces of pressure,
surface tension, gravity, etc. However, if d8 does exchange mass with the rest of

the bubble surface, then the momentum brought in or carried away from ds by



the mass transport process must also be included in the momentum balance:

d(dmu)

(2.6) —

:F+FMT

where Fyp is the momentum source due to the mass transport, and F° contains
the standard forces. In particular, if the element mass dm is not constant in time,
then we must consider this additional term, since there must be mass transfer.
However, even if dm were constant, we could hypothesize a mass transfer process
that resulted in momentum transfer as well. Thus Fy;r depends on the details of
the mass transfer processes that actually occur. Fyp could also be used to include
the effects of evaporation or condensation on bubble momentum—for example,
if the bubble is absorbing raindrops, Fisp wo.uid include the momentum gained
from each raindrop. We simply have to specify this term. The form of Fip is
an additional physical axiom, independent of the rest of the problem. The only
restriction on the form of the term is that it must conserve total momentum of the
bubble, i.e. summing Fy,y over all surface elements should give 0 { the bubble does
not transfer momentum to itself). This assumes that all mass transfer is within
the bubble and not the surrounding environment. Note that assuming Fyp = 0 18
consistent with this, but does not correspond to the desired physics. Given these
cautions, we proceed to derive the equations.
Newton’s law dP/dt = F for an element of the surface is

d i ! t
(2.7) (momen m;’r,tof element) = force on the element

= (force per area)(area of element)



If the element has area |dA], mass per unit 4, and velocity u(note, u need not
be normal to the surface, e.g. a rotating spherical bubble, where u is wholly

tangential) then

(2.8) momentum of element = (pldA|)u

(2.9) force per area. = —lpln —ockn+ f

where [p] is the pressure jump across the surface, which is chosen to preserve the
volume, o is surface tension, k curvature, n the outward unit normal and f is
any additional source of momentum(per unit area), which includes the possible
mass transport effects described above. (We do not assume that f is normal to

the surface). Thus Newton’s law becomes

d(p|dAlu)

(2.10) =

= (=[pln — okn + f)|dA|

Isola,tmg = and dividing out |dA] yields

du 1 du|dA|

(2.11) = = ~[pln —okn + f — uldAt o

= —[pln—ckn+ f+F

where F simply stands for the terms indicated. F can be broken into two parts

by expanding out the derivative,

1 d(|d4])  Ldu

A2 = -
(212) F=-mlai—a " aa

)

In order to close this system, we need an expression for

213) @ g L Ol @ and 5, (@F




The first depends only the velocity field, the second will be derived by the vol-
ume conservation constraint, the third requires additional specification. In order
to represent a physical bubble, the total mass (surface integral of 4} should be

constant, which is an added constraint on the possible form of (c).

2.3 Calculation of Q‘%

Let dA denote the vector area of a surface element, with scalar area |dAl.

We can derive several equivalent formulas for the fractional rate of change of |dA|.

(2.14) 1 ddd] =u-nkK
ldA| dt
dA| dt
1 d|dA|
(216) T&"A—IT —V_,"u;
1 d|dA|
(217) w—Al——E{—mV-uMn-Du-n

where V, is the surface divergence operator, which can be written generally as
V- -u—n-Du-n when u is extended to be defined off the surface. Note that
formula (2.14) and (2.15) are equivalent by the standard relationship £ = V-n and
formula (2.14) and (2.15) are only valid when the velocity is normal to the surface.
Also, in the special case of normal velocity v = u,n formula (2.17) reduces to

(2.15). We will prove (2.16) and (2.17). Let dA be the vector area element. Let



ds; and ds, by two-orthogonal-tangent vectors whose cross product is dA,
(218) dA = d31 X d32 = Idslild-gzln

Then we have

d(dA) _ d(ds,) d(ds,)

2.19 xd ds; X
(2.19) dt g (et e Ty
For any orthogonal tangent vector ds, we have
d(ds
(2.20) ( o ) = change in u over segment ds

= Du.ds

where Du is the full derivative of w. Thus we obtain

d(dA
(2.21) __(Eit—l = (Du - ds,) X d8, + ds; x (Du - ds,)
Let v; and v, be unit vectors in the ds;,ds, direction, ds, = |ds;|v, , ds; =

|ds,}v,, v X v, = n. This yields

2 Y ey ldagl(Du ) x v+ vy X (D)

Now, if we write out vector Du - v, Du - v, in terms of its vy, vy, n component

using
(2.23) w = (w-v,)v; + (w-v)v,+ (w-n)n

for any vector w, and carry out the cross product explicitly, we find

d(dA)

24) ——
(2.24) 7

= |dA|(vy - Du - vy + vy - Du - vy)n + (stuf f in vy, v, plane)



So the normal component is

(2.25) T d(ﬁf) = |dA}(vy-Du-v;+ vy Du-v,)

= |dAlV, u
where V, is the surface divergence operator. If w is a 3-D vector, note that

(2.26) V,-u = (v;-Du-v;+wvy-Du-v,)
= (vy-Du-v,+uy-Du-vy+n-Du-n)—n-Du-n

= V.u—n -Du-n

where V is the usual 3D divergence. Thus we get an expression only involving the

normal of the surface, as desired:

_ d(d4)

(2.27) -

= |dA|(V -u —n - Du-n)

From this, we can immediately derive TJIZTJ_M j;‘*

1 dldd] 1 1 d(jdAP)
|dA| dt — 2|dA]2  dt
1 1 d
= ————dA.dA
2 |dAJ? dt
1 d

- |dA[2dA Cdt

(2.28)

dA

d

1

So that using our above result yields

1 dld4

2.2 —
(2.29) A dt

=V -u—n-Du-n



2.4 Calculation of [p]

We derive [p] from the constraint that volume remains constant. We will give
this derivation using the level set representation. The bubble volume can be written

as
(2.30) Volume : V = /ﬂ H(¢)d®2

where H(¢) is the Heaviside function,

1 if¢>0
(2.31) H(¢) =
0 ifop<O

We will also use 6(¢) where the Dirac delta function
(2.32) 8(z) = d H{x)
' dx
in the sense of distribution. Then
v
2.33 == [ H@)d
(233 Y - [ H@an

The level set evolution equation is

(2.34) ¢, +u-Vep=0
Therefore
(2.35) [H(¢)) = H'(d)o,

I
v
&
<
S
g
3

10



This yields
v ,
(2.36) —= = fn H'(¢)|Vlu - ndQd

: vy diavy —
To preserve volume, if we have E1t=0 = 0, then we must have £(%-) = 0.

d dv

(2.37) EE(E)

d
= = ]ﬂ u - né(@)|VldQ
=~ [,#(@)pm Voin- 5@ vodn
Y 7
~ [ 6(¢)u- Va0

Iir

235 (D) = b [ @IV + [ (u-Tu) no($) V410
+f i-(cm— fon—F-n)s(¢)|Veldo

(2.39) (II) = — fn §'()yu - Vhd©
~ [(V- w)(u- n)5(8)|VldQ

Therefore,

d dV

(2.40)  — (=)

= bl [ 6@Vl - [ (u- V) n () Thla
+ [(V - u)u-n)6(9)| V|0
1
- [ 3on—F -m = F-m)s(@)Veide

From our volume preserving constraint,

B[ OOVl = [((V-w)(u-m) = (- Vo) m)6(6)|Vldn

- ) i(mﬁ —Ff-n—F -n)é(¢)|VepldQ

11



From this, we can get [p].

(2.41)
- o W) = (- Vu) = ok £ = F )@V 9ldn
o L@ Vldn

2.5 Specification of u, %{f and f

To completely specify the equations of motion, , %’f (convective derivative of p)
and f(additional momentum sources, including mass transfer effects) are required.
No matter how these are specified, the motion will conserve volume and momen-
tum, since the equations were derived from those principles. However, a physical
bubble motion should also conserve the mass of bubble (M = [, roee #ldA]), un-
less we are modeling a process like evaporation or condensation, which can alter
the mass. There are four cases for 4 and f. Each of these cases also has simple

restriction to 2-D.

Case 1. 4 = constant on the surface and in time(e.g. g =1 ,say)
This does not conserve bubble mass, since mass will vary in proportion to
the area, which varies in time. Thus, it does not correspond to a physical
bubble motion. Since it is artificial, we may as well also take f = 0, for

simplicity. This choice results in the simplest set of equation.

fo{(n - Du-n)(u-n) — (u-Vu) - n—ok)s($)|Vld
I 6()|V pld2
- R4 Jol(n - Du-nju — (u- Vu)) - né(¢)[Ve|dQ
Jo 6()|VldD2

(2.42)fp] =

12



where X is the average curvature over the surface area.

Thus, the final equation of motion becomes

(243) w,+u-Vu = —ok—Em—u(V-u—-n-Du-n)
—t—%n jﬂ (n- Du-n)(u - n)6()|Vld

——ji-n fn (u- Vu) - né(¢)|VoldQ

Case 2.  p = constant over the surface, but varies in time to conserve mass(u =
% and M = 1, say)
This is the simplest motion that conserves mass, and corresponds to a real
bubble with a fluid surface. So the mass is mobile enough to stay uniformly
distributed. In this case there is mass transfer to a surface element during the
motion. Since £(u|dA|) is not zero, and we need to postulate a form of the
additional source of momentum f. F = 0 will not do, because that does not
correspond to the intuitive physics. We imagine that when mass transfers
into/out of the element being considered, it takes its momentum with it.
This suggests that the force F'y; on the element ds, as described above, is
proportional to the local rate of change of element mass £ (u|dA]). Also, since
we are considering here an idealized mass transfer that is so rapid it keeps the
mass density uniform on the surface, it in some sense samples and averages
things over the whole surface, so that the mass undergoing transfer carries

with it the average velocity of the entire bubble. This intuition leads one to

postulate that the additional momentum transfer to the surface element ds

13



due to the mass transfer is
_d
(2.44) F o = T~ (uldAl)
where @ is the average vector velocity of the bubble,
(2.45) w= [ uldd
. u=— u

and, since f = %%II’

1 d
(2.46) f = u@@(#lml)

1d
(2.47) = uﬁ(V-u—n-Du-n—kE&%)

In this case, we can again make the same simplifications as in Case 1 to get

pressure jump [p],

Bl = —oR+ oz [ m)(V ) - (u- V) m)B(@)IV e

1d
(2.48) +}% fn(ﬁ —u)n(V-u—n-Du-n+ EE’%)&(:}S)IVqﬁldQ

and the equation of motion is

plu,+u-Vu) = —a(n—ﬁ)n—i—u(ﬂ“—u)(v-u—n-Du-n—i—i%
1d
(2.49) “% fn (@—u) n(V-u-n-Du-n+ ;ﬁ)w)qwun

_% fn((u n)(V - u) — (u- Vu) - n)é(¢)|Ve|dQ

Case 3.  p|dA| is constant during the motion. (ie. &(pldA])=0)

This also conserves mass; it corresponds to an elastic membrane, where the

14



mass is not free to migrate. In this case, we envision no mass transfer effect,

thus f = 0. We get, from Z(p|dA|) = 0, that

1dp 1 d|dA|
2.50 - - .1
( ) udt |dA| dt
= —(V-u—n-Du-n)
Therefore

L((V-u)(u-n) = (u- Vu) - n — 1ox)8(¢)|VP|d

281) Il = 15V aln

Case 4. 4 flows with some mass preserving velocity on the surface.

This velocity would generally require additional equations to specify it. The
local momentum source due to mass transfer would be f = V,(pu,), the

surface divergence of momentum flux associated with the u velocity u,,.

15



Summary of Bubble Equations

We summarize our equations of bubble motion for various cases. All equations.

are valid in both 2-D and 3-D.

3.1 Notational convention

We review the notation used below:
dA : the vector area of surface element in the direction normal to the surface
|dA| : scalar area of the surface element
n : the unit outward normal to the surface
K : mean curvature
o . surface tension
%% = @, + u - VQ for any quantity ¢

Qave = 3 fourjace @|dA| where A is the total area ( A= [[dA] )

3.2 2-D versions of equation

The 2-D versions of all equations are obtained by replacing the area of bubble

surface by the length of the bubble curve in all relevant places:

16



dA — dL
|dA| — |dL|
A— L

Note that dL = n|dL}] is an outward normal.

3.3 Initial data

In order to have volume preserving motions, the initial velocity of the bubble
must also be volume preserving. (i.e. 9 =0 at time = 0). From equation (2.33),

we see this means that the initial velocity uy must satisfy

(3.1) 0= f uy - dA
surface

If this condition is violated, there will be very large acceleration produced when
the time evolution starts. The easiest way to insure (3.1) is to either take ug =0
which corresponds to a bubble at rest initially, or u, - » = 0 which corresponds to

a bubble "rotating” initially (i.e., velocity tangent to surface everywhere).

3.4 General equation of bubble motion

The general equation for bubble motion is

du 1 d|dA| 1dp
(3.2) - = —[pln — o+ f — uu(ldA! o ;E)
where
1 |dA]
3.3 —_— g — = g — . Du -
(3.3) A @ V-u-n-Du-n

17



and

(3.4
- LV -w)(u-n)~(u-Vu) n— i(_(m - fn—F-n))8(¢)|VeldQ
B Ja 56(8)IVldQ

n

In addition, we specify conservation of mass
(3.5) Mass : M = /,u,]dA] = constant in time

and no self-induced force

(3.6) 0= f FldA|
3.5 Volume preserving acceleration motion

Consider

(3.7) %‘5 = —[pln — okn

This preserves the bubble volume if

(8 bl= 0%+ [(V-w)u-n) - (u V) n)i$) Tl

This model is volume preserving, but it does not conserve momentum or mass for
the bubble, so it is not a physical bubble motion. However it is useful to compare

it with volume preserving velocity case.

3.6 Volume and momentum preserving model

This is the model described in section 2.5, Case 1, with u =1

du_

(3.9) —d?m-—[p]n—amnv—u(v-u—n-Du-n)

18



where

— —oF Jol(n - Du-n)(u-n) — (u-Vu) - n)s(¢)|Ve|dQ
(810) ot =—om+ IO

This model does not conserve bubble mass, but it does conserve volume and mo-

mentum.

3.7 Fluid bubble

This is the model described in section 2.5, Case 2, with bubble mass M = 1.

du 1dp
(3.11) ,uE——[p]n—ann+f-—uu(v-u—n-Du-n—i—EEE
(3.12) () = -
| PTG
— 1dy
| = —oF = [@—w)n(v D +ld—”6(¢v 0
[p] = J&—l-ﬁfgu—u n(V-u—n-Du-n ,udt) V|

(18) o [ (e m)(V - u) — (4 Vu)n)a($)|VldD

This preserves bubble volume, mass and momentum and so is physically realistic
bubble motion. It corresponds to a bubble with an ideal fluid surface on which

mass is very mobile and maintains a uniform mass distribution.

3.8 Elastic membrane bubble

This is the model described in section 2.5, Case 3.

du“

(3.15) i —[pln — okn

19



(3.16) Us—o = a positive valued function on surface

(3.17) %%ﬂ—(v-u—*n-Du-n)
(V- w)(u - n) — (u- V) - — Low)s(¢)| Vpla2
(318) b= T L6@V glan

This preserves bubble volume, mass and momentum, so it is a physically realistic
bubble motion. It corresponds to a bubble modeled as an elastic membrane—i.e.
no migration of mass within the surface. Various interesting effects can be created

by starting with non-uniform mass distributions.

20



Numerical Methods

4.1 Description of the level set approach

We construct a level set function ¢ such that bubble interface is the zero level
set of ¢. We also initialize ¢ to be the signed distance from the interface such that
¢ is positive inside the bubble and negative outside the bubble. This is easy to do

using the re-distance algorithm of [7]. We represent the interface by

sur face of bubble = {z|¢(z) = 0}
¢(z) > 0 inside bubble

(4.1) P(z) < 0 outside bubble

The idea of the level set method is to move ¢ with the correct speed w at the front

using the following differential equation:

(4.2) b +u-Vo=0

Next, we reinitialize, using the algorithm{7] keeping ¢ to be signed distance, at

least near the front. Additionally, we save computational time performing these

21



calculations only near the front. There are several localization algorithms available;

we use the relatively simple algorithm developed in [8].

4.2 Notations on using level set function

We can rewrite the variables by using the level set function ¢.

Vo

(4.3) n = ——l 1
=-V- ____[i
(4.4) K 1 !

JI k6(8)|V¢| dz dy

(45) T T T6(@)|Veldedy
r1 if >«
(4.6) Hy(¢)=1 0 f¢<a
%(1 + f% + %szn(%)) otherwise

2—;—(1 —E—cos(?)) if || < &

(4.7) bo(¢p) =

0 otherwise
(48) [.,..QlaA1 = [ Qs@)velaa
(4.9) f Qv = fﬂ QH,(a)dV

where « is the prescribed ”thickness” of the interface (usually 3 grid points in our

calculations) and @ is any quantity.

22



4.3 Outline of the numerical method

We can now summarize our algorithm.

Step 1.  Initialize ¢(a,t) such that ¢ is a signed distance function to the front.

Step 2. Solve the governing equation and get the velocity v and update the
level function ¢.
The method for updating the level function ¢ was proposed by S. Osher and

J. Sethian[4]. Counsider the following differential equation.

For u a given function of space and time, we obtain higher order accuracy
by using ENO type schemes both in time and in space[3,4]. For the time

discretization, we use Heun’s method[3]. Let

d
(4.11) 59 = ~Lid]
Then we apply Heun’s method.
(4.12) ¢ = ¢™ — AtLIG™)
1 1 At
mt+l . T m _-mm-i—l = kil
¢ =5¢" + 50 5 Lo ]

For the space discretization, first consider the motion induced by curvature
dependent velocity.

We can rewrite equation(4.10) as

(4.13) ¢, —(k—Em-Vep=0
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Using the relation(4.3) and (4.4), equation{4.13) becomes
(4.14) ¢, + 6|Ve| =E|V|

When we apply the numerical scheme.to a Hamilton-Jacobi equation, care is
required. For the term corresponding to &|V ¢/, we use ENO scheme(we will
explain it at step 3). All the derivatives of the term x|V | are approximated
by central differences. The term x|V ¢| depends on the multiplication and/or
division by (qbi + qb:)’li, which might be close to zero near some points. This
implies that we should be consistent in our approximation to x and |V¢| in
the term x|V | to avoid unnecessary errors.

For the curvature dependent acceleration, we can rewrite our governing equa-

tion as
(4.15) u,+u-Vu+u(V-u—n-Du-n) = F(k,..)

Since this system is only weakly well-posed(see appendix), care is required in
the numerical scheme. We use a 2nd order Lax-Friedrichs scheme. To apply

Lax-Friedrichs scheme, we rewrite the equation(4.15) in matrix form.
(4.16) u, + [A(uw)u,] + [B(uw)u,] = F(k,...)

The 1st order Lax-Friedrichs scheme is defined as

+1+‘U

@I A = AlAw)A (MM durja (270

|“*t = maw{z‘|j—k9’§j+k}'ui|u c>1
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We take k=2 and c=2 in our simulations.

The 2nd order TVD type Lax-Friedrichs scheme is defined by using

8,11
(4.18) Uy — Y~ oo
8
2
8; = minmod[A u;, A uy

, sign(z)ymin(|z|,ly|) if z-y>0
minmod(z,y) =
0 otherwise

After we get the velocities from the above system, we update the level set
by solving equation(4.10) using the 2nd order ENO scheme for the space

discretization. For the z -direction in 2D(or 3D),

(4.19)

u,; ; (D ¢, ; + %mmmod(D_m_D_”;d),-,j, DﬁDf‘bz‘,j) if w;; >0
u-Vo =
u; j(D% @, ; — bminmod(D2 D% ¢p; ;, DT D™ ¢, ;) otherwise

sign(z)ymin(jzl, lyl) if = -y>0
(4.20) minmod(z,y) =
10 otherwise

and D=, Di are just backward and forward divided differences. Similarly,

we can apply this to the y-direction and the z-direction for 3D problems also.

Step 3. Construct a new distance function ¢.

Counsider the following equation.

(4.21) d, = sign(d®)(1 — |Vd}) with d® = ¢"

25



where sign{d®) gives the sign of d°. Given initial data, we solve the above
equation until the solution reaches a steady state near the front. To eliminate

the stiffness of sign function, we approximate sign(¢) by

¢

where € is very small number(i.e. € = h). Following [3,7] we use the approx-

(4.22) sign(¢@) =

imation.

(0.2 V) = Vmaz((a*)?, (b)) + maz((cH)?, (d)?) if d° >0
\/ma:n((a,—)z, (67)2) + maz((c™)?, (d+)?) otherwise

(4.24) | a= D¢+ gminmod(DﬁDj’_qb,;,j, Dfod)i’j)

(4.25) at = maz(a,0)

a~ = min{a,0)
bt = max(bh,0)

b~ = min{b, 0)

We can define c,d using the same approximation in the y-direction.

For the criterion for steady state, we use

ntl _ Jn
. E|d?’jl<aldz,j dr

T"j 2
(4.26) i < (At)h

where M = number of grid points where |d?.| < a(= ch), for some constant

c(we use ¢ = 1.5). This is a very local criterion and convergence is very rapid.

26



After solving this equation we let

(4.27) ¢" ., = steady state solution of (4.21).

Step 4. We have now advanced one time step. Go to step 2 and repeat,.
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CHAPTER &

Results

Our experiments simulate the motions of soap bubbles. In the case of curvature
dependent velocity or acceleration, we simulate the merging and breaking of the
interface in 2D and 3D. Also we compare the global algorithm and local(fast)
algorithm[8]. Results indicate that the fast algorithm is almost four or five times
faster than the global algorithm for our smallest mesh size without any loss of

area.(see Table2)

5.1 Results using curvature dependent velocity

We simulate several different shapes in the case of curvature dependent veloc-
ity. In Figure 1-5, we show the continuous evolution of non-intersecting curves
collapsing smoothly to a circle.

In Figure 6-8, we show the merging of two bubbles in 2D. After merging they
converge to a steady state which is, of course, a circle.

In Figure 9-10, we use a symmetric and non-symmetric dumbbell as initial data. In
2D, a dumbbell under our motion collapses to a circle. However, in 3D, a dumbbell
breaks into two part and each part changes smoothly to a sphere. Both 2D and

3D motions preserve the area and the volume respectively(see Table 1).
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5.2 Results using curvature dependent acceleration

We simulate the motion of bubble which was was previously described in section
3.5.-3.8. In Figure 11-26, the results show that motion has oscillations as expected.
Depending on the laws of motion, each bubbles evolve slightly different ways. All

the cases preserve area well.(see Table 1)
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Mesh size | 32 x 32 | 64 x 64 | 128x128 || Mesh size | 32 x 32 | 64 x 64 | 128x128
Figure 1 | 0.9892 | 0.9942 | 0.9969 | Figure 2 | 0.9674 | 0.9850 | 0.9910
Figure 3 | 0.9949 | 0.9979 | 09985 || Figure 4 | 0.9974 | 0.9825 | 0.9951
Figure 5 | 0.9570 | 0.9829 | 0.9947 || Figure 6 | 0.9420 | 0.9627 | 0.9820
Figure 7 | 0.9112 | 0.9410 | 0.9624 || Figure 8 | 0.9512 | 0.9710 | 0.9827
Figure 9 | 0.9110 | 0.9427 Figure 10 | 0.8990 | 0.9320

Figure 11 | 0.9915 | 0.9962 | 0.9980 | Figure 12 | 0.9031 | 0.9579 | 0.9823
Figure 13 | 0.9856 | 1.0120 | 1.0107 || Figure 14 | 0.8976 | 0.9205 | 0.9582
Figure 15 | 0.9915 | 0.9962 | 0.9987 | Figure 16 | 0.9017 | 0.9572 | 0.9812
Figure 17 | 0.9810 | 1.0130 | 1.0070 | Figure 18 | 0.9951 | 0.9979 | 0.9985
Figure 19 | 0.9675 | 0.9821 | 0.9961 | Figure 20 | 0.8562 | 0.9216 | 0.9754
Figure 21 | 0.9875 | 1.0190 | 1.0135 | Figure 22 | 0.8731 | 0.9321 | 0.9734
Figure 23 | 0.9542 | 0.9715 | 0.9910 | Figure 24 | 0.9351 | 0.9745 | 0.9856
Figure 25 | 0.9410 | 0.9952 | 1.0021 || Figure 26 | 0.8561 | 0.9145 | 0.9656

Table 1: Ratio of area for final area to initial area
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Mesh size | Global Local | Global/Local
32 x 32 | 2.80x10-2 | 1.43x102 1.96
Figure 1 | 64 x 64 | 1.08x10-1 | 4.18x10~? 2.58
128 x 128 | 6.95x10-t | 1.36x101 5.11
32 x 32 | 2.89x10-2 | 1.42x10-? 2.04
Figure 2 | 64 x 64 | 1.02x10-1 | 4.07x10-2 2.51
128 x 128 | 6.02x10~! | 1.13x10-! 5.33
32 x 32 | 2.83x10-2 | 1.78x102 1.59
Figure 3| 64 x 64 | 1.16x10~1! | 5.17x10~2 2.24
128 x 128 | 5.62x10~1 | 1.46x10-1 3.85
32x 32 |3.06x10-2 | 2.52x10-2 1.21
Figure 4 | 64 x 64 | 1.17x10-! | 7.07x10—2 1.66
128 x 128 | 6.88x10~1 | 1.82x10-! 3.78
32x 32 |2.98x10-2 | 3.21x10-2 0.93
Figure 5 | 64 x 64 | 1.03x10-1 | 9.01x10—2 1.14
128 x 128 | 5.54x10-1 | 2.38x10-! 2.33

Table 2: Time(second) per Iteration for Global algorithm and Local(fast) algorithm
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Ill-Posedness of System

Here, we analyze the slight ill-posedness of a system for the case of a curvature
dependent acceleration.

Consider the following system.

(A1) u,+u-Vut+u(V-u—n-Du-n)=0
Let
(A.Z) u:uo-f-ﬁ, <1

Substitute (A.2) to (A.1),

(A.3) u-Vu = (ug+ua) V(ug+i)

- UQ'VUG+Ug'Vﬁ+&'VUO+O(H2)

(A.4) u(V-u) = (ug+ @)V (ug+a))

= ue(V - ) + up(V - ) + @(V - 1) + O(u?)

u(n -Du-n) = (yy+a)(n-Duy-n+n:Dit-n)

(A.5) = wg(n- Duy - n)+ ug(n - Dit - n) + @(n - Duy - n) + O(u?)
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From above equations, we can get
(A.6) i+ (ug Vi +uy(V-t—n-Dit-n)=0

Use Fourier transform,

(A.7) u, + 1y -k u+ik-u—(n-u)n-k)) = 0
where k = (ky,k,) is the Fourier frequency
ug = (up,%)
u = (u,v)

Now, our system becomes

(A.8) u; = —1du

wy - k +ug(ky — (n - k)ny) uy(ky — (1~ k)ny)
vo(ky — (n - k)my ug - k + vo(ky — (1 - k)ng)
So, we can get eigenvalues,
(Ag) /\1 = Uy k
Ay = 2ug-k)—(u-k)(n- k)
if ug = (ug-n)(n-k) (i.e. uy = n), then we have A = u, - k as a real double eigen-
value, for which the matrix A has a Jordan block. Therefore, our system is slightly

ill-posed. The numerical method does however converge. We are investigating this

phenomenon which is probably due to the curvature regularization.
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1 1 1
0 0 0
-1 1 -1
1 0 1 1 0 1 -1 0
t=0 t=0.0125 t =0.025
1 1 1
0 0 0
1 : -1 - —
1 0 1 -1 0 1 1 0
1 t = 0.0375 1 t = 0.05 1 t = 0.0625
0 0 0
-1 -1 1 -
-1 0 1 1 0 1 1 0

t=0.075 t = 0.0875 t=0.1

Figure 1: Area preserving curvature dependent velocity: circle is an equilibrium

solution
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-1

0
t=0.175

-1

1 O

t=0.05

1=0.125

Figure 2: Area preserving curvature dependent velocity: ellipse relaxes to circle

37




0 0
-1 -1
-1 0 1 -1 0
t=0 t=0.0125
1 1
0 0
-1 -1
-1 0 1 -1 0
1 t = 0.0375 1 t=0.05
0 0
-1 -1
-1 0 1 -1 0
t=0.075 t = 0.0875

-1

t=0.025

Figure 3: Area preserving curvature dependent velocity: square relaxes to circle
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0 0 0
-1 -1 ~1
~1 0 1 -1 0 1 -1 0
t=0 t = 0.00625 t=0.0125
1 1 1
0 0 0
~1 -1 -1
~1 0 1 ~1 0 1 -1 0
, __ 1=0.01875 ,__ 1=0025 , . 1=008125
0 0 0
-1 -1 -1
-1 0 1 -1 0 1 -1 0
t=0.0375 t=0.04375 t=0.05

Figure 4: Area preserving curvature dependent velocity: starfish relaxes towards

circle
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1 1 1
0 0 0
-1 ~1 1
-1 0 1 1 0 1 ~1 0
] t=0 ] t=0.025 ; t=0.05
0 0 0
-1 -1 -1
-1 0 1 1 0 1 —1 0
t=0.075 t=0.1 t=0.125
1 1 1
0 0 0
-1 1 1
~1 0 1 -1 0 1 ~1 0
t=0.15 t=0.175 t=0.2

Figure 5: Area preserving curvature dependent velocity: spiral relaxes towards

circle
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-1 1
1 0 1 -1 0
t=0 t = 0.00625
1 1
[0
1 1
-1 0 1 -1 0
1 t=0.01875 1 t=0.025
0 0
-1 1
1 0 1 -1 0
t =0.0375 t = 0.04375

Figure 6: Area preserving curvature dependent velocity:

towards circle
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1 1 1
0 0 0
-1 1 1
~1 0 1 -1 0 1 1 0
1 t=0 1 t = 0.00625 1 t=0.0125
0 0 0
-1 -1 1
-1 0 1 -1 0 1 -1 0
1 t =0.01875 1 t=0.025 1 t=0.03125
0 0 0
1 1 1
-1 0 1 -1 0 1 1 0
t=0.0375 t = 0.04375 t=0.05

Figure 7: Area preserving curvature dependent velocity: merging case, relaxes

towards circle
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o (O] 4 (O] o (O
-1 -1 -1
-1 0 1 -1 0 1 -1 0
4 t=0 ’ t = 0.00625 1 — t=0.0125
-1 -1 -1
-1 0 1 -1 0 1 -1 0
] t=0.01876 ’ t=0.025 1 t=0.03125
0 0 0
-1 -1 -1
-1 0 1 -1 0 1 -1 0
t = 0.0375 t = 0.04375 t=0.05

Figure 8: Area preserving curvature dependent velocity: merging case, relaxes

towards circle
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Figure 9: Three dimensional volume preserving curvature dependent velocity: sym-

metric pinchoff, relaxes towards two spheres
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Figure 10: Three dimensional volume preserving curvature dependent velocity:

non-symmetric pinchoff, relaxes towards two spheres
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0 0 0
1 -1 1
-1 0 1 -1 0 1 -1 0
t=0 t=0.0125 1=0.025
1 1 1
0 0 0
-1 -1 : -1
-1 0 1 -1 0 1 -1 0
] t=0.0375 1 t=0.05 ’ t = 0.0625
0 0 0
-1 0 1 -1 Y 1 -1 0
t=0.075 t=0.0875 t=0.1

Figure 11: Curvature dependent acceleration(volume preserving): circle remains

circle
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-1 0 1 -1 0
1 t=0 ] 1=0.125
0 0
-1 -1
-1 0 1 -1 0
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t=0.75 t=0.875

0 Q
-1
-1 0
1 t=0.25
0
- .
-1 0
3 t=0.625
0
- | .
-1 0
t=1

Figure 12: Curvature dependent acceleration(volume preserving): oscillating el-

lipse
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0 0 0
-1 ~1 -1
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t=0.375 t=0.5 t=0.625
1 1 1
0 0 0
-1 : 1= 1
-1 0 1 -1 0 1 -1 0

t=0.75 t=0.875 t=1

Figure 13: Curvature dependent acceleration(volume preserving): oscillating

square
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0 0 0
1 1 -1
-1 0 1 -1 0 1 1 0
t=0 t = 0.0625 t=0.125
1 1 1
0 0 0
1 -1 : 1
-1 0 1 -1 0 1 1 0
1 t = 0.1875 1 t=0.25 1 t=0.3125
0 0 0
~1= : : ~1 : ' -1 :
1 0 1 -1 0 1 -1 0
t=0.375 t = 0.4375 t=05

Figure 14: Curvature dependent acceleration(volume preserving): oscillating

starfish
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_1 . _1 N
-1 0 1 -1 0
t=0.075 t=0.0875

-1 0
t=0.025
-1 0
1 = 0.0625
-1 0
t=0.1

Figure 15: Curvature dependent acceleration{volume and momentum preserving):

circle remains circle
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O O
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Figure 16: Curvature dependent acceleration(volume and momentum preserving):

oscillating ellipse
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0 0 0
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-1 0 1 ~1 0 1 1 0
t=0.375 t=05 t = 0.625
1 1 1 :
0 0 0
-1 -1 -1
-1 0 1 -1 0 1 -1 0
t=0.75 t=0.875 t=1

Figure 17: Curvature dependent acceleration{volume and momentum preserving):

oscillating square
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Figure 18: Curvature dependent acceleration({volume and momentum preserving):

oscillating starfish
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1 1 1
0 0 0
-1 -1 ~1
-1 0 1 -1 0 1 1 0
t=0 t = 0.0625 t=0.125
1 1 1— ,
0 0 0
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1 0 1 -1 0 1 -1 0
1 t = 0.1875 1 t=0.25 1 t=0.3125
0 0 0
-1 -1 -1
1 0 1 -1 0 1 -1 0
t=0.375 t = 0.4375 t=05

Figure 19: Curvature dependent acceleration(fluid bubble): circle remains circle
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t=0.375 t=0.5 t=0.625
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-1 -1 1
-1 0 1 -1 0 1 -1 0
t=0.75 t=0.875 t=1

Figure 20: Curvature dependent acceleration(fiuid bubble): oscillating ellipse

35



1 1 1
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t=0.5625 t = 0.6562 t=0.75

Figure 21: Curvature dependent acceleration{fluid bubble): oscillating square
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Figure 22: Curvature dependent acceleration(fluid bubble): oscillating starfish
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Figure 23: Curvature dependent acceleration(elastic membrane bubble): circle

remains circle
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Figure 24: Curvature dependent acceleration{elastic membrane bubble): oscillat-

ing ellipse
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Figure 25: Curvature dependent acceleration(elastic membrane bubble). oscillat-

ing square

60



1 1 1
0 0 0
-1 1 -1
1 0 1 1 0 1 -1 0
t=0 t = 0.025 t=0.05
1 1 A
0 0 0
1 -1 -1
-1 0 1 1 0 1 -1 0
t = 0.075 t=0.1 t=0.125
1 1 1
0 0 0
~1 -1 -1
1 0 1 -1 0 1 -1 0
t=0.15 t=0.175 t=0.2

Figure 26: Curvature dependent acceleration(elastic membrane bubble): oscillat-

ing starfish
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