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ABSTRACT OF THE DISSERTATION

Fast wavelet based methods for certain time dependent problems
by

An Jiang
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1996

Professor Stanley Osher, Chair

Observing that under a lot of circumstances only the solution at some particu-
lar points for a PDE are needed, we develop fast algorithms to solve parabolic
equations at one point without calculating the solution in the whole space-time
domain. This is achieved by taking advantage of the sparse wavelet representation
of finite difference methods or the operator itself and using only parts of the repre-
sentation to compute the local solution. The complexity for solving at one point is
only O(log(N)) when the equation has time independent coefficients. When the

coefficients do depend on time, the complexity is O(N log?(N)).

vil



CHAPTER 1

Introduction

During the last few years a number of fast computational algorithms have been
developed for elliptic problems. These are techniques for which the number of
arithmetic operations needed are close to linear as a function of the number of
unknowns. Examples of algorithms of such complexity are multigrid methods and
the so-called fast Poisson solvers. The wavelet based methods for elliptic problems
formulated as integral equations also belong to this category ([BCoR] ).

There has not been the same progress for hypérbolic and parabolic methods.
In general, classical numerical techniques for these problems are already optimal.
However we mention that in [GrS1] the multidimensional heat operator, with ug
and f(see (1.1) below) both zero, but with inhomogeneous boundary data given
at M points, was treated. There the closed form of the solution evaluated at M
points at time level N was obtained in O(MN) rather than O(N2M?) operations.
Also, in [GrS2] the same authors obtained an algorithm for evaluating the sum
of N Gaussians at M arbitrary distributed points in O(N + M) operations. But
their interesting method appears to need an explicit analytic representation of the

heat kernel, effectively ruling out variable coefficient problems.

In the work of B.Engquist, S.0sher and S.Zhong [EnOZh], they introduced a



fast algorithm for solving hyperbolic and parabolic equations. Consider a evolution

equation
B+ L{z,0,)u = f(z), z€Qe R, t>0, (1.1)

u(:r:,O) = uﬁ(:c)’

with boundary conditions, where L is a differential operator.

An explicit algorithm typically has the form

untl = Ayn + F|

’U.O = Uq,

with ug and F € RN? given vectors. This formula admits a closed form solution

given by

n—1
ur = Amud + Y AVF.

=0

This form can be used to compute the solution A™ug, for F' =0, in log(n) steps by
repeated squaring of A: A, A2, A4, ... The latter squarings would involve almost
dense matrices even if we started with very sparse A and the algorithm, as stated,
is useless. However, for an appropriate representation of A in a wavelet basis all of
the powers A? may stay sparse and the algorithm using repeated squaring should
be advantageous. This leads to an algorithm with O(N?log(N)) complexity for
many hyperbolic and parabolic equations.

In this paper we will investigate more wavelet based fast methods for parabolic

equations.



Under a lot of circumstances only the solution at isolated points is needed. An
interesting example occurs when calculating stock option prices using the Black-
Scholes Equation. It is impossible in traditional finite difference methods to obtain
local solutions without calculating the solution in the whole space-time domain.
We develop a fast wavelet algorithm to solve evolution equations at one point
without obtaining the whole solution. When the coefficients in the equation are
not time dependent, we can use the above idea of repeated squaring. The resulting
complexity for solving at one point is only O(log*(N)), where N is number of grid
points in the domain.

We also investigate certain important time-dependent problems, which are not
discussed in [EnOZh]. When the coefficients, and thus the A matrices, do depend
on time, we can calculate each of them and their wavelet transforms in advance.
After that it is efficient to calculate the solutions for different initial conditions. In
the following chapters we will describe those methods in detail.

The adaption to higher dimension is quite straight forward. In fact this method
is preferable for multidimensional problems, because of the simple fact that
log(N?) = dlog(N) .

Numerical results are presented in Chapter 5.



CHAPTER 2

Background

Fourier transforms have a long history of being used to solve differential equa-
tions. Despite the advantages of Fourier transforms, they are not well adapted to
the local analysis of a function. A local perturbation may significantly affect all
coefficients, therefore no terms of the expansions can be safely ignored. One would
prefer to have an effective local analysis in many circumstances, for example in
studying singularities or shock formation in PDE. The wavelet transform is a tool
that cuts up data or functions or operators into different frequency components,
and then studies each component with a resolution matched to its scale. It is a

useful tool to achieve both space and frequency localization.

2.1 Compactly Supported Orthonormal Wavelets

The wavelets we will be using are Daubechies’ compactly supported orthonor-
mal wavelets.
A wavelet basis of this kind is built from an averaging function ¢ and a differ-

encing function ¢, which satisty the following relations:



2M—1

o(z) = V2 kz_: hipap(2z — k)
2M -1

P(z) = V2 E e (2 — k)

where
g = (=) haprpta, k=1,---2M
and
jcp(:n)dw = 1.

The coeflicients {h;}2¥, are chosen so that the functions

Pi(@) = vy, = 27927z — k + 1),

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

where j and k are integers and I, is the interval [2i(k — 1),2/ k] , form an or-

thonormal basis and, in addition, the function 1 has M vanishing moments

f¢(m)wmdm=0 m=0-,M—1.

We also need the dilations and translations of the scaling function ¢,

Pi(z) = oy, =27?p(27z — k +1).

(2.6)

@.7)

Suppose {s?,59,...,43,} are the samples of a function f on the finest scale. The



wavelet coefficients is computed via the pyramid scheme

.sf,: —>s}ﬁ —52 3.,

NN N

dl

k di dﬁ

This is implemented in O(N) operations using:
p=2M

5k = Z hp5p+2k 1

p=l
p=2M
. i-1
&= > 9pSp42k-1)
p=1
and the s}, d), are viewed as periodic sequences with period 2~/ (See [Remark]

below).

The coordinates in the orthonormal basis consist of

[dl, - db o d2y e e Y, 82,

R E R L T VLR L T

This procedure can be viewed as a linear transformation in RV, which is the
Euclidean space of all periodic sequences with the period N. We can write it as
f — W f where W is the matrix representation of the linear transtorm.

The inverse mapping can also be done in O(N) operations.

[Remark] For wavelets with more than 1 vanishing moments, the supports
of (pj’; and 'l,b‘,j; are greater than the interval I ;. The functions ¢;, ¢; can have
overlapping supports for I # J. As a result, the pyramid structure “spills out”

of the interval {1, N] on which the structure is originally defined. Therefore, it is



technically convenient to replace the original structure with a periodic one with
period N. This is equivalent to replacing the wavelet with its periodized version, or
replacing the function f with its periodized version. Unless f is already periodic,
we introduced a discontinuity at the boundaries, which will result in large fine scale
wavelet coeflicients near the boundaries. This problem can be solved by using the
wavelet basis for intervals described in [CDJP). In their construction, the wavelets
in the interior of the interval is kept as are, while the basis that “spill out” from the
boundaries are replaced by adapted functions that has support inside the interval.

In two dimensions, there are two natural ways to construct the wavelet systems.
The first basis is defined by three basis functions: ¥ ()¢ p(y), ¥r(z)ep(y), and
@1(z)p(y) to each dyadic square  x I with |I| = |I'|. The representation of
a matrix or an operator in this basis is called the non-standard form, because
if the original matrix represents an operator, its non-standard form is not the
representation of the operator in wavelet bases. The second basis is simply the
tensor product of the one dimensional wavelets, 1, ; = ¥;®%;. The represent ation
of a matrix or an operator in this basis is called the standard form. We will use the
standard form in our wavelet algorithms. We use the dyadic intervals to label the

elements. For example if K (x,y) is an operator then its standard form K consists

of

Rig =< Kppy >= [ [ K(@,)r(@)ps(y)dody. (2.8)

The standard form of a matrix can be obtained by doing the one dimensional



wavelet transform first for every row of the matrix and then for every column of
the matrix. We can write this as K = WKW-1 where K is the original matrix

and K is its standard form.

2.2 Sparse Representation of Operators

The role of the orthonormal wavelet bases in solving integral equations has
been studied in [BCoR), where it was observed that wide classes of operators
have sparse representations in the wavelet bases, thus permitting a number of fast
algorithms for applying these operators to functions. The operators which can
be efficiently treated using representations in the wavelet basis include Calderon-
Zygmund and pseudo-differential operators. (see [BCoR] for definitions.)

Consider an integral operator {Calderon-Zygmund or pseudo-differential oper-

ator),

(=) = [ K(z,0)fw)dy, (29)

If we construct its wavelet standard form, then we find that the entries decay very
fast as the distance to the singularity increases, much much faster than in the

original kernel. For example, let the kernel satisfy the conditions

|K(z,y)| < Cla—yl™! ifa#y (2.10)

OMK (w,y) + OMK(z,y)| < Clz —y|~MH) ifz#y (2.11)



for some M > 1, and the weak-cancelation property:
| [ K(z,y)dady| < CM|. (2.12)

Then, by choosing the wavelet basis to have M vanishing moments, the elements

K ;7 of the standard form of the kernel satisfy the estimate

sl = < Kbpbe > | < Ol G s, (213)

where d(1,.J) denotes the distance between I and J, and it is assumed that 1| <
|J|. Thus for a given accuracy the representation of such an operator is gparse, in
the famous finger shape (see Figure 2.1 ), and consists of only N log(N) elements,
where N is the size of matrix.

That means if K is the matrix representation of the kernel in the wavelet basis,
and K? is a truncation of K obtained by removing the elements that are outside
of the bands of width > 2M around all the shifted diagonals, then Kb is an

approximation of K for b large enough, with the following error estimate:
A o C’
1~ V] < oy tog(N). (2.14)
We will also need the estimate for the nonstandard form of K which is also

given in [BCoR]:

oI+
Kiron>| <
| < Kdnor > | < 707 1 qiy(r, 1y

for 1| = |I'| (2.15)

This estimate is also true for | < Koy, ¢p > | and | < K¢pp,9p > |-
As we know, it takes O(N?) operations to apply a dense N X N matrix to

a vector. If a matrix is smooth away from singularities, its wavelet form, either



Figure 2.1: The Finger Form

standard or non-standard, is sparse. So the cost of applying its wavelet form to
a vector is only O(N) if the non-standard form is used, and O(N log(N }) if the

standard form is used.

2.3 Evolution Equations

In the work of B.Engquist, S.0sher and S.Zhong [EnOZh], they introduced
a fast algorithm for solving hyperbolic and parabolic equations. The algorithm is
based on the fact that the Green’s functions of hyperbolic and parabolic equations

have sparse representations in wavelet bases. Their algorithm uses standard ex-

10



plicit finite difference schemes, and the wavelet representation is used to carry out
the algebraic part.

Consider a evolution equation
O + L{z,d)u = f(z), =€ e R, >0, (2.16)
'U.(.’!’:,O) = u’ﬂ(w):

with boundary conditions, where L is a differential operator.

An explicit algorithm typically has the form

yrtl = Au™ 4+ F,

ul = U,

with u, and ' € RN? given vectors. This formula admits a closed form solution

given by

n—1
u® = Amu® + Z AiF.

=0
This form can be used to compute the solution Aruy, for F' = 0, in log(n) steps
by repeated squaring of A: A, A% A%, ...

The latter squarings would involve almost dense matrices even if we started with
very sparse A and the algorithm, as stated, is useless. However, for an appropriate
representation of A in a wavelet basis all of the powers Av may stay sparse and
the algorithm using repeated squaring should be advantageous.

The Green's function satisfies estimates of the types 2.10 and 2.11 with the

constants uniform in time. A® is the approximation of the Green’s function. Thus

i1



there exists a bandwidth b which is uniform in v, such that the banded version of
Av with bandwidth b is an approximation of A® with a given accuracy.
This leads to the following algorithm with O(N?log(N)) complexity for equa-

tion (2.16) with f = 0.
A=WAW-?
Fori = 1: log(n)

A =TRUNC(A* 4,¢)

End
'U?O = WUU
un = A’ij:o

ut = W-lun

The matrix W corresponds to a fast wavelet transform and the truncation
operator sets elements in a matrix to zero if their absolute value is below a given
threshold. Of course the matrices W and W-! are never formed and the wavelet
transforms and the inverse transforms are done using the pyramid scheme described

in section 2.1.

The algorithms that we will describe in latter chapters are based on this algo-

rithm.

12



CIHHAPTER 3

Local Solution

Observing that under many circumstances we only need to solve an equation
at some isolated points, it is desirable to have a fast method to obtain solutions

around certain locations.

3.1 Description of the Method
Consider the parabolic equation
L(z,t,8,,0:)u = (0; — a;(z)0;; + ai{z); + ao(z))u =0, (3.1)

where the matrix a;; is positive definite. ( Our method also works for all 2mth
order parabolic equations.)

The solution of this equation is

u(z, 1) = [ Gle,y, uoly)dy. (3.2)

The Green’s function G{z,y,t) has a singularity at z = y, thus the solution at a

point z* mainly depends on the initial condition in a neighborhood of z*; i.e. if

13



we define a eut-oflf function

J 1, |z*—2]< B
= (3.3)
l 0, otherwise

then

@ (@)u(z, t) = ]@m.,é(m) * G(x,y,t)uely)dy

R [ @ @) 4 Gla,3,8) % @y p (0)olv)dy

provided B is large enough.

An explicit discretization typically takes the form,

ul = u(z;,t,), t,=nAt,

mJ = (leCC]., ----,\jdAmd)’

urtl = Aun,
0
u® = ug,

At = const - |Ax|2

In the one dimensional case the matrix Ais N by N (N = 2™} with the number of
nonzero elements in each row and column bounded by a constant. So the overall
complexity for computing the solution at time equals to O(1) is O(N?). Using the
closed form u» = A™u9, the solution can be computed in log(/V) steps by repeated

squaring of A : A, A2, A%, ..., A¥",

14



Now we are interested in the solution at a single point, say u?. We only need

®,u" where @, is a projection,
1, fk=j=1,

3,(k,5) = (3.4)

0, otherwise.

@iuﬂ(0,0,...,ui,O,...,{}) (35)

Figure 3.1: Points needed in A for calculating 1-point solution

If the matrices A? stay banded with a fixed bandwidth B for all 1 < ¢ < m,

15



then there are only 2B nonzero numbers on the ith line of A¥
@,:Azk - @iAzk(Pi’,B for k= 1,2,...,m,
where ®; p is a wider projection,

1, ifk=jand|j—i| <B,
‘I)i,B(ksj):

0, otherwise.
A" = 8,0, 5 A"
So we have
A" = BB, A"
= 0,®, gA"®; g
= §,0; g A2A2D; g
= §,0, g A™/2®; g A"2®, g

= ®,(®; pA™?®; 5)?

= &,(®; pA®; )"

Therefore we can get ®;A" by computing ®; 5 * A= ®; 5

. Hence

(3.6)

3.7)

’ ((I)i,BAQi,B)zr“ )

(®; 5A®; 5)?" ,i.e. by squaring only a piece of A, and the complexity for computing

the solution at a point is O(log(n)).

All this is based on the assumption that the A% stay banded with a fixed

bandwidth B for all 1 < ¢ < m, which is not true. A" is an approximation of

16



G(z,y,nAt) , and the latter "spreads out” when n becomes larger. However, it
is already proved in [EnOZh] that the wavelet transform of A" does stay banded
in the “finger form” as n increases, and the bandwidth is independent of n. This
suggests that we use the idea in the wavelet transform of A.

Let us denote the wavelet transform of u as & = Wu, and the wavelet transform
of Aas A= WAW-L.

Because the wavelets each have compact support, we only need O(log(N))

elements in @” to get u?. We call this projection P,.

Figure 3.2: Points needed in A for calculating 1-point solution

17



Jl, if j, = j, and |j; — 1/2r} < constant,

[0, otherwise.

(3.8)

ar = Ang® (3.9)

O un = d;W-1 A0 (3.10)
= &,W-1P,Ani0 (3.11)

If each row of A2*(j;,J,) only has nonzero elements around |j, — 2/2°P] <

constant, we can find a wider projection F; g,
PA* = PAYP,p. (3.12)
It follows that
P,A» = PP, pAP;p)". (3.13)

Figure 3.2 shows an example of the projection P,. The above formula corre-
sponds to taking out only those elements in the small squares and computing the

squarings of only those parts.

3.2 Estimate for the standard form

The Algorithm is based on the assumption that A?*(j,,7,) only has nonzero

elements around |j; — /27| < constant. Those positions correspond to the small

18



squares in Figure. 3.2.

However, as we can see in Figure 2.1 the finger form covers the full length of the
bottom several rows of A. Thus, it might be a problem to construct our F; g, which
corresponds to a cut in the column direction. These bottom rows correspond to
those [ [ G(x,y)¢1(y)¥s(z)dzdy where |J] is quite large. In the following section
we are going to prove that [ [ G(z,y)¥ ()¢ {x)dzdy is small when |I|/|J]is small.

In this section ¢ and 3 refer to the averaging and differencing functions in the
wavelet analysis.

[Theorem] Suppose K is a function satisfying the following conditions:

1. size and smoothness estimates:

|K(2,9)| < Cle -yl fz#y (3.14)

DMK (2,y) + OMK(z,y)| < Clz - y|=M+D) ifr £y

2. weak-boundedness property:

| < Kpr,op > 1< C for [I} = {I| (3.15)
3.
[ < K(@,v),tily) > de =0 (3.16)
Then we have
< Kbpy by > | < O(ymenr 22 (3.17)
LEE~1 =22 [7[1+M 4 dist(T, J)L+M ‘

The proof of this theorem needs the following observation:

19



[Lemma] Let S(x) be such that
1) | < Sy > | < /(1 + B, where ¢4(a) = w(a — k),
2) [~ S@)de=0.
Then if J = [k24, (k+ 1)27] and j > 0, we have

| < 8,0y > | < e2-9M+3) /(1 4 [k|M+1), (3.18)

Prool:

1y can be written as a linear combination of ¢,; i.e.,

¢J:E(Pn < "ibJason >

= Z Pn < ¢J 1 %n > .
ne[k2? {k+M)24]

Thus

| < Sypr > =12 <80 >< %500 > |

C
< z e <P >
nefka? (k+M)27] 1+ [njMH+! T

If the interval [k2/, (k + M)2i] is away from the origin, we have

C 7 :
| < Syby > | < T gpmr 2o < $orpn >, k= min((il [k -+ M)

(. 9i/2
—1 + (k- 20)YM+1
C . 2-i(M+1/2)
S TR

20



The condition [*°_S(x)dz = 0 implies the estimates is true when [k27, (k + M)27]
intersects with the origin, because as j becomes larger, < S,%; > acts as a wider
average of 5.
Now we are ready to prove the theorem:

After rescaling we apply the above observation to S = K. Suppose the wavelets
have M vanishing moments. From the weak boundedness property and the size
and smoothness estimates of K we know that the estimates for | < Ky, ¢} > | in
Equation (2.15) is true:

C|IM+

Substitute this into the Lemma we have

] 1/24M (M
| < Kipr,thy > | Sc(m) T ¢ dist(T, )

(3.20)

A similar estimate can be found in [Meyer].

So if K satisfies the conditions of the theorem, then we know that Ky is
small whenever {I|/}J] is small, |I| is small or dist(Z, J) is large. The number of
significant elements of K is asymptotic to N.

Now let us go back to the parabolic equation (3.1)
L(z,t,8,, 8 u = (8, — a;(%)8;; + a;(2)9; + ag(z))u = 0. (3.21)

Does the Green’s function for this equation satisfies the conditions in the theorem?
It is easy to check that the Green’s function satisfies the size and smoothness

estimate (3.14) and the weak-boundedness property (3.15). However, it doesn’t

21



satisfy condition (3.16) in general. If the equation can be written in conservation

form u, = %F(x,t,%)u and with appropriate boundary conditions, then the
Green’s function satisfies [ G(z,y,t)dz = constant, independent of y ( also ),
and consequently [ G(z,y,t)(y)dydz = 0. Many equations can be written in
conservation form or can be transformed into conservation form by making an
appropriate change of variables.

A?" is an approximation of the Green’s function. Therefore the number of
significant, elements of A?* is asymptotic to N. They lie on diagonals i/; = 2% for
E’s with small absolute value. It is already proved in [EnOZh] that the constant
in (3.19) is independent of the power of A; thus so is the constant in (3.17) .

Thus we can find a B such that P,A?" ~ H-fi"’kP,-' p and by adjusting B the error
can be controlled to be less then any threshold.

We obtain P.A" by squaring P, p * A x P, g. There are O(log®(N)) elements
in P,g* A % P; p; Thus each step requires O(log?(N)) operations. Finally we
have established that the complexity for computing the solution at a point is
O(log! (V).

Here is a more detailed description of the algorithm:

Algorithm 1 (The 1-point Algorithm) An explicit finite-difference method

typically looks like this:
vt = Apn!

[Step 1] Construct the matrix A and compute 121, the wavelet transform of A.

22



[Step 2] We need to calculate the solution at a particular point, Determine the
projection P according to the location of the point. Construct B = PAP

from A, and compute B" using the repeated squaring idea: B, B2 B4,..., Bn.
[Step 3] Now we are ready to calculate the solution at this point:
1. Calculate the wavelet transform of the initial data v°, which we call 20,
2. v = B

3. Do the inverse transform to obtain v™,

23



CHAPTER 4

Time Dependent Coeflicients

In the previous chapter we described a fast method for solving parabolic equa-
tions with time-independent coefficients. It is clear that in the case of time depen-
dent coefficients the method of repeated squaring is no longer valid. However, we
can still achieve big savings over the standard methods if the solution at certain
points is needed for many different initial values. This kind of situation does hap-
pen, for example when calculating the stock option prices using the Black-Scholes
Equation, where the volatility coefficient is allowed to depend on time as well as
stock price. Of course the standard Black-Scholes model can be transformed to

constant coefficients, but other important models are being developed,

4,1 Black-Scholes equation

There are two basic types of options. A call option gives the holder the right to
buy the underlying asset by a certain date for a certain price. A put option gives the
holder the right to sell the underlying asset by a certain date for a certain price.
The date is called expiration date and the price is called strike price. Usually

several options with different expiration dates or different strike prices are offered

24



for one stock.

Suppose an investor buys 100 call options of a stock with a strike price of $50,
the expiration date of the option is 2 months, and the price of the option is $4
per share. Suppose in 2 months the stock price rises to $60, he can exercise the
option, i.e., buy the stock at $50 per share. If he sells the stocks immediately, he
can make a profit of $600, taking into account the price of the options.

The Black-Scholes equation governs the price change of stock options. A Eu-

ropean put option satisfles the following equation
1
Pt+T'SP5+§O"282PSS:TP (4:].)
with initial condition
P=max(X -~ 5,0) att=T. (4.2)

Here is a description of the variables:

P: Value of European put option to sell one share
S:  Stock price
t: Time
X: Strike price of option
T: Time of expiration of option
r: Risk free interest rate

o: Volatility of stock price
The solution at S = current stock price and t = 0 is needed for calculating the

option prices. Calculating option values for different strike prices corresponds to
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using different initial values.

In the standard Black-Scholes model o and r are both constants. In some more
sophisticated models r might depend on time and o might depend on both time
and stock price.

Suppose we use N grid points in our finite difference method. I T = O(1), the
complexity of calculating the solution at ¢ = 0 using an explicit method is O{N3),
because of the parabolic term 1625?Pgg. We can reduce it to O(N?) by using
implicit methods, such as the Crank-Nicolson method. But if we want to calculate
the solution again and again using different initial values, each solution will cost
the same O(N3) or O(N?) time.

The new algorithms we shall describe can compute solutions for different initial
conditions with a very small cost after a quite expensive preparation time. The

preparation cost can be reduced in some important special cases.

4.2 The basic algorithm

The basic algorithm is the following:

Algorithm 2 (The Basic Algorithm) Use an implicit method such as Crank-

Nicolson. It looks like this:

A(n)P" = B(n) P (4.3)
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[Step 1] Compute K™ = A(n)~1B(n) and then compute the wavelet transform of
Kn for every time level. Store Kn, the wavelet form of K™ , in files. Note

that the final solution PN would be simply KV KN-1.. . K1P°.

[Step 2] This is used when we need to calculate the solution at a particular
point. As in the time-independent coeflicient case, only PE"P, a banded
version of K is needed. The banded version has O(log® N) significant en-
tries. We load them from the file we saved in step 1 and calculate PKP =
(PKNP)(PKN-1P)..(PK'P).

[Step 3] Now we are ready to calculate the solution at this point using all kinds

of initial data.

1. Calculate the wavelet transform of the initial data P°, which we call

A

PO,
2. PN = K Po
3. Do the inverse transform for PN and obtain PN,
[Complexity Count]

[Step 1] The preparation stage.

1. The complexity of LU factorization for each time step is O{N), because
L(n) is banded.
9. The complexity of obtaining K (n) = L(n)~1L/(n) is O(N?).

3. Calculating K™ costs O(N log(N)).
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Thus the cost for each time step is O(NZ + N log(IN)), and the total cost is

O(N3 + N?log(N)).

[Step 2] The cost is O(N log3(V) because the cost of each time step 1s the cost
of calculating a @(log(N)) by O(log(N)) matrix multiplication, which is

O(log®(N))-

[Step 8] This step consists of the wavelet transform and inverse transform of a
N-vector and a multiplication of a O(log(N)) by O(log(N)) mafrix and a
O(log(N)) vector. The cost is O(N + log?(N)) and is actually very low as

will be shown with numerical experiments below.

[Remark 1] Step 1, the main preparation stage is the most expensive step of
this algorithm, especially the wavelet transform part. This step could be very
expensive compare to standard methods. However, if we need the solution of lots
of different initial values at very few points this algorithm is more efficient than
the usual methods.

[Remark 2] If we change step 2 to computing the full version of K instead of
the banded version, we can obtain the matrix for computing the whole solution
for any initial values. The extra cost is O(N?log(N }), because each step costs
O(N log(N)) , as explained in [EnOZh]. This could be a good algorithm when
the whole solution of a equation is needed for lots of different initial conditions.
But this extra cost is actually very expensive (similar to the cost of [step 1] and it

is unnecessary if all we need is the solution at a few points.
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4.3 Variations

The algorithm we described in the previous section has an atiractive operation
count but the preparation stage, especially the wavelet transform part, is very
time consuming. This inspires us to find a way to cut the number of wavelet
transforms. This is indeed possible if the equation has some special properties.
We can significantly reduce the preparation time in those cases.

Let us first consider the case that the parabolic term (second order term) can
be written as a product of a function of time and the space dependent part. In
this case we can change the scaling of time and make the second order term time-

independent. Suppose the equation is
u, = aft)f(z)u,, + lower order terms.

We can make a change of variable

dr
Et' = O.’(t).

The resulting equation for 7 would have a time-independent second order term:

dt
U, = —t, = B(x)u,, + lower order terms.

Toodr
Now if we use a semi-implicit method, i.e. one, which only is implicit for the
second order term, we only need to compute the inverse of the implicit part once

(because it is time-independent), thus significantly decrease the preparation time.
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Suppose after the time scaling the equation is:
ity = a(T) Uy + b, t)u, + oz, t)u. (4.4)
A semi-implicit scheme
1 1
(I— Ea(m)D+D_)u”+1 =(I+ §a(m)D+D_ + b(z,1) Dy + ez, t))u"
would have a matrix form of
Llun-l‘l = (L2 '+' BHDO ‘l‘ C”)u

where
Ly: matrix form of I — 2a(z)D, D_,
L,: matrix form of I + la(z)D,D_,
Dy: matrix form of difference operator Dy,
Br, C7: diagonal matrices, matrix form of b(z,t) and ¢(z,1).

Let K" be the matrix that computes y™t! from u™:
y”tl = Kny™,
Then we have
K" = L1, + L7 B™Dy + L1C™.
The wavelet form of K™ is:

En = WEKW' = WL L,W' + WL B DoW' + WL'CmW!
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We can save the preparation time in each time step by calculating the following
time-independent components in advance: W L7 1L, Wi, WL, DoW’ and W'
At each time step, we need to calculate
PK{n)P = PWKW-1P
= PWIILLP + PWLT B(n)DoW'P + PWLC(n)W'P

which cost O(N log*(IV)).

Here is a more detailed description:

Algorithm 3 (Vai'iation 1)

[Step 1] Compute WLy 1L, W, WL, D,W' and W'

[Step 2] Calculaie |

PK"P = PWK"W-'P
= PWLT'L,W'P + PWLT'B*"D,W'P + PWLIIC"W'P
and then compute
PRP = (PKNP)(PKN-1P)..(PK'P).

[Step 3] (Same as in the Basic Algorithm) Now we are ready to calculate the

solution at the point using all kinds of initial data.

1. Calculate the wavelet transform of the initial data P, which we call

~

PO,
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9. PN = KPo,
3. Do the inverse transform for PN and obtain PN,

If the b(z,t) and ¢(z,t) in equation 4.4 can be separated into a function of £

and a time-independent part, i.e.,
wy = @)ty + by (8)ba(2)u, + ¢y (t)es(z)u

Then we can further save the preparation time because each Km is just a linear

combination of several time-independent terms:

En = Lo Ly + b() L7 By + e () L7 C,

Algorithm 4 (Variation 2)

[Step 1] Compute the wavelet form of L7'Ly, L7'B,, and L7'C, . We denote

them as W,, W, and W,.

[Step 2] Calculate
PE"P = PW, P + b,(t)PW,P + ¢,(t) PW, P
and
PR P = (PENP)(PKN-1P)...(PK'P).

[Step 3] (Same as in Basic Algorithm) Now we are ready to calculate the solution

at this point using all kinds of initial data.
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1. Calculate the wavelet transform of the initial data P°, which we call

A

PO,
2. PN = KP°.
3. Do the inverse transform for PV and obtain PN,
Consider equation
0
u, = L(z,t, b;)u (4.5)
If the linear operator L(z,t, Z) commutes with its indefinite integral,
t 0
/0 L(z,t, 5)d, (4.6)
we can replace the equation with
0

Uy = E(wagg)ua (4.7)

where L(z,£) is the average of L(z,t, 2 over t. For example, the solution for

the equation
uy = a{t)u,, + b(t)u,.
is the same as the solution of the equation
Uy = GUpy + Bum

where a = 7 fg a(t)dt and b = = fOT b(t)dt. So we can solve it as a time-independent

problem using the method of repeated squaring.
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Algorithm 5 (Commuting Case) In equation u; = L(z,t, £)u, if the linear
operator L{z,1, z%) commutes with its indefinite integral, we can replace it with a

time-independent equation and solve it using the algorithm for time-independent

equations.
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CHAPTER 5

Numerical Results
A C++ program has been written implementing the algorithms of the preceding
section, and numerical experiments have been performed on Sparc 10 stations. We
calculated each example in 2 ways: using a standard finite difference scheme and

a wavelet scheme. The error and CPU time of each scheme is presented in the

tables.

Example 1. The Heat Equation

Consider the following parabolic problem:

4y = O,(af2)3,0) (5.1)

u(z,0) = ug(x)

with periodic boundary conditions and the following choices:

a(z) = 0.5 + 0.25sin(27z)

ug(z) = sin(4mrz)
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Solution of the parabolic Equation

1 ¥ T T T T ¥ T T T

1 1 1 i i 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
------ s diract method  +++++++; wavelet method

Figure 5.1: Parabolic Equation: Solutions by Direct Method and by Wavelet
Method

A central difference scheme is used with At = 0.25h2 . Numerical results and
the number of elements in A that are used to obtain the results are shown in
table 5.1 and 5.2, It is clear that the results obtained by tracing only O(log?(N))
elements are comparable with those obtained by direct method. The solution is
shown in Figure 5.1. The wavelet transform of the matrix A»at{ =0 and ¢ =1 /32

is shown in Figure 5.2 and Figure 5.3 respectively.
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The wavelet lransform for the parabolic Equat:on
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Figure 5.2: Parabolic Equation: Elements That are Greater Than 106 in A

The wavalat transform for the parabolic Equation (n=1 024)
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Figure 5.3: Parabolic Equation: Elements That are Greater Than 10-6 in A»
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grids | ||tg — ©e|lins | elements used | |Juy, — wellins
128 1.49 -10—4 502 | 1.4854-10-4
256 { 3.7134.10-% 592 | 3.6378-10-°
512 | $.2353-10-¢ 682 | 1.6767-10-°

Table 5.1: Parabolic Equation: Frrors of different methods, t=1/32

grids | |ug — u,llins | elements used | {|uy, — tellins
128 | 4.3279-10-° 502 | 5.5503-10—5
256 | 1.1030-10-5 592 5.617-10-°
512 | 2.9535-10-% 682 | 6.2006-10-°

Table 5.2: Parabolic Equation

+ Errors of different methods, t=1/512
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Example 2. Black-Scholes equation

Here we solve the Black-Scholes Equation

1
Pt 4 T'SPS + 50’252})‘5’3 = TP (5.2)
o =0.5
r = .05
0<5<o0
with initial condition
P=max(X —5,0) att=T (5.3)

Solution needed at t = 0.

The exact solution is:

i log{X) — log(S) - T(r — %02)
B aV2T

1 1
pP= §Xe“""T Erf(d) — 55 Erf(d — o4/T/2)

(5.4)

where

2 z
et dt

Erf(z) = 77?- .

We compute the solution in the interval (0,5) at T" = 0.25, using 256 grid points.

Table 5.8 shows the error of direct method and wavelet method, and the number
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Solution of the 1-D Black—-Scholes Equation
1 £ T T 1 ¥ T T

0.9

0.8}

0.7 -

Q.61

0.6F b

0.4 h

031

o2 N e : exact solution 1

+++++; wavelet solution
0.1} -4

Figure 5.4: Black-Scholes Equation: The solution by Wavelet Method and the
exact solution

of elements traced in A®. The solution is shown in Figure 5.4. The wavelet
transform of the matrix A™ at t = 0 and ¢ = 0.25 is shown in Figure 5.5 and Figure

5.6 respectively.

grids | |[ug — te|lims | elements used | [y, — Uellint

128 | 1.5853-10—* 542 | 1.55518-10—*

256 | 9.98835-10-5 652 | 9.90298-10-°

Table 5.3: Black-Scholes Equation: Errors of different methods, t=0.25
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The wavelet lransfom for the 1-D Black-Scholes Equation
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Figure 5.5: Black-Scholes Equation: Elements That are Greater Than 10-6 in A

The wavelet transform for the 1-D Black-Scholes Equation (n = 2048)
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Figure 5.6: Black-Scholes Equation: Elements That are Greater Than 10~ in A»
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Example 3. 2D parabolic equation
Consider the following parabolic problem:

Up = Q3 Ugg + 2012Ugy T Boglyy (5.5)
u(z,y,0) = uo(2,y)
with periodic boundary conditions and the following choices:
all(z,y) = 0.5 + 0.25sin(27y)
al2(z,y) = 0.115sin(27y) cos(2mx)

a22(z,y) = 0.5 + 0.25 cos(2mz)

up(z,y) = sin(4dry) + cos(8ry)

A central difference scheme is used on a 32 by 32 grid. The maximum error of the

wavelet method is 0.002377. The wavelet transform of the matrix A at £ = 0 and

¢t = 0.01 is shown in Figure 5.7 and Figure 5.8 respectively.
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Example 4. Black-Scholes Equation, Time-dependent Coefficients
In this example, we solve the Black-Scholes Equation
1
Pt-i*TSPS-I‘ 50’252P33 =7rP (56)
with two choices of time dependent volatility function

o.(8,t) = F(S)G(t) where

Gt)=1-02t for 0 <t <1

.

0.3 0 < S < 50,

F(S)=140.3 0285 if50 < S <150,

0.1 if § > 150.

\

o5(t) = 0.2G(2)

and the following parameters:
stock price = S, = 100,
strike price = K = 100,
interest rate = r = 0.10,
dividend yield = é = 0,

time to expiration = T = 1.
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Standard Crank-Nicolson Scheme is used:

1
L=-rS8Dy— ;0*S* D, D_+r (5.7)
1 1
(I— 5]5)}’“‘H = (I + —Z—L)P” (5.8)
We compute solution in domain [0,200] using 128, 256 and 512 grid points. The

basic algorithm is used. The error and time for ¢, is shown in table 5.4 and table

5.5. The error for oy is shown in table 5.6.

grids | error of normal method | error of wavelet method

128 0.0172265 0.0146943
256 0.00683063 0.00479132
- 512 0.002970085 0.00130449

Table 5.4: Time-dependent Black-Scholes Equation: Error of Basic Algorithm

grids | normal method | wavelet method | preparation

128 0.316634 0.03332 42.3316
256 1.41645 0.04999 245.24
512 5.8152 0.07984 1393.92

Table 5.5: Time-dependent Black-Scholes Equation: Computation Time of Basic

Algorithm
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grids | error(compare with direct method) |

128 6.68611e-5
256 1.1706e-4
512 1.8336e-4

Table 5.6: Time-dependent Black-Scholes Equation: Error of Basic Algorithm
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Example 5. Parabolic Equation, Time-dependent Coefficients

Consider the parabolic problem

= (@)t + b(E)elo)ute (5.9)

u(z, 0) = ug()
with zero boundary conditions and the following choices:

a(z) = 0.1(1 + 0.5sin(27x))
b(t) =1+ 0.5¢
¢(z) = 0.1 cos(2r )
Up{z) = sin(4rz)
Variation 2 is used with At = Az . The error of direct method and the wavelet
method is shown in Table 5.7. The time used for each method is shown in Table
5.8. The results obtained by Variation 2 are comparable with those obtained by

direct method. We can see Variation 2 saves preparation time as compared to the

basic algorithm (Please refer to Table 5.5).
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grids | error(compare with direct method) | # of elements traced

128 1.52719e-5 582
2566 2.50445e-5 722
512 3.57722e-5 862

Table 5.7: Time-dependent Parabolic Equation, Variation 2, Error

grids | normal method | wavelet method | preparation

128 0.41665 0.016666 9.59962
256 1.69993 0(.033332 35.7819
512 7.13305 0.049998 122.278

Table 5.8: Time-dependent Parabolic Equation, Variation 2, Time
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Example 8. Parabolic Equation, Commuting Case

Consider the following parabolic problem:

uy = b(t) 0, (a(z)0,)u (5.10)

u(z,0) = uo(2)
with zero boundary conditions and the following choices:

a(z) = 0.1(1 + 0.5sin(27z))
b(t) =1+0.5¢

up(z) = sin(4re)

Variation 3 is used with At = Az . The error of the direct method and the wavelet
method is shown in table 5.9. The time used for each method is shown in table
5.10. The results obtained by Variation 3 are comparable with those obtained by

direct method. We can see that Variation 3 is very fast.

grids | error(compare with direct method) | # of elements traced

128 3.49771e-5 582
256 2.93186e-5 722
512 3.17191e-5 862

Table 5.9: Time-dependent Parabolic Equation, Commuting Case, Error
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grids | normal method | wavelet method | wavelet transform

128 0.42364 0.566644 0.383318
256 1.67888 1.06662 1.51661
512 7.21105 1.83326 5.28312

Table 5.10: Time-dependent Parabolic Equation, Commuting Case, Time
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CHAPTER 8

Conclusion

Compare to Fourier transforms, wavelet transforms have the advantage of space
localization. This inspires us to investigate algorithms of obtaining local solutions.

In [EnOZh] the authors designed a fast method using repeated squaring of
A, where A is the matrix representation of a finite difference method and A s its
wavelet form. Observing that for a local solution only a small number of entries in
A needs to be calculated, we derived the algorithm for computing local solutions
using the repeated squaring idea.

Tf the equation has time dependent coeflicients, the method of repeated squar-
ing is no longer valid. The matrix A is time dependent , so is its wavelet form.
Explicit finite difference methods for parabolic equations has a very strict restric-
tion on time steps; i.e., dt/(dz)? < c. We need to use O(n?) time steps for solving
the equation to O(1) time, where n is the resolution of space variable. This is a
serious disadvantage for using wavelet methods to solve equations with time de-
pendent coefficients, because we need to compute A in every time step, which is
very expensive.

We can take much larger steps when using implicit methods. Only O(n) time

steps are needed for computing the equation to O(1) time. Standard implicit
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methods have the form of Avn+1 = Bv". We never compute A~ explicitly, because
it is a dense matrix. Instead, we solve a linear system using LU factorization at
each time step. However, A-! is sparse in wavelet representation. Thus we can
construct its wavelet form explicitly and turn the method into an explicit one. We

have

rtl = Com, (6.1)

where

C = (WA W) (WBW'), &=Wo. (6.2)

The matrix C is sparse in the finger form. This is an explicit method without
the strict time step restriction of standard explicit finite difference method. When
calculating local solutions, we only need to compute a small number of entries in
$n. We can compute only these entries thus save the computation time. This is
the basic idea of our fast algorithms. This algorithm is also useful for computing
the whole solution in the case that the vector 4i* is sparse in the wavelet form.

A limitation of the wavelet methods is that they require larger storing space as
compared to normal finite difference methods. This is because we need to construct
explicitly the matrix representation of finite difference methods in wavelet form.
This requires a lot more storage space as compared to the normal finite difference
methods, even when we take advantage of the sparse structure of the matrix’s

wavelet form.
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For the repeated squaring algorithm, the extension to higher dimension 1s quite
straight forward. In fact this method is preferable for multidimensional problems,
because of the simple fact that log(N4) = dlog(N). An example is presented in
chapter 4. We can also generalize the algorithms for the time-dependent coefficient

case to higher dimension by using ADI methods.
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