UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Wavelet-Like Methods in the Design of Efficient
Multilevel Preconditioners for Elliptic PDEs

Panayot S. Vassilevski
Junping Wang

August 1996
CAM Report 96-24

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555



Wavelet-Like Methods in the Design of Efficient Multilevel
Preconditioners for Elliptic PDEs

Panayot 5. Vassilevski and Junping Wang

§1 Introduction

In this paper we are concerned with the construction of efficient numerical
methods for matrix problems arising from finite element methods for ellip-
tic partial differential equations. In practical computations, the standard
nodal basis for the finite element space is often chosen as the computa-
tional basis and the resulting matrices are ill-conditioned. Our objective
is to seek a substitution for the standard nodal basis so that the stiffness
matrix arising from the new basis is well-conditioned.

A computationally feasible basis should possess the following properties:
(a) the basis functions must be computable and have local support; (b) the
resulting stiffness matrix is sparse and well-conditioned. This paper will
introduce a wavelet-like method proposed by the authors in [41] which can
be employed to construct a new basis with the above mentioned features
for the finite element application to elliptic problems.

The method has a very close relation with the multiresolution (or mul-
tiscale) decompositions exploited especially in the wavelet literature (e.g.,
[17], [14]). In our approach, the requirements on the L?-orthogonality and
the existence of a single generating function ¢ (more precisely, ¢ generates
an orthogonal basis by dilation and translation as in {¢(-—27%i), i€ Z })
comnmonly imposed in the wavelet literature {see Mallat [26) for details)
are relaxed in order to have a computationally feasible basis. The basic
idea lies behind approximating the wavelets without deteriorating their
stability, yielding a stable Riesz basis for the finite element space under
consideration.
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Attempts in the search of a stable Riesz basis with some restrictions,
either on the mesh or on the analysis, have been made in Griebel and
Oswald [20], Kotyczka and Oswald [24], and Stevenson [33, 34]. For a
recent comparative study on the construction of economical Riesz bases for
Sobolev spaces we refer to Lorentz and Oswald [25].

Our method is general and provides a satisfactory answer for most of
the elliptic equations, The method is based on modifying the existing (un-
stable) hierarchical basis by using operators which are approximations of
the L?-projections onto coarse finite element spaces. A similar approach
was used by Jaffard [22] in the seeking of a wavelet basis for finite element
spaces. In [22], the construction starts with the standard nodal basis func-
tions which are transformed to an orthogonal multiresolution basis based
on an explicit orthogonalization procedure exploiting wavelets in each sub-
space W; of V;. Here W; is the L?-orthogonal complement of the finite
element space V;_1 in the next fine finite element space V;. The latter pro-
cedure generally leads to basis functions that are not locally supported but
have good decay rates and hence allow for locally-supported approxima-
tions. The method proposed in Vassilevski and Wang [41] can be regarded
as an approximation of the wavelet basis in [22]; the approximate-wavelet
basis functions are locally-supported and, therefore, computationally fea-
sible.

There are two alternatives in the implementation of the approximate-
wavelet basis in practical computation. In the first approach, one first
computes an explicit form for each new basis function and then assembles
the global stiffness matrix corresponding to the new basis, The major
drawback for this approach is the difficulty on the assembly of the global
stiffness matrix; the robustness corresponding to the standard nodal basis
is no longer retained for the new basis. In the second approach, one makes
use of the standard nodal basis as the computational one and constructs
a preconditioner for the stiffness matrix by using the new basis functions.
This is possible because most of the iterative algorithms such as the CG
method require only the action of the stiffness matrix on vectors. Thus,
the technique of basis changing can be employed to compute the action of
the matrix corresponding to the new basis. The second approach can be
viewed as a “black—box fix” of the conditioning of the standard nodal basis
stiffness matrices. Details can be found in §8.

The organization of the present paper is as follows, Section 2 contains
some preliminaries and the problem formulation in an abstract Hilbert
space setting. The importance of having a stable Riesz basis and its rela-
tion to the conditioning of discrete matrix problems, especially those from
the finite element discretization, is the topic of §3. Specific examples of sec-
ond order elliptic PDEs are presented in §4. Section b discusses the basic
idea in constructing multilevel direct space decompositions. The hierarchi-
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cal basis of Yserentant [44] is reviewed in §6. Section 7 contains a detailed
discussion of the wavelet-like method in constructing a stable basis. The im-
plementation issues, including two basic preconditioning schernes (namely
the additive and multiplicative algorithms) and the construction of the
approximate L2-projections, are discussed in §8. Finally, some numerical
results are presented in §9 for convection—diffusion problems to confirm the
theory developed in previcus sections.

§2 Preliminaries and basic problems

This preliminary section introduces the basic problem we are concerned
about in this paper. Let H be a Hilbert space equipped with the inner
product (-, -} such that

HcVcH, (2.1)

where H is dense in another Hilbert space V with inner product (-, -)g, and
H' is the dual of H with respect to the pairing of V' defined by the inner
product (-,+)o. Assume that the imbedding from H to V is continuous.
More precisely, there exists a constant p > 0 satisfying

llullo < efluf] ~ Vue H. (2.2)

Here || - || = v/(, ) indicates the norm in the Hilbert space H and {| - [jo =
+/(, )o that of V.
Let a(-, ) be a bounded bilinear form defined on H x H, satisfying the
following inf-sup condition of Ladyzhenskaya, Babuska, and Brezzi:
a{v, w)
sup Tl >pBlv|f VYveH, (2.3)

weH

where # > 01is a fixed constant. We are interested in approximate solutions
of the following problem:
Given f € H', find u € H salisfying

a(u,¥) = f(¥) VY eEH. (2.4)

It is well-known that if a(,-) is symmetric and H-coercive (i.e., there
exists a positive a satisfying a{v,v) > af|v}|® for all v € H), then the
problem (2.4} is equivalent to the minimization problem for the quadratic
funetional J(v) = ia(v,v) — f(v).

To approximate (2.4), let {H}}52; be a sequence of finite dimensional
subspaces of H satisfying the following approximation property: For any
v € H one has
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Jim inf |l ¢l =0. (2.5)
The well-known Galerkin method for (2.4) seeks u € Hy such that

aur, ¥x) = f(¥x)  Vir € Hy. (2.6)

In order to have a well-posed discrete problem (2.6), we assume the
following discrete inf-sup condition: There exists a constant f; > 0 such
that

a({v, w)

sup > Bllvll Vv e Hg. (2.7)

wei;, |l
It is known that if (2.7) holds true, then the Galerkin problem (2.6) has a
unique solution in the subspace Hy. Interested readers are referred to [18]
and [11] for more details.

In practical computation, we usually formulate a matrix problem for
(2.6) by choosing a suitable basis for the subspace Hy. More precisely, let
{¢§") : i =1,2,.-.,n;} be a computational basis of H;. Expand the
approximate solution u(¥) in terms of this basis, yielding

g
u® =3 ™. (2.8)

i=1
Let u(*) = (c1,c05 ..+, ¢n, )T be the coordinates of ulF), It is not hard to see

that the vector ult) is given as the solution of the following linear system:
AlE () = £(k) (2.9)

where the right-hand side vector (*) is defined as follows:

£9) = (by by, .. ba )T with b = F(). (2.10)
The matrix is given by A®) = {a(tﬁgk);fﬁfk))}mm. One may view A%) as
n
a linear operator on Hy defined, for any v = Ek v;qﬁgk) € Hy, by
i=1
ny g
AlF)y = Z c;qﬁsk), where c; = Za(qﬂgk),cﬁgk)) v (2.11)
i=1 i=1

Of main interest in this paper, we study techniques for solving the
linear system (2.9) by iterative methods. It is known that the conditioning
of the matrices A%¥) ig of great importance in practical computation. Let
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us see how the condition number of A®*) is related to the choice of the basis
o) 5= {qisk)}:‘:"l and the discrete inf-sup condition (2.7).

For any v € Hp, denote in the bold face the coordinates of v with
respect to the basis &) Namely, the vectors v = {(v1,vg, -, 'u,,k)T and v
are related as follows:

y= nzkv,-d),(-k). (2.12)

izl
Introduce a new inner-product in Hy by using the basis {¢§”)}?;1 as follows:

Tk

{v,Whr,0 = Ev;w; =V W, (2.13)

{21

Denote by ||v]|x,0 = +/v - v the norm induced by the new inner-product.
Recall that the condition number of the matrix A} is defined by

K(A®) = AB] 4B, (214)
where ||A(®)|| indicates the norm of the matrix A®™) with respect to the new
norm ] + ||x,0 in the vector space Hy. The following result can be checked
easily.

Theorem 1. Assume that there are positive constants gy, and gy 2 satis-
fying
eealivllko < 1AF]lk0 < gp2llvlle,o- (2.15)

Then, k(A% < ﬁ’f. The best estimate for g1 and gy 2 Is given by

ora = SEIIPH A®) o]k 0,
vEH, Hvlik,0=1 (2 16)
= inf AF) ) '
%1 ueH.,.?;’uak,Fx“ ||k,0

Moreover, one has k(A®)) = .2 for the best estimate of g ;.

In fact, the inequality (2.15) implies the following
AP <erz HAP TS Vons, (2.17)
which verifies the validity of the theorem. Therefore, it suffices to establish

an estimate like (2.15) in order to gain some knowledge on the condition
number of the matrix A},
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§3 Matrix conditioning and stable Riesz bases

Our objective in this section is to figure out the connection between the

condition number of A®) and the selection of the basis {¢{*'}1, for Hy.

To this end, we derive the inequality (2.15) by using the inf-sup condition.
First, notice that for any v € Hy

[]A(k)vﬂk,o - sup (A(k)'u, w)k,o- (3.1)
wEHk, Jlwllx,0=1

The definition of A} (see (2.11)} implies that

ni g
(AP0, who=a | S viel, Y wiel” | =a(v,w).  (32)
j=1 i=1
1t follows that
[A® 0]k o=  sup  a(v,w). (3.3)
weH, [wle,e=1
By letting
a(v, w)
@k = SUp SuUp T/, 3.4
k2 vEH, weH, ”v“k;(’“w“-‘hn ( )
one obtains the following
1A®vl|x0 < gx,2l|vllk,0- (3.5)
Next, by letting
) alv, w)
= inf sup we————=—, 3.6
1= B 28, Tl ollwllns )
one has the following estimate from below:
NA® 0|50 2> ex,allvlls.o- (3.7)

To summarize, we have proved the following resulé:

Theorem 2. If gz 1 and gi 2 are given by (3.6) and (3.4), respectively, then
the estimate (2.15) holds true. Consequently, the condition number of the
matrix A®) js bounded by ﬁf.

The question now is on the determination of the constants g1 and gg,».
We would like to select a basis {¢£k)}?ﬂ"1 for Hy so that the ratio {or the
condition number of A(*)) ﬁ—-:d-% is as small as possible.

As our first consideration, we assume that {qﬁgk)}?:"l is an orthonormal
basis with respect to the original inner product (-, ) of H. It is clear that
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the corresponding discrete norm || ||, is the same as the original norm || ||
in Hi. Therefore, the constant g g is bounded from above by the norm
of the bilinear form a(-,-). Similarly, the constant g is bounded from
below by the parameter B in the inf-sup condition (2.7). Since in practical
problems, the norm of a(-, -) and the parameter 8 stays uniformly bounded
in terms of k, then the condition number of A js uniformly bounded.

It is, of course, impractical to assume the existence of an orthonormal
basis {qﬁsk)}?:“l which is also computationally feasible. The next best thing
to an orthonormal basis is the Riesz basis in any Hilbert space. We recall
that in the Hilbert space H, a Riesz basis is a basis {13 }{2, of H satisfying

[e.0]
alplf < d Solol? Yo d, (3.8)

i=1

where v = 752, ¢;4); and [| - || indicates the original norm in H; ) and o3
are two absolute constants., Here we have assumed that the Hilbert space
is separable.

Remark 1: The strong norm || - || in the Hilbert space H was used in the
definition of the Riesz stability (3.8). Notice that H is a subspace of V.
Thus, it would be feasible to discuss the Riesz property with respect to
the norm || - {|o of V. In practical applications, V' often represents L3()
and || - l}o denotes the corresponding L*-norm. In the wavelet literature,
the Riesz property is commonly studied with respect to the L?-norm. But
the ultimate goal in the preconditioning analysis is to establish estimates
such as (3.8) since (3.8) implies that the discretization matrix AlF) is well-
conditioned.

We now go back to the finite dimensional subspace Hj of H. Similar

to (3.8), we assume that there exist constants agk) and agk} such that
k -
AINol* < 3ot <ofPIll* Vo€ B (3.9)
i=1
Observe that the condition (3.9) can be rewritten as

FNol? < el e < oD MI? Yo € Hy (3.10)

Since {ngk) Tk is assumed to be a basis of Hy, the equivalence relation
(3.10) obviously holds for some constants o'gk) and agk) with

o= sup ol (3.11)
vEHy, |vll=1
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and

(k) .
o EHM"v" 1“ “ko {3.12)

The important thing is that one should have some control on the ratio
(k) g (k)
oy [foy .

Definition 1. The famlfy{tﬁ(") {dJ(k)}"" } is said to be a uniformly sta-

ble family of Riesz bases for {H}} if the quotient o )/cr(k) of the Riesz
bounds in (3.9) is bounded uniformly with respect to k — co; i.e., if there
exists a constant M independent of k such that

o /e{?) < M, (3.13)
forany k=1,2,.-.

The rest of this section explains the importance of having a stable Riesz
basis,

First we estimate the parameter py 2 defined in (3.4). Let |]a|! denote
the norm of the bilinear form a(, -). Then,

0 sup sup _vw)
k2 =
vety weH, [10]koflwllk,o
< sup sup w) up et (3.14)

sup sup
veit, weH, [P0 ver, wein [Ivllkollwlle,o

o} |wli (%)
all su —e——— < Haltfor
lall o Tollollwllno < o741

Next, we estimate the parameter gy 1 as follows:

0 inf a(v, w)
k1 = SUP o —E——
YT v wein, [0k ollwlleo
> inf sup Llﬁlm inf llwl
vetty wet, 1oleollwl] wer Jullk,o (3.15)
> inf sup a(v,w) .o (Pl e vl
veHy we, ||vlflwl ved |[ollk,o wer [[wlle,o
> fufos.
e,

It follows that g s/er,1 < u;;“;?;y The result can be summarized as

follows:
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Theorem 3. Let {¢§"’};‘;1 be a computational basis of Hy, satisfying (3.10).
Then the condition number of the matrix A®) arising from the basis

{¢§k’}?__':1 is bounded by,

llaf} o5

EZ‘“ ;’g’ﬁ. (3-16)

(A®) <

Consequently, the condition mumber of A(F) js uniformly bounded for stable
Riesz bases {¢$k) nt., provided that the discrete inf-sup condition (2.7)
holds true with uniformly bounded constants i from below by some 8* >
0.

The conditioning estimate in Theorem 3 contains two important fac-

(%)
tors: Eﬂ%‘u and g%ﬁ The first one depends on the norm of the given bilinear

form and the stlability constant By from the discrete inf-sup condition. In
practical computations, the space Hy must be so constructed that ensures
the boundedness of §; from below by some fixed §* > 0. This is the case
for the model problems and their discretization spaces to be considered in
§4. The second factor is basis—dependent. More precisely, it is a character-
ization of the difference between the discrete coefficient norm || - [|x,0 and
the continuous norm || - ||. Stable Riesz bases are important because the
corresponding discretization matrices are well-conditioned. Thus, simple
iterative methods such as the conjugate gradient (CG) can be successfully
applied to solve the matrix problem from the Galerkin discretization with
a geometric rate of convergence. As is well-known, the convergence factor

(k}
is bounded by 3\/%, where £ = &(A®) < 151%1 %‘(’g For nonsymmet-
1

ric problems, one could apply the CG method to the normal equation or
the GMRES method to A%, For symmetric and indefinite problems, the
MINRES (rminimum residual) algorithm would be a good choice. The con-
vergence rate is no morse than that of the CG-method applied to A®Y
There is another practical criterion in the choice of the basis {qSEk)}’?:“i.
It is of great practical importance to represent the matrix entries of AU") as
sparse as possible. This is trivially achieved (assuming a(.,.) is symmetric
and positive definite) if the basis is a(.,.)-orthogonal. Thus, the matrix
A() admits diagonal forms and only nj entries need to be stored. Such
a situation is too special and rarely happens in practice. In general, we
assume that the basis is computationally feasible in the sense that the
basis function are computable and the corresponding matrix A*) is sparse
(the number of nontrivial entries in the matrix is of order O(nz}). This is
the case in practice for the standard nodal bases of finite element spaces
Hj, if the bilinear form arises from partial differential equations. However,
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this choice will not make a stable Riesz basis for most of the PDEs. The
following section contains a detailed discussion on this aspect.

$4 Model problems

Here we consider some model problems of (2.4) in partial differential equa-
tions. Boundary value problems for the second order elliptic equations are
of major consideration in this discussion. Finite element methods will be
applied to approximate the solution defined on an open bounded domain
Qin R? with d = 2 or 3.

4.1 Second-order elliptic equations

Consider the homogeneous Dirichlet boundary value problem for the fol-
lowing second-order elliptic equation:

L(u) = -V - (a(«)Vu) + b(z) - Vu+c(z)u = f(z), z€Q, (411)

where a = a(x) is a symmetric and positive definite matrix with bounded
and measurable entries, b = b(z)} and ¢ = c(x) are given bounded func-
tions, f = f(x} is a function in H~}(£2).

Note that we do not intend to consider problems which are convection-
dominated.

Let H'(Q) be the standard Sobolev space equipped with the norm:

lull = (lulZ+§vul?)?  vue BYQ). (4.1.2)

Here || - |jo stands for the L%norm. Let H(f2) be the closed subspace
of H1(Q) consisting of functions with vanishing boundary values. The
following relation is well-known:

) ¢ L3(Q) c HY(Q). (4.1.3)

A weak form for the Dirichlet problem of (4.1.1) seeks u &€ Hg(S2)
satisfying

bu,v) = f(v) Vv e H3(Q), (4.1.4)

where
b(u, v) = fn (a{z)Vu - Vv +b(z) - Vuv+c(z)uv)dz (4.1.6)

and f(v) is the action of the linear functional f on ».

Assume that the problem (4.1.4) has a unique solution. Then the inf-
sup condition (2.3) is satisfied for the bilinear form b(:, -) defined on H 2(x
HL(S). Let us approximate (4.1.4) by using the Galerkin method with
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continuous piecewise polynomials. If Sj denotes the finite element space
associated with a prescribed triangulation of Q with mesh size h, then the
Galerkin approximation is given as the solution of the following problem:
Find up € Sy satisfying

bun, ¢) = f(¢)  Yé €S (4.1.6)

It has been shown that the discrete problem {4.1.6) has a unique sclution
when the mesh size b is sufficiently small, Thus, the discrete inf-sup con-
dition (2.7} is satisfied for this problem. Details can be found from [35, 36].

Choose the standard nodal basis as the computational basis for the
finite element space Sj,. Let {¢;}7_, be the set of nodal basis functions and
Ap be the corresponding discrete matrix (also called the global stiffness
matrix). The condition number of Ay can be estimated by using Theorem
3. To this end, let us establish the inequality (3.10) for the standard nodal

basis. For any v € Sy, let
n
v = E vy with v; = v(2;), (4.1.7)
i=1

where z; are the interior nodal points of the finite element partition. The
relation (3.10) is equivalent to the following:

n
Grlloll} < Y of < éafloflf, Vv e S, (4.1.8)
i=1
for some positive constants &3 and . It is not hard to see that

n

> uf = b7 ofl3. (4.1.9)

i=1

It follows that &, = O@(h™%). Also, by the standard inverse inequality one
sees that & is bounded from below by a constant proportional to A*~¢,
Thus, from Theorem 3, the condition number of Ay is bounded from above
by Ch~2 for some constant C; the lower bound for its condition number is
also bounded from below by some Ch~?,

4.2 Stokes equations

Consider the problem which seeks u € [Hé(Q)]d and p € L%(Q) such that

—-Au+Vp = f, in £,
V-u = 0, in £2, (4.2.1)
u = 0, on 92,
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where f € [LZ(Q)]d is a given vector-valued function, and 8 denotes the
boundary of Q.
A weak form for the problem {4.2.1) involves the following bilinear form:

A(u, p; v, w) = (Vu, Vv)o — (V- v, plo — (V- u,w)o (4.2.2)

defined on W x W with W = [H1(2)] x L(2). Here L3(R) is the closed
subspace of L2(R) consisting of functions with vanishing mean value. The
weak problem seeks (u, p) € W satisfying

A, pv,w)=(f,v)  ¥Y(v,u)eW. (4.2.3)

The inf-sup condition is satisfied for the bilinear form defined in (4.2.2).
Details can be found from [18], [11].

As to the finite element method for (4.2.3), we employ the Hood-Taylor
element [21] which satisfies the discrete inf-sup condition (with a mild re-
striction on the triangulation). The Hood-Taylor element is a combination
of continuous piecewise linear functions for the pressure variable p and
continuous piecewise quadratic functions for the velocity variable u. De-
note by Wy = X3 x S the corresponding finite element space, where X,
contains continuous piecewise quadratic functions and Sy, contains continu-
ous piecewise linear functions for the pressure variable. The finite element.
approximation (wy, py) € W), satisfies

Alug,pr;v,w) = (£,v)  Y(v,w) € Wh. (4.2.4)

If the standard nodal basis is selected in formulating a matrix problem
for (4.2.4), then the condition number of the global stiffness matrix can
be estimated by using Theorem 3. More precisely, let {t; To1 be the
standard nodal basis of X5 and {¢;}{, that of Sy as discussed in the
previous section. For any (v, w) € Xj X 5y, let

w= i: widi, (4.2.5)

i=1
and

v= Z'l)j‘!f)j. (4.2.6)
i=1

Using the inverse inequality and the Poincaré inequality one can derive the

following relations:
n

> wf o b 4jul?, (4.2.7)

i=1
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and "
ek v} < D7 of < esh v, (4.2.8)
j=1
where ¢y and ¢q are two absolute constants. Thus, we have from Theorem
3 that the condition number of the global stiffness matrix is bounded by
Ch~2.

We emphasize that the poor conditioning for the Stokes problem is
caused by the relation (4.2.8) where the H norm of v was approximated
by a discrete norm stable in L2 only. The equivalence (4.2.7) indicates that
the standard nodal basis is a good choice for the pressure variable in the
Stokes problem. Therefore, attention should be focused on stabilizing the
velocity component in the Stokes equation.

A direct wavelet approach to the Stokes problem has been developed
in Dahmen, Kunoth, and Urban [16]. One could also use block-diagonal
preconditioners for the saddle-point discretization matrices A®) with one
block corresponding to Laplace—iike preconditioners for the velocity com-
ponent and a second block corresponding to mass-matrix preconditioners
for the pressure unknown in the MINRES method. Details in this approach
can be found from Rusten and Winther [31] and Silvester and Wathen [32].

4.3 Mixed methods

Here we consider the mixed method for the second order elliptic equation
(4.1.1). For simplicity, assume that b = 0, ¢ = 0, and the following Dirich-

let boundary condition
U= —g on 082 (43.1)

is imposed on the solution, Let
H{div; Q) = {v P VE [LZ(Q)]d, V-ve Lz(ﬂ)} ,

which is equipped with the following norm:

IVllzzdiv; 2y = (/ﬂ(l‘rlz +]V -V12)da:) "

Let az) = a~!(z) be the inverse of the coefficient matrix a = a(z) and
Alg, wv,w) = (a(r)q, v)e — (V- v,po—(V-q, w)o

be a bilinear form defined on W x W where W = H(div; Q) x L*(Q).
Then, a mixed weak form for (4.1.1) with the boundary condition (4.3.1)
seeks (q,u) € W satisfying

A(q,u;v,w) = {g,v -nlan~ (fiw)h  V(v,w)eW, (4.3.2)
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where {-,-}an denotes the inner product in L3(8Q).

The inf-sup condition (2.3) can be verified for the bilinear form A(; ).
Furthermore, finite element spaces salisfying the discrete inf-sup condition
(2.7) are available for this bilinear form. Details can be found from the book
by Brezzi and Fortin [11]. If the standard nodal basis for the finite element
space of Raviart and Thomas is employed in practical computation, the
condition number of the global stiffness matrix is known to be proportional
to h™2,

The question is how to stabilize the nodal basis. Observe that in this
application, one needs to construct a basis for the mixed finite element
space (called W) so that the discrete norm is equivalent to the following
norm:

10v3 )8y = 191 iy, oy + 0l

One sees from above that the standard nodal basis is a good choice for the
pressure unknown. Thus, the difficulty is on stabilizing the fiux component
with the norm in H{div; ). We do not have a positive answer yet for this
stabilization. But the approach of Helmhoeltz decomposition for vectors
might provide a partial answer for problems of two-space variables. The
method decomposes each vector-valued function v as follows:

v = curl ¢ + V4, (4.3.3)

where ¢ and 1 are functions in H*(Q2). A discrete version of (4.3.3) can be
studied in order to apply it to the mixed method. Results for the standard
conforming and non-conforming finite elements should be investigated first
in this direction. We point out that this approach may have some difficulty
for problems of three-space variables.

For multilevel methods relying on the above Helmholtz decomposition,
see Vassilevski and Wang [40] and Arnold, Falk, and Winther [1].

In the following sections we will devote ourselves to modifying the nodal
bases in the application to second order elliptic problems. Cur goal is to
construct some stable Riesz bases that are computationally feasible for
elliptic equations. More precisely, the basis should be so constructed that
the resulting discretization matrices are both well-conditioned and sparse.

§5 Multilevel direct decompositions

To construct a computationally stable basis for the second-order elliptic and
the Stokes equations, we take advantage of the fact that the weak problem
(2.4) is discretized on a sequence of finite element subspaces. In particular,
a sequence of nested subspaces may be possible in practical computations.
Qur objective in this section is to exploit ways of constructing stable basis
by using the information from each approximating subspace.



Wavelet-Like Multilevel Preconditioning 15

5.1 The basic idea

The basic idea comes from the fact that an L? orthonormal basis of wavelets
is also Hl-stable in applications to partial differential equations. There-
fore, wavelet bases are good candidates in formulating matrix problems for
(2.6). Since the conventional wavelet bases have complicated structures
which limit their application in the numerical methods, we shall focus our
attention on approximations of wavelet bases. Below we present a detailed
discussion.

Assumne that we have a sequence of nested subspaces {V;}72, satisfying

VeCViC...CVeC - (5.1.1)

Each vector space V; shall be referred to as a coarse subspace of Vi when j <
k. In applications, they are finite element spaces consisting of continuous
piecewise polynomials over a sequence of finite element partitions for the
domain . Upon viewing V; as a subspace of L?({2), one has

D%=ﬁm% (5.1.2)
j=0

where the closure was taken in the strong topology induced by the L®-norm.
We assume that V; is a very coarse subspace of L#(§}) whose dimension is
a small number.
For every j > 1, define W; to be the L?-orthogonal complement of V;_4
in V;. We have
Vi=Vi1oW; {(5.1.3)

and

WiLlW; if i#j, (6.1.4)
where we have assumed that Wy = V,. It follows that

k
Vi =D W;, (5.1.5)
j=0

where all these subspaces are orthogonal. By virtue of (5.1.2) and (5.1.5),
this implies

1) = D W,
j=1

which is a decomposition of L#(2) into mutually orthogonal subspaces.
A wavelet basis for L2(Q) can be constructed if one is able to find an
orthonormal basis for each subspace W;. Such a basis would be ideal in
preconditioning the discrete problem (2.6) if it is computationally feasible.
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In practice, it is very hard to find an L?-orthonormal wavelet basis
which is also computable. Therefore, orthogonality requirement in the
decomposition (5.1.5) shall be relaxed to allow only a direct decomposition
aof the following form:

Viz=VeaVieVe.. oV, (5.1.6)

where each 1/3-1 is a complement of ¥;_; in V; such that the corresponding
two-level decomposition is direct. But in order to attain the stability of the
wavelet basis, it is crucial to have some approximate orthogonality among
the subspaces V}!.

5.2 A general approach

A general method for deriving the hierarchical complement of each Vj_y in
V; is based on the existence of some computationally feasible projections
; from C, a dense subspace of the Hilbert space H, onto V;. In particular,
we assume that C D Up»,V| and w39 = o for any ¥ € Vj. Thus, one has
mm = m for § > i if V; C Vj. With V! = (I — 7;-1)Vj, one has the
following two—level direct decomposition:

Vi=(-m)VieVi-r (5.2.1)

Definition 2, (MULTILEVEL HIERARCHICAL Basis) For j = 0,1, ...k,
et {qﬁsj), i=1,...,n;} be a computationally feasible basis of V;. Assume
that {qﬁgjwl), i=1,...,nj1} U{d)gj), i=nj_1+1,...,n;} forms a basis
of V;. A multilevel hierarchical basis for V3 is defined as follows:

k
& = | J{U-m8, isni+10mg). (52.2)
i=0
Here we have assumed that 7_y =0 and n_1 = 0.

We now discuss the stability of the multilevel hierarchical basis. The
following result sets a guideline for the selection of the operators ;.

Theorem 4. A necessary condition for ®; to be a stable Riesz basis of Vy is
that the projection operators m, be uniformly bounded on Vi with respect
tor and k for any r < k.
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Proof: Let v € V), be expanded as follows:

— icsr)é‘fr) + zk: HZJ c‘(‘k)qggk)
=l

j=r4li=n;_;+1

where {tﬁsr)}?__fl is the multilevel hierarchical basis of V, and &E’) =(I-
'fr,_,l)gbg’). Introduce the notation

"
c(lr-l—l)

o0

where cgj) = (c(j) 1,...,c$fj))T forj=r+1,...,k and

Rje1t
e = (M, .. LT,

Since, by assumption, we have a stable Riesz basis, then there exist oy and
oy independent of k such that

o1elc < ||v]|? < g2cte. (5.2.3)

nr -

Observe that myv = 3 csr)qbgr}. Thus, from (5.2.3) with v replaced by wrv
=

we obtain !

k
rooll? < 02e™Te® <oy [ O 30 P < P,
j=r+1 o1

Here we have used the lower bound of (5.2.3). This shows the boundedness
of the projection operators =, for any r.

§6 The Hierarchical basis

In this section we review the classical hierarchical basis decomposition.
First, partition the domain © into large elements. Let 7 denote this ini-
tial coarse triangulation and V; be the corresponding finite element space of
continuous piecewise linear functions. The fine finite element space V = V;
corresponds to the triangulation 7; which is obtained by J > 1 successive
refinements of the coarse triangulation 7. For problems of two space vari-
ables, one can use the triangular element and the refinement of one triangle
at level k — 1 will generate four congruent triangles of level k by connecting
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the midpoints of its edges. Similar techniques are available for problems
of three space variables with tetrahedra being used as elements. We refer
to Ong [29] for more details in this discussion. It is also possible to use
bisection refinement for both two— and three-space problems. Details for
this technique can be found from Mitchell {28} and Maubach [27}.

Let 7; denote the finite element partition at level ¢, and V; be the
corresponding finite element space of continuous piecewise linear functions.
Thus, we obtain a nested sequence of conforming finite element spaces

VacWViC...CV;,

which can be used to discretize the second-order elliptic equation.

To describe the classical hierarchical basis, let A; be the node set of
nodal degrees of freedom at level ¢ which consists of vertices of triangles
(or tetrahedra in 3-d) in 7;. One has the following natural direct decom-
position:

M :Jv’il UM—l)

with A} being the set of newly-introduced nodal points. For example, in 2-
d, the nodal set A/} contains the vertices of the triangles at level k that are
midpoints of the edges of the triangles from level k — 1. We also introduce
the mesh size h; = 2=*hg for the ith level triangulation 7;. Here, hq stands
for the maximum diameter of the elements in 7y. Recall that the standard
nodal basis functions {qﬁgk), x; € N3} are defined to satisfy the condition
(,égk)(z:,-) = &; ;, where §;; is the Kronecker symbol, with z; running over
all the nodes in M. One can then define a two-level hierarchical basis of
Vi by adding to the nodal basis of V;_1 the nodal basis functions of Vi
corresponding to the complementary nodal set N} = M \ Mg_1.

Consider now the nodal interpolation operator I : C(Q) — V; defined
by Liv= > v(:c,-)qﬁsk). Tt is clear that Iy is a projection and Ix¢p = o il

T €N
¥ € Vi. With the choice of m; = I;, one obtains the classical hierarchical

basis by using the general decomposition method discussed in §5.

We comment briefly on the stability of the classical hierarchical basis in
applications to the second order elliptic problems. In this application, the
natural norm for the finite element space is the norm in the Sobolev space
H(£2). Since the interpolation operator I is not bounded in the H'-norm
(c.g., [13]), then Theorem 4 implies that the classical hierarchical basis is
not absolutely stable. Thus, the resulting stiffness matrices computed with
respect to the hierarchical basis will not be well-conditioned. However, as
is well-known, the condition number for problems of two space variables is
practically acceptable. In fact, the condition number for the second-order
elliptic problems can be verified to be proportional to k* at level k. This
condition number grows much slower than that from the standard nodal
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basis, which behaves like ((hy?). For problems of three space variables,
the condition number for the classical hierarchical basis is of order O(hg ")
which is better than the one from the standard nodal basis but worse than
the application for problems in 2-d.

§7 A stable Riesz basis by wavelet method

In this section we will construct appropriate projections m which are H'-
stable and provide computationally feasible Riesz basis for V. The bilinear
forms of main interest are those arising from the Hilbert space method for
second-order elliptic problems discussed in §4. The method to be presented
here was proposed by Vassilevski and Wang in [41].

7.1 On the basis construction

Define the L?-projection operators @ : L2(Q) — Vi as follows:

(@rv,¥)o = (v,4)0 VeV

Also, assume that there are computationally feasible approximations Jy :
L?(Q2) — Vi of Qi such that for some small tolerance 7 > 0 the following
estimate holds:

1@k — @)ollo < Tl @il Vo € LHQ). (7.L.1)
The projection operators of major interest are defined as follows:

Jwl
mo= [T+ QL+~ 1)), (7.1.2)
=k

with 7y = I. Ttis clear that w9 = ¢ if Y € Vi since L+ QF (L1~ )k =
Iy = o for § > k based on (I;41—I;)¥ = 0 and I;¢ = ¢. This also implies
that 7} = m.

Note that ‘.ﬂ'k._g(fk - Ik_l)qS = Qg..q(Ik — Ik_l)r;b and T — M1 =
(I ~ Q%_)Ix — Ii—1)7x. Then, the components in the definition (5.2.2)
for the wavelet-like multilevel hierarchical basis read as follows:

k
(0 i=1,. . o T - Qi )6, i=nii+1,. ) (T.13)
=1

The above components {(I — Q;-‘_l)d),(-j), i=nj—1+1,...,n;} can be
seen as a modification of the classical hierarchical basis components based
on the interpolation operator I since (I — Q;.‘,,,l)qﬁ? )= (I- Qf ) ~
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Ij_l)qﬁgj ); the modification of the classical hierarchical basis components
{5 - Ij_l)qﬁgj), i=mnj_1+1,...,n;} comes from the additional term
Qf_ (L — Ij_1)¢sj ). In other words, the modification was made by sub-
tracting from each nodal hierarchical basis function qﬁ'(.j ) its approximate
L%-projection Q;-‘mlqigj ) onto the coarse level j = 1. Such modifications of
the hierarchical basis function qﬁsk) for some particular choices of @7_; will
be shown in Figures 1-3 in §8. It can be seen that the modified hierarchi-
cal basis functions are close relatives of the known Battle-Lemarié wavelets
17].

[ ]Observe that in the limit case of Q§ = Qy so that 7 = 0in (7.1.1), we
get

a0 = Qules1Qrarlrsz - Quo1liv = QrQryr - . . Qrorv = Q.

Therefore, 7 reduces to the exact LZ-projection Q. As is well-known, the
L?—projection operators are bounded in both H}(§2) and L*(2). This gives
us a hope that the hierarchical multilevel basis corresponding to the above
choice of the operators 7 may yield a stable Riesz basis if 7 is sufficiently
small.

7.2 Preliminary estimates

For an analysis of the multilevel basis (7.1.3), we need some auxiliary esti-
mates already presented in Vassilevski and Wang [41]. The following result
on estimating the error e; = (7; - @;)v will play an important role in our
analysis.

Lemma 1. There exits an absolute constant C such that
k k
SR HelE< Cr Y AR — Qi-aolls, Ve e Ve (T2.1)
j=1 i=1

The estimate (7.2.1) relies on the following recursive relation:
es—1 = (Qsw1 + Rsc1)es + Re_1(Qs — Qs-1)v, (7.2.2)
where R,—1 = (Qs—1 — Q%_1)(Iy-1 — I,}. 1t can be scen as follows:
€y = W1V — QJyiqv
= (Li-1 + Q1 (I = Lm1 )7 — Qsrv
=(Qs—1 — Qi) 1mv + Q5 mev — Qu_1v.
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Thus, one has

es1 = (Qsm1 — @Iy ) o1 (msv — Qs) + Q5_1(msv — Qsv)
HQs-1 — Q1) s—18s-1 + Q41 Les
+Qs1(Ls-1Qsv — Qs9) ~ Q5_1(1r-1Qsv ~ Qs v)
= (Qo-1 — Q3_1)(Lo1 = L)es +(Qs—1 — Qi1)es + Qis0s
Q-1 — Qi) L1 — L)Qsv
= [Qu-1+ (Qu-1 = Q1)1 — L)) e
Qa1 - Qi 1)Lt — L)Qsv-

The latter together with the fact that (L_1 — I,)@s—1 = 0 implies the
desired recursive relation (7.2.2).

Proof: We now verify Lemma 1. Let Cg be a mesh-independent upper
bound of the L2-norm for the operator I, — I,y : V; — V,. Then,

”R_,.,l‘l)“u < CRT“'U”() for all v € V- (723)

We assume that,

Crt < go = Const < 1. (7.2.4)

Then,

1
i+ C'R‘r)é- <g= }"_—;ﬁ = Const < 1- (7.2.5)

Next, observe that e; = 0 (since v &€ V). Then a recursive use of (7.2.2)
leads to

lles-illo < (L4 Crmllesllo + Crl(Qs — @s-1)vllo

.k .
< Crr 35 (1+ Cary (@ = @s-1)vllo



22 P. 5. Vasstlevski and J. Wang

Therefore, with h; = 277 hg and ho being the coarsest mesh size,

k -
lesmtllo < Crrhoor 3o (1+ CrrY *h7HI(Q5 = Qi-1)vllo
j=8

k .
= Crrhs-1 (14 CrrY ~*h; thi k7 HI(Qs — Qi-1)vllo
i=s

k .
= Crrhs_y 5. (1+ CrrY~* (%)J_s h,-'ll!(Qj - Q—1)vo

j=a

k .
< Crrheo1 Y @R HI(Qs = Qi-1)vllo
i=s

2

LI,
< Crrhoor 7= | 22 ¢ b7 INQ5 — Qi1 )oll3
j=3
The latter inequality shows

k
zh, Zilles—allf < Chr 2-&-‘; = b 2@ — Q-1

< Ci’ oy

k
>4
i:

L 30 1@~ Qs-el

which proves the lemma,
The above proof also shows the following corollary.

Corollary 1. For any ¢ € (0, 1], the following estimate holds,

k
- 1 -
Zh lles-1l < Chr* =5 215 N(Qs = Qs-2)vllo
j=t

provided that T satisfies the estimate
Crr < ¢27 -1, {7.2.6)
for a mesh—independent constant g € (0,1) (actually ¢ > 277).

Remark 2: Corollary 1 indicates that in order to have the L?-stability of
the deviations one has to assume a level dependence on the tolerance 7.
More precisely, there exists a 7o > 0 such that if 7 < 7J =1, then

k
E[Ie,—lug < Clv)l3  forallve Vi (7.2.7)

st
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Lemma 2. Let Vi = (I — Miy_)V$", with V'V = (I, — Ie-1)Vk, be the
modified hierarchical subspace of level k for any given L?-bounded operator
Mi—1. Then, there are positive constants ¢; and cg independent of k such
that

allg'l} M2 <ealie’ll?,  r=0.1, (7.2.8)

for any ¥t = (I — Mp_1)¢' € V}}, ¢* € Vk(l). Here |} - Ji; stands for the
norm in the Sobolev space H}(§2) and || - {jo denotes the L*(2)-norm.

Proof: The following strengthened Cauchy inequality is valuable: There
exists a constant y € (0,1}, independent of the mesh size or the level index
k such that

(V41 V) < 7(Ve!, Vg')} (V4, V)3, (7.2.9)

for all ¢t € Vk(i) and ¢ € Vi—1. In fact, we shall make use of the following
version of (7.2.9). For any ¢! € Vk{l) and ¢ € Vi_1, one has

(V(¢" + 8), V(¢* + ) > (1 = ¥*)(Ve', Vo). (7.2.10)

A derivation of (7.2.9) and (7.2.10) can be found from Bank and Dupont
[6] or Axelsson and Gustafsson {3].

We first establish (7.2.8) for the case 7 = 1. With ¢ = —Mz_1¢* we
see from (7.2.10) that

(- < ko3

Thus, the inequality on the left-hand side of (7.2.8) is valid with ¢; = 12,
To derive the part on the right-hand side, we use the standard inverse
inequality to obtain

16412 < Ch2|ltE < CR; 2|14 |13,

where we have used the IL2-boundedness of the linear operator Mp_1. Ob-
serve now that since ¢! € Vk(l), there exists a constant (' such that

li#" 3 < Chille™ I3 (7.2.11)

1t follows that {|%'}]7 < C||¢*||? for some constant C'. This completes the
proof of (7.2.8) for r = 1. Similar arguments can be applied to verify the
case r = ).
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Lemma 8. Forany ¢! = (I—Mg_1)¢' € Vit and p! = (I—-My-1)x" € Vi,
with ¢*, xt € V& = (I — Te—1)Vi, define

(A{k) 1) = a(y’)]' 1) = ]a(m V’(,bl AV 72
o

Here, the bilinear form a(-, ) is equivalent to the H-inner product. Then
there are positive constants 1; such that

nh 62 < (AR, 1) < mbi 26t IR

Proof: Since af.,.) is equivalent to the H}-inner product, there are two
positive constants 71 and 7, such that

AllWHE < (AP, 1) < Rllptii2

Using the norm equivalence (7.2.8), estimate (7.2.11), and the inverse in-
equality, we obtain with possibly different constants 7 and 7y,

- k -
mh 261 < ARyt 9 < nb |6 (7.2.12)
The above inequalities conclude the lemma.

Lemma 4. Given v and let v#)' = (mr —mx—1)v. There exists a sufficiently
small constant 7o > 0 such that if the approximate projections QJf satisfy
(7.1.1) with T € (0, 7o) (see (7.2.4) and (7.2.5)), then

J
flollf = > A2 8. (7.2.13)
k=0

Proof: Let v € V. Starting with v/ = v, for s = J down to 1, one defines
pls—1) = (L + Q3 (I, — I, 1)1)(’) = #5_1v. Then the decomposition v

in terms of entries in V! = (I — Q% 1)V,{1) = (I~ Q_ I, — I,_1)V reads
a'S’
I 1 1
v=1vO 4 ZUU) ot = p(s) o), (7.2.14)
i=1

From the representation o) = (8 — -1 = (@s — Qo1) + o5 — 51
one arrives at the estimate,

Zh”rsvm‘nn <C z B2 (@s — Qu1)oll3 +C z Ry 2llexli3

k=0

<CQ+7Y th ZIE(Qk — Qr_1)v||?
<Ol



Wavelet—-Like Multilevel Precondilioning 25

Here we have used the norm equivalence result of Oswald [30] and Lemma
1.
Thus, it suffices to establish the upper bound:

J
ol < € b ™12, (7.2.15)

k=0

It is possible to give a direct proof for (7.2.15) by using the strengthened
Cauchy—Schwarz inequality (see Vassilevski and Wang [41]). Here we would
like to adopt an alternative approach by using the following characteriza-
tion of the Hi-norm for finite element functions:

J
ollf =  inf > b Hloell3- (7.2.16)

u:E Vi, v €V B0
k=D

A proof of the above equivalence can be found from [30]. Thus, for the
J 1
particular decomposition v = > 'u(")l, v¥)" & V4, one immediately has

k=0

I
ol < ¢S hg 2™ 3,

k=0

which completes the proof of the lemma.

7.3 Stability analysis

Here we study the Riesz property of the wavelet-like multilevel hierarchical
basis defined in (7.1.3). For any v € V let

J
v= Z Co,i'f’.('ﬂ) + Z Z e, ild — Q£—1)¢Ek) (7.3.1)

T;ENG k=1=ﬂi€-’£1)
be its representation with respect to the given wavelet basis. The corre-
sponding coefficient norm of v is given by
/2

J
=22 S 2+ SoRE2 S il (7.3.2)
k=1

z:€Mo zieN

where d = 2 or 3 according to the number of space variables. Our main
result in this section is the following norm equivalence:
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Theorem 5. There exists a small (but fixed) 7o > 0 such that if the ap-
proximate projections Q% satisfy (7.1.1) with 7 € (0, 7o), then there are
positive constants ¢y and ¢g satisfying

cufoll® < o)l € collpli® Vv eV (7.3.3)

In other words, the modified hierarchical basis is a stable Riesz basis for
the second order elliptic and Stokes problems. The equivalence relation
(7.3.3) shall be abbreviated as [Ju]|® ~ [|v{3.

Proof: We first rewrite {7.3.1) as follows:

J
v=y o®, (7.3.4)
k=0
where, with 3%, = 0,
W = S (- Q)M e (7.3.5)
-‘F.'EN,E”

Furthermore, by letting (8 = 3 ck,;égk) € Vk(l) we see that v(®)' =
zieND

(I - Q2_,)¢(®). Thus, by using (7.2.8) in Lemma 2 (with » = 0 and

- My-1 = Q%_1) we obtain

He®||3 = |12, (7.3.6)
Since ¢¥) € Vk(l), then
“‘?3(””(21 = h‘,: Z c.?zc,i'

ze N

Combining the above with (7.3.6) yields

J
ol = 3 ko™ |12,
k=0

This, together with lemma 4, completes the proof of the theorem.
Remark 3: For any fixed ¢ € (0, 1], define
1/2

J
Ioll, = | k8727 3 cda+ D h% D> ki
k=1

=i€No E.‘EN,S')




Wavelet-Like Multilevel Preconditioning 27

with d = 2 or 3. Then, for sufficiently small v, one has

llelly = llllo (7.3.7)

for all the finite element functions v € Vy. Here || - ||, denotes the H§(Q)-
norm defined by interpolating H2(§?) with L?(2). The constants in the
norm equivalence depend on ¢ as indicated by Corollary 1. For o = 0,
the equivalence (7.3.7) holds true provided that the tolerance satisfies 7 <
75J 1 for some small 7.

§8 Implementations for a model problem

In this section we discuss techniques which implement the wavelet-like mul-
tilevel hierarchical basis for approximate solutions of PDEs. For simplicity,
we consider the selfadjoint second-order elliptic equation discussed in §4.
The Stokes equation can be covered in a similar manner.

The bilinear form under consideration is defined as follows:

oo ) = [a()Vp- 4, Y, b€ HYO) (8.1)

o

Let d(p, ¥) = / V- V4 be the Dirichlet form defined on H3 () x H ().

Q
Since the two bilinear forms a(-,-) and d(, ) are equivalent, then we have
from (7.3.3) that

erfol® < a(v,v) < calloll® (8.2)

for some positive constants ¢; and cp. Moreover, the following result holds:

Lemma 5. Let ¢ > 0 be a parameter and

adp )= [ae)Vo v+ [ Ve vem@. 6
1

0

If the approximation in (7.1.1) is sufficiently accurate such that v < 70J ~1
for some constant 1y, then there exist 7 and t, independent of ¢ and the
mesh size hy such that

J J
T Zhgak Z cﬁ,,« < ac(v,v) < Tzzh}:ak E c%,,' (8.4)
k=0 ]

BN} k= ziEN]

for any finite element function v € V. Here oy, = Eh;z +1 and ¢ ; are the
coeflicients of v in the expansion (7.3.1).
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The spectral bounds (8.4) can be used for the bilinear form arising from
discretizing time-dependent Stokes problems. The appearance of ¢ 1s due
to the time stepping parameter At. Similar bilinear forms can be obtained
for the pressure unknown by eliminating the vector unknown u for the
steady-state Stokes equation. For more details, we refer to Bramble and
Pasciak [10].

‘We remark that the bilinear form a((,-) is equivalent to the Dirichlet
form d(-, -) if the parameter ¢ is bounded away from zero by a fixed positive
constant Cs (i.e., € > Co). In this case, the equivalence (8.4) holds true
under the condition of Theorem 5.

In practical computations, one has two alternatives in solving the dis-
crete problem (2.6) with the wavelet-like basis presented in previous sec-
tions. The first one makes use of the explicit form of the basis functions
(I—- Qj-‘_l)qﬁg’ ) to assemble the corresponding stiffness matrix. The second
one uses the stiffness matrix assembled from using the standard nodal basis
and then performs change of basis in the process of iterations. The first
approach has a difficulty in that the assembly of the global stiffness matrix
is no longer local (element—wise). In general, one is recommended to adopt
the second approach because the corresponding stiffness matrix is much
easier to assemble. In this case, the wavelet—like hierarchical basis actually
provides a preconditioning technique for solving the discrete problem (2.6).
The rest of this section will describe some preconditioning procedures for
the model problem. A more detailed discussion can be found from [41] and
[42].

8.1 Preconditioners

Here we outline two preconditioners for the elliptic operator ARV S W
arising from the bilinear form a(:,-). The preconditioners will be con-
structed by using the following wavelet-like multilevel hierarchical decom-
position of V;:

“i=WeVloVle.. eV,

where V! = (I - Qf_,)(I; — I;-1)V. The preconditioners {to be defined
below) shall be called AWM-HB (Approximate-Wavelet Modified Hierar-
chical Basis) preconditioners.

The following operators are needed in the construction of the AWM-HB
preconditioners:

e In each coordinate space Vi, there exists a discretization operator

A%yl V2 as the restriction of A onto the subspace V' defined by

(AR o) = a(et, ') V', ¥ EVE. (8.1.1)
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o Similarly, we define A%): Vi_; — ¥} and ARyl v by
(ART ) =G AP = (e, B)  WeVepl eV (8.12)
Thus, the operator A} naturally admits the following partition:

A® 4 ]y oy
A®) = | PaL Ch2 o 8.1.
[Ag’;) 46-0 | 1 v (8.1.3)

Let Bg) be given approximations (symmetric positive definite operators)
to Aﬁ) such that for some positive constant by the following holds:

(AR 1) < (BB 01 < (14 0 )(AR e 07), Vo' € Vi (8.14)

Let A = AU) be the discretization operator for which a preconditioner
is necessary in practical computation. The following explaing how the pre-
conditioners can be constructed based on the block structure of A®) in
(8.1.3).

Definition 3. (MULTIPLICATIVE AWM-HB PRECONDITIONERS) Let B =
B} be the multiplicative AWM-HB preconditioner of A. It is defined as
follows:

o Set B(®) = 40,
e Fork=1,...J, set

k -1
B® - B%) 0 1 B®" AR
AR BGE-D || 0 I

Definition 4. (ADDITIVE AWM-HB PRECONDITIONERS )
Let D = DU) be the additive AWM-HB preconditioner of A. 1t is

defined as follows:
o Set DO = A©),
e Fork=1,---,J, set

B g
Dmm[ (1)1 pe-1) |
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8.2 Main results for the AWM--HB preconditioners

A spectral equivalence between 4 and its preconditioners B and D has been
established in [41]. The result can be stated as follows. If the tolerance in
(7.1.1) is sufficiently small such that 7 < 7o for some small 7y, then there
are two absolute constants ¢; and ep satisfying

c1{(Sv,v) < (Av,v) € o Sv,v) Vv eV, (8.2.1)

where § = BU) or DU). The estimate (8.2.1) is based on the following
results:
(A) There exisis a constani o > 0 such that

J
1Qovl + S22 (@s — Q-r)ollf < owlll]  VoeV.  (822)

=1
(B) There exist constanls of >0 and § € (0,1) (in fact, if by = 1hi.a,
then § = —=) such that the following strengthened Cauchy-Schwarz in-
v
equalily holds for any ¢ < j:

alpi, ) < o8 Da(es, ei)Ailleill] Ve € Vi, g5 €y (8.2.3)
Here A; = O(h;z) is the largest eigenvalue of the operator AU,

The inequalities in (A) and (B) have been respectively verified by Os-
wald [30] and Yserentant [44], [45].

One important feature in the partition (8.1.3) is that the block Agﬁ) is
well-conditioned; this can be seen from Lemma 3. In particular, the block

Ag’;) is spectrally equivalent to its diagonal part. Thus, the Jacobi pre-
conditioner would be a good choice for B{% (see (8.1.4)) in approximating
k

AD.

Remark 4: If one does not assume the strengthened Cauchy-Schwarz in-
equality (B), then the estimate (8.2.1) for § = B still holds with constants
¢1 = O(1) and ¢; = Oflogy 2J). In the case S = D, the condition (B) is
not required in the equivalence (8.2.1). See Griebel and Oswald [19] for
related details.

8.3 On the approximate L?-projection

Denote by @¢_; the approximate L%-projections onto the subspace Vg_1.
We begin with describing algorithms for computing the action of Qf_1-

0 | Nkt

with respect to the standard nodal basis of V4; the second block-component

For any v € Vk(l) et v — [ vi | N A Ni be its coefficient vector
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of v is zero since v vanishes on Ng—1. The operator @f_; can be designed
by approximately solving the following equation:

(Qk-1v,w) = (v,w), Yw€& Vi_y- (8.3.1)

Figure 1. Plot of a HB function (no modification)

Let I¥_, = [ ‘]}2 ] %xz _\1Nk"1 (with the abbreviation Jiz = Jl{’;))

and If 1= Ifil be the natural coarse-to-fine, and respectively, fine-to-
coarse transformation matrices. For example, if the nodal basis coefficient
vector of a function v5 € Vi_1 in terms of the nodal basis of Vi is va,
then its coefficient vector with respect to the nodal basis of Vi (note that

vy € Vi1 C Vi) will be If_ vy = [ Jf;"? ] }%:_\1Nk-1‘

Denote now by G = {(qig-k), ¢§.’°))}Ej,x,.e «, the mass (or Gram) matrix
at the k-th level. Then (8.3.1) admits the following matrix-vector form:

k
WgGk—-l\'z = (Ik_1W2)TGkV, Vng

Here v, and wy are the nodal coefficient vectors of Qz—1v and w € Vz_1 at
the (k — 1)th level respectively. Therefore, one needs to solve the following
mass matrix problem:

GV = I,’:*Gkv- (8.3.2)
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In other words, the exact L2-projection @;—1v is actually given by
G;ElffmleV.
Hence

- - T - -
1Qe-1ol} = (Ggti 1 Gav)” Geer (GE241 LT Grv)

8.3.3
G A Gl (8.3.3)

We used here the notation ||x||? = x*x.

1

Figure 2. Plot of a wavelet-modified HB function; m = 2

To have a computationally feasible basis, we replace G;’il by some

approximations é;ﬁl whose action can be computed by simple iterative
methods applied to (8.3.2). Such iterative methods lead to following poly-
nomial approximations of G324,

é;ﬁl = {I - Tm (Gkul)] G}:..l.p

where 7, is a polynomial of degree m > 1. The polynomial 7, also
satisfies T (0) = 1 and 0 € wn(t) < 1 for t € [w, ], where the latter
interval contains the spectrum of the mass matrix Gy..;. Since Gr_1 1s
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well-conditioned, one can choose the interval o, 8] independent of k. Thus,
the polynomial degree m can be chosen to be mesh-independent so that a
given prescribed accuracy T > 0 in (7.1.1) is guaranteed. More precisely,
given a tolerance 7 > 0, one can choose n = m(7) satisfying

i

i d i —_
WGi_, (Gk_ll — Gk_]_‘l) [f leVH
Y
IGE-17m (Gk..l)lG;ilf,’:“Gkv“
m t G_n Ik—lG
tgfg”’g]"" (NG 2, Iy wvi|

max. mm (6)]|@x-10{lo-

1QF_1v — Qr—1vllo

in

Here we have used identity (8.3.2) and the properties of my,. The last
estimate implies the validity of (7.1.1) with

T > max Tm(t)
~ t6{o,B] ®

A simple choice of 7, (1) is the truncated series

(1= (@ =@ = 7 0308 (634)
k=0

which yields @;_11 = pm-1(Gx_1). We remark that (8.3.4) was obtained
from the following expansion:

o0
1=t (1), telepl
k=0
With the above choice on the polynomial ., (%), we have

Am(t) = 1—tpmoi () =671 > (1 -7 = (1 - g7H)™

k>m

am
tI={1——= .
s ()= (1-5)

In general, by a careful selection on 7y, we have ‘II’[IB,);] 7 (t) < Cqg™ for
€

1t follows that

some constants C' > 0 and ¢ € (0, 1), both independent of k. Since the
restriction on 7 was that 7 be sufficiently small, then one must have

m = Olog 7~ 1)- (8.3.5)

The requirement (8.3.5) obviously imposes a very mild restriction on m.
In practice, one expects to use reasonably small m (e.g., m = 1,2). This
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observation is confirmed by our numerical experiments performed in Vas-
silevski and Wang {42]. We show in Figure 1 a typical plot of a nodal basis
fanction of Vk{l) and its approximate-wavelet modification for yn = 2 in Fig-
ure 2. The conjugate gradient method was employed to provide polynomial
approximations for the solution of the mass-matrix problem (8.3.2).

8.4 Matrix formulations of the AWM-HB preconditioners

‘We now turn to the description of the multiplicative and additive AWM-HB
methods in a matrix—vector form. Let us first derive matrix representations
for the operators Agﬁ), AY) and Ag’;) introduced in (8.1.1) and (8.1.2). In
what follows of this section, capital letters without overhats will denote
matrices corresponding to the standard nodal basis of the underlined finite
element space. For example, A(®) denotes the standard nodal basis stiffness
matrix with entries {a(qf),(-k), (,55-;:))}1;.-},,_1.5,\{,:.

For any v € V; and its nodal coefficient vector v, we decompose v as
follows:

v = (I — Qg_l)(fk — Ik_l)v + wy,

where wp € Vi_1 is uniquely determined as wa = lp1v+Qf_; (I —Ir_1)v.
Our goal is to find a vector representation for components of v. Since the
above decomposition is direct, it is clear that there are vectors ¥; and Va
satisfying

Ve \ N

k v .
v FIE_ %y (841)

v=-BLE6 | V|

The vectors ¥, and ¥, represent the components of our wavelet-modified
two-level HB coefficient vector V = [ ;l ] of v.
2

Now, consider the following problem
Av=d, (8.4.2)

which is in the standard nodal basis matrix—vector form. We transform
it into the approximate wavelet modified two-level HB by testing (8.4.2)

with the two components (I — I%_ié;_llff“le) { V;’]l and If_,w, for

arbitrary Wy and W,. By doing so, we get the following two—by—two block
system for the approximate wavelet modified two-level HB components of
¥ (denoted by ¥y and ¥3),

i® A %] i
= hEIN N I 8.4.3
b | 1% 7|4 (643)
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where
o S 1
AR =1 0 (I——kaf_ﬂk—ll‘rf l) A (I—I’f‘lG"’"lllf IGk) [ 0 ] !
k ~_. ——

A =11 o (1-Grb Gy ) AR s

_ o I
AP = b1 40 (1_15_1Gk_111,’: 1G;,-) [ 0 ] ;
AW = 14007 = AG-Y),

Note that having computed ¥; and ¥, the solution v of (8.4.2) can be
recovered by using the formula (8.4.1), i.e.,

v =YV + Yo¥s,

where,
i = (I—If_légjlrf“c:k) [ g ] ,
Y2 :I;:—l'
We have,
V:YG: V= [ ;z :|: Y=[Y1| Y2]) leyl(k): YE:Y?,(k)

The transformed right-hand side vectors of (8.4.3) read similarly as follows:

a1 = [I 0](I—kafaéﬁlffwl)szde,
d, = IFla=vla

"Therefore, the multiplicative AWM-HB preconditioner B®) from Defi-
nition 3, starting with B(®) = A(")| takes the following block-matrix form:

Gik) (k) ok

B® = | 2
AR p-n 0 I

The preconditioner B®) is related to B®) in the same way as A®) to A,
More precisely, one has

B = {¥1, va]TB®MW, ¥al, BB = [0, ¥3)BH T 1, Vol

We will show below that the inverse actions of B(*) can be computed only
via the actions of A®) ¥y, Yy, and ¥;¥, ¥ in addition to the inverse

actions of E&’{)
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We point out that (8.4.4) has precisely the same form as the algebraic
multilevel method studied in Vassilevski [37] (see also Axelsson and Vas-
silevski 4] and Vassilevski [38]).

Observe that, in (8.4.4), ﬁ§’;) is an appropriately scaled approximation

of .Zg’;) We have shown that ﬁg) is well-conditioned (see Lemma 3).

(k)
11

for A% in the implementation. However, in order to take into account any
111 p -

possible jumps in the coefficient of the differential operator, it would be

preferable to compute the diagonal part of ;1\%’;) This is computationally

feasible since the basis functions of V! = (J — Q;_l)Vk(l) have reasonably
narrow support if m is not too large, which should be the case in practice.
Nevertheless, one can employ in actual implementation the CG method to

o~ ]
compute reliable approximate actions of Aﬁ) .

Thus, it is possible to utilize some simple polynomial approximation B

Algorithm 1 (COMPUTING INVERSE ACTIONs oF B(®))
The inverse actions of B®} gre computed by solving the system

B®w = d,

with the change of basis w = YW. Namely, by setling

w =Y W + Yaws = [V}, V3] [ g; ] )
d, =Y/4,
d, =vTd,

w = B®)d is computed via the solution of B®)& = d as follows:

FORWARD RECURRENCE!:

1. compule 7y = Eﬁ)"lﬁl;

2. change the basis; i.e., compuie z = Yi%Z1;

3. compute dy := dp — A% = YT (d— A®z);
4. compule Wp = BE-17'4,,
g

. change the basis, i.e., compule v = YoWy;

BACKWARD RECURRENCE:

1. update the fine—grid residuel, i.e., compule

d; = dq — AR, = YT (d = ABY,%,) = YT (d — AFv);
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—1

2. compule Wy = Eu) d;;
8. gel the solution by w = YW + Yowe = YiWy + v,
End

Note that the above algorithm requires only the actions of the standard
stiffness matrix A}, the actions of the transformation matrices ¥; and Y3
and their transposition Y and Yy, the inverse action of §ﬂ’), and some
suitable approximations to the well-conditioned matrices ﬁg’? The actions
of Y1 are not required in the algorithm.

We now formulate the solution procedure for one preconditioning step
using the multiplicative AWM-HB preconditioner B = BU),

Algorithm 2 (MurTIPLICATIVE AWM-HB PRECONDITIONING )
Given the problem

Bv=4d
Initiate:

d¥) = d.
(A) Forward recurrence. For k = J down io 1 perform:
1. Compuie:

aP =1 0 (1- GipGrhiaf) 4%

2. Solve: . .

B = A
3. Transform basis:

o=t [ §] PV

4. Coarse-grid defect restriclion:
a0 = e A,
-1 sl
5 Seltk=Fk—1. Ifk >0 go to (1), else:

. Solve on {he coarsest level:

™

A@x(® = g,
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(B) Backward recurrence.
1. Interpolaie resull: Set k := k + 1 and compule

x(k) — Ig_lx(k”l);

2. Updaie fine—grid residuel:

ai® = a®) — AB)xe-n
= A~ {1 O[T - Guf_ Gyt I AR
= [T ONI- Gt Gl IE-1y(d® — A,
3. Solve:

Be, = 4
4. Change the basis:
w= (I —IF_ G2 I Gy) [ b ] ;
8. Finally sel:
x(#) = x(*} 4w,
6. Setbk:—=k+1. Ifk<J goto ste;;) (1) of (B), else set

A — x(").

END

Similarly, one preconditioning solution step for the additive AWM-HB
preconditioner D = DV ) takes the following form:

Algorithm 3 (ADDITIVE AWM-HB PRECONDITIONING )
Given the problem
Dv=d

Initiate:
a =d.

(A) Forward recurrence, For k= J doun to 1 perform:

1. Compute:

AP = (1 0 (1~ Getf_ Gty 1b7) 4%,
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2. Solve: ek .
3. Transform basis:

)y {7_ & A1 pk=1 w1 INE\ M-t
x —(I L 1Gy 14y Gk)[ 0 ] Wit :

4. Coarse—grid defect restriction:

dF-1) = If“ld“‘);

5 Setk=k—1. Ifk >0 go to (1), else :
6. Selve on the coarsest level:

ADx(©® — (0.

(B} Backward recurrence.

1. Imterpolate result: Set k := k+ 1 and compule

W = I,’:_lx(k""l);

2. Updaice at level k:

8 Seik:=k+1 Ifk < J goilo step (1) of (B), else set

v = x).

END

For both the additive and multiplicative preconditioners, it is readily
seen that the above implementations require only actions of the stiffness
matrices A%}, the mass matrices G*) and the transformation matrices
If__l and I,’: ~1 The approximate inverse actions of }ig’;) can be computed

via some inner iterative algorithms. Similarly, the action of @;ﬁl can
be computed as approximate solutions of the corresponding mass-matrix
problem using m steps of some simple iterative methods. Therefore, at
each discretization level k, one performs a number of arithmetic operations
proportional to the degrees of freedom at that level denoted by ng. In the
case of local mesh refinement, the corresponding operations involve only
the stiffness and mass matrices computed for the subdomains where local
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refinement was made. Hence, even in the case of locally refined meshes,
the cost of the AWM-HB methods is proportional to N = n;.

The proportionality constant depends linearly on m = O(log7~1), but
is independent of J (or h). Some numerical results for the AWM-HB
preconditioners can be found from Vassilevski and Wang [42.

A performance comparison with the BPX method [8] and Stevenson’s
method [34] on more difficult elliptic problems in three-dimensions and in
other applications such as interface domain decomposition preconditioning
is yet to be seen.

§9 Numerical experiments

In this section we present some numerical results to illustrate the efficiency
of the method discussed in §7. Consider the boundary value problem of
seeking u satisfying

Lu=—cAu4d-Vu =f in§,
u =g on0f (9.1)
Here, f € L?(Q), g€ H 3(09), and b = {b1bs] arc given single-valued or
vector—valued functions. We assume that all given functions are sufficiently
smooth on their domains. For simplicity, we take {2 to be a square domain
and g = 0 on 8%,

I u is a solution of (9.1), then it solves the following problerm:

Mau=—6V - (bLw)+Lau=—6V-EH)+f inQ (9.2

subject to the boundary condition u = 0 on 8. Here § > 0 is a param-
eter. The purpose of considering the problem (9.2) is to get the so-called

streamline derivative %‘;— = b . Vu in a variational formula for u. More

precisely, by testing (9.2) against any ¥ € H}(R) one obtains

be(u, ¥) = e(Vu, Vi) + (9,0 Vu) + 66 Vu, b- Vi)
—e6(Au, b- V) (9.3)

= (.f6:¢):
for all ¥ € H3(Q). Here f5 = f — 6V - (bf).

9.1 Galerkin discretization

The Galerkin method for the approximation of u is based on the variational
problem (9.3). Let V =V, be a (% conforming finite element space of
piecewise polynomials corresponding to a quasiuniform triangulation 75, of
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€). The Galerkin approximation is a function uj € V4 such that

be(uhs "\b) = E(VU};, V":b) + ('f),ﬁ ' VU)
+6(b- Vu,b- V) —eb 3 [Aup(b-V¥)dz  (9.11)

TeTh T
= (f6:¢))

for all ¢ € V4. For continuous piecewise linear functions, one has Aup, =90
on each element. It follows that the discrete problem seeks uy € Vj such
that

(T, V) + (4, b Vun) + 6 Vun,b- V) = (£, %), (9.1.2)

for all ¥y € V.
The convection term is assumed to satisfy

V-b<0 inf (9.1.3)

Tor & convergence analysis of the streamline diffusion finite element ap-
proximation u, we refer to [23] and [2].

9.2 Numerical tests

We choose the same test examples as in [2]. Namely,
b=[{1— zcose)cosafl — ysina)sina],

for various angles o. Note that V -b = —1. The right hand side f is
chosen so that u = &(1 — £)y(1 — ) is the exact solution. Thus, the right-
hand side function f is e-dependent. The stopping criterion was that the
relative error of the residual be less than 10~8 in the discrete L?-norm.
The objective is to test the number of iterations in the solution procedure
by using the wavelet-like hierarchical basis.

The matrix form of the discretized problem (9.1.2} reads as follows:

Au=f. (9.2.1)

Here A is a nonsymmetric matrix. For small ¢, it is very difficult to find a
good preconditioner for A. It was seen in [2] that a block-ILU factorization
method turns out to be very robust with respect to arbitrary positive e,
though very little is known theoretically on this good performance.

For any finite element function v, we use the bold face v to denote
the vector with respect to the nodal basis and ¥ the vector representation
with respect to the modified hierarchical basis. In the implementation, the
modified hierarchical basis is employed to provide a preconditioner for the
global stiffness matrix A as follows. Let Y be the transformation from ¥
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to v such that v = Y¥. The preconditioner is given by P = (YY7)~1 with
YT being the conjugate of Y. Below we discuss the computation of ¥ and
YT,

Let
o~ -l 1 _—
v = (Im I G- I;’:"’G(")) [ é ] %N’;_l Me\Ne-1 - (g2.9)
and
v =1 (9.2.3)

Here, %) gtands for the mass matrix at kth discretization level, I,'j_l 18
the natural coarse~to—fine interpolation matrix from (k — 1)th grid to the

kth one and If"l =(IF_))T. Also, G0Y ™ is an approximate inverse of the

mass matrix G(*), For example, a good choice for G w would be an
approximate solution of G{*)x = w by polynomial iterative methods. In
practice, the Jacobi and conjugate gradient methods are good candidates.
The numerical results in this section are based on the Jacobi iterative
method with two iterations.

Algorithm 4 For any given V = (G&"), e, ?(11), G(G))T, the actionv =YV
is computed as follows:

o Set v =),

o Fork=110J do
V8 = Y1) 1y B,

* V= V(J).

Algorithm 5 For any given d = (ng),---,dgl),d(D))T, the action d =
Y7d is computed as follows:

e Set &(J) =4d®,

e Fork=—1J down to 1 do

i oy
g&-» :Yz(k)Ta(k)-

ed=@”,...a" "%
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Table 1. Iteration counts for A~ = 64, & = 75°,

e=1 =01 |e=10"2]e=10"[e=10""%
§=000116=001] 6=0.1 6=1.0 6=10
iter 30 28 42 59 74
Table 2. Iteration counts for A~ = 64, o = 105°,
e=1 e=01 |e=10"2 [ e=10"%] e=10"%
§=0.00116=001} 6§=0.1 §=1.0 § =10
iter 31 27 70 * +*

Table 3. Iteration counts for A~ = 128, o = 75°,

e=1 e=0.1 €= 10"*
§=0.002516—=0.025 ] 6§ =025
iler 32 20 48

Table 4. Iteration counts for k™" = 128, o = 105°.

e=1 e=0.1 |e=10""2
6=0002516=0.025 | §=0.25
tler 32 29 71

43

Once the preconditioner P = (YY7T)~! is known, one can solve the
discrete problem (9.2.1) by using the generalized conjugate gradient method
employed in [2]. We comment that this simple preconditioner may not
work well for convection-dominated diffusion problems. This fact can be
seen from the numerical results illustrated in Tables 1-4.

In the Tables 1-4, “¥” is used to indicate a non-convergence in 100
iterations. It is clear that the use of the wavelet-like hierarchical basis gives
an efficient preconditioner if the problem is not convection-dominated.

The present implementation of the modified hierarchical basis is com-
parable with the additive preconditioning method discussed in [42]. The

information is also contained in ALGORITHM 3 of this paper with §§’§) =
C'h;zlk, where I stands for the identity matrix.
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