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Abstract

The quasi-Monte Carlo method for financial valuation and other
integration problems has error bounds of size O((log N)*N~1), which
suggests significantly better performance than the error size O(N~1/%)
for standard Monte Carlo. We present a brief introduction to quasi-
random sequences, which are deterministic sequences that are more
uniform than random sequences, Through computations of the dis-
crepancy (a measurement of uniformity) and two-dimensional projec-
tions of the sequences, we show that the improved uniformity is de-
creased as the dimension increases. For the valuation of mortgage-
backed securities, which is nominally of dimension 360, we apply the
Brownian bridge representation to reduce the effective dimension. This
allows for the effective application of quasi-Monte Carlo, in particular
in conjunction with antithetic variance reduction. The results show
an error reduction by a factor of 100 or more. A Taylor expansion of
the integrand is used to interpret the success of the various methods
applied to the problem.

*Mathematics Department, UCLA. caflisch@math.ucla.edu.
TMathematics Department, UCLA and C.ATS. morokoff@math.ucla.edu.




1 Introduction

Monte Carlo is often the only effective numerical method for the accurate
valuation of securities whose value depends on the whole trajectory of interest
rates or other variables. The standard Monte Carlo method using pseudo-
random sequences can be quite slow, however, because its convergence rate
is only O(N-1/2) for N sample paths. Quasi-Monte Carlo methods, using
deterministic sequences that are more uniform than random, can be much
faster with errors approaching size O(N-1) in optimal cases.

This dramatic improvement in convergence rate has the potential for sig-
nificant gains both in computational time and in range of application of
Monte Carlo methods for finance problems. This improvement has been
noted by a number of earlier studies [1, 8, 10], which were all motivated by
the results of Paskov [9] on mortgage backed securities.

The effectiveness of quasi-Monte Carlo methods does have some impor-
tant limitations. First, quasi-Monte Carlo methods are valid for integration
problems, but may not be directly applicable to simulations, due to the cor-
relations between the points of a quasi-random sequence. This problem can
be overcome in many cases by writing the desired result of a simulation as
an integral, but the resulting integral is often of very high dimension (e.g.
dimension 360 for a mortgage of length 360 years).

This leads to a second limitation: The improved accuracy of quasi-Monte
Carlo methods is generally lost for problems of high dimension or problems
in which the integrand is not smooth. This loss of effectiveness has been
documented for a series of test problems in [3, 4, 5]. Several researchers in
computational finance have recently reported great success with quasi-Monte
Carlo computation of problems of very high dimension. One purpose of our
presentation is to show that, at least for some of these results, the problems
are actually of moderate dimension when cast in the proper form.

A third limitation of quasi-Monte Carlo methods is that there is no the-
oretical basis for empirical estimates of their accuracy, as provided by the
central limit theorem for standard Monte Carlo. In practice this is not a ma-
jor difficulty, since confidence in the computational results can come through
repeated trials.

While quasi-Monte Carlo may be very successful on relatively simple
problems, obtaining the same success on more complicated applications can
be difficult due to these limitations. In this study we show how to overcome



some of these limitations for the the mortgage backed security problem by a
reformulation of the Monte Carlo representation so that the effective dimen-
sion is of moderate size. One of our main conclusions is that the range of
application of quasi-Monte Carlo methods can be significantly extended by
modification of the standard Monte Carlo techniques.

The outline of this paper is the following: Section 2 gives a brief in-
troduction to quasi-random sequences and their properties, including the
Koksma-Hlawka inequality which is the basic estimate on integration error
for quasi-Monte Carlo. The dependence on dimension for the properties of
quasi-random sequences is described in Section 3, and the character of two-
dimensional projections of quasi-random sequences is discussed in Section 4.
The mortgage-backed security problem is formulated in Section 5. OQur main
technical tool for formulating the problem with reduced effective dimension
is the Brownian bridge representation of a random walk, which is described
in Section 6. Computational results for the mortgage-backed security prob-
lem are presented in Section 7 along with an interpretation of these results
in terms of a Taylor expansion of the integrand. Conclusions are discussed
in Section 8.

We are grateful to Spassimir Paskov and Joseph Traub for a number of
discussions and for providing us with their quasi-random number generator
FINDER. We are grateful to Art Owen for the observation that the first
mortgage-backed security problem considered here is nearly linear.

2 Quasi-Random Sequences, Discrepancy and
Integration Error

The origin of the improved accuracy of quasi-Monte Carlo methods is the
improved uniformity of quasi-random sequences. Figure 1 shows two plots,
each of 4096 points in two dimensions. The top is a pseudo-random sequence
and the bottom is a guasi-random (Sobol’) sequence. In the pseudo-random
sequence there is clumping of points, which limits their uniformity. The
cause of this clumping is that, since points in a pseudo-random sequence are
(nearly) independent, they have a certain chance of landing very near to each
other. The correlation of points in a quasi-random sequence, on the other



hand, prevents them from clumping together.

The uniformity of a sequence of points in the s-dimensional unit cube
is measured in terms of its discrepancy. This is defined by considering the
number of points in rectangular subsets of the cube. For a set J € [* and a
sequence of N points {z,} in [, define

fmn=%§%mmmwy

Here X; is the characteristic function of the set J, and m(J) is its volume.
Various kinds of discrepancy can be defined. If F is the set of all subrectangles
of I*, then the L, and L, norms are defined as:

Dy = sup | By(J) | 21
JekE
= R 2 d d 1 .
TN [f(a:.y)EI%,a:.-q,-( N(J(CB, y))) @ y]z (2 2)

Here J(a,y) indicates the rectangle with opposite corners at (x,y). If E*is
the set of subrectangles with one corner at 0, then the star discrepancies are
defined as:

Dy = sup | Ru(J)] (2.3)
Ty = [f (RuU (@) dalt (24)

Here J(z) is the rectangle with a corner at 0 and a corner at z.
Some improvements on these definitions have been made by Hickernell
[2] who included the discrepancy over the sides of the unit cube as well.
The importance of discrepancy as an error bound for Monte Carlo inte-
gration can be seen from the Koksma-Hlawka inequality for integration error.
For the integral of a function f on the s-dimensional unit cube, the Monte
Carlo estimate of the integral is

) =5 3 o) (25)

n==l

and the Monte Carlo integration error is

1 N
o) = [, Jw) do = 7 3 o). (26)
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The Koksma-Hlawka inequality says that
e(f) < V() Dy (2.7)

where Dy, is the discrepancy of the sequence {z,,} and V(f) is the variation

of f.
In one dimension, the variation is V(f) = fol |df|. The definition in higher
dimension is more complicated. Define for all £ < s and all sets of k integers

1<y <iy<...<i < s the quantity

ok f

Ot

-dt
Ot;, -+ 0t

dt;, --

t1 ‘ik "
t]zlsj¢‘i1 llll i

V(k)(f;il" 'H.!Z.k) = /

I*

The variation of f (in the sense of Hardy and Krause) is defined as

v =% V(. i),

k=1 lsﬂ < <...<ikss

The Koksma-Hlawka inequality (2.7) should be compared with the for-
mula for root-mean-square error of Monte Carlo integration using a random
sequence. If the sequence z,, is uniformly distributed on /¢, then

Ele(f)?/? = o(f)N-1/2 (2.8)

in which E is the usual expectation and o(f) is the square root of the variance
of f given by

o) = ([ ) - ppae) " 29

W]th f: fI’ fd.‘l'f

The inequalities (2.7) and (2.9) are similar in that the bound is a product
of one term depending on properties of the integrand function and a sec-
ond term depending on properties of the sequence. They differ in that the
Koksma-Hlawka inequality is an absolute bound, whereas (2.9) is an equality
in expectation, and thus holds only probabilistically.

The infinite sequence {z,} is said to be uniformly distributed if limy_,., Dy =
0, where Dy refers to the discrepancy of the first N terms of the sequence.
The sequence is said to be quasi-random if

Dy < c{log NYN-1 (2.10)
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in which the constant ¢ and the logarithmic exponent k& may depend on the
dimension s. For Monte Carlo integration using quasi-random sequences, the
Koksma-Hlawka inequality say that the integration error is size O((log N)*N-1),
which for large N is much more accurate than standard Monte Carlo using
random or pseudo-random sequences.

The simplest example of a quasi-random sequence is the van der Corput
sequence in one dimension which is formed as follows: To obtain the n-th
term z,,, write the number n 1n base 2 as

N = Gy Opyy - - - G1Gg {base 2). (2.11)
Then transpose these digits around the “decimal” point to get
T, = gy, . Ay 18, (base 2). (2.12)

Additional examples of quasi-random sequences have been constructed by
Halton, Faure, Sobol’, Niederreiter and others. For a comprchensive review
see the monograph of Niederreiter [7].

Although the variation of f requires s derivatives of f, we have found
in practice that only a minimal amount of smoothness of f is needed for
effectiveness of quasi-Monte Carlo integration. For problems in which f is
discontinuous, however, the improvements of quasi-Monte Carlo integration
are diminished.

3 Dependence on Dimension

It is possible to derive an exact formula for Ty for any given sequence {a,}
of N terms (the notation for a sequence is changed here from @ to @ to help
distinguish between the terms of the sequence and the points defining the
rectangles). Use the Heaviside function

31, y>0

to rewrite Ry as

R(0(02) = 37 3 T 005 = 00) - 0o =) = [ —00).



Squaring this quantity and integrating over the domain described above leads
to T2, which can be expressed as

(00 = 25 30 3 [T~ max(an a0, )] - min(n )

n=1m=11i=1

2—s+1 N =
N Z H a'fM - '"-ﬂ) _i_ 12” *
n=11=1

Hickernell [2] found a similar formula for the discrepancy including the dis-
crepancy on sides of the cube.

As an example, one can compute the expected value of this quantity for
a random sequence. This root mean square (rms) expectation of Ty is given

by

N s
E(T2) = /1 T2 T T dos,,

n=1i=1

1
= Wﬁ (1—2 )

Thus the average L, discrepancy of a random sequence decreases like NV “%,
corresponding nicely with the random Monte Carlo bound.

Figures 2 shows plots of Ty (solid line) on a loglog base 2 scale. The rms
expectation of Ty for a random sequence (dashed line) is also plotted, along
with the function 1/N (dotted line) for reference.

An important observation to be made from these plots is that for small
N the discrepancy of a quasi-random sequence is almost exactly the same as
that of a random sequence, with size O(N-1/2). Only when N gets rather
large does the discrepancy decay like O(N -1}, as predicted (neglecting log N
terms, which cannot be accurately detected on this plots). The transition
value of N appears to be grow exponentially with the dimension, but there
is no theoretical explanation of this behavior. This indicates that in high
dimensions, unless one uses a very large number of points, quasi-random se-
quences are no more uniform than random sequences. Thus the advantages
of quasi-Monte Carlo are lost for moderate values of N if the dimension s is
sufficiently large. On the other hand, we have found almost no problems for
which quasi-Monte Carlo is worse than standard Monte Carlo. In addition,
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for problem of high dimension such as the mortgage-backed securities prob-
lem described below, it may be possible to reformulate the problem so that
the effective dimension is of manageable size.

4 Orthogonal Projections

Further understanding of quasi-random sequences is gained by looking at
two dimensional projections of the points in Is . The appearance of non-
uniformity in these projections is an indication of potential problems in using
a quasi-random sequence for integration.

To be specific, some details of the Sobol’ sequence are needed. Each di-
mension of this sequence is just a permutation of the the van der Corput
sequence, whenever N = 27 for m = 0,1,2,3,.... These permutations are
generated from irreducible polynomials over the field {0,1}. Ideally, polyno-
mials of the lowest degree possible are used; however, as dimension increases,
it is necessary to use polynomials of higher and higher degree. To generate a
one dimensional sequence from a polynomial of degree d, d — 1 odd integers
14+ v -y da_y must be chosen with the restriction that j; < 2!, Thus there are
24 — 1 possible ways of picking the starting values. Sobol’ has given a list of
good starting values for dimension up to 16 {11}, which produce sequences
satisfying an additional uniformity property.

It is difficult to evaluate the uniformity of a sequence in a high dimen-
sional space, but one indication of uniformity is the uniformity of the two-
dimensional projections of the sequence, which are easily graphed. The graph
at the top of Figure 1 shows a “good” pairing of dimensions using Sobol’s
ond and 3¢ dimensions with his recommended starting values. A “bad”
pairing of dimensions is presented in Figure 3, which shows two higher di-
mensions (following Sobol’s convention for associating dimension with gen-
erating polynomial) based on the polynomials z7 + 25 + 24 + 2® + 1 and
27+ 25 + 24 + 23 + 22 + z + 1 and the starting values are (1,3,5,11,3,3,35)
and (1,1,7,5,11,59,113), tespectively. Although this non-uniformity could go
away if these starting values were changed, we have found that this type of
non-uniformity if fairly typical of some of the two-dimensional projections
of high dimensional quasi-random sequences. Moreover, 1t does not seem
possible to tell a priori which choices will lead to bad pairing.
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The bad behavior seen in the second plot of Figure 3 can be explained in
terms of filling in holes. If 8192 (213) points are used, the plot looks almost
identical to what is shown for 4096. However, the next 8192 points fall only
where the gaps appear. Thus by N = 16,384, the projection plot is almost
perfectly uniform. The problem is that the cycle for filling in holes is 213,
which is too long.

It is worthwhile to note that, even if a sequence has poor two dimensional
projections, it may still be fairly uniform in /¢ , and there are many functions
which it may integrate quite well. However, it is important to be aware of the
potential problems these sequences may have, and the orthogonal projections
are a good means of identifying and assessing the difficulties.

5 Mortgage-Backed Securities

Consider a security backed by mortgages of length M months with fixed
interest rate iy, which is the current interest rate at the beginning of the
mortgage. The present value of the security is then

PV = E(v)

M
= B wm) (5.1)

in which E is the expectation over the random variables involved in the
interest rate fluctuations. The variables in the problem are the following:

up = discount factor for month &
my, = cash flow for month k&
i, = interest rate for month &
w;, = fraction of remaining mortgages prepaying in month &
r, = fraction of remaining mortgages at month &
¢, = (remaining annuity at month k}/c
¢ = monthly payment
£, = an N(0,0) random variable.

12



This notations follows that of Paskov [9], except that our ¢, is denoted ;4
by Paskov.
Several of these variables are easily defined:

el
u, = [ +4)7
i=0
my, = ere((1 —wy) + wiey)
k1
[1Q —wy)
j=1
M—k

o = Y, (1+i)7.

=0

Tk

Following Paskov, we use a model for the interest rate fluctuations and the
prepayment rate given by

i o= Kyeftip,
o I{g ebt o+ to (5_2)
w, = I{I '+" I{g arctan (I(Sik ‘i‘ 1{4)

in which K, K,, K,, K, are constants of the model. The constant K, =
e~*/2 i chosen to normalize the log-normal distribution, i.e. so that E{t;,) =
ig. The initial interest rate iy is an additional constant that must be specified.

In this study we do not divide the cash flow of the security among a group
of tranches, as in [9], but only consider the total cash flow. Nevertheless,
the results should be indicative of a more general computation involving a
number of tranches.

The expectation PV can be written as in integral over RM with Gaussian
weights

9(6) = (2ra?)V2e-C 12, (5.3)

This is transformed into an unweighted integral by a mapping ¢ = G(x) with
G'(z) = g(£), which takes a uniformly distributed variable z to an N(0,0)
variable £. The formula for PV is

PV = fRMU(fu--wa)g(fl)---g(fl)d@...dfM
/{'0 1M U(G(§1)1 Tt G(&M))dﬂ’a e dzpg. (54)

It
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Note that in quasi-Monte Carlo evaluation of an expectation involving a
stochastic process with M time steps, the resulting integral is M dimensional.

In the numerical study below, we have used two sets of values of the
parameters ig, Ky, Ky, K3, Ky, 0. We refer to the first set of parameters as
the “Nearly Linear Example”, because the integrand, when considered as
a function of the Gaussian increment variables ;, has a dominant linear
component. For this case, the parameters are

(10, K1, Ky, K3, Ky, 0%) = (.007,.01, -.005, 10, .5, .0004) (5.5)
In the second example, the “Nonlinear Example”, the parameters are
(i0y K1, Ky, I3, K4, 0%) = (.007,.04,.0222, —1500.0, 7.0, .0004) (5.6)

The interest rate corresponds to a yearly rate of 8.4%. The variance in inter-
est rate increments o? leads to yearly fluctuations of size .5%. In the Nearly
Linear Example, the prepayment rate is nearly linear in the interest rate, in
the range of interest; whereas for the Nonlinear Example, the prepayment
rate has a step increase when the interest rate falls much below i5. In both
examples the length of the loans is taken to be 30 years (M = 360).

6 Brownian Bridge and an Alternative Discretiza-
tion

Since Brownian motion is a Markov process, it is most natural to generate
its value b(t + At,) as a random jump from a past value b(t) as

b(t + Aty) = b(t) + /Aty v (6.1)

in which v is an N(0,1) random variable. On the other hand, the value
b(t + At;) can also be generated from knowledge of both a past value b(t)
and a future value b(T = t + Aty + At,), with 0 < At,, according to the
Brownian bridge formula

bt + Aty) = ab(t) + (1 = a)b(T) + ev (6.2)

14



in which

1= Atl/(Atl + Atz)
C = GAtz (6.3)

Note that aAt, < Aty, so that the variance of the random part of the Brow-
nian bridge formula (6.2) is less than that that in (6.1).

The standard method of generating a random walk y;, = ob(kA) is based
on the updating formula (6.1). The initial value is y, = 0. Each subsequent
value yy,q is generated from the previous value y, using formula (6.1), with
independent normal variables v,

Another method, which we refer to as the alternative discretization can
be based on (6.2). Suppose we wish to determine the path yo,¥1,. .., ¥, and
for convenience assume that M is a power of 2. The initial value is y, = 0.
The next value generated is yy = 0v/NAL v. Then the value at the mid
point yyy, is determined from the Brownian bridge formula (6.2). Subsequent
values are found at the successive mid-points; i.e. Y4, Yanya Ynysy+ - - - The
procedure is easily generalized to general values of M.

Although the total variance in this representation is the same as in the
standard discretization, much more of the variance is contained in the first
few steps of the alternative discretization due to the reduction in variance
in the Brownian bridge formula. This reduces the effective dimension of the
random walk simulation, which increases the accuracy of quasi-Monte Carlo.
Moskowitz and Caflisch {6] applied this method to the evaluation of Feynman-
Kac integrals and showed the error to be substantially reduced when the
number of time steps, which is equal to the dimension of the corresponding
integral, is large. Since the mortgage-backed securities problem described
above depends on a random walk, and can be written as a discretization
of a Feynman-Kac integral, we were naturally led to apply the alternative
discretization to this problem .

15



7 Numerical Results

7.1 Nearly Linear Example

The value PV for this example was calculated to be 131.787. The variance
in this value is 41.84 and the variance in the antithetic computation of this
value (described below) is .014. The mean length of a mortgage in this case
is 100.9 months and the median length is 93 months.

We now describe the accuracy of various integration methods for this
problem as a function of N, the number of paths. For each of these results, we
present the root-mean-square of the error over 25 independent computations.
Moreover, the computations for different values of N are all independent. The
results are plotted in terms of error vs. N, both in log base 10.

First, we perform straightforward Monte Carlo evaluation, with results
plotted in Figure 4. The top curve shows results from Monte Carlo using
standard pseudo-random points, with the error decreasing at the expected
rate of N-1/2, The second curve is the result of using quasi-Monte Carlo
(Sobol’) for the first 50 dimensions (time steps), followed by pseudo random
for the remaining 310 time steps. This shows almost no gain through this
limited use of quasi-Monte Carlo. The third graph shows a dramatic im-
provement using quasi-random for all 360 dimensions of the problem. The
360 dimensional quasi-random sequence was generated using a part of the
code FINDER, written by Paskov.

These results are consistent with the results of Paskov [9, 10] and Ni-
nomiya and Tezuka [8]. They seem to contradict the observations above that
the effectiveness of quasi-Monte Carlo is lost in high dimensions. This result
is deceptive,however, because of the special nature of this problem in which
the value is almost entirely linear in the integration variables. For such a
linear problem, only the one-dimensional projections of the quasi-randomn se-
quence are significant. The high-dimensional sequences generated here have
the property that all of the one-dimensional projections are equally well dis-
tributed. So they do well on linear functions of any dimensionality. We will
show next that they do not necessarily do well on nonlinear functions, even

16



quadratic functions, presumably due to the poor quality of two-dimensional
projections.

The linear terms in the integrand can all be eliminated through the use
of antithetic variables. This means that for every path {z,}, we also use the
path {—z,}. The resulting computational results are plotted on Figure 5.
The top curve of this figure shows the error due to standard Monte Carlo,
without antithetic variables, for reference. When antithetic variables are
used with standard Monte Carlo the error is reduced by more than a factor
of 50, as shown in the curve labeled MC-anti. Straightforward use of 360
dimensional quasi-random sequences, labeled QR-anti does not improve this
result. This shows that once the linear terms are removed, straightforward
quasi-Monte Carlo is not effective, due to the high-dimension of the problem.
The final result, labeled QR-anti, BB, shows the result of using the Brown-
ian bridge representation with antithetic variables. This gives an additional
error reduction over random antithetic variables by a factor of nearly 10 (for
larger N) and increases the rate of error decay from N-1/2 to approximately
N-3/4, This improvement is due to the decrease in effective dimension in the
Brownian bridge representation.

As further evidence of the nearly linearity of this problem, we next con-
sider the effect of the quadratic terms of the Taylor expansion of the integrand
about the point (&;,...,&y) = (0,...,0). The quadratic terms can be cal-
culated exactly by taking second derivatives of the integrand. We then use
them as a control variate; i.e., we subtract the exact quadratic terms from
the integrand for the Monte Carlo evaluation, and then add back the ex-
act-integral of the quadratic terms. The resulting error, for standard Monte
Carlo with antithetic variables, is another factor of 5 to 10 smaller, as shown
in Figure 5.

7.2 Nonlinear Example

We next consider the Nonlinear Example and display the same error curves.
The value for this problem is 130.7125. The variance in this value is 13.54
and the variance in the antithetic computation of this value is 1.127. The
mean length of a mortgage in this case is 76.5 months and the median length
is 58 months.

Figure 7 shows the error from standard Monte Carlo (MC), standard

17
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50), and quasi-random for all dimensions (QR-360).
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Figure 5: Error vs. N (log base 10) for the Nearly Linear Problem, us-
ing standard Monte Carlo with antithetic variables (MC-anti}, quasi-random
with antithetic variables (QR-anti), and quasi-random with antithetic vari-
ables and the Brownian bridge discretization (QR-anti,BB). The error for
standard Monte Carlo is also plotted for reference.
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Monte Carlo with antithetic variables (MC-antt), Sobol’ in all 360 dimension
(QR), and Sobol’ with antithetic (QR-anti). We see that the latter three
methods give roughly the same results—a factor of about 4 to 8 reduction in
error compared with standard Monte Carlo.

Figure 8 shows the error from Sobol’ with the Brownian bridge (QR-BB),
and Sobol’ with Brownian bridge and antithetic (QR-anti,BB), as well as
the results for standard Monte Carlo and Sobol’ for comparison, The Sobol’
with Brownian bridge gives a further error reduction (over standard Sobol’)
by a factor of more than 3. When combined with antithetic variables, the
improvement is a factor of about 30.

Our interpretation of these results is the following: Both antithetic vari-
ables and straightforward quasi-Monte Carlo effectively eliminate the error
due to the linear terms, but quasi-Monte Carlo does not help with the
quadratic terms. There is still significant error reduction in this problem,
because the linear terms are significant, although not overwhelmingly domi-
nant as in the previous problem.

Reduction in the error due to the quadratic and other nonlinear terms
is possible through quasi-Monte Carlo using the Brownian bridge since the
problem is then of lower effective dimension. When combined with antithetic
variables, the method is even more effective.

8 Conclusions

Our main conclusions are the following:

» Quasi-Monte Carlo methods provide significant improvements in accu-
racy and computational speed for problems of moderate dimension.

o The effectiveness of quasi-Monte Carlo is lost on problems of high di-
mension, except in special cases, such as linear problems.

¢ Some problems that have a large nominal dimension, can be reformu-
lated to have a moderate-sized effective dimension, so that the effec-
tiveness of quasi-Monte Carlo is recovered.
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Figure 7: Error vs. N (log base 10) for the Nonlinear Problem, using standard
Monte Carlo (MC), standard Monte Carlo with antithetic variables (MC-
anti), quasi-random (QR), and quasi-random with antithetic variables (QR-
anti).
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Figure 8: Error vs. N (log base 10) for the Nonlinear Problem, using quasi-
random with the Brownian bridge (QR-BB), and quasi-random with the
Brownian bridge and with antithetic variables (QR-anti,BB).
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o The Brownian bridge representation reduces the effective dimension

for problems, such as the mortgage-backed security problem described
here.

¢ Quasi-Monte Carlo can be effectively combined with the variance re-

duction technique of antithetic variables.

We believe that range of applicability for quasi-Monte Carlo methods can
be further increased through additional modification of standard Monte Carlo
techniques for use with quasi-random sequences. For example combination of
quasi-Monte Carlo with variance reduction methods, such as control variates,
importance sampling and stratification, which could be combined with quasi-
random sequence could lead to many improvements.
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