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Abstract

Numerical solutions are presented for the steady flow corresponding
to a two-dimensional moving droplet with circulation. Differences in
the density of the droplet and surrounding fluid result in a buoyancy
force which is balanced by a lift force due to the Magnus effect. The
droplet is assumed to have constant vorticity in its interior, and its
boundary may be a vortex sheet, as in a Prandtl-Batchelor flow. Only
symmetric solutions are calculated. For Atwood number A = 0 (no
density difference) the droplet is a circle. As the Atwood number is
increased, the droplet shape begins to resemble a circular cap with
a dimpled base. There is a critical Atwood number Ay, at which
the droplet develops two corners. For 0 €< A < Ay, the solution is
smooth; while for Ay, < A, we do not find a solution.
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1 Introduction

A 2D fluid droplet of density p; surrounded by an unbounded fluid of different
density p, experiences a buoyancy force F', = —g{p, — py)ay in which a is
the area of the droplet. One possibility for balancing this buoyancy force is
through the lift of the Magnus effect. If the droplet is moving at speed U in
the x-direction and has circulation I' and if the ambient fluid is irrotational,
then this lift force is F; = —T'Up,%9 . Thus there is a balance between these
two forces if

TU = —ga{py — ps)/p2- (L.1)

In this paper we numerically construct a new class of steady, 2D vortical
flows for which there is a balance between the buoyancy force F', and the lif
force F';. The fluids are incompressible and inviscid, and the outer fluid is
assumed to be irrotational. Within this “flying droplet” the vorticity —{ is
assumed to be a uniform constant; while the droplet boundary may consist
of a vortex sheet of net circulation I',. The total circulation of the droplet is
then I' = —~aQ} + T,.

The resulting solutions show several interesting features. In particular,
as a function of the Atwood number

A= (p1—pa)/(p1 + p2)

the droplet varies from a circle for A = 0 to a shape that is approximately
a circular cap with two corners at some extreme value A = Ay,,. We are
unable to produce meaningful solutions for A > A,,.

The motivation for considering a steady droplet with constant inferior
vorticity is partly as a generalization of Prandtl-Batchelor flows, which are
flows of a single fluid consisting of regions of constant vorticity surrounded by
vortex sheets. Batchelor [1] showed that in region of closed streamlines the
inviscid limit of a steady viscous flow must have constant vorticity. Prandtl-
Batchelor flows have thus been proposed as the inviscid limit of the wake
behind an obstacle. Analytical and computational studies of such flows have
been performed in [2] [6] [5].

Another context in which such a steady flow could occur is in a rotating
flow containing a 2D droplet (i.e. a 3D column) of a second fluid of different
density {due for example to different temperature). In this context the role of

2



gravitational force is played by the centrifugal force. In any such application,
the stability of these flows would be important, which has not been considered
here.

The formulation and numerical method used here is a boundary integral
method and follows closely the method used by Pullin and Grimshaw [2]
for computation of interfacial waves. As in their investigation, we are only
able to consider droplets with a left-right symmetry. In fact, no well-posed
numerical method has been found for asymmetric solutions. They also find
extreme solutions consisting of circular caps with singular corners.

In the next section we present Eulerian and Lagrangian formulations of
this problem. The Eulerian formulation is easily solved for small Atwood
number as a perturbation expansion; the Lagrangian is most convenient for
numerical solution. In particular we find that the area ¢ and total circulation
I’ may be fixed through a rescaling, so that the solution is only a function
of the following three parameters: Atwood number A = (p, — py)/(p1 + p2),
vorticity value 0 and the Froude number 4/c. The droplet velocity U is
determined through the force balance equation (1.1). A numerical method
for solution of this problem is described in the last subsection of Section 2.

Results from the numerical study are described in Section 3. In par-
ticular, agreement is demonstrated between the numerical solution and the
perturbation solution, which serves as a check on their accuracy. Several
qualitative properties of the solution, such as the angle of the interfaces at
the critical Atwood number and the presence of stagnation points, are dis-
cussed in Section 4. This is made explicit in the case of zero interior vorticity
(Q = 0) through an additional solution method using conformal mapping.
Conclusions from this study are described in Section 5.

We are happy to acknowledge the motivation and technical help that
we received through numerous discussions with Huaxiong Huang, Qing Nie,
Derek Moore, and Dale Pullin, We also thank two anonymous referees who
suggested numerous improvements in the paper.

2 Problem Formulation



2.1 FEulerian Formulation

We shall consider the steady state of a two-dimensional inviscid, incompress-
ible droplet of one fluid surrounded by a second fluid under the influence
of gravitational acceleration. Assume that there is constant vorticity in the
interior and that the droplet boundary is a vortex sheet. Let subscripts 1
and 2 represent fluid properties inside and outside the boundary, respectively,
and the gravity acceleration g act in the negative y-direction. Denote the
density, pressure, and velocity fields by p;, P;,u ; for : = 1,2. The constant
values of inner vorticity and vortex sheet circulation are denoted by —{} and
T,, respectively.
The governing equations in Eulerian coordinates are the following:

pi(u i Vu i +VE = —g9p9 (z,y) ¢ 0D (2.1)
Vou,; = 0
Pl = Pz (m,y) & 8D (2.2)
u,-n = 0

)

In (2.1) and (2.2), 8D is the boundary of the droplet, § is the unit vector
in the positive y-direction, and n is the unit normal vector on 8. There is
a freedom in the position of the center of mass of the droplet, which is fixed
by setting it to 0; i.e. [p(z,y)da = (0,0).

A particular simple solution of this system with p; = p; is the following:

D = {(z,y):2’+y* =1}

™ A
= —=0N0
U 4 5
F A
= —8 2.3
U oy (2.3)
o T
P= —gpy+ rYcUarweigt
r i1 O
Py = —gpy— g bzt gl
in which T' = —Qx +T', is the total circulation, r, 8 are variables in the polar

coordinates and 7 , @ are unit vectors. We shall use this as a basic solution
from which to construct a perturbation expansion.
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When the densities are different, the droplet experiences a buoyancy force
F, = —g(p — ps)7y . We shall allow the flow outside the droplet to move at
speed U in the x-direction so that the buoyancy force F'; is balanced through
the lift of the Magnus effect, F); = —TUp,y . Let the perturbed solution to
(2.1), (2.2) for p, # p, take the form (& , £ are unit vectors in the positive
x and z directions):

oD = {(r,8): r = R(0)}

= 30 +vx(hi) =vx (i)

Uy = 50 +US + 7 % (2 ) =7 x (V2) (2.4)
P = —Qply'i"%

P, = ~gpy + B,

In (2.4), ¥, is the stream function in fluid ¢ such that u ; = (%i, ~ iy
1 =1,2. If is given by

1
\I!]_ = ¢1 -I— —?"20
4
T
\Ilz = 11b2 + Uy s 10g r. (2.5)
2w

The Euler equations (2.1) and (2.2) are equivalent to the following form of
Bernoulli’s law for a fluid without vorticity and one with constant vorticity:

pr(tum 2 — 1202~ Qy )+ P, =8 r <R(9) (2.6)
Vi =0 &7
potlwsf+ Py =4, 1> R() (28)

Vi, =0 (29)
P—PFy=glpr—py  r=R(0) (2.10)
v—v,—0 . (2.11)

Subtracting the two Bernoulli’s equations in (2.6), (2.8) on r = R(#), and
setting B = b, — b, (using ¥; = 0 on the boundary), we get
1 + BO)? + B22,)
~1pp{(ry — LR+ Usin0) + (R-9byg + U cos 0)?}
+9(pr — P2y =B . (2.12)
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Note that I', {2 are constants, and that the area and center of the droplet are

fixed as

% fB%Rz(G)d@ - (2.13)

/ " R(0)(cos 0, sin.0)d0 = (0,0). (2.14)

The remaining equations are (2.7), (2.9}, (2.11), (2.12), (2.13) and (2.14)
for functions ¥, ¥,, B and constants U, B. To solve this system analytically,
expand around the special solution at p; = pg; 1.e.

/1

R =

Wy

U =

B =

The functions 1y, ¥,; and R;, j=0,1,2,...., can be expanded in the angular
variable @, using the equations y72t); = 0 for 7 = 1,2, as follows:

P2t €

14+ eR +€Ry+ ...

P + ey + e + oy i=1,2 (2.15)
0+ el + U, + ...

By+¢B, +€By+ ... .

T/)u'(", 0y = Z ajkrk cos kO + bjkr’“ sin kf

k=1

thai(ri0) = > eur*cos kO + djr—* sin k6 (2.16)

k=1

R_?(G) - Z ejk COS kg ‘i‘ ka Sin k9

k=1

The resulting solution, up to O(e?) terms, is

B
R(9)
Py (r,0)

¢2(T1 9)

i~

1
gpz(ﬂz — (Dfm)?) + eQ?/8 — €2 p,d?
1 + €2e4 cos 20 (2.17)
1
—/4 — 6259627‘2 cos 26
T
ed;rsin @ + ¢2—eyr~? cos 20
2m
—ed,

T2
4g?m2 [ {(? + P)I‘Zp%} dy, = g7 /(Tpy).
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Thus the shape of the droplet 8D = {(z,y)(6)|0 < § < 27} is obtained (up
to O(e3) as

z(0) = R(0)cosd

€2 €2
~ (1+ 562) cos§ + G cos(38) (2.18)
y(0) = R(f)sinb
€2 €2
~ (1-— 562) sin @ -+ 76 sin(38). (2.19)

There is no O(¢) term in (z,y) since the center of mass is set o 0.

2.2 Lagrangian Formulation

We shall work in the complex z = x + iy plane. Describe the boundary of
the droplet 3D by the complex single-valued function Z{a) = X(a)+:Y (),
which encloses a connected region D of fluid of constant vorticity —{1. The
parameterization is in the clockwise direction, 0 < o < 27, The velocity field
(u + #v)(#)} due to the constant vorticity inside the droplet for z ¢ 8D was
derived by D.I. Pullin in [6]:

Qr Z2'—z
—1 = — VAR 2.2

(u—w)(z) 4qr }{BD AR (2.20)
For Z € 8D, we define the velocity ¢(Z) = (u ++ tv)(Z) as the average of the
limiting values of (u + iv)(z) obtained where z — Z(«a) from either side of

dD. That is,

w(Z) = z—»Zf}v'icnlginside(u+iv)(z)
.(Z) = lim  (u+v)(2)

z—Z from outside
)2) = 32+ u(2) (2.21)

By (2.20) and applying the Plemejl formula, we obtain:

=2
/—\
Il

2‘”— VA rdr P
P / a) (a a+%ﬂz ZeoD. (2.22)



The velocity field due to the vortex sheet 0D is given by the Birkhoff-Rott
equation

- 2= '}r(a’)da’
= P / e — 2.2
q(Z) P V Z(e) zedD (2.23)
in which y(@) = (§;—&)(Z(a))-Z,(c) is the sheet strength with [7" v(a)da =
T',. Combining equations (2.22),(2.23), and taking into account the uniform
velocity U at infinity, we have
1 w oy — 27! [2 Qi

dlo) = 'é?rI‘PV A TORY do +TZ(Q)+U' (2.24)

The quantities with primes in the integral term in (2.24) are functions of the
integration variable .
To derive the equation for vy(a), we use the Bernoulli equations (2.6),

(2.8).
I .y
§|u1| + . +gy -9, = B (z,y) inside OD (2.25)
1

1 P.
§|uz|2 + p—2 +gy = By (z,y) outside 0D (2.26)
2

in which B; = b;/p;. By taking equations (2.25) and (2.26) on 9D and
eliminating the pressure terms by the boundary condition P; = P,, we obtain

2
4|Z |

Here A = (py — p3)/(p1 + p2) is the Atwood number, and B = A(B, + B,) +
(B; — B,). The boundary condition u ;- n = 0 yields

"rRe[ ] + A(——— +dg+29y) = B. (2.27)

Im[—] = 0. (2.28)

Next we nondimensionalize the problem by setting Z = LZ, yo= L,i;,zf?,

q=£%4, U= %ﬁ, Q=Q/T, B= ,’1::—23, I'= %f»f‘ and A = g—%ﬁ, where all
variables with “ 7 are the dimensionless quantities. The length scale L is
chosen so that the area of the droplet is fixed, as in the Eulerian formulation.

27
jdi = . (2.29)
0



The time scale T is then chosen so that the total circulation is —1; i.e.

=1 (2.30)

Defining ¢ = s% , which equals the square of the Froude number, and drop-

ping ¢~ ", the resulting non-dimensional system is

gla) = P fzm’ Q;Z'ZZ',/ Qda’w{»%Z(a)—%U (2.31)
TRl + A(c(4|;12+qq>+zy) (2.32)
Im[-»i%] = 0 (2.33)

2wydw =7 (2.34)
Tydet = ~140m. (2.35)

0

2.3 Numerical Method

The nonlinear system (2.31)-(2.35) in Lagrangian variables is numerically
solved by the collocation method. Following Pullin and Grimshaw(2], we
assume that the droplet is symmetric about the imaginary axis x=0.

The basic unperturbed solution to equations (2.31)-(2.35) for A = 0 is

given by

Z(a) = sina+icosa
. r
(@) = ggg y
7 [
q(a) - _TZ( )+4w2(a) (236)
U =0
QO r. o T

=G4 5

We shall fix the total circulation by setting I' = —1, and express the solution
to (2.31)-(2.35) in Fourier expansion around the known solution in (2.36);



i.e.

N-1
Z(a) = sina+icose+ Xysina+i » Y;cos(ja) (2.37)
i=1
0 1 N-1 )
) = 5= gyt X Ciostia)

Now insert (2.37) into (2.31)-(2.35). There are 2N+1 unknowns {Y;,C;,j =
1,2,..,N—1; Xy, B,U}. Equation (2.31) serves as a definition of §, and (2.35)
is automatically satisfied. Ivaluating (2.32), (2.33) at N points a_q/y =
(k — )& for k=1,2,...,N, plus (2.34), results in a total of 2N+1 equations.
The principal-valued integral in (2.31) is evaluated by summing over o, = j &,
i=1,2,...,2N, for each ay_;/.Newton’s iterative scheme is used to solve this
closed 2N++1 linear system, and the iteration stops when the absolute value
of the difference between two successive iterative solutions is less then 10-7.
The problem was solved for various values of A and 2, and for a typical
value of N = 128. We check that the computation provides consistent solu-
tions to the nonlinear system by showing the numerical solutions converge as
the mesh size shrinks. Since Newton’s iterative scheme converges quadrati-
cally, it takes usually 3 to 4 iterations to reach the 10-7 error bound. The
continuation method is used for the initial guess in the Newton iteration.

Note that the horizontal and vertical positions are fixed by the property
that [zda = [yda = 0.

3 Results

3.1 Agreement between the Fulerian and Lagrangian For-
mulations

To demonstrate the validity of both the analytic and numerical results,
we perform a comparison of the (analytical) Eulerian and (numerical) La-
grangian solutions. In order to make this comparison, we first cast the ana-
lytical solution into Lagrangian form. Since the parameters § in the Eulerian
formulation, and « in the Lagrangian formulation are different, we must
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first establish their relationship. The boundary of the d droplet 8D is de-
scribed by two parameterizations: {(z,y){(0)|0 < @ < 27z} for the Eulerian
and {(X,Y)(e)|0 < « < 27} for the Lagrangian formulation, where

z(0) = cosf+ > acos(k) (3.38)
k>1

y(0) = sin®+ ) b sin(kh) (3.39)
k>1

X{a) = sina+ X sina (3.40)

Y(a) = cosa+ Y Y;cos(ka). (3.41)
k>1

The relations among the coeflicients X, a;, Y, and b, for k > 1 are derived
by setting

(z,9)(0) = (X,Y){(e). (3.42)

In the particular solution with p; = p, (e = 0), the parameters are related
by

s
= ——4. 3.43
« 5 ¢ (3.43)
Thus for p; # p, we can assume that
™
a = -2~w-—9—i-ef1(9)—|—ezf2(9)+.... : (3.44)

Replacing « in (3.40), (3.41) by (3.44), and using the solutions derived in
(2.18), (2.19) leads to

i =0

fo = —2e,sinfcosd

X, = Y, =¢, (3.45)
Y, = 0O(e).

Next, note that the non-dimensional form of equation (2.12) is the same
except that ¢ is replaced by %2 = ¢~1, By choosing ¢ = 1, the asymptotic
solution obtained in Section 2.1 is nondimensionalized by setting ¢ = 1. To
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relate ¢ = p; — p; and the Atwood number A, we nondimensionalize € as
E=¢/py = ’%,_;P_Z = %-

Using these values, we compare the results of the analytical and numerical
solutions. In Table 1, there is a comparison of the values of X,,Y,,Y, for
the analytical (with error O(A3%)) and numerical solutions for a range of
values of A and {2, showing excellent agreement. We have also compared the
numerically computed velocity U/ with the exact analytical result U = —ed;,

and obtained agreement to all significant precision.

3.2 Discussion

Here we present the stationary profiles of the droplet and the corresponding
velocity fields derived by our numerical results. In Figures 1 to 4, we plot
the shape of the droplet at various A up to Ay,,, beyond which the iteration
scheme fails to converge, for { == 0.0, 0.5, £1.0, and +1.5. The tangential
velocity for {! = 0, &1 for some chosen A’s is shown in Figure 5, Figure 6.

These results show that the stationary shape of the droplet is nearly
independent of the sign of £, but the direction of the interior velocity field
changes sign as {) changes sign. This is consistent with (2.17), which shows
that the leading order terms in the shape of the droplet depend on §22. On
the other hand, the leading order term for the interior velocity is proportional
to (2.

Larger values of [}] result in larger Ay, ’s, which means that the vorticity
supports the boundary and hence the droplet is less deformed at the same
A. Examination of the tangential velocity shows that the two corners on the
profiles at A = A, are stagnation points.

Stagnation points (and stagnation streamlines emanating from the stag-
nation points) determine the geometric character of the flow. For A = 0
(i.e. py = py) the flow is purely rotating without stagnation points. For the
special case {) = 0, the analysis of the next section and the numerical results
of Figure 5 show the A-dependence of the stagnation points. For small A,
there is a single stagnation point in the exterior flow. At a particular value
of A, this stagnation points hits the droplet boundary. For larger A values it
splits into two stagnation points on the boundary, which are at the droplet
corners at the critical values of A.

For nonzero {1, the determination of the stagnation points is less complete,
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since there are no exact analytic results available. The numerical results of
Figure 6, however, show the same type of behavior for nonzero {) as in the
2 = 0 case.

Figure 7 shows the angle between the tangential vector along 0D and
the positive x-axis, denoted by 8, at A = A, for @ =0 and = 1. The
sharp jump of § on the corners of the boundary indicates the existence of
the singularity (the larger jump in the center of the curve is a resetting
of the angle by 27). For § = 0 and A = Ay,,, the angle of the corners
is 2.02 ~ 2x/3. This result is confirmed analytically in Section 4.3. For
nonzero {1, the numerical values of the corner angle vary from this special
value, although an analytic argument shows that the actual angle remains
27 /3.

Finally, the dependence of the solution on the Froude number /¢ is very
mild. Figure 8 for 2 = 0, A = 0.01 shows a typical example. The solutions
for ¢ close to 1 (including ¢ — 0) are all almost identical. Only for large
variations in ¢ (~ 30) are there corresponding changes in the droplet shape.

Additional features of the flow are presented in Figures 9-14, which plot
the exterior velocity field at various parameter values. The vorticity density
on the droplet boundary is plotted in Figure 15.

These results bear similarity to the results of Pullin and Grimshaw [2] for
nonlinear interfacial gravity waves in a two-layer Boussinesq fluid, in which
the upper layer consists of a flow of constant vorticity and the lower layer
is irrotational. They found that the most extreme wave was consistent with
the appearance of one or more stagnation points on the wave profile. The
result that the droplet boundary is less deformed for larger values of the
interior vorticity was also found by Moore, Saffman, and Tanveer[5] when
they studied the Batchelor flows in the cases of the Sadovskii vortex and the
rotational corner flow. The semicircular shape of the solution for 2 = 0.0 at
Ay also Tesembles the cap of the “mushroom” solution in the steady wave

problem found by Pullin and Grimshaw [3][4].

4 Solution for {2 =0

Here we present additional analysis of the “flying droplet” problem in the
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special case () = 0; i.e. for irrotational flow inside the droplet. In this case,
the problem can be conveniently formulated as conformal mapping problem.
Using this formulation, several qualitative properties of the solution are easily
obtained: First, for £ = 0 the solution is independent of the parameter c.
Second, the flow has three possible forms with either a single stagnation point
in the exterior flow, a single stagnation point on the droplet boundary, or two
stagnation points on the boundary. Finally, at the critical Atwood number,
the interior angle of the droplet, as well as the angle between the bubble
boundary and the stagnation streamline is found to be 27/3. As discussed
in the previous section, these results are confirmed numerically.

4.1 Conformal Mapping Formulation for {2 =0

If & = 0, the droplet problem can be written in Fulerian variables as the
following equation for the potentials ¢, and ¢, inside and outside of D re-
spectively:

Vg, =0 inside D (4.1)
Vi, =0 outside D

with
n  -Vé,=n V¢, =0
plélvcﬁl ?+p1=—-pgy+b (4.2)
p2%]V¢2|2 +py = —pagy + b,
on the boundary of 1) and with
y — 2r) 10 —w -2 (4.3)

as | | — oc.
The solution inside the droplet is

¢ = 0 (4.4)
o= —mgy+bh
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so that the equations for ¢ = ¢, become

Vg = 0 in D¢
n-V¢ = 0 on 40D (4.5)
V2 = 2gey+d on 8D

$ — (2ryU0—w -2 aslz|— o0

in which e is the non-dimensionalized density parameter from Section 2.1,

e=24/(1 - A) =" (4.6)
P2
Define the area of D as a; the Jakowski lift theorem then says that
w = (U0 (47)
Ulpy, = —g(pr —pa)a

as in (1.1)

This problem can be rewritten using a conformal mapping z({) = « + ¢y
taking the exterior of the unit circle |[¢] > 1 to the exterior of D. For a given
shape D, this conformal map is fixed by requiring that real direction in (
goes to the real direction in z at infinity, i.e.

z=1z( as|{|— oo. (4.8)

in which the real parameter z, must be determined. Set { = re**. Then the
equations for ¢ are

Vi = 0 > 1 (4.9)
$ = 0 r=1 (4.10)
¢2 = (2gey +b)(y? +y2) r=1 (4.11)
¢ — (2m)Ta+ruzcosa 1 — co. (4.12)
The solution of (4.9), (4.10), (4.12) is
¢ = (2n) T — (r + r~)u cos az,. (4.13)
Equation (4.11) then becomes part of the equations for y which are
Viy =0 r>1
(2gey + b)(y2 + y2) = ((2m) [ + 2uzgsina)? r=1
Y — Zprsin r — 00.
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In addition z can be solved using the Cauchy-Riemann equations

T, = Y, (4.14)
Ty = =Yy (4.15)

o

Now non-dimensionalize the conformal mapping problem as

y=Ly  z=Lz
u= (Lt b= (LT (4.16)
g=(L/t*)g e=g"'¢
I'=(L}Tr a=1Ld
in which
IM=1 v = 7we.
Then (4.7) implies that the non-dimensionalized area is

a = 7

and in the dimensionless variables the conformal mapping equation becomes
(dropping primes)

Viy = 0 r>1
(2ey +0)(y2 +y2) = ((2m)7' +2mezgsine)® r=1 (4.17)
Yy - Zgrsing T 00,

Note that in this formulation the parameter ¢ (squared Froude number)
does not appear, since the gravitational constant g has been removed through
the non-dimensionalization of ¢. Thus in the case ) = 0, the solution does
not depend on e¢. This can also been seen directly from the Lagrangian

formulation of Section 2 using the variable ¢ = ¢, + »ég;

4.2 Stagnation Points

In conformal mapping formulation, one can easily characterize the stagnation
points of the flow. They are points are which V¢ = 0 for r > 1 (in the outer
fluid) or |Vé| = |4,| = 0 for r =1 (on the boundary).
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In dimensionless variables

¢ = (@r) la—wezp(r+r1)cosa (4.18)
with
¢, = —wezg(l —r?)cose (4.19)
b, = (@m) 1+ wezo(r +r)sina

and for r =1
V|2 =¢2 = (2mezgsina+ (2m)~1)2 (4.20)

Thus we get the following characterization:

kil

(i) For ez, < (2m)~2 there is exactly 1 stagnation point at o = —Z, (r +
r=1) = (2w2%ez,)~! which is in the exterior flow.

(ii) For ezy = (27)~2 there is 1 stagnation point on r = 1 at o = —Z, which
is the bottom of the droplet.

(iii) For ezy > (27)~2 there are exactly 2 stagnation points on r = 1.

4.3 Interior Angle of the Droplet for Critical A

When a corner develops in the boundary of the droplet, as observed at the
critical Atwood number, the interior angle of the droplet and the angle of
the droplet with the exterior stagnation streamline is exactly 27/3. The
argument for this result is a modification of the proof for the angle of Stokes
wave of greatest height. The 27 /3 is observed numerically for O = 0, but
not for other values of 3, apparently due to lack of resolution.

For 2 = 0 the argument for angle 27 /3 is exactly the same as the Stokes
argument, since the pressure inside the droplet is constant, as in the water
wave problem.,

For Q! # 0 the pressure is not constant and may bring in its own singu-
larities. So a different argument is required: Suppose that the pressure F;
and the perturbation streamfunction v, contain fractional powers at z = 0,
the stagnation point. Since ¥ and %, are harmonic, then

P = Imag(c;2™)
Py, = Imag(c,2™)
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We wish to show that m; = m, = 3/2. Assuming that m; < 2, then the
dominant terms in the Bernoulli equations (2.6) and (2.8) are p;|u;|? and P,.
This implies that P, & b;|z|?mi~2, The pressure jump condition (2.10) then
implies that m,; = m,. Assume that there is a single stagnation streamline in
the exterior region, then (2.11) says that t, is smooth on the three steamlines
(one stagnation streamline and the two branches of the bubble boundary).
This implies that m; = 3/2.

5 Conclusions

The solutions found above represent a new class of steady flows for a droplet
in an inviscid, incompressible 2D fluid. In these flows there is a balance be-
tween the buoyancy force due to gravity and the lift force due to circulation
and translation. These flows are of Prandtl-Batchelor type in that the vortic-
ity is constant in regions of closed streamlines. After non-dimensionalization,
the solution is found to depend on three parameters: the Atwood number A,
the interior vorticity ) and Froude number 4/c. When A = 0 the solution is
just a circular droplet with purely rotating flow. For the simple case } = 0,
the solution does not depend on the parameter c.

As the Atwood number A increase (or decreases) from 0, the droplet
boundary remains smooth until a critical value of A is reached at which the
boundary develops two corners. The angle of this corner is 27 /3, according
to a modification of the Stokes wave angle argument.

Only symmetric solutions have been investigated here. As pointed out in
([3]), nonsymmetric solutions could pessibly appear through bifurcation off
solution branches of symmetric shapes,

Stability of these flows would be important for any application but has not
been investigated. Nonzero vortex sheet strength on the droplet boundary
should make the problem strongly unstable. On the other hand, the overall
rotation may help stabilize the flow.
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Table 1

=10.0 numerical analytical
A Xy Y, Y, 1 X;=-Y, error
0025 | 009715 | —.009621 | .001877 .009790 | 1.6876_,
.0050 | .038318 | —.036904 | .013879 039356 | 2.4524_4
.0100 | .147406 | —.128469 | .083501 159019 | 3.0550_,
.0200 | .528120 | —.345601 | .254297 649123 | 3.0352_,
Q=405 numerical analytical
A Xy Y, .1 X,=-Y error
0025 | .002805 | —.002797 | .000158 002823 | 2.6252_5
.0050 | .011140 | —.011018 | .001217 011350 | 3.3284_,
.0100 | .043404 | —.041599 | .008504 045861 | 4.2623_,
0200 | .164832 | —.141507 | .046575 187207 | 4.5700_,
Q=+1.0 numerical analytical
A X Y] Y, | X =-Y error
0025 | .000896 | —.000895 | .000016 000801 | 5.7912_¢4
.0050 | .003574 | —.003561 | .000128 003621 | 5.9830_5
.0100 | .014148 | —.013951 | .000967 014630 | 6.7906_4
0200 | .054722 | —.051883 | .006468 059719 | 7.8363_5
.0400 | .209660 | —.173321 | .033411 .248933 | 7.5612_,
Q==1.5 numerical analytical
A X, Y, Y,i X, =-Y; error
0025 | .000420 | —.000419 | .000004 000422 | 2.3925_4
0050 | .001677 | —~.001674 | .000028 001696 | 2.2183_;
.0100 | .006672 | —.006628 | .000219 006852 | 2.2443_,
0200 | .026193 | —.025524 | .001588 027971 | 2.4471 _4
L0400 | .099902 | —.090828 | .009499 116596 | 2.5768_,
0800 | 428225 | —.299830 | .045280 507823 | 2.0799_,

Table 1. Comparison of analytical and numerical results for coefficients
X,,Y,,Y, for various values of } and A with ¢ = 1. The “error” here equals
maz{|analytical X, — numerical X,|, [analytical ¥} — numerical Y}|).
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Figure 1: The stationary profiles of the droplet at @ = 0.0 at various A.
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Figure 2: The stationary profiles of the droplet at £ = £0.5 at various A.
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Figure 3: The stationary profiles of the droplet at {) = 1.0 at various A.
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Figure 4: The stationary profiles of the droplet at @ = 1.5 at various A.
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Figure 5: The tangential velocity vs. arclength of dD at @ = 0.0 for
A = 0.005,0.010,0.015,0.02. The bottom of the droplet corresponds to zero
arclength, and the sign of arclength changes from negative to positive clock-
wise along 0D.
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Figure 6: The tangential velocity vs. arclength of 8D at @ = &1 for A =
0.01 : 0.01 : 0.06. The bottom of the droplet corresponds to zero arclength,
as in Fig. 5. The arclength for the plot for £ =1 is shifted by 3.
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Figure T: The angle between the tangential vector along 9D and the positive
x-axis vs. arclength for @ = 0, @ = 1. As in Fig. 5, the bottom of the
droplet corresponds to zero arclength. The arclength for the plot for =1
is shifted by 3=.
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Figure 8: The stationary shape for & = 0.0, A =.010 at various c. Only the
most left profile is at the correct x-coordinate, while the other profiles are
successively shifted by 1.0 unit in the positive x direction.
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Omega=1, A=.02
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Figure 9: The velocity filed for @ =1, A = 0.02
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Omega=-1,A=.02
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Figure 12: The velocity filed for @ = -1, A = 0.02
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Figure 13: The velocity filed for = —1, A = 0.04
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Figure 14: The velocity filed for 8 = -1, A = 0.06
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Figure 15: The vorticity density vs. arclength for different (s,
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