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1. Introduction. In this paper, a numerical method is presented for solving Ste-
fan problems and for simulating the behavior that arises from the unstable solidification
of pure substances. This method accurately computes the boundary between the solid
and liquid phases of a material as it undergoes the process of solidification, as well as
the temperature of the material as it evolves over time.

Stefan problems typically involve the evolution of smooth boundaries or interfaces
between different phases of a pure substance. For example, a Stefan model can be
used to model the melting of ice in water. Problems such as these, as well as problems
involving the stable solidification of a substance, are known as classical Stefan problems.
In one dimension, Stefan problems have been studied in depth, and there are many
excellent numerical algorithms for solving them. (See for example [2, 22].) However,
the drawback for many of these methods is the difficulty one encounters when trying
to extend these methods to higher dimensions.

Oftentimes, the goal of studying and developing algorithms for solving Stefan prob-
lems is to adapt and apply these methods to the problem of modeling unstable or
dendritic solidification. The supercooled Stefan problem, coupled with an anisotropic
curvature and velocity dependent boundary condition, is a model for unstable solid-
ification. In particular, this model can be applied to the widely studied problem of
dendritic crystal growth.

The process of crystal growth begins when one places a small seed of solid material
into a surrounding bath of undercooled liquid. Heat is released at the solid/liquid
interface into the liquid region. Undercooling drives the growth of the solid and triggers
the instability mechanism, thereby causing the solid phase of the material to grow into
the liquid phase in a fingerlike or dendritic fashion. The resulting interfacial shapes can
be complex and thus, difficult to simulate numerically. However, accurate numerical
algorithms are needed because they may be used to further our understanding of the role
certain mechanisms play in governing crystal growth. Currently, the effect parameters
such as anisotropy and surface tension have upon the shape of the crystal is of great
interest to those involved in dendritic growth theory because these parameters are
believed to determine the unique dendritic shape of the crystal. Hence these schemes
could be of great value to scientists involved in such disciplines as chemistry, geology,
physics and especially materials science, where controlling solidification is a fundamental
goal (sce [29]).

Before describing some of the numerical approaches for modeling dendritic solid-
ification, we briefly review the physics of the problem. As described in [12], planar
solidification fronts are morphologically unstable. This instability was first analyzed by
Mullins and Sekerka in [16]. In [6], Ivantsov found steady state solutions to the free
boundary problem when the temperature at the interface is equal to a constant, i.e.
when capillary and interfacial kinetic effects are disregarded. As outlined in [12], for
any undercooling < 1, there exists a whole family of solutions for a paroboloidal inter-
face. From Ivantsov’s solutions, we get a relationship between the given undercooling
and the Peclet number, which is proportional to the product of the velocity, V, and the

2



radius, R, of the dendritic tip.

Ivantsov’s relation, VR = constant, only provides a relation between V and R for
a given undercooling., Consequently, much analytical work has been done in an attempt
to understand how a unique dendritic operating state is selected for a fixed under-
cooling. Two major theories have emerged: marginal stability theory and microscopic
solvability theory. As described in [13], the marginal stability theory of Langer and
Muller-Krumbhaar hypothesizes that the dendritic tip radius is the marginally stable
wavelength from the Mullins-Sekerka analysis. From this, the theory predicts a unique
operating state based upon a selection parameter.

More recently, microscopic solvability theory has been developed based upon so-
lutions to the Nash-Glicksman integral equation. This theory states that there is no
steady state solution when the interfacial temperature is dependent upon isotropic suz-
face tension. A stable stationary solution does exist, however, when surface tension
is considered anisotropic. This theory leads to a solvability condition which in turn
predicts a unique value for the tip radius. At present, it is unclear which theory is more
accurate in predicting the unique dendritic operating state. We refer the interested
reader to [12, 19] for a more thorough review of the underlying physics of modeling
dendritic solidification.

What is clear from dendrite growth theory is that surface tension and anisotropy
play an important role in determining the evolution of solidification fronts. Thus, any
useful numerical method for modeling unstable solidification must be able to simulate
anisotropic surface tension as well as other relevant physical parameters. Furthermore,
it is advantageous for a numerical method to be able to simulate the intricate interfacial
geometry that arises from crystal growth. Lastly, with the advent of supercomputers,
there is considerable motivation to develop feasible numerical algorithms which translate
easily to three dimensions.

Different numerical approaches for simulating crystal growth are often based on
different formulations of the problem. For example, boundary integral methods are
based upon numerically solving an integral equation on the moving boundary, i.e. the
front. One drawback to boundary integral methods is that the necessary parametriza-
tion of the boundary makes it hard to extend such methods to higher dimensions. In
one dimension, however, boundary integral methods work well and in [2], Brattkus and
Meiron have obtained accurate results. Another approach has been to use finite element
methods [17, 23]. Though these adaptive algorithms tend to be rather complicated and
computationally expensive, the three dimensional simulations in [23] are impressive and
prove thaf finite element methods are competitive with other numerical approaches.

Employing front tracking methods has always been a common way of solving mov-
ing boundary problems. In [7}, Juric and Tryggvason presented a numerical method
which incorporated ideas from the immersed boundary method for transferring infor-
mation from the moving boundary to the fixed temperature grid. Their method was
successful in modeling many of the physical features of dendritic solidification, such as
discontinuous material properties. However, special care had to be taken {as is com-
mon for front tracking methods) when topological changes such as merging occurred
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at the front. Another front tracking method was introduced by Roosen and Taylor in
(21]. They assumed that the shape of the crystal was a polygon and thus were able
to avoid directly computing curvature at the front. Unlike traditional front tracking
methods, their method was able to detect and deal with topological changes. However,
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rithm for computing dendritic solidification. His formulation was based on relating the
Gibbs-Thomson relation to a local equilibrium condition in which an energy functional,
dependent upon bulk and surface energies, is minimized. With this method, Almgren
performed many quantitative experiments comparing the numerical results with what
is predicted from dendritic growth theory. When comparing the radii and velocities of
dendritic tips, his results were close to the [vantsov solutions.

Phase-field methods have become increasingly popular over the past few years.
These methods are based on phase-field models, which differ from the classical model of
a sharp interface. In a phase-field model, the boundary is ‘spread out’ and a phase-field
variable ¢ is introduced such that away from the boundary, ¢ = 0 or 1 and at points
on the interface, ¢ € (0,1). The equations of motion are recast in terms of ¢ and the
location of the front is stored implicitly in ¢. By using a phase-field approach, interfacial
geometric quantities such as curvature and the outward normal vector do not have to
be computed since they are already included in the model. Phase-field methods present
an advantage over front tracking methods because complex interfacial shapes pose no
problem since the front is not being explicitly tracked.

There have been many papers published about phase-field models and related
phase-field methods (see [3, 4, 8, 9, 10, 20, 28]). Recently, in [28], Wang and Sek-
erka used a thermodynamically consistent phase-field model to construct numerical
algorithms, which they used to study the morphologies of dendritic tips. Similarly in
[9], Karma and Rappel presented a phase-field method which yielded numerical results
in close agreement with steady-state solutions. Their method is based on an analysis
which expands the range of applicability of the phase-field method to include smaller
kinetic effects and smaller ratios of capillary length to interface thickness. Based on
this analysis, they have been able to apply a phase-field method to simulate three
dimensional dendritic growth ([8]). -

There is an inherent disadvantage to using phase-field methods. Roughly speaking,
the evolution equation for ¢ takes the form of a reaction-diffusion equation, i.e,
¢; = eAp—LF(¢), where € is a parameter that depends upon the interface thickness. In
[15], Merriman, Bence and Osher proved that to numerically resolve such an equation,
the mesh size Az is restricted by the relation (Az/e) <« 1. So although in theory,
solutions to phase-field model equations converge to the solutions of sharp interface
model equations as € — 0, numerically speaking, phase-field methods are held back by
their inability to resolve the interface properly. For example, many features of the three
dimensional dendritic simulations in [10}, (which were based on a phase-field model),
have since been shown to be mesh dependent.

Solidification problems are essentially problems involving moving boundaries and
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as such, they are well suited for numerical simulation by the level set method. Level
set methods are ideal for moving boundary problems because instead of tracking the
boundary or front using a Lagrangian approach, one can instead capture the front on
a fixed grid (Eulerian approach). In [I8], the level set method was first introduced.
Since then, it has been applied to numerous problems (e.g. see [5, 15, 24, 27]). The
main idea bchind the level set method is that the front is always represented by the
zero level set of a smooth, continuous function. Hence, the front can be graphed simply
by plotting a specific contour level. One of the main advantages the level set method
affords over front tracking methods and boundary integral methods is that the front is
never explicitly tracked and hence, complicated interfacial shapes can be represented
easily, including interfacial topology changes arising from the merging of two crystalline
fronts. Also, the level set method can be easily extended to higher dimensions.

In {24}, the anthors first presented a somewhat complicated and computationally
expensive level set method for solving problems involving crystal growth and dendritic
solidification. Their method combined a level set approach with a boundary integral
formulation of the problem. Our method differs from [24] in that we take a simpler
approach. We avoid using a boundary integral method to compute the normal velocity
at the interface. Also, following the results and work done in [27], we reinitialize the
level set function to be a signed distance function at every timestep. Our method
improves upon the method in [24] because it retains all the advantages of using a
level set approach without any of the complications and restrictions that arise from
employing a boundary integral method. Furthermore, since our method is based upon
a sharp interface model, it has an advantage over phase-field methods in the sense that
the grid size is not constrained by an arbitrary parameter representing the thickness of
the front.

In this paper, we present the details and results from this new numerical method.
In Section 2, we outline the formulation of the Stefan problem and how we modify it
to model unstable solidification. In Section 3, we present the algorithm and in Section
4, we discuss the details of its numerical implementation. Some of the results of using
this method are shown in Section 5 and in Section 6 we draw conclusions.

2. Equations of Motion. As detailed in [14], the Stefan problem consists of
finding the temperature and the boundary between different phases of a pure material.
These two variables evolve by the diffusion of heat from external and internal heat
sources. We are mainly concerned with the two-phase one-front Stefan problem for
which there exist classical and generalized solutions.

As mentioned before, the modified Stefan problem with supercooled liquids, is an
unstable problem that can be used to model the spontaneous pattern formation that
arises in dendritic solidification. As described in {11], ‘this instability occurs because
diffusion kinetics favors configurations in which the growing solid has as large a surface
area as possible.” Even with smooth initial interfacial shapes, the evolving front will
cease to be smooth and can become quite complicated. Work done by Mullins and
Sekerka on the stability analysis of this problem proved that a small perturbation to a
flat interface will grow unstably in the case of supercooled temperatures.
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We consider the two-phase Stefan problem. In the case of modeling dendritic solid-
ification, we include effects of undercooling, crystalline anisotropy, surface tension and
molecular kinetics. We consider a square domain or box, D, of a pure material where
at every timestep and at every gridpoint, the material is either in liquid or solid phase.
Let T'(Z,t) represent the temperature of the material. The region where the material is
solid is denoted as £, and the region where the malerial is liquid as £3°. The interface
between the solid and liquid phases, i.e. the boundary of 2, will be denoted by T'. Let
V represent the normal velocity at the front T.

The governing equations for our formulation of the problem are as follows:

aT - —_

(1) tym =V - (k,VT), F€Q
at

(2) c[%—f =¥ (kVT), Feqr

where ¢, and ¢; denote the volumetric heat capacities and &, and &, the thermal diffu-

sivities of the material in {2 and ¢, respectively. On I, the following jump condition
holds: i

. L aﬂ‘iq BTSOL'
(3) LV = — [kl o7 k, e }
where I denotes the latent heat of solidification. The jump is taken from liquid to solid,
and the vector 7 is the outward normal vector at the front. In the liquid region, ﬁg%i
denotes the normal derivative of T' and ng%ﬂ the corresponding normal derivative of T°
in the solid region. Equation 3 is commonly referred to as the Stefan condition.

For a classical Stefan problem, one sets T(Z,t) = T,, on I', where T,, is a constant
equal to the melting temperature of the material. But for application to problems
involving crystal growth and dendritic solidification, one would like to take into account
the effects of surface tension, crystalline anisotropy, and molecular kinetics. Thus, the
second boundary condition we consider is the classical (Gibbs-Thomson relation: for

zel,
(4) T(E, t) = —fok — Evv

where x denotes the curvature at the front, €, the surface tension coefficient, and ¢y
the molecular kinetic coefficient. In the isotropic case, both e, and ¢y are taken to be
constant. For the anisotropic case, following the notation found in [24], one can take:

(5) coli) = (1 — Acos(kab+6,))

(6) ‘ (i) = &,(1 — Acos(k 6 +0,))

where the constants A, k4, 8,, € and €, depend upon the material. Here, 6 is the angle
between the z-axis and 7, while #, controls the angle of the symmetry axis upon which
the crystal grows.
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In all our experiments, we set the thermal diffusivities and heat capacities equal to
one in both liquid and solid regions Also, unless otherwise noted, we set L = 1. Thus,
the somewhat simplified problem becomes that of finding T'(#,t) and T'(¢) such that
equations

7 OT _AT seD\T

NS at 1 \
T .

(®) | V:—[«éﬁ], FeT()

are satisfied, along with eqs. 4, 5 and 6.

3. Description of Algorithm. Our method for solving the Stefan problem uses a
level set approach to effectively capture the front at each new timestep, and an implicit
finite difference scheme to solve the heat equation everywhere away from the front. This
new method improves upon an earlier level set approach ([24]) because it does not keep
track of the front’s history of motion.

3.1. Level Set Function and Related Equations. We construct a level set
function ¢, such that at any time ¢, the front is equal to the zero level set of ¢, i.e.

(9) T(t) = {7 € D : §(Z,1) = 0}.

Initially, ¢ is set equal to the signed distance function from the front such that ¢ is
positive in 2¢ (liquid phase) and nugative in & (solid phase).

+d, TeQ*
#(Z,0) = 0, ¥l
—d, Zef}

where d is the distance from the front.

The idea behind the level set method is to move ¢ with the correct speed, V, at the
front and then to update the temperature, T(Z,t), with the new position of the front
stored implicitly in ¢. With this approach, we avoid any difficulties that come from
explicitly tracking the front and we increase our ability to deal with complex interfacial
shapes.

Given the normal speed, V, at which the front moves, we want to construct a speed
function, F', which is a continuous extension of V off T onto all of D. The equation of
motion governing ¢ is then given by:

(10) ¢, + F|Vg| = 0.

This equation will move ¢ with the correct speed at the front so that I will always be
equal to the zero level set of ¢.

We also use ¢ to define the outward normal vector 7 by

—

11 WI_;—
(1) AT
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and the curvature term « by
ot — ﬁ
(12) mzv-ﬁ:v-( 95).

From egs. 8 and 11, we can rewrite the expression for V as

(13) V=—[VI]-7=-[VT] ( qu)

where the jump in [ﬁT] is taken from liquid to solid regions. Since F is equal to V
along the interface, we can combine eqs. 10 and 13 to get the following equation, which
of course is only valid on the zero level set of ¢:

(14) $.=[VT]-Vg, &eT

Next, we need to extend the velocity function V in a reasonable way to a small two
dimensional region which includes T,

3.2. Extension of Normal Velocity off the Interface. In our algorithm, we
compute approximations to [ﬁ’T] at every gridpoint. The problem that arises in com-
puting [6T] is that this quantity is.O(1) only at points close to or on the front. Let F'
be defined as an extension of V off of T'; such an extension should not be discontinuous
near the interface. By constructing F' to be a continuous extension of V', we then avoid
unnecessary numerical difficulties when we solve eqs, 10 and 14.

The approximation to [Y_?T} is based upon approximations to the derivatives of T'in
four coordinate directions (the standard z,y Cartesian coordinates and the 45° rotated
coordinates  and 7). We use these four coordinate directions to cut down on grid
orientation effects, as will be explained in more detail in Section 5.

Each approximation to the jump in a derivative of T can be continuously extended
away from the front by the following advection equations:

(15) ul 4 S(dg,)ul =0
(16) w2+ S(46,)u? = 0
(17) w3 + S(94,Ju? = 0
(18) w4 S(ddJud = 0

where u! = [%] , U? o= [%ﬂ, ud = [%] and u? = [%%m] on I'. S is equal to the sign
function. Equations 15 through 18 have the effect of continuously extending 1!, u2, u3, u?
away from the front by advecting these fields in the proper upwinded direction. Note
that these equations will not degrade the value of V on the front because ¢ is zero on

I, hence so are S(¢é,), S(dd,), S(d¢,) and S(Pe,).
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3.3. Reinitialization of ¢. From egs. 11, 12 and 13, we see that computation of
the normal vector, normal velocity and curvature at the front are all dependent upon
the level set function ¢. However, by eq. 10, the level set function will cease to be an
exact distance function even after rne timestep, .In order to keep the approximations
to 7z, V and k accurate, we want to avoid having steep or flat gradients develop in ¢.
One way to avoid these numerical difficulties is to reinitialize ¢ to be an exact distance
function from the evolving front T' at each timestep.

The process we use to reinitialize ¢ is due to work and results found in [27]. In
that paper, an algorithm was presented for reinitializing the level set function ¢ to be
an exact signed distance function from the front. The basic idea behind this method
is that given a function ¢ that is not a distance function, one can evolve it into a
function ¢ that is an exact signed distance function from the zero level set of ¢,. This
1s accomplished by iterating the equation

(19) b = S(o)(1 — [V4)

to steady state, where ¢(Z,0) = ¢o(Z) and S again denotes the sign function. As in
[27], we smooth the sign function S by the equation

(20) Se(¢o) = N

to avoid any numerical difficulties.
By using this approach, we avoid having to explicitly find the contour ¢, = 0 and
then resetting values of ¢y at gridpoints neighboring the front. From eq. 19, it is clear

that the original position of the front will not change, but at points away from T, ¢ will
be evolved into a distance function.

3.4. Updating the Temperature. After moving ¢ by the correct velocity at the
front and then reinitializing ¢ to be an exact signed distance function from T', we update
the temperature T of the material. Updating T essentially boils down to solving the
heat equation over the whole domain D, with special care taken at points near the
interface between the two phases.

At points away from the front, we solve the heat equation using a standard five-
point stencil. When we are at points near the front, we use one-sided differencing and
values of ¢ to incorporate the front’s position into the stencil. We thereby effectively
capture the front using the level set function ¢.

For points near I', we employ an interpolation scheme to approximate the spatial
double derivatives of T. Since after reinitialization, ¢ is an exact distance function, we
can use ¢ to defect when we are close to or on the front I'. Moreover, we can use ¢ to
interpolate the distances between a point on the front, ¥; € T', and gridpoints neigh-
boring it in either the vertical or horizontal direction. (Note we are only considering
those points on the front which intersect some gridline z = pA« and/or y = gAy.) If 2
gridpoint intersects the front, we set the value of T at that gridpoint equal to the value
given by the Gibbs-Thomson relation, eq. 4.
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For example, suppose I ; intersects some horizontal gridline, y = JAy, for J equal to
an integer. Then, using divided differences tables, one can interpolate two polynomials,
PL and PR, which are constructed from #; and gridpoints to the left and right of the
front respectively. PL and P2 can then be differentiated twice to obtain the coefficients
used to approximate T, at the two gridpoints bordering &, in the horizontal direction.

One advantage to this method is thal higher order accuracy can be achieved simply
by using a higher order interpolant to T for points near the front. Higher order inter-
polants are constructed by adding more gridpoints to the divided differences tables. In
the special case where two fronts are merging and there are not enough gridpoints in
between to achieve standard second order accuracy, we use a first order interpolating
polynomial. In general, this interpolation scheme makes the extension of this method
to higher dimensions straightforward and easy.

3.4.1. Curvature. In two dimensions, the Gibbs-Thomson relation (eq. 4) gov-
erns the value of T on the front. Hence, the curvature, &, at the front needs to he
computed. From eq. 12,  in nonconservative form can be rewritten as:

(qsg qf’xw o Qqsmqsy ¢:x:y + 9’53¢yy)
(62 + ¢2)3

.(21) K=

We compute the value of « at gridpoints neighboring the front, then we interpolate
its value on the front whenever it is needed. Eq. 21 is numerically solved using centered
finite difference approximations to the partial derivatives of ¢.

3.5. Outline of the Method. The steps of our algorithm can now be outlined
as follows:
Step 1  Initialize T(Z,t) and ¢(Z, 1) so that ¢ is the signed normal distance from the
interface between the two phases of the material.
Step 2 Compute the velocity field F'(Z,¢), which is a continuous extension of the
normal velocity V' at the front onto the whole domain D. F is computed from
aT

approximations to [E??J] .

Step 3  Update ¢ by the equation, ¢, + F W‘qﬂ = (, for one timestep. The front’s
new position is now equal to the zero level set of . Denote this updated ¢ as
¢o. (Note that ¢, is not a distance function.)

Step 4 Reinitialize ¢ to be an exact signed distance function by solving the equation,
¢s = S(do)(1 — |€7¢2) to steady state. Here ¢(Z,0) = ¢o(Z).

Step 5 Away from I, solve for T' by discretizing the heat equation using an implicit
centered finite difference scheme. For gridpoints less than or equal to a stepsize
away from the front, use ¢ to interpolate polynomials approximating 7. These
polynomials are constructed so that their values on the front satisfy the Gibbs-
Thomson relation, eq. 4. Differentiate these polynomials to obtain values of
AT which can then be used to update T at those gridpoints neighboring T'.

Step 6  Repeat Steps 2 through 5 to get the next updated values of ¢ and 7.
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4. Discretization. In all of our computations, we take the domain D to be a
square box. Both Az and Ay are equal to a uniform mesh size h. For a given square
side of length SQ L, weset h = SQL , where (M +1)? is the total number of gridpoints on
the grid. The timestep taken in the main loop of the algorithm is Af, i.e. the timestep
taken when we discretize egs. 7 and 10. We take the following definitions throughout
the rest of the section:

£ = (i = 1)h, (G — 1)A)

$ij = 915(5:'.3')

T = T(fi,j)

=1, . M+1.
In this section, for convenience we assume that the square domain D is of the form
{0, 5QL] x {0, S@L], but in our experimental results (presented in Section 5), we often
take D to be of the form [—-SQL/2,SQL/2] x [-SQL/2,5QL/2].

4.1. Computation of Normal Velocity Components. We first compute ap-
proximations to the jump in VT across the interface. Breaking this down even further,
we compute jumps in the derivatives of T' in the aforementioned four coordinate direc-
tions. (See fig. 1.) Thus, we compute approximations to {%ﬂ, [%—75], [%%’;—] and [%—f].

Using the same notation as in Section 3.2, we compute 4 fields: u} ;,uf ., u? and

u?, which are defined on all of D. At gridpoints on or near I, u} u?,uf. and uf,

j,
approximate the jumps in 2L, gg, gf; and &% ¢ (respectively) across the lnterface. Away

from I', w! - ut are generally close to zero.

The discretizations we use to compute u1 uzj, ufj and 'u,‘*j are:
1

uls = =8 (¢ ((Tizz5 — Tipr ) — Ty — Tima i)/ B
u?'j = tj(éy)(( Qg2 zj-l-l) ( ti-1 Ti,j—?))/h
u?_? - ,J(qéﬂ)(( i+2,742 Ti+1,j+1) - (Tiwl,j««l - Timz,j—z))/(ﬁh)

u‘*'J =S (0N (Tiyajm2 = Tinnjo1) — (Licajor — Loz j2))/( (v2h).

The sign functions of the different derivatives of ¢ in the above discrete equations are

necessary in order to ensure that the jumps are consistently computed from solid to
liquid phases.

4.2. Discretization of the Velocity Extension. As mentioned in Section 3.2,
sharp jumps may develop in the computation of u} ., u? ,u3. and u“ These discontinu-
ities may affect the accuracy of the calculation of the velomty ﬁeld F' and the updating
of ¢ from eq. 10. Accordingly, we would like to extend u1
all of 1.

We continuously extend V off the front by solving an appropriate advection equation

for each component. For gridpoints on opposite sides of I', we want the characteristics
11

u?  ud. and u4 from I" to
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eta

Y

zeta

Fia. 1. 4 coordinate directions used to compute the normal velocity.

N

| | .

| [ X
i-1 i i+1 i+2

u

Fra. 2. Profile of u': The front is between x; and wiy1. When extending u!, characteristics for ul
should point in opposile directions.

for the advection equation to point in opposite directions, as shown in fig. 2. Eqgs. 15 -
18 were derived based on the fact that S(¢¢,), S(¢d,), S(#¢,) and S(¢¢;) will properly
control the direction in which we want the characteristics for each advection equation
to point.

We discretize eqs. 15 - 18 with a first order upwind scheme. The choice of
the timestep At, ;0nq 18 completely arbitrary and not necessarily related to the main
timestep At. The only constraint we need to impose on the timestep At,;..4 1s that it
satisfy the CFL condition: At,.,.../h < 1. Thus we discretize eq. 15 by the scheme

if S,;(6,) > 0, then ) =yl cix( Lo _ 10y

if S;;(¢és) <0, then ul(“m) 1("[“")_‘_ efl*(u Hold) 1 (old))

1.1_1 4,7

with cfl set to .5. Eqgs. 16 - 18 are dlscretlzed similarly.

4.3. Discretization in Time. When we solve for eqs. 10 and 19, we need to
compute approximations to the spatial derivatives of ¢. For increased accuracy we use
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second order ENO approximations. To avoid any instabilities arising from the temporal
discretization of egs. 10 and 19, we follow work done in {25} and use a simple TVD-
Runge-Kutta type time discretization. We use a semi-discrete, method of lines approach
to solving the PDEs and we use a 3rd order Runge-Kutta scheme in time.

Thus we consider the equation

(22) P = £(q§)

where L is the spatial operator of either eq. 10 or 19. The time discretization of eq. 22
is as follows: '
(1) = ¢ 4 At L(g0)
$0) = 2400 + Tg) + TA¢ L)
A 59) = 1400 1 900 1 A1 £(600)
where L 1s the discrete approximation to £ and should not be confused with the constant
latent heat of solidification. Note that the timestep used in the above equations depends
upon the particular partial differential equation we are solving. When we update ¢ by
eq. 10, we use the main timestep At. When we reinitialize ¢ by eq. 19, we use a
different timestep denoted by At

reinit’

4.4, Discretization of Updating of the Level Set Function. To discretize
eq. 10, we need to compute F; ;, which in turn is computed from ufj, k = 1.4. The
folowing discrete equations are equally valid:

).l
Fi=uler) tuils
' “"'(lvm o W\l

o (8) + ()
7\ |V i AV i

So we use an average of the two expressions for F} ; to obtain

3

23 Fij"“_ 3 = + ? e +'U:i- = *’*"UEJ I ‘
2) £ 2 ('U i (|V¢| i i Vél/,; YAVl TNV

Hence, Fz’,j"—.}qbl = %(“ij(%)i,j + uij(qsy)i,j +ud (n)ig +ut (b))

The spatial first derivatives of ¢ in the above relation are approximated by a second
order ENO scheme. From eq. 10, we end up solving for the right hand side of the
following equation:

¢y = ”“”l;z(u%,j(%)i,j +uZ (b )i +ud ()i + u?,j(‘ré()i,j)‘

Here ¢ is updated using a third order Runge-Kutta scheme in time and a second order
ENQ scheme in space.
For ey # 0, we compute F; ; explicitly since values of F;; will be used later on to
approximate the normal velocity at points on the front. The discrete approximation to
13



l€’¢| is computed using central difference approximations to ., ¢,, ¢, and ;.

\/(sbx)?j TG
\/(cﬁ 2+ (6)2,

depending upon where the approximation to §V¢»l is being used. Fma,lly, ;; can be

Hence, |§q5|m- =

computed using eq. 23 and the above discrete approximations to quS!.

4.5, Discretization of the Reinitialization of ¢. In two dimensions, eq. 19
can be rewritien as

(24) - b = S(do)(1 ~ (/62 + 42)

As shown in [27], one way of discretizing eq. 24 is by Godunov’s method:

(25) BN = ¢ — ALS(40.)G (1)
where
a = mqsz,_;c (qsz,;; ¢¢ 1,3)/h
b=Dt¢,; = (45:+13 $i5)/h
CED;@J (s, Qf’” 1)/h
dED;WqSt ( 1,7+1 T )/h
Se(#)i;

yfmax((at)?, (67)?) + max((ct)?, (d=)2) — 1 if $2.>0
G(8)i; = § y/max((a™)?, (5)2) + max((c™)%, (d¥)?) — 1 if ¢ <0
0 otherwise

Eq. 25 1s a first order, consistent, monotone scheme for solving eq. 24. To achieve
higher order accuracy in space, we replace the first order backward and forward differ-
ence approximations to ¢, and ¢, by second order ENO approximations. As detailed in
Section 4.3, we use a method of lines approach to discretize eq. 24 and our timestepping
scheme is a third order Runge-Kutta scheme. Thus, our way of discretizing eq. 24 is
TVD (total variation-diminishing).

In our computation of S,, we take e = 2h for smoothing purposes, which are needed
when ¢, ; is close to zero. Since the timestep, At ;.:;, taken is again not related to the
main timestep At, we take At ;... = h/5.

We iterate our scheme for eq. 24 by a fixed number of iterations. Typically only
3-4 iterations are necessary in order for ¢ to be sufficiently evolved close enough to a
distance function.

4.6. Discretization of Temperature Update. As mentioned in Section 3.4, T
is updated by solving the heat equation for 7' in all of D. We use an implicit scheme
to solve the heat equation in order to avoid any harsh timestep constraints.

14



Away from I', T is updated by the standard 5-point stencil scheme:

+1 n n " .
(26) Tﬁj _ Tif'tj — "“3:';13 - 2Ti‘3+1 + Tz -Eilﬁ‘ + Txﬂl - 2Ti,;—1 + Tznj+11

At h? h?

With qﬁ?jl, we check at every gridpoint to see whether or not a certain gridpoint
borders the front in either the horizontal or vertical direction. For those points which do
neighbor T', we compute the distance (horizontal and/or vertical) from those gridpoints
to points on the front. Since ""*“ is equal to a distance function from the front, these
distances are quite easy to compute.

" For example, suppose Zy € I' and &; = (z4,{j ~ 1)h) for some integer j. Let us
consider the two gridpoints &;; and &, ; which border &, i.e. where
r; < z; < z;4,. The distances

¢i—§-1j )

27 T, —py = | —F ) = r h
27 e (¢f+1,j — ¢i; '
(28) wfm:i:z-z—(wwfj'j—>h=r2h

Piyr,j — i

are used when we construct interpolating polynomials PL and PR. (Note ry + r, =
1.) PL and PE are both functions of  only. We construct PL from the values of
hyroy (&), T; 5, Tio1 js Ty 4y ebe. and PE from the values of hori, T(Z ), Tig s Tipo s
Tita,5, €tc.

With the coefficients of the inferpolated polynomials computed beforehand, we can
differentiate each polynomial twice to obtain approximations to the double derivatives
with respect to x. Thus at &, Ty, = PL and at &y, ;, T,, & PE. Note that since we
are using an implicit scheme, P and PR are always constructed in the abstract sense
from values of 774,

Taking into account both the gridpoints away {from and near I', the general form of
the discrete equation we solve is:

(29) C Tn+1 Tl?::?-i—ft (Tn+1 Tn+1 T'n.-H Tn—l-l )

B3 4,5 1,77 =177 T g+ T i1t

We have found a simple way of solving this nonlinear discrete equation is by the Gauss-
Seidel method. Our stopping criterion is
SUETNY = TN) < tol, where tol = 1.0-10-12,

1.0=1

4.7. Discretization of Curvature. From the Gibbs-Thomson relation, eq. 4,
we see that T'(Z;) is dependent upon «(Z;). Thus, when we construct the interpolating
polynomials as outlined in Section 4.6, approximations to x(Z;) are needed.

The expression we use for curvature, &, is given by eq. 21. In this formula for ,

Py Pys P and @0 are all discretized by central differencing. The mixed derivative term
gy 18 discretized by:

(30) (buy)ii = Pirt it — Pigr,io1 _2¢i-1,j+1 + di_1,-1
4h
15



i,j+1

front

Fra. 3. Values of k and V ol poinis on the froni (A and B) are interpolated from neighboring gridpoints.

We do not calculate the curvature at every gridpoint since it is only necessary to
compute # at gridpoints bordering the front. If e, £ 0, then the value of x on I is
interpolated from the value of « at neighboring gridpoints. Similarly, for € # 0, the
discrete velocity field F;; is used to approximate V(¥;) for use in the interpolating
polynomials.

In fig. 3, the front intersects the grid at two places, denoted by A and B. Let us
denote the curvature and normal velocity at these two points by x4, kg5, V4 and V.
We approximate x4 and kg from values of ¢ at neighboring gridpoints, and V, and
Vg are approximated from values of F' at neighboring gridpoints. From eq. 4, T(A) =
—epry—eyVy and T(B) = —eqkp —ey V. At the gridpoint (z;,y,,1), the value of T'(A)
is used in the approximation of T,,. At (;_y,¥;), T(B) is used in the approximation to
Typ. Finally, at (2;,y;), T, is approximated using T(B) and T,, is approximated using
T(A}.

4.8. Discretization of Anisotropic Terms. In the supercooled liquid case,
anisotropy affects the shape of the growing crystal, causing it to grow along preferred
axial directions. Many examples of anisotropic growth occur in nature; hence, it is
important for an algorithm to be able to accurately model anisotropic growth.

In eqs. 5 and 6, we see that the surface tension and molecular kinetic terms in the
Gibbs-Thomson relation can be anisotropic. That is, rather than being constant, we
can set €5 and ey to be dependent upon the normal vector 7.

When we discretize eqs. 5 and 6, we need to approximate the angle § that the
normal vector 7 makes with the z-axis. For &, = (1,0),

(31) L1 - 7t = {Z4]|7] cos(8) = cos().
But eq. 11 implies that
(32) PR
Vi
Thus we compute § by taking the inverse cosine of Igfbl at gridpoints neighboring

the front. Then we interpolate the value of the angle that a given point on the front

makes with the z-axis. The discretization of %TT! is computed from central difference

approximations to ¢, and ¢,.
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5. Numerical Results. In this section, we present the results found when we
applied our algorithm to solving Stefan problems and to modeling unstable crystal
growth. For exact solutions to the Stefan problem, we applied our method to see
how accurate it was and how fast it converged to given exact solutions. Then, we
adjusted parameters in our algorithm to mimic the conditions corresponding to dendritic
solidification. More specifically, we tested our algorithm to see whether or not it was
able to accurately simulate the effects of surface tension, kinetic effects and anisotropy
on a growing crystal.

5.1, Exact Solutions. We tested our algorithm for solving Stefan problems on
some exact solutions. Our exact solutions include a moving flat interface, a growing
spherical interface and an oscillating circular front. Moreover, we tested the algorithm
to see if it could simulate Mullins-Sekerka instability and also to see whether it could
correctly evolve a front into a cusp.

5.1.1. Moving Planar Interface. For a steadily advancing planar surface,
Qt) = {Z € D : z < Vt}, where the normal velocity V is constant, an exact solution
to the Stefan problem is given by:

oo | Fl4eVEVY D 2 VY
{33) T(#,t) = { 0, 2 < Vi

The interface in eq. 33 is parameterized by:
(34) I't)={a=Vt,y=s}, seR

In two dimensions, I' is just a line moving with constant speed V.

Applying our method to the solution above, and measuring the error between the
exact and computed solutions, we have determined that the method is second order in
space for the one-dimensional case. We measure the error in the L; norm. Our results
are shown in Tables 1 and 2.

gridpts | stepsize | timestep | ||T'— T™||,, | conv. rate
80 0.025 | 1.00-10-¢ | 5.3657-10-7

160 | 0.0125 | 2.50-10~3 | 1.3455.10-7 1.9956
320 | 0.00625 | 6.25-10-% 1 3.3664.10-8 1.9988
TaBLE 1

Ezact solution: moving flal interface: convergence with refining both grid size and timestep. N = 100,
400, 1600 timesteps, final ftme = .01, V = 1.
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5.1.2. Mullins-Sekerka Instability. By the Mullins-Sekerka analysis,
it has been shown (see [16] for details) that for the classical Stefan problem (T' = T,
on I'), a perturbation to a flat interface will grow arbitrarily large for positive V. By
perturbing the interface so that

(35) z = Vit + eeMsin(ky)

one can obtain an expression for the perturbed temperature field that is O(e), and of
the form:

fi(k, V), 2>Vt
Lk V), o< Vi

(see [1, 26] for more details). For small times, our method converges near the interface
to the solution given by the perturbed temperature field.
Fig. 4 is a plot generated from the Mullins-Sekerka initial data

above (eqs. 35, 36). Various positions of the front in time are shown, illustrating the
fact that small perturbations to a flat interface will grow arbitrarily large. The figure
was generated with no surface tension or kinetic effects, and with insulated boundary
conditions. The plot was generated on a 50 x 50 grid with At = .001, up to a final time
of 1. Level curves are shown at times 0,.1, ... .9,1. with T set to 0 on the interface.

(36) T(z,y,t) = Ty(z,y,t) + ce* sin(ky) {

5.1.3. Growing Frank Spheres. For the problem in two dimensions, there is an
exact solution for the classical Stefan problem called the growing Frank Spheres sohution,
with formulas found in [1]. Here the solid region is a cylinder of radius R = St% and
the temperature field T'(r, ¢) is given by:

(37) T(r,t) = T(s) = { l;’m (1-#8) z z ﬁ

where r = /g2 - 3%, s = r/t7 and T, is a given undercooling. The function F(s)is a
similarity solution of the heat equation:

(38) . F(s)=F, (132)

4
Some numerical results using the Frank spheres solutions are shown in Table 3.
For our comparison with the Franks spheres solutions, we took T, = -.5, the spatial

domain to be 16 X 16, and homogeneous Neumann {insulated) boundary conditions.
In ¥ig. 5, we plot the radius error between the exact and computed solutions for the
Frank Spheres data for increasingly finer grids in space.

5.1.4. Oscillating Spherical Fronts. Another exact solution to the Stefan prob-
lem was constructed in a paper by Nochetto, Verdi and Paolini {[17]). In their paper,
they constructed an exact solution {o the Stefan problem that consists of an interface
that is an oscillating sphere. Fig. 6 is a plot of the exact (dotted) and computed (solid)
interface curves for various times and grid sizes. We plot the exact vs. the computed
solutions for At = .002, and for 40 x 40,80 x 80,160 x 160 and 320 x 320 grid sizes.
The time intervals shown are at .05, .1, .2, .3, .4 and .5.
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5.1.5. Cusp Formation. Also, in [17], it was shown that certain prescribed initial
data for the Stefan problem should lead to the formation of a cusp. For the adaptive
finite element method presented in [17], this initial data is a good test to see how
the numerical mushy zone around the cusp is resolved. In our method, cusps can be
resolved easily by the level set function. Using the initial data in section 7.3 of [17],

we did indeed find that the interface between the two phases eventually evolved into a

cusp, as shown in fig. 7. This figure was generated on a 100 x 100 grid with A = .05,
At = .002. The time levels shown are .02, .22, .42, .62, .82.

5.2. Experimental Results with Unstable Solidification. We now come to
some of the results obtained by simulating the growth of a solid inte an undercooled
liquid. In all of these experiments, we initially set T' = T, < 0 everywhere in D except
for a small region or area, where we set T' = 0. This is to simulate the conditions of
supercooling, where a small frozen seed of material is placed in a surrounding region
of undercooled liquid. Unless otherwise stated, the boundary conditions taken in these
experiments are insulated, i.e. homogeneous Neumann boundary conditions.

In most of our computations, we incorporated the Gibbs-Thomson relation by set-
ting the temperature equal to some combination of curvature and interfacial velocity
at each timestep. However, in a few cases (figs. 9 and 13), we set T' = 0 on the front
for all time. Physically, of course, the case when 7" = 0 on I' should be impossible to
resolve numerically because the problem itself is an ill-posed one. The fact that we ob-
tain pictures that don’t ‘blow up’ illustrates an interesting feature of level set methods.
Level set methods have both a topological and a curvature regularization built in to
them. Thus when you apply a level set method, unstable interfaces are regularized au-
tomatically. This regularization effect on ill-posed problems is discussed in more depth
in [5], where the level set method is applied to the Cauchy-Riemann equations.

5.2.1. Refining the Grid. For small values of ¢ and ¢y, we tested our method to
see if given an initial interfacial shape, the evolution of the interface over time remained
the same for different grid resolutions. As illustrated in fig. 8, for increasing grid sizes,
the plots of the zero level sets of ¢ do appear to converge to a similar shape over time.
The initial interfacial shape is given explicitly by:

z(s) = (R + Pcos(87s))cos(2xs)

y(s) = (R + Pcos(87s))sin(27s)

where R = .1 and P = .02.

We take the spatial domain to be [-2,2] x [-2,2], and the grid sizes to be 100 x 100,
200 x 200, 300 x 300 and 400 x 400. For each plot in fig. §, we set At = .0005, ¢, =
002, ey = .002 and T, = —0.5. Time levels shown are in increments of .04 up to a final
time of .8. The convergence of these plots under grid refinement compares favorably
with the results generated by the front-tracking method in {7].
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5.2.2. Multiple Fronts and Topology Changes. Our level set method easily
handles complicated interfacial geometries. Figs. 9 and 10 demonstrate that the method
can numerically simulate cases when there are multiple frozen seeds surrounded by
undercooled liquid. Iig. 9 is a plot of the evolution of two initially square shaped seeds
as they grow towards one another. As mentioned above, since T is set equal to 0 on
I', fig. 9 does not really represent the actual solution to the model equations:; rather it
supports the fact that the level set method introduces a numerical regularization for
ill-posed problems. Fig. 9 was generated on a 300 x 300 grid with fixed outer boundary
conditions, the undercooled temperature T, set to -0.5 and the domain D = [-15,15].
Along with Az = .1, we took At = .0l and ran the computation up to a final time
of 24. The time levels shown in fig. 9 are in increments of 3. In fig. 10, we have
four identically shaped seeds growing in close proximity to one another. In contrast to
fig. 9, we simulate the effects of isotropic surface tension and kinetic effects by taking
¢c = .001 and ¢, = .001. At the boundary, we fix T = T, = —1. Fig. 10 was
generated on a 200 x 200 grid, with At = .0005, D = [-1,1] x [-1,1] and L = 1. The
time levels shown are t = 0,.025,.05,.075,...0.175. No anisotropy was added via the
Gibbs-Thomson relation in either fig. 9 or fig. 10. But in fig. 9, it is clear there is some
grid-induced anisotropy. In part, we attribute this to the coarse spatial stepsize taken
(Az = .1) because in fig. 10, when a finer mesh size is used (Az = .01), there are no
observable artificial anisotropic effects.

Another topological change the level set method handles easily is the merging of
fronts. Unlike most front tracking methods (e.g. [7]), no special conditions need to be
imposed on our method when the boundaries between two solid regions grow arbitrarily
close. Figs. 11 and 12 are two cases of fronts merging. In fig. 11, we see the evolution of
two circular seeds as they grow into one another. This figure was plotted on a 200 x 200
grid, with D = [-2.5,2.5] x [-2.5,2.5], ¢¢ = .00l,¢y = .001,7,, = —1.,L == .075
and At = .0001. With the temperature at the boundary walls fixed, we see the seeds
growing toward the walls, as well as toward one another. Eventually, two small regions of
entrapped liquid form. The nine pictures shown in fig. 11 are the evolution of the crystal
at times ¢ = 0.0,.01,.02,.03,.04,.05,.08,.1,.11. Similarly, in fig. 12, the evolution of
four six-lobed crystalline shapes is shown as they first merge into the box walls, then into
one another. In fig. 12, the times shown are ¢ = 0.0,.004,.008,.012,.016, .02, .024, .028
and .032. Each plot in fig. 12 was generated on a 100 x 100 grid, with D = [-.5,.5] x

[—.5,.5],eq = .001,ey = .001,7,, = —1. and L = 0.5. We keep T fixed at 7., on the
boundary walls.

5.2.3. Varying the Surface Tension Coeflicient ¢,. The three plots in fig. 13
were all generated by the same initial conditions and with ¢, = 0. What was varied
among these plots was the amount of imposed isotropic surface tension. The top plot
in fig. 13 shows the evolution of the frozen seed when T' = 0 on I'. Again, as was
the case in fig. 9,.this plot is evidence that the level set method introduces numerical
regularization for the ill-posed problem, as well as a discernable artificial anisotropic
effect. Interestingly enough, this artificial grid induced anisotropy decreases when we
increase the value of the isotropic surface tension coefficient. This can be seen in the
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bottom and middle plots of fig. 13, where T = —¢,x on I, with €, = .0005 in the middle
plot and €5 = .001 in the bottom plot. Hence, in the lower two plots, it is more apparent
how perturbations in the initial interfacial shape, (i.e. the five corners of the irregular
pentagon), influence the evolution of the front to its final shape. We conclude that

the imposed isotropic surface tension has a stabilizing effect on the unstable problem,
Aecraacing tha rrrid indnr‘cuq an;onf-rop}r eﬁeCt and nnnnnn tha fon t to ev

decreasing the gr uced anisotr causing the fron volve by an
isotropic process that eventually leads to tip splitting. All three plots in fig. 13 were
generated on a 300 x 300 grid with A = .01, At = .0005 and N = 800 timesteps. The
time levels shown are in increments of .02. We set T, = —0.5 and ran up to a final
time of 0.4.

5.2.4. Results with Anisotropy. Crystalline anisotropy will cause a material to
grow along preferred lines or axes. In fig. 14, we add anisotropy to the curvature term

following the expression used in [1]. We take the anisotropic curvature term to be of
the form

(39) o) = & (3 ( 3mi0 - ).

Here m is the mode number which we set equal to 4 and 8, is the phase angle which we
set equal to . For €z > 0, we expect the crystal to grow along the four diagonal axes
rather than retain its initial pertubed shape. In fig. 14, we see that the imposed fourfold
anisotropy causes the dendrite to favor growth along the diagonal directions. From the
top corner of the pentagonal seed, tip splitting occurs early on. But, eventually, the
split tip begins growing towards the diagonal corners. Fig. 14 was generated by the

same initial data and conditions used for fig. 13 (see Section 5.2.3 for details).

5.2.5. Convergence of Anisotropic Tip Speeds. In [6], Ivantsov showed that
for a paraboloid shaped dendrite, there is a relationship given by VR = constant, be-
tween the dendritic tip speed and radius. Ever since then, researchers have been trying
to determine the velocity of crystals using Ivantsov’s relation coupled with predictions
from either marginal stability analysis or microscopic solvability theory. From the latter,
there is the postulation that the unique dendritic operating state depends upon values
of anisotropic surface tension. Many numerical methods ([9, 21, 28]) for dendritic solid-
ification have been used to perform quantitative tests comparing the measured speeds
and radii of dendritic tips with predictions from dendritic growth theory. From a nu-
merical standpoint, it is logical to require that as the grid size is refined, the measures
of the tip speed and radius should converge; otherwise, it may be hard to justify using
such a numerical method to perform quantitative analyses.

With our method, we did not perform any quantitative comparisons with dendritic
growth theory. Rather, we just checked to see whether or not the tip speeds and radi
converged as we refined the grid. In Table 4, we display the measured tip speeds for 4
grid sizes and 3 values of €; : .0005, .001 and .002. In Table 5, we show the corresponding
values of the radii of the anisotropic tips. In fig. 15, we present the plots generated by
the same initial data used in Tables 4 and 5 when the magnitude of the surface tension
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coefficient is equal to .001 and as the grid sizes vary from 75 x 75 to 150 x 150. Each
plot in fig. 15 was generated with ey = 0 and T, = —.5. Time increments are shown
in multiples of .01 up to a final time of .05. The domain taken in each plot is [—.5,.5].
Anisotropy is included by setting e equal to the expression in eq. 39. We set 8, = %
so that the tips will grow along the diagonal axes. We measured the tip speeds by
taking the average of the growth of each of the four tips. We measured the tip radii by
calculating the curvature at the tip and taking its reciprocal. From Tables 4 and 5 and
fig. 15, it is clear that as the grid is refined, the measured tip speeds and radii converge.
We observe that as €7 increases, we see a much better convergence of the tip speeds,
which is to be expected since linear stability analysis proves that surface tension will
have a stabilizing effect on the unstable problem.

5.2.6. Varying the Latent Heat of Solidification. Fig. 16 is a study of the
effect of changing the latent heat of solidification. As Sethian and Strain point out in
[24], setting L = 0 reduces the motion of the crystal to pure geometry. Decreasing the
latent heat of solidification has a smoothing effect on the crystalline shape. By the
results of linear instability analysis, increasing L translates into increasing the range of
unstable wavelengths. In fig. 16, we see that the computational results of increasing L
agree with our theoretical expectations. The four plots in fig. 16 were run on a 100 x 100
grid up to a final time of .05. We took At = .0005 and plotted the contour levels at time
increments of .005. Here the undercooled temperature 7, was set to —0.5, ¢z = .001
and ey = .001. The domain D = [-.5,.5] x [-.5,.5] and A = .01. We only considered
the isotropic case. The latent heats of solidification in the four plots are taken to be
1.0, .75, .5 and .25.

5.2.7. Grid Orientation Effects. As detailed in Section 3.2, we compute the
normal velocity components in 4 different coordinate directions in order to reduce grid
orientation effects. Previously, we had only computed the normal velocity components
in the Cartesian coordinate directions. What we found was that the same initial data
rotated at different angles did not evolve into the same final shape rotated at the original
angles. In searching for ways to reduce these grid effects, we found that by including
the normal velocity components from the diagonalized Cartesian coordinate system, we
were able to decrease grid effects considerably.

In fig. 17, we took the same initial shape and rotated it by 45° and 35°. Our
computations were done on a 200 x 200 grid, with A = .01, At = .0005,T,, = —0.5 and
N = 400 timesteps. The final time was .2 and in each of the three plots shown in fig. 17,
the time levels shown are in multiples of .025. We took ¢; = .001 and ¢y = 0, and we
only considered the isotropic case. As can be seen in this figure, the final interfacial
shapes correspond well to the rotated angles of the initial data. Our results compare
favorably with those of [7].

We considered that another test of grid orientation effects was to vary the angle of
anisotropy. Fig. 18 shows the effect of varying the phase angle 8, on a crystal growing
with fourfold anisotropic surface tension and anisotropic kinetic effects. The initial
seed is a symmetric shape with eight smooth bumps. In eqs. 5 and 6, the coefficient k4
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controls the number of folds in the anisotropy. Here we set k4, = 4, and take #, = 0 in
the top plot and 8, = % in the bottom plot.

The number of anisotropic folds and the direction of the preferred growth axes
determines the crystalline shape. When 6, = 0°, dendritic growth is favored along the
horizontal and vertical axes. In the top plot of fig. 18, we see that the horizontal and
vertical tips sharpen, while the diagonal tips flalten out. When 8, = Z, the exact
opposite occurs, with the horizontal and vertical tips flattening out, while the diagonal
tips sharpen. As to be expected, the top and bottom plots in fig. 18 match up when
etther plot is rotated 45°. Both plots in fig. 18 were generated using a mesh size of
200 x 200, and by setting A = .01, 6 = .001, €, = .001, At = .0005 and the domain
D =[-1,1] x [-1,1]. The final time taken is .04 and all contour levels shown are in
increments of ¢ = .01.

6. Conclusions. In conclusion, we have presented a new numerical method for
solving the Stefan problem and the related model problem of unstable dendritic solidi-
fication. Our method is a level set method which implicitly evolves the sharp interface
between two phases of a material. As such, our method is able to simulate complicated
interfacial shapes involving merging, side branching and dendritic fingering. Physi-
cally, our model includes such effects as crystalline anisotropy, curvature and interface
kinetics.

Under grid refinement, we have found that this method converges to certain exact
solutions of the Stefan problem. 1or dendritic structures, our method also converges
when appropriate amounts of surface tension and kinetic effects are included. Moreover,
we found that this method exhibits minimal grid effects when initial shapes are rotated.
When we add anisotropy, our method correctly simulates growth along prescribed axes
of symmetry. Also, we have found that with this method, the measured tip speeds of
growing anisotropic dendrites converge under grid refinement.

In the future, we would like to apply this method to make more quantitative com-
parisons with results from dendritic growth theory. Furthermore, since this level set
method 1s relatively easy to implement and computationally inexpensive, we would like
to extend it to simulating the growth of three dimensional dendrites. It would be in-
teresting to compare our results with other methods that have already simulated three
dimensional crystalline structures ({8, 10, 23]).
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gridpts | stepsize | ||T — T||;, | conv. rate
80 0.025 | 1.3281.10-3
160 0.0125 | 2.6265-10—4 2.3382
320 | 0.00625 | 3.6651-10-5 2.8412
640 | 0.003125 | 3.7552-10-¢ 3.2887
TABLE 2

Ezact solution - moving flal inlerface: convergence results from refining grid size with fized timesiep.
N = 400 timesteps, V = 1, dt = .00001.

gridsize | stepsize | ||T'— T[], | timesteps | conv. rate
80 X 80 0.2 | 4.3709-10~2 3000
160 X 160 0.1 ] 1.4331-10-2 12000 1.608
320 X 320 0.05 | 3.7938.10-2 48000 1.917
TaBLE 3

Exact solution -~ Growing Frenk spheres : convergence resulis from refining both grid and timestep,

final time = 1.12.
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Fi1g. 4. Mullins-Sekerkae tnstability: small periurbation {o a flat interface will induce unstable dendritic
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gridsize | g = .0005 | ¢ = 001 | ¢ = .002
75 x 75 37.17 38.94 35.62
100 x 100 37.17 42,48 38.05
125 x 125 50.44 49.56 43.36
150 x 150 53.10 51.33 44.25
TABLE 4

Convergence of antsotropic tip speeds

gridsize

Eo = 0005

o = 001

e = .002

75 x 75 13.197 - 10-2 | 3.685 - 102 | 3.147 - 102

100 x 100 | 1.497 - 10-2 | 2.771 - 10-2 | 2.080 - 10-2

125 »x 125 § 2.103 - 10-2 | 1.886 - 16-2 | 1.503 - 10-2

150 x 150 | 1.605 - 10-2 | 1.446 - 10— | 1.302 - 102

TABLE 5
Conuvergence of anisotropic tip radit
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Frank Spheres Exact Solution
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Time

FiG. 5. For increasing grid sizes, the radit of the computed solution converges to thal of the exact
solution in the case of growing Frank spheres.
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F1c. 6. The computed solution (solid line) converges to the exact solution (dotied line) for the case of
an oscillating inlerface. Grid sizes used are: 40 x 40 (top left), 80 % 80 (top right), 160 x 160 (botiom
left} and 320 x 320 (bottom right).
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Fia. 7. Cusp Formation
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Fia. 8. Convergence study : growth histories for 4 grid resolutions. The grid sizes used are: 100 x

100 (top left), 200 x 200 (top right}, 300 x 300 (bottom left), and 400 x 400 (bottom right).
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Fra. 9. Multiple enclosed fronts: T =0 on T, hence there is ¢ numerical reqularization effect from the
level set method. The compuiation above was performed with Az = 1, At = .01, Ty = —0.5 and time
levels shown are in increments of 3.
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F1a. 10. Muliiple enclosed fronis: four seeds growing with ec = .001 and ey = 001. The computation
above was performed with Az = .01, At = .0005, T,

of .025.
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Fra. 13. Effect of varying tsotropic surface tension, the initial seed is an irregular pentagon. For all
3 plots, ey = 0. For the top plot, T =0 on I'. For the middle and bottom plots, T = —eck on T with
ec = .0005 (middle) end ec = .001 (bottom).

37






8.58 . ; : @.5¢ T T
@.30 8.38 E
8.18 F E .16 | ]
-2.18 | E -8.1@ E
2.38 | g -9.38 F i
~8.58 : 1 L L -0.58 1 1 L

-0.5¢ -8.3¢ -6.1@ 8.13 938 %.59 -0.5¢ -6.39 -B.18 18 8.30 2.52
@.568 T T T T 2.50 T T 1
@.38 | B @.38 .
g.18 B #.18 |
-0.18 - -2.18 4
-8.30 - B, -3.30 + E
~-@.58 ) L . 1 -@,58 1 1 3 1

~@.58 -@.36 -8.148 a.1a 2.38 @.58 -9.5¢ -6.38 -B.1¢ .72 2.308 a.5%

F1G. 15. Convergence of anisolropic {ip speeds with e = 001, Grids are: T5 % 75 (top left), 100 x 100
(top right), 125 x 125 (bottom left), 1560 x 150 (botiom right); final time = .05.
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Fig. 17. Grid orieniation effects with isotropic surfuce tension. With ¢ = 001, grid orientation
effects are minimal From tep to bottom, the initial data is rotated 45°,35° and 0°.
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Fra. 18. Grid orientation effects with enisotropy: the anisotropy is 4-fold with phase angle 8, egqual to
0° (top) and T (bottom).
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