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1. Introduction. Multiresolution representations have become effective tools for ana-
lyzing the information contents of a given signal. In this respect, the recent development
of the theory of wavelets (see e.g. [9] and references therein) has been a giant leap towards
local seale decompositions and has already had great impact on several fields of science.

In Numerical Analysis, a wavelet type decomposition of a function is used to reduce the
cost of many numerical algorithms by either applying it to the numerical solution operator to
obtain an approximate sparse form [6, 15, 21, 5] or by applying it to the numerical solution
itself to obtain an approximate reduced representation in order to solve for less quantities
[20]. |

The building block of the wavelet theory is a square-integrable function whose dilates and
translates form an orthonormal base of the space of square-integrable functions. Such unifor-
mity leads to conceptual difficulties in extending wavelets to bounded domains and general
geometries. Moreover, it is impossible to obtain adaptive (data-dependent) multiresolution
representations which fit the approximation to the local nature of the data. Adaptativity is
only possible by admitting ‘redundant’ representations.

A combination of ideas from multigrid methods, numerical solution of conservation laws,
hierarchical bases of finite element spaces, subdivision schemes of CAD (Computer-Aided
Design) and, of course, the theory of wavelets, led A. Harten to the development of a “General
Framework” for multiresolution representation of discrete data.

Harten’s General Framework is built around two basic operators, decimation and pre-
diction, which connect adjacent resolution levels. In turn, these operators are constructed
from two basic building blocks: the discretization and reconstruction operators. The for-
mer obtains discrete information from a given (continuous) signal, and the latter produces
an “approximation” to that signal, from the discrete values, in the same function space to
which the original signal belongs.

A “new scale” is defined as the information on a given resolution level which cannot be
predicted from discrete information at lower levels. If the discretization and reconstruction
are local operators, the concept of “new scale” is also local. The scale coefficients are directly
related to the prediction errors, and thus to the reconstruction procedure. If a scale coefficient
is small at a certain location on a given scale, it means that the reconstruction procedure on
that scale gives a proper approximation of the original signal at that particular location.

Under these premises, building multiresolution schemes that are appropriate for a given
application becomes a task which is very familiar to a numerical analyst. First one identifies
a sense of discretization which is appropriate for the given application. Then one solves a
problem in approximation theory.

In a way, the discretization process specifies the nature of the discrete data to be ana-
lyzed, i.e. how it was generated. In [17] Harten introduces the concept of nested sequence of
discretization, and shows that when we consider a nested sequence of discretization opera-
tors associated to increasing resolution levels, non-redundant multi-scale decompositions are
always possible.

When reinterpreted within Harten’s framework, the discretization operator in the wavelet
theory is obtained by taking local averages against the scaling function. The dilation relation
satisfied by the scaling function becomes a particular way of getting a nested structure in
the discretization sequence.

The strict requirements of the wavelet theory rule out many scaling functions that
provide, nevertheless, appropriate discretization settings in many situations. For example
weighted averages against the §-function lead to point-value discretizations, well nsed within
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the Numerical Analysis community. However, the é-function is not square-integrable, thus
it is never considered as the basic building block of a wavelet-type multiresolution decompo-
sition. It is shown in [16, 17, 18] how to obtain stable multi-scale decompositions using the
é-function in the discretization process.

The flexibility of Harten's general framework also allows for an easier way of handling
boundaries. In [19], muitiresolution setiings obtained using the box function in the discretiza-
tion process are considered. Under periodicity assumptions, the decimation and prediction
operators are the same as those obtained in the biorthogonal framework, when the box func-
tion is chosen as the basic scaling function, However, within Harten’s framework the bounded
domain case (no periodicity) can be handled by reducing it again to an approximation prob-
lem, which is easy to solve with well known numerical techniques. We refer the reader to
[18, 19] for a detailed account of the so-called “cell-average” framework.

Tt is our opinion that the ideas which form the basic core of the framework developed
in [16, 17, 18] are general enough to enable an embedding of most numerical problems in
a multiresolution setting. The general framework can be used to obtain multiresolution
representations from discretizations corresponding to unstructured grids in several space
dimensions [18, 19, 1]. Moreover, the notion of discretization is defined as a mapping from a
“continuum” space F onto a “denumerable” V. Therefore F can be taken to be a family of
operators, which would enable us to develop a multiresolution representation of operators,
an approach that might be advantageous to the indirect derivation of [6] and [21] or [4].

In this paper and its sequel (henceforth Part IT) we study the case in which the dis-
cretization of a given function is carried through by taking weighted averages with respect
to the hat function. We show how the theory in [18] can be applied to obtain appropriate
decimation and prediction operators that allow for multiresolution representations of a set
of data that can be considered as hat-averages of a given function.

In this paper (Part I) we consider only linear reconstruction techniques., We study
the stability of the corresponding multiresolution decompositions and show how to obtain
multiresolution representations of appropriate approximations to the original function. As
in the cell-average formulation, periodicity assumptions lead to biorthogonal wavelets (with
the hat functions as the scaling function used for discretization). We show how to obtain
multiresolution decompositions in the case of a bounded domain and give numerical evidence
of their stability.

In Part II [3], we consider nonlinear reconstruction techniques and thus introduce adap-
tativity into the hat-average multiresolution set-up.

The present paper is organized as follows: In Sections 2 and 3 we describe those aspects
of the general framework which are relevant to our discussion. Most of the material in these
sections is taken from [17, 18] but we include it here to make this work almost self-contained.

Section 4 describes the general properties of multiresolution settings associated to the
process of discretizing by integration against a compactly supported function that satisfies a
dilation relation.

Interpolatory multiresolution settings are used in the construction of multiresolution
schemes within the cell-average and hat-average frameworks. Therefore, they are studied
with some detail in Section 4.1. The stability of the multiresolution schemes in the interpo-
latory setting is related to the theory of refinement subdivision in Computer Aided Design.
We pay special attention to this connection, since it will be used later in the hat-average
multiresolution setting.

Section 5 is the core of the paper. Here we describe the hat-average set-up and study its
properties. Section 6 relates the uniform (i.e. periodic) case to the biorthogonal framework.
Finally, some conclusions are drawn in Section 7.
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2. The General Framework: A Quick Overview. Harten introduces its notion
of multiresolution analysis in [16] and later generalizes it in [17, 18] where the theoretical
foundation for multiresolution representation of data and operators is laid out. This gen-
eral framework provides an appropriate set-up to study the stability of the corresponding
multiresolution schemes as well as the functional structure associated to some of them.

This section is a brief overview of some of the results in [18]. Proofs are given only when
they are simple, short and illustrative, for further details we refer the reader to [17, 18].

We start by recalling several useful definitions.

DEFINITION 2.1. A multiresolution setting is a sequence of linear spaces, {V*}, which
have denumerable basis, which we denote as {nf}, together with a sequence of linear operators
{D}{™'} that map V¥ onto V*71, ie.

DELVE S VEL O VRS DY (V).

The operator Df~'is called decimation operator.

Tt follows directly from this definition that for any v*~' € V¥=! there is at least one
u € V¥ such that DF~1uy = »*-1.

DEFINITION 2.2, We say that PF_,is a prediction operator for the multiresolution setting
if it i3 a right inverse of D¥ ~tin V¥, e

Pk, VRV DE'PE =1y

The requirement in the definition above is nothing but a consistency relation: Predicted
values at the k-th resolution level should contain the same discrete information as the original
values, when restrited to the k — 1st level. Note that Pf_,is not required to be a linear
operator,

A multiresolution setting ({V*}_,, {D¥'}f_,) and a sequence of corresponding pre-
diction operators {P}_,}f., (linear or nonlincar) define a multiresolution transform. The
algorithms that compute this invertible transformation as well as its inverse are as follows:
vl - ME (Encoding)

Do k=1IL,..,1
(1) oF~1 = Di ok

& = Gy(v* — PE_jvh1)

Mo = [, ..., d")

Myt - MMt (Decoding)

(2)

Do k=1,...,L
v* = Pf_o* ! + B d

The scale coefficients, d*, are obtained from the prediction errors

k

ef = vf — PF_jof!

by removing the redundant information in them. Notice that
Di-lek = pE-1(of — PE_jv*1) =0,
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in other words, e belongs to the null space of the decimation operator
e e N(DF Y= {viveV* Di'v=0}

H dimV* = N, then dimN(DF™) = N, — N,_,. Hence, if we select a set of basis functions
in M(DE™)

NDE™) = span{b 2=,

the prediction error e, which belongs to V* and so is described in terms of Ny components,
can be represented in terms of its Ny — Njy_; coordinates in the base {u}}:

At this point it is easy to prove that there is a one to one correspondence between v
and {d*,v*~1}: Given v* we evaluate

,vk——l — Dt—lvk
dk s Gk(Ik — P;f__lDtm})’Uk.

k

(3)

Given v*~! and d* we recover v* by

(4) Pr PV Bydt = PE DWW 4+ EL G, — PE_ DE )
= P DiT'ot 4 (I — By Dy )
k
v

This shows that
ot & {v%,d*,...,d"} = Mot

We refer to M{(v%) as the multiresolution representation of »*, and to algorithms (1)
and (2) as the direct and inverse multiresolution transforms, respectively.

REMARK 2.1. There is a one-to-one correspondence between an element of a linear
vector space and its components in a given basis, i.e. v" £ 5%, Algorithms (1) and (2) can
be used for M (s%), the associated multiresolution representation of sequences stoe §t by
defining

(5) s& 8 M) = M(vD), v =) siaf

In the finite dimensional case, the number of components in d* is (N — Ny_y) and,
consequently, the number of components in M(s") is

L
Ny + Z(Nk — Nioq) = Ny
k=1

Thus, when s* is a finite sequence, which is the case in most applications, M{(s"} has ezactly
the same cardinality as s*.

The scale coefficients are directly related to the prediction errors: if a scale coefficient
is small at a certain location on a given scale, it means that s* is properly represented by
PE_s5"1 on that particular scale at that location. For purpeses of data compression, the
small scale coefficients can then be quantized or truncated, reducing the dimensionalily of
the discrete representation without a significant alteration of the information contents of the

original sequence.



It is clear then that one of the main concerns should be the ‘quality’ of the prediction
15,?_1. The notion of ‘k-th scale’ is related to the information in s* which cannot be predicted
from knowledge of s*~! by any prediction scheme. When using a particular one, the errors
e*, and consequently the k-th scale coefficients, include, in addition to the ‘true’ k-th scale,
a component due to the approzimation error which is related to the ‘quality’, or ‘accuracy’,
of the particular prediction scheme.

A given multiresolution scheme applies to any sequence s = s of real numbers. These
numbers could have been generated by some stochastic process, or by some iterated function
system (IFS) or a numerical scheme for the solution of « PDE or by any other means. When
posed in general, it is not possible to give a precise meaning to the question of qualily. It can
only be made meaningful by resiricting our attention to a subset of data for which we know
something about the way it was generated.

The main guestion becomes then that of the design of a stable multiresolution scheme that
can be applied to any sequence in ST, but that is particularly adequate for a given application.

REMARK 2.2. Observe that algorithms (1) and (2) have the same structure as Mallat’s
decomposition and reconstruction algorithms. Decomposition is carried out by means of two
filters; one of them might be nonlinear, if the prediction operator is too. In this context (and
unlike wavelet algorithms), even in the linear case the filiers need not be of convelution type.

The point of view in {16, 17, 18] is that the primary choice to be made in the design of a
multiresolution scheme is that of the decimation operator. Following [18] we now introduce
the concept of nested discretization. Here the ‘discretization’ specifies the nature of the data
to be analyzed (i.e. how it was generated). The ‘nestedness’ concept introduces a sense of
hierarchy among the levels of resolution that allows for the construction of a sequence of
decimation operators.

DEFINITION 2.3. Let D be a linear operator on a linear space F, and denote its range
by V. If V has a denumerable basis, {n;}, we say that D is a discretization operator on F
and, for each f € F, we refer to v = Df as the discretization of f

D:F -V, where V = D(F) = span{n;}.
DEFINITION 2.4. Let {D;} be a sequence of discrelization operators on F
Dy F— VE, D, (F) = V* = span{nf}.
We say that the sequence {D,} is nested if for all k and all f € F
(6) Dyf =02 Dyyf =0

The nested property implies that the discrete information at a given resolution level is
also included in the discrete information at all finer resolution levels.

A nested sequence of discretization defines a sequence of decimation operators and, thus,
a multiresolution setting., This result follows from the following lemma

LEMMA 2.1. (Harten-Laz) If {D;} is a nested sequence of discretization, then the map-
ping from VF to V¥~ defined as follows:

For v e V¥ take any f € F such that v = D, f and assign to it u:=Dy_,f

s a well defined mapping.
Each decimation operator is then defined as follows: For any v* € V%, let f € F be such
that D, f = v*; then D¥~tv* = D,_, f. Lemma 2.1 implies that the definition is independent

of f. Thus we have

(7) Di_‘LDk =Dy
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which readily shows that D¥~'is a linear operator. Moreover, for a nested sequence of
discretization, (7) defines an operator that maps V* onto V¥~1. To see this, let uw € V*~1
and take f € F such that uw = Dy_,f, then let v = Dy f. Clearly v € V* and (7) implies

Dg_lv = ng“l(‘Dkf) = Dk—lf = 1.

Given v € V¥ any f € F satisfying v = D, f is called a ‘reconstruction’ of v in F.
A nested sequence of decimation operators fix the multiresolution setting, once this
selection is made we still have two more independent choices to make:

1. A prediction operator Pf_,which is a right inverse of D¥~1; this leads to the operator
Q-
2. A basis {gF} of N(D};™"), which will be used to define the operators Gy and E..
The prediction operators can then be constructed using a sequence of appropriate ‘re-
construction operators’.
DEFINITION 2.5. We say that R

R:V —~F, V=DF)

is a reconstruction operator in V, if it is a right inverse of D, i.e. DR = Iy where Iy, is the
identity operator in V.

Note that R is not required to be a linear operator.

Given a sequence of discretization operators {D;} and any sequence of corresponding
reconstruction operators {R;}, a right inverse of Dt’lcan now easily be defined as follows

(8) P]f-—l == DkRk-l : Vk—-l — Vk-
The prediction operator defined above is a right inverse of DY 'since
DEPE ., = DEN Dy Re—1) = (D} ' D) Ry = Dics Rimt = L

The analysis above shows that finding a suitable prediction for a multiresclution setting,
and thus a suitable multiresolution scheme for a given application, can now be formulated
as a typical problem in approximation theory:

Knowing Dy_1f, f € F, find a ‘good approzimation’ for Dy f.

If p € F is a function for which R;_; is exact, i.e.

Rk—l(Dk—}P) =p

we have likewise
Pf"l('Dk—lp) = DkRk—I‘Dk—lp = ka’

i.e, the prediction Pf_,is also exact on the discrete values associated to the function p. The
quality, or accuracy, of the prediction can thus be judged by the class of functions in F for
which the reconstruction used in its definition it is exact.

A good solution to our approximation problem will bring us one step closer to our stated
goal: The design a multiresolution scheme that applies to all sequences s € St but is
particularly adequate for those sequences #F € SL which are obtained by the discretization
process defined by the operators Dy .



In order to apply these multiresolution schemes to real-life problems, we would like the
scale coefficients

d.k = Gk('!.’k - P’Zc_l,vk-—-l)

to be a good approximation to the ‘truc’ k-th scale. Although a crucial element in achieving
this goal is the accuracy of the prediction, it is not the only consideration. We have to
make sure that the direct multiresolution transform and its inverse are stable with respect
to perturbations.

For linear reconstruction operators, the question of stability admits a relatively simple
approach in this general framework. We review this subject in the following section.

3. Stability Analysis for Linear Reconstruction Operators. The decimation
operators DE~'are always linear. When the reconstruction operators, R;, are linear function-
als, the prediction operators Pf_jare linear too. In this case, the multiresolution transform
becomes a linear operator describing a change of basis vectors in Dy (F).

To see this, let us introduce the linear operator B} of successive decimation

(9) Bt =Dt ... .DELvE S VE

and observe that v* in (1) can be written as

(10) v* = Biot.

The multiresolution transform v* — M(v%) can, thus, be expressed as

(11) v® = BYot,  d¥ = G,Q B, 1<k<L.
Likewise, let us introduce the operator AL of successive prediction as

(12) Af =PE ... PFY VRS VE

When R, is linear Yk, these operators are also linear. This fact allows us to express the
inverse multiresolution transform (2) directly in terms of M (v™) as follows:

L
(13) o = AE® 43 AL B,
k=1

With the following definitions:
(14) @bt =Afnf, 0<k<L it = Afpk, 1<k<L
and using the relations v* = Y, #*nf and Eyd* = T, di i, (13) can be expressed as

. i _
(15) o = STt + 30 digit.

i k=1 j

Thus, we have the following
THEOREM 3.1. Let ({V¥}_y, {DF 1Y) be a multiresolution setting and let {Pf_;} be
any sequence of linear prediction operators, then

(16) By = (W?’L}n{{{bf’b}j le)
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is a basis of V¥ and any v* € V¥ has the representation (15) where the coordinates are given
by the direct multiresolution transform M (v").

We refer to By as a multiresolution basis of V£,

Within this framework, it is easy to see that, for linear prediction operators, the succes-
sive decimation and prediction operators B} and AL do control the stability of the direct
and inverse multiresolution transforms with respect to perturbations.

For purposes of analysis, if v* is replaced by a perturbed vF, stability of the direct
multiresolution transform implies that the perturbation in the resulting scale coefficients has
to be bounded by the perturbation in the input. Under our linearity assumptions, we can
write

(17) 6(dk) = d? - dk = GkaBE(’Uf - ’UL).

This relation shows that the perturbation in the input is subject to successive decimation
Dr_, form = L,...,k + 1, projected into A(Df~?) and represented in some basis there.
Clearly the ‘dangerous’ process that has to be controlled is that of successive decimation;
the choice of basis in A(D¥™!) is not that important: the basis need not be ‘orthogonal’ but
it should not be ‘too distorted’ either.

Similarly, for purposes of data compression if the scale coefficients {d*} are replaced by
{d*} which are obtained either by quantization or truncation, we want the perturbation in
the output of the algorithm, the decompressed v¥, to be ‘bounded’ by the perturbation in
the scale coefficients. Linearity of all operators involved leads now to

L
(18) §(vh) = vF —vh =3 AL B (df - dF),
k=1

which shows that the perturbation in the scale coefficients is ‘translated’ into a perturbation
in the prediction error and then transmitted into higher levels of resolution by successive
prediction P, for m = k + 1,...L. The danger here is that the perturbation could be
amplified by the process of successive prediction.

In the general framework we are considering, the decimation and prediction operators
are obtained from a sequence of discretization {D;} and corresponding reconstruction {R;}.
The properties of the sequence {R;D;} play a fundamental role in the stability of the direct
and inverse multiresolution transforms,

The nested character of the sequence of discretization suffices to eliminate the possibility
of amplification due to successive decimation. This is a consequence of the following

LEMMA 3.1. If {D,} is nested, then Di(R,D,,) =D forl <m.

Proof. ¥For any f € F let g = R,,D,, f; then

Dt = PR D) fF = (PR )P f =P f 2 Dp(f—9) =0 D(f-g)=0, [<m.

0
Lemma 3.1 implies that

(19) BiDy =Dk DEIDL = Dy Rei Diyr - Doy Rp D = Dy

'The stability of the successive decimation step hinges on this purely algebraic relation.
It essentially means that if we start at a given resolution level, L, and apply a number of
decimation sweeps, say m, the discrete information we obtain is precisely what corresponds
to the L — m resolution level, in other words, the decimation operator does not infroduce
additional information or amplify noise.



Stability of the inverse multiresolution transform is usually more involved. There is one
situation, however, where the analysis is particularly simple:

DEFINITION 3.1. Hierarchical sequence. We say that the sequence {R Dy} is hierarchi-
cal, if for all k

(/20) (Rkpk)Rk—l =Ryt = R P = Ren
Note that for a hierarchical sequence
(21) RLAE = RiDrRior+  DiyiRe = Ry

The hierarchical structure in the sequence of reconstruction operators prevents the am-
plification of perturbations due to successive prediction in the same way nestedness, i.e.
Di1(Ri D) = Dy.1, prevents excessive perturbation growth in the successive decimation
step.

The algebraic relation (21) is the equivalent to (19) for the successive prediction operator.
It means that after a finite number of applications of the prediction operator the reconstruc-
tion from the discrete information obtained is the same as the reconstruction obtained with
the discrete data we started with. Therefore, the successive prediction step does not in-
troduce spurious information or amplify existing noise, and consequently, the corresponding
inverse multiresolation transform is a stable algorithm.

When F is a Banach space, the norm in F can be used to obtain working stability bounds
for the direct and inverse multiresolution transforms, but the essential relations that lead to
those stability bounds are (19) and (21). We refer the reader to [18] for further details.

Hierarchical sequences have an associated wavelet-like functional structure. First, notice
that we can obtain a relation analogous to (15) in the space of functions F. For this, let us
consider the following definitions

(22) bt = Rpght = RoAfuk

(23) P Ruw)t = RoAvu

Now, applying Ry to (15) we have

L
(24) ReDof =3 (Dol)iel™ + 353 S didy.
§ k=1 7
The functions {¢{"*}, {{1/);° 1YL constitute, in fact, a basis for the space R D F. These
spaces can be thought of as subspaces of F with increasing approximation power (see
[18]).Notice that the coefficients in expression (24) (which should be regarded as a formal
derivation in the infinite-dimensional case) are computed by the direct multiresolution trans-
form (1) of D f.
For a hierarchical sequence of discretization

ot = R AbgE = Ryt =2 o, Pl = RoARM = Rapf =17 YL

Thus, the same functions, {¢?}, {{#}}} can be used in each of the approximating spaces
R.DLF.

The functions {{}};}, are linked by a two-level relationship. To see this, let PE_, be
the matrix representation of the operator PE_,with respect to the basis {nf} and {5} then

Gl = Afh T = ALPE T = A E(P.{-c—l)h"’?fk = E(Pf_,l)”cfof’l’.
7 i
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Thus,

(25) it = Z(Pf-l)uﬁo?-
7

Likewise, let £}, be the matrix representation of the operator E in the basis {nf} and { uiY
then

(26) ’PJIF = Z(Ek)uﬁf’f-

Let us define
&% := span{yf,}, V' :=span{yf},
then (25) implies that ®~! C ®F, while (26) implies that ¥* C ®*. Since

Re > (Dpf)int =D (Dufhivf € @, VfeF

f

RiDif

(RiDe) = Ru(DiRe)Dx = RiDy,

R D, is a projection onto ®*, Moreover, for v* = D; f, one step of the inverse multiresolution
transform (2) can be written as

Dif = Dy Ry 1 Dyr f + de#f
§

Thus applying R, leaves us with

(27) R D f = RkaRk—lpku1f+Edek“? = Ryp_1 Dy f + de?!’f
i J

It is not hard to prove that ®*~1 N ¥* = §, thus we can write

(28) o* = oF -t g U,
which implies
(29) et=vlg... U o 0"

This direct sum decomposition is not, in general, an orthogonal decomposition.

Relation (27) tells us that the df represent indeed the difference in information between
two functional approximations to the original signal f at consecutive resolution levels. How
well these scale coefficients represent a ‘true’ new scale depends, to a fairly good degree, on
the ‘accuracy’ of the underlying reconstruction operator.

Orthogonal and biorthogonal wavelet algorithms can be seen as particular examples of
this general framework. The reconstruction operators used in these algorithms are hierarchi-
cal; as a consequence, the associated compression algorithms are stable.

The general framework, however, allows for any type of reconstruction procedure, linear
or nonlinear, as long as it is a right inverse of the discretization operator.

In the linear case, reconstruction sequences which are based on spectral expansions or
splines are also hierarchical (see [13, 17, 18]), thus, the additional functional structure and
stability properties just described also apply to the multiresolution schemes they define.
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Nonlinear reconstruction techniques can be used to optimize compression rates. In this
case, stability is ensured by a modified encoding-decoding procedure. We refer the reader to
[16, 19] and to Part II [3] for descriptions of non-linear reconstruction procedures in various
contexts, as well as stability considerations.

Hierarchical reconstructions are guaranteed to be stable. However, many reconstruction
techniques used in numerical analysis are not hierarchical. For exampie piecewise interpola-
tion, one of the most common procedures in numerical analysis, does not lead to hierarchical
reconstruction procedures when the polynomial pieces are of degree strictly larger than one
(see [17, 18] or next section). Checking stability is not an easy task in this case, with the
definitions we have covered so far. However, in many cases a sequence of approximation that
is not hierarchical to begin with, has a hierarchical form which is obtained by considering a
limiting process akin to refinement in subdivision schemes [7, 14]. The hierarchical form has
the same scale coefficients as the original one, thus the stability properties derived from the
hierarchical structure of the new reconstruction sequence are also inherited by the original
(usually more manageable)} one.

The main theoretical results are the following (we refer to [18] for proofs):

THEOREM 3.2. Let {D,}32, a nested sequence of discretization operators and {Ri}iZo
be a sequence of reconstruction operators satisfying Dy Ry, = Iy, and such that for any k > 0
and any f € F the following limit exists

(30) Llillgoﬂff = frerF.
where IIf = (RyDe)(RpwiPr_1) -+ - Ry Dy. Then
Difid =Dif for 1<k, d(fi)=0 for 1>k+1.

Note that, IIZ f is described on a higher level of resolution (finer scale) than I1; ™" £, so in this
respect f$° corresponds to “infinite resolution”. Nevertheless, Theorem 3.2 shows that f°
has exactly the same discrete information contents as the initial data R;Dyf. The limiting
process (30) which assigns f2° to R, D, f is called in [18] “cosmetic refinement”, in order to
stress that unlike other refinement processes in numerical analysis, there is no addition of

(discrete) information.
THEOREM 3.3. Let {R; Dy} be as in Theorem 3.2 and define

RE:VE-F R%%ﬁ%}@mﬁ

Then
1. RY is a reconstruction of Dy, in F;
2. (PH);:—1 = Dka~1 = DyRy—1 = Pi_y;
3. {RED,} is a hierarchical sequence, i.e. (RE, 1Dy )RE = RY.

As a consequence of the above theorem, the multiresolution scheme associated to the
hierarchical form is the same as that of the original sequence. Since the hierarchical form
leads naturally to a stable multiresolution transform, stability of the original scheme is a
consequence of the ezistence of the hierarchical reconstruction. For all practical purposes it
is not important to know the explicit expression of the hierarchical form, however knowledge
of its ezistenceis important because it implies stability of the original multiresolution scheme.

Notice also that if p € F is such that

RDp=p VI>0
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then HIZp = p, for all k and L > k and consequently
REDp = Al Mgp=p

which shows that the hierarchical form has the same ‘accuracy’ as the original sequence.
The existence of RE is directly reated to Lhe existence of the cosmetic Ieﬁnement of the

functions Rynf. Let us consxder the finite dimensional case. If of = REn} is well defined,
then so is R v* for all v* € V*. Note that
v _Ev,n, = Rilv —Zv"’R,k T

since the suimn is finite and the reconstruction operators are linear, Hence,
BLﬁm et =pteF = IR Wof e VE

Thus, the existence of the limit fanctions becomes a test for the stability of the multiresolution
scheme derived from a particular sequence of discretization.
Notice that applying R¥ to (15) we obtain the following relation (instead of (24))

E
RED,f = Zf,-"c,o? + 35S dE ()

k=1 j
where
= Riff = lim MELRenf, v = Ripf = lim TE R,

and d%(f) are the original scale coeflicients df(f) = GxDi(I — Re1Di-1)/f.

The existence of the limiting process does not guarantee, by itself, existence of a mul-
tiresolution set of basis functions in F. A sufficient condition for this to happen is that
{RED,} be a sequence of approximation. We refer the reader to [18] for details, as well
as sufficient conditions to be imposed on the original sequence {Ry, D} to guarantee the
existence of a multiresolution basis on the space F.

4. Discretization by local averages. Discretizing by local averages against an appro-
priate weight function is one of the most usual processes in numerical analysis. The weighted
averages carry local information about the given function and very often the weight function
is imposed by the underlying context. In this section we examine the multiresolution settings
that correspond to these discretization processes (see also [16, 17, 18]).

Let us consider a sequence, finite or infinite, of equally spaced points on the real line:

X = {=z}, z; € R b=z 24

We take w(z), the weight function, to be a function with compact support satisfying

(31) / w(a)ds = 1

and define the discretization operator, D, associated to the resolution level defined by the
grid X as follows: for each f in an appropriate function space, F,

(32) (Df) = f =< 1, %w(?—;—“"’) >= %/f(m)w(x';‘”‘ Yz, ;€ X.

12




The operator D acts on a space of functions F for which the integral in (32) is well defined
which, in a sense, specifies the nature of the data to be analyzed.

We now introduce a sense of hierarchy by constructing a nested sequence of discretization
operators of the type defined by (32). To this end, we consider the set of nested dyadic grids
(to which we associate the increasing levels of resolution) {X*}, k > 0 of size by = 2 %hg:

(33) XE = {2¥} zf =7 by

Notice that a:’ﬁj = ;t:f_l.

The sequence of discretization is defined as

k
T — &y
h’k )>§< f,wf >1

(34) D, : F — SF, (Def)i=ff =<1, ‘,;1;‘*’(

where the space S* is an appropriate space of sequences, and wk are scaled translates of w(z),

R
Eo_ '
TR

W

The weighted averages (34) give information on the behavior of the function f at different
resolution levels. When the weight function w(z) satisfies a dilation relation such as

(35) w(y) =2 aw(2y - 1),

knowledge of the weighted averages at a certain level of resolution determines, without farther
reference to the function itself, the weighted averages of that function at all coarser levels of
resolution. This is the basic trend in all multiresolution representations.

In fact, taking y = (@ — 2¥"1)/he_;, we can rewrite (35) as

(36) wf = Zaaw§i+: = E o}
1 4

In terms of the discretization operators, (36) can be expressed as follows

(Dp_1fli = Z o;_2i(Dr.f);s

which immediately implies that the sequence {D;} is nested. Thus, discretizing by local
averages with respect to a function that satisfies a dilation relation becomes a particular way
of obtaining a nested sequence of discretization.

Formula (36) implies that the decimation operator, D}™", can be described by a matrix
whose elements are

(b:_l)ij = Qj_g

Observe that D¥~1is independent of the level of resolution. In what follows, we shall always
assume that only a finite number of a’s are non zero.

The theory of wavelets provides examples of weight functions that satisfy a dilation
relation (called scaling functions in the wavelet world). If this dilation relation satisfies special
properties then the associated multiresolution analysis has a special functional structure and
one obtains orthonormal basis of L?(R) that come from considering dilates and translates of
a single function: the wavelet.

Many of the functions w(z) that are used in numerical analysis automatically satisfy a
dilation equation. Some of the easiest ones are the following:

13



1. w(z) = 6(z), where 6 is the Dirac distribution, satisfies

(37) w(z)=2w(2z) = oy = 1;
2.
(38) The box function w(x) = { (1] _Olﬂf;‘;;eo
satisfies
(39) () = w(20) + w(20 +1) > ag = @y = 35
3.
142z -1<z2<0
(40) The hat function w(z)=<¢ 1-2 0<z<1
0 otherwise
satisfies

1 1 1
(41)  w(x) = 5[{.0(2:1: — 4 2w(2z)tw@z+ 1)z oy o = 1% =g
All these functions w(z) form a hierarchy of functions w™ (=) which is obtained by re-

peated convolution with a characteristic function (see [17, 18])

m m 1 m
(42) ) +1 .. Wk X{_l_}.sm",m], Sy = ”2'[1 - (—1) 1, w° = 6(27)

From these, only the box function leads to an orthonormal wavelet basis in L*(R),
the Haar basis, the most elementary of the wavelet basis. However, they are the natural
weight functions in many contexts and, as we shall see later, they also give rise to stable
multiresolution algorithms, which can be used in the same manner as those derived from
wavelets.

Once the weight function is fixed, the primary choice, that of the decimation operator,
is already made. With respect to this, we shall see later (see also [17, 18]) that local averages
with respect to Dirac’s Delta function are appropriate to obtain multiscale decompositions
of continuous functions, while the box and hat function lead to appropriate multiresolu-
tion representations of piecewise continuous functions with jump discontinuities and with
§-discontinuities respectively.

To construct an adequate multiresolution scheme, we still have two more independent
choices to make:

1. A basis for the null space or, equivalently, an operative definition of the transfer
operators G and Ey.

2. A prediction operator P{_;, which is a right inverse of D',;"'i. This amounts to
choosing appropriate reconstruction operators at each resolution level.

In the dilation relation case, the null space of Dflis easily characterized, in fact

(43) N(DF )y = {s* € S*| Dy's* = 0} = {s* € §* | D eyt = 0}
{
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A choice of basis in the null space determines the final value of the k-th scale coeflicients dr.
In the infinite dimensional case, the vectors pf defined as

(44) (#}c)r = (“1)lazj—l+1a

belong to M{DE™1) sinee

(D i) = ;(Dtml)ﬂ(ﬂf)r = Zal—zi (1) egjorpr = 0.
If we define E; as the matrix whose columns are the vectors pf, then
(45) (EiEe)y = (1) 1y = ;a!azu—mr-

The right hand side of the expression above is directly related to the properties of the dilation
relation. In fact, it is proven in [9] that when the dilation relation leads to an associated
wavelet basis, the coefficients o; must necessarily satisfy the relation

1
zalamﬂ»}«l = 'Q_éu,m:
1

i.e. (E{E,)is amultiple of the identity matrix. In most cases (and specifically in all examples
we shall treat in this paper) (E}E,) is an invertible matrix and, thus, the g} in (44) are a
set of basis functions for N (D). If

et e N(DEY) & =Y dipt = Bydt

3

then, multiplying the expression above by Ey

Epe* = ELE d*
we obtain
(46) Gy = (ELE)E}.

Other realizations of the operators Gy and E; are also possible. Notice that (43) implies
that the prediction errors always satisfy the following system of equations:

(47) Ea,egm_H = 0.
i

In the finite dimensional case, if dimS$* = Nj, = 2N;..;, then dim N (D;™") = N — Ny_y =
Ni_1, and (47) implies that only half of the prediction errors are independent. It is then
possible to store the values ef with odd indices, i.e.

(48) df = ey, 1<7< Niy
and use relation (47) in order to formulate a system of equations
(49} Z 021€§j+2r == Z 021—13§j+2r—1

for the unknowns (5, ¢,..., ek, ). For the weight functions in the chain (42), system (49)
has an invertible, well conditioned coefficient matrix, and the procedure is well defined.

15



The definition of scale coefficients given in (48) leads to a simple definition for the
operator Gy:

(50) (Gr)is = 63150

The operator £y is then obtained from (49). The columns of £; provide a set of basis vectors
for N(D} ).

The prediction operator is constructed using an appropriate reconstruction technique
which is very much linked to the space of functions on which the discretization operators are
to be applied. We shall describe the possible reconstruction techniques in each particular
case,

Unlike the wavelet framework, the reconstruction operators we shall consider will not
be hierarchical in general. Thus, checking the stability of the algorithms shall be one of our
MAajOT CONCerns.

In this paper we consider only linear reconstruction techniques. Thus, to ensure stability
we look for the existence of the hierarchical reconstruction obtained by ‘cosmetic refinement’.
The mere existence of this operator guarantees stability of the associated compression scheme.

It is worth taking a look at what the general relations (28) and (29) mean when the
sequence of discretization is given by (34). Since V* = § k are spaces of sequences, we shall
always consider nf = 6f, the canonical basis functions.

Let {R#} be a sequence of reconstruction operators for the sequence {D; } given by (34),
so that {RF D;} is hierarchical. Then

(51) 99? =Ry = 'Dk‘Pf - Dknfﬁf = 6} = < era‘Pﬁc >=6y Yi,Vi
i.e. the sets {wf} and {(}} are biorthogonal. Moreover, if ¢f := R{ u}
(520,19 = DE ' Dyl = DY'DL R pf = D7 pf =0 = < wi T of >=0 ViVj

The dilation relation for w(z) implies then that < wi", P >=0, Vm <k and Vi Defining
0, = span{wf}
(52) implies that
Q_y L U5,

In general the direct sum decomposition &* = ®*~! & ¥* is not an orthogonal decom-
position. ¥ Q, = ®F, as is the case when the decomposition and reconstruction filters are
the same to start with (i.e. wf = @}), then (51) implies that {p}} is an orthonormal basis
in ®%, and (52) implies that the direct sum decompositions in (28) and (29) are orthogonal.
Notice also that (26) leads to

< ¥F, P> = < Z(Ek)mj@ﬁu Z(Ek)pzﬂpﬁ >= EZ(Ek)mj(Ek)p! < Phniep >
m r m p

EE(Ek)mj(Ek)pgﬁpm = Z(Ek)mj(ﬁk)mr = (Er - By

il

Thus, if (E’; . Ek) = I, as is the case in the orthogonal wavelet case, the set {¥¥} is also
orthonormal. Tt is interesting to notice that these orthogonality relations are a consequence,
rather than the essence of the derivation.
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Orthogonal and biorthogonal wavelets can be cast into the framework of discretization
and reconstruction with F = L¥*(R) (see [17, 18]). However, there is a difference in emphasis
between Harten’s general framework and the classical wavelet theory: The starting point,
and also the main tool, is not functional analysis but approximation theory. The functional
structure comes as a consequence.

The greatest advantage of the general framework developed in [16, 17, 18] lies in its
fiexibility. FEven in these simple settings, it allows for an easy, and natural, handling of
boundaries. It makes also possible to consider data-dependent reconstruction techniques,
which are needed to obtain near-to-optimal data-compression rates (see [16, 19] and Part II).

In the remainder of this section we re-examine the multiresolution schemes derived from
the first member of the hierarchy (42), the interpolatory multiresolution seting, because of
its intrinsic relation to the hat-weighted multiresolution .

4.1. Interpolatory MR analysis. In order for the integral in (32) to make sense when
w(z) = §(z) we need to consider functions which are continuous. We shall thus consider
feF =c(o,1]) and X* = {af}k,, 2f = iy, by = 2 %hy, Jp = 2%J,. In this case,
dimS* =dimX* = J; + 1.

Here we have

(53) Dy : C[0,1} — S* fF=(Duf); = f(=5), 0<i< S

(54) (D) = bas N(DF Y ={sfes | sh=0}

To define the operators G, and E, we can use any of the two alternatives described in the
heginning of the section, however both alternatives lead to the same operators in this case,
(see also [17]). Thus, G, is defined as in (50) and E; has the following expression

(55) (Ex)ij = 835140

A reconstruction procedure for this discretization is given by any operator R; such that
(56) Re: §F — C[0,1]; DR = f,
which meaxns

(57) (R F*)h) = ff = F(=5)

Therefore, R; should be a continuous function that interpolates the data f* on X*. From
these considerations, it is clear that Dirac’s delta function gives rise to interpolatory mul-
tiresolution settings, which should be appropriate for multiscale representations of continuous
functions,

If we denote by I, any interpolatory reconstruction of the data FE ie.

(Ref*)(@) =t Te(2; )
the encoding and decoding algorithms (1) and (2) take the following simple form (see [16, 17]):
u(f5) = M f* (Encoding)

Do k=1,1
(58) = f ) 0<j< Ty
df = fE_1 — Loi{eh;_y M, 1<ji<ha
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¥ = M~*p(F*) (Decoding)

Do k=1L
o |

fZJ_fk ! 0
1

fz;-—l‘“uc 1(3:2; D fk I)J"]k

Up to this point, the type of interpolatory procedure has yet to be specified. The framework
allows the user to choose a particular type of procedure depending on the application at hand.
Data independent interpolatory techniques lead to linear reconstruction operators. We can
then use the machinery developed in the previous sections to study the stability properties
of the associated multiresolution schemes as well as the additional functional structure that
comes with them.

In [16, 17] different types of interpolatory reconstructions are considered. Here we shall
review just one of them, the piecewise polynomial interpolation.

IACIA
s, S,
IA A

Jr—
S F

4.1.1. Piecewise polynomial interpolation. Let § denote the stencil
S =8(r,8)={-s,~s+1 -, —s+r}, r>s>0, r>1

and let {L,,(¥)}mes denote the Lagrange interpolation polynomials for this stencil

nw= 11 (i“—’%ﬂ) Lo(i) =6y €S,

fm—s,l¥#m m

It is clear that

k(... Fk oy 7k z —af
Qj(fﬂ;fs"”,s): Z fj+mLm _"“i;—J

m=m3

interpolates f(z) at the points {zf_,,---,2f_,,.}. Thus,
(60) Ik(w,f—k):q;c(m;fkaras) ﬂ?E[ J hmﬂ 1SJSJ.E

is a piecewise polynomial function that interpolates f(z) at the grid points {z}}.

The situation r = 25 — 1 corresponds to an interpolatory stencil which is symmetric
around the given interval. In this case, ¢; Y(x; f*,r, ) is the unique polynomial of degree r
that interpolates f(z) at the » + 1 = 25 points {af_.- - Th, 1}

When the given function is periodic, i.e.

fEi=fi-i frosjer =T, 05i< g,

the data to construct the polynomial function Ip(z, f*} using centered stencils is always
available. If the function is not periodic we choose one sided stencils, of 7 4+ 1 = 2s points,
at intervals where the centered-stencil choice would require function values which are not
available. The definition of I(z; f*) in the non-periodic case is, thus, as follows:

) @ (=3 557, 4) 1<j<s—1
(61) Loz f*) = ¢ ¢ (=5 f¥5m,8) s<j<S—s+1
gl ffri-Je+r) J—s+2<7<J

Observe that if f(z) = P(z), where P(a:) is a polynomial of degree less than or equal
to r, then ¢*(z; f*,r,8) = f(z) for z € [zf_y,z}], i.e. Li(w, f¥) = f(z). Thus, the space of
18




polynomials of degree less than or equal to r satisfy ;D f = f. In addition, for smooth
functions

Ik(CU, fk) = f(.’B) + O(hk)zs.

herefore, the order of the reconstruction procedureis r +1 = 2s.

As usual, we consider nf = §F with (6}), = &, as the basis functions for the spaces 5%. k
The results of section 3 imply that the stability of the associated multiresolution scheme
follows directly from the ezistence of the hierarchical form of the reconstruction procedure
used to define the scheme, which in this context is the interpolatory reconstruction f{z; ).
Thus, convergence {(as L — o) of the functions ¢} ~ obtained by repeated interpolation of
o

G = (Whempr PE ST = AT " = Lo(a3 @),

immediately implies the stability of the associated multiresolution scheme.

Here, we are only concerned with symmetric interpolatory procedures, r = 2s — L. For
r = 1, I is the piecewise-linear interpolation which is hierarchical and, as a consequence, the
associated multiresolution scheme is stable, For r = 3,5, we can use the connection between
the interpolatory multiresolution framework and the theory of recursive subdivision (at least
under periodicity assumptions) to prove the stability of the multiresolution schemes.

Since we are considering only data-independent interpolatory techniques, the reconstruc-
tion operator is linear and we can write

I(z; 5 = Zﬁkuf, ub(z) = Li(z; 6F).
Then, since Pf_; = D11,
= (P T = (e ) = S ),
i
Therefore
(62) (PE Yoy = wb M wh) = 8y (PEo0)aiony = o)1 (2hin).

Let us consider first the periodic case. A straightforward algebraic manipulation shows
that

fZ: = (Pf—lfk_l)Zi = _ik—la
63 -
(63) {f (PR Vgin = Tt L (—1/2) i

Because of periodicity, we can consider (63) for all i € Z. Observe that the coefficients of ff‘;ﬁ
depend only on m and they vanish if m < —s or m > —s + r. Formula (63) describes in fact
the refinement rule of an interpolatory subdivision scheme, a special subclass of stationary
subdivision or refinement schemes.

Stationary subdivision schemes are appear in computer-aided geometric design as a
method for the definition and generation of curves and surfaces. The general form of a
stationary subdivision scheme in one dimension {univariate} is as follows:

»= Z ’}’-'-mipak“1
]
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The coefficients {y;} are the mask of the scheme (in the terminology of the refinement liter-
ature) and it is assumed that only finitely many ’s are non-zero. The last relation can also
be expressed as

E
Do

Z’erpf_“rl
phioi = 2721—11’?—_:1
I

Thus, at every stage of the computation the values computed at previous stages are further
“refined”, and new values at intermediate points are added. The “refinement rules” are the
same for all stages of the computation and are given by the mask of the subdivision scheme.

Given an initial set of control points {pf,i € Z}, the binary subdivision refinement of
this sequence defines, in the limit ¥ — oo, an infinite set of points (corresponding to all
rational numbers whose denominator is a power of 2 and integer translations of these). The
main question is then whether or not these values admit a continuous extension to the real
axis, i.e. whether or not the subdivision scheme converges uniformly for any set of mitial
control points.

Interpolatory subdivision schemes have the property that the limit curve interpolates
the original control points. This requirement is met if at each stage of the iteration the
previous control points are left unchanged. Thus, for an interpolatory subdivision scheme,
Yo = 610 The odd mask coefficients of the interpolatory subdivision defined by (63) are
Yo = L(=1/2), —s <1< —s+ 7.

Under the assumption of periodicity, the sequence Af f* can then be re-interpreted as
the sequence of control points obtained after L applications of the interpolatory subdivision
scheme (63) on the set of control points {f*}. Using the results of [14, 7], it is proven
in [18] that the convergence of the interpolatory subdivision scheme given by (63) implies
convergence of the cosmetic refinement sequence. In fact,

(64) AFF* — f(z) €c[0,1]] =  LAf - flz)inC[0,1] as L — oo

Thus, the convergence of the cosmetic refinement limiting process in F = C[0,1] is
intrinsically connected to the convergence of the subdivision scheme (63), which is now a
well documented issue ( [7] is an excellent review on stationary subdivision and [22] on
interpolatory subdivision and its relation to wavelets; see also [14, 10, 11] and references
therein).

Deslauries and Dubue [12] proved convergence of the recursive refinement process (63)
for r = 3 and 5. The considerations above lead us to conclude that the the hierarchical
reconstruction (69) exists for r = 3 and 5; hence the associated multiresolution schemes are
stable.

There is a close connection between the convergence of a subdivision scheme and the
existence of a compactly supported function satisfying the functional equation

(65) ole) = 3 7p(2e - J)

A convergent subdivision scheme determines uniquely (), which is obtained by applying
the subdivision scheme to the sequence f? = §,;. In addition, for any f° the limiting curve
obtained by recursive subdivision is

(82 @) = 3 Fpla — i),
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Moreover, if an interpolatory subdivision process converges for the § sequence, then it con-
verges for all bounded sequences.

The connection with stationary subdivision implies that the existence of the cosmetic
refinement limit in F = C[0, 1}for any discrete set of initial data depends only on the existence
of such a limit for f° = &5. If this limit exists, then it satisfies a functional relation given by
the mask of the subdivision scheme, i.e. the coefficients of the prediction matrix.

Thus, under the periodicity assumption, if

(66) 3 Tim L(z;80") = pol2)

then for all ¢ and m

(67) 3 lim 1o o) = @l'(z) = (5 )
where

(68) @(z) = o(zhy), support(yp) =[2s —2r—1,2s —1].

Moreover, it follows from (62) and (65) that ¢(z) satisfies the dilation relation

—r
elz) = p(28)+ 3 Lm(-1/2)p(22+2m + 1)

m=-2:

These facts were also proven in {17], without explicitly using the subdivision refinement
theory.

In addition, Deslauries and Dubuc [12] proved that for r = 3 the limit function cor-
responding to the set of data @)° = 83 is ‘almost’ C* (it is ' and its first derivative is
differentiable almost everywhere). For r = 5, the limit function is C*,

We recall that the hierarchical form of I, which we refer to as If° since it is obtained
via the cosmetic refinement limiting process, has the form

(69) Pz )= fowf-

The two level relation between the limiting functions ¢} in (25) can also be obtained
directly, using the dilation relation for ¢(z).
Notice that (26) becomes in this context

¥ = Do (Ea)yel = D bzl = ¢l
1

!

Thus
oF = ’l’(é%k —§);  where %(z) = o(2z + 1).

Moreover, using the hierarchical interpolation (69), we can write (27) as

L Jk—1

(70) I2(2;Dof) = I (2 Dof) + 3 3 di( )k —a(2)
k=1 j=1

with d¥(f) = fle5;_1) = L1(255-0; Drsrf)-
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When I, is hierarchical to begin with (e.g. r = 1 or piecewise interpolation techniques
using splines) I = I, pf(z) = Li(z; 6F). In the finite element context, the set

({{@24 l}ak 1 L } {(Pl )

Fs 17 1 AY

is referred to as a hierarchical basis (see [23]).

In order to deduce the stability of the multiresolution scheme associated to the non-
periodic case, we consider again the cosmetic refinement process. We start by setting A
6™ at the points of the m-grid and apply repeatedly the prediction operator. Convergence
of (66) implies also convergence of (67) for those indexes 4 such that the support of the
limit function in the periodic case does not intersect any of the intervals affected by the
one-sided interpolatory procedure. Since in the symmetric case the support of (z) in (68)
is [—(2s — 1), (2s — 1)}, there are 2s ‘special’ boundary functions (at each boundary) at each
resolution level.

At this moment, there are no convergence results available to us in order to prove,
analytically, the existence of these boundary functions. In Figure 1 we show numerical
evidence that the limit functions do indeed exist and have the desired interpolation properties.
This accounts for the evident stability of the associated compression algorithms.

Figure 1 shows the limiting functions when J, = 8 and r = 3. The support of ¢(z) in
(68) is [—3, 3], so we get 4 ‘special’ limiting functions due to boundary effects. The numerical
results are obtained by applymg the inverse multiresolution transform (for L large enough)
to compute M~(«?,0,...,0), where u° is the unit sequence ul = 6, o. The convergence of
the limiting process seems to be very fast; we display (p, ,i=4,...,8. These are basically
indistinguishable from ¢{"" for L larger than 7.

It is worth noticing that the boundary limit functions corresponding to higher levels of
resolution are scaled versions of those for lower resolution levels, as long as only one of the
boundaries makes its influence felt (see Figure 2).

The functions T,bJ = §;_;, which would be obtained by computing M~ Y0, 6;,0,...,0},
are just scaled versions of the odd-indexed ¢’s and are not shown.

5. Hat-weighted Multiresolution. Let us describe now multiresolution schemes cor-
responding to the third member of the hierarchy (42}, the hat function. The discretization
process defined in (32) requires that the function under consideration be integrated against
scaled translates of the hat function. Since these are continuous functions, é-type singularities
can be allowed.

Let us consider, as in the interpolatory and cell- a,vera,ge frameworks, the unit interval
[0,1] and the sequence of nested dyadic grids X* = {zF}/%,, 2§ = ihy, by = 27%ho, Jp = 2k I

It is sufficient to consider weighted averages fF for 1 < ¢ < N, = J; — 1 since these
averages contain information on f over the whole interval [0, 1}. Therefore

Dy: F — §* F=Dufli=< fwb> 1Ki<N=J -1

The weighted averages fk provide a representation of the information contents at the
k-th level of tesolution of any piecewise smooth function defined on the unit interval with
a finite number of é-type singularities in the open interval. Thus, we consider F to be the
space of piecewise smooth functions in [0, 1] with a finite number of singularities in (0, 1),
and S* is the space of finite sequences of N = J;, — 1 components.

The dilation relation for the hat function (41}, leads to

_ 1 1 1
(71) wil= ngf-l + :?"w;ae + ng"“
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or, in terms of the weighted averages
_ 1 1, 15
(72) i = Zfzka'—l + §f;ﬁ' + Zf';i+1-
The relation above can be used to compute the N, _; hat-averages at the k — 1st level from

the N, hat-averages on the k-th level. The decimation matrix is then an Ny_; x N matrix
given explicitly by the following expression:

_ 1 1 1
(73) (D} Y = 152:'“1,5 + §5zi,j + Zazi»kl,j-

The definition of the decimation operator determines the multiresolution setting. To
obtain a multiresolution scheme we need an appropriate prediction operator, which in our
context is equivalent to finding an appropriate reconstruction operator for 7.

The reconstruction procedure R; must satisfy

(74) Ry: 8% —F (Dkkak)j = fjk-

In what follows we describe a procedure to compute R for the hat-averaged framework
which is a generalization of the ‘reconstruction via primitive function’ developed in the
context of cell averages (see [17, 19]). We refer to this procedure as “reconstruction via
second primitive”.

Let f be a piecewise smooth function in [0, 1] with a finite number of é-jumps in (0,1).
Define its “second primitive” as

(75) H(z) = /0 ) /0 " F(2)dzdy.
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Then H(z) is a continucus piecewise smooth function which satisfies the following relation:

1
(76) fE=<fiof>= (HE - 28 + HE), 1Si< -1,
k

where Hf = H{af) 0<I<J,

When f(z) is an integrable function, (76) is easily proven integrating by parts. If f(z) =
§(z ~ a), a € (0,1), then

H(:E):(ﬂ:—ﬂ)+m{w2a :::: ; a

and it is also a straightforward matter to prove that

(b — @)y — 2(zf —a)y + (2fo1 — a)s
hz

fF =< b(z ~ a),wf >=wf(a) =

For a general f{z) € F, linearity of the integral implies (76)

The definition of H(z) in (75) leads to H, = H(1) = I5 f¥ f(2)dzdy and HE = H(0) =
0, Yk, H(z)in (75) is one of the second primitives of f(z), (i.e. a function satisfying (76));
however another second primitive, which we also label H(z), is sometimes more convenient

(77) H(z)= /: ]Dy f(z)dzdy — ax a= ful jﬂy f(z)dzdy

because, for this particular one HE = H(0) = 0, and Hf = H(1) = 0. Choosing the lower
limits to be zero, or modifying the basic definition of H(z) given by (75) by a first order
polynomial, as in (77), amounts to computing different values for 7{0) and H(1). Once these
have been specified, (76) establishes a one-to-one correspondence between the sets { i

and {HF}/27*. In fact,

-2 ¢=3
(78) hiff = MH", M ;= 1 ji~jt=1
0 else

Thus, knowledge of the hat-averages of a given function f € F is equivalent to knowledge
of the point values of its second primitive (77). We can then interpolate the point-values of
the “second primitive” by any interpolation procedure I (z; H %) and define

(79) (ReF*)w) = g la(a; 1Y),

In general, I (z; H*) is a continuous, piecewise smooth function. Its first derivative will
also be a piecewise smooth function possibly with discontinuities at the grid points of the
k-th level. Thus its second derivative must be considered in the distribution sense. Ry f*
may have a finite number of 6-type singularities, which will be located at those (interior}
grid points where the first derivative of [(z; H *} has a jump discontinuity. This fact is a
consequence of the following lemma, whose proof is a straight application of the definition
of a distributional derivative and shall be omitted.
LEMMA 5.1. Let I{z) be a piecewise smooth function of the form

(50 1@ - { 0 gest
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Then, its derivative in the distribution sense is

(81) L 1(e) = I(2) + (a(0) ~ 1:(0))6(2)

where

d .
Ea:_IL(m) ifz <0

(82) I(2)=4 % .
EIR(JE) ifz >0

Lemma 5.1 implies that if the interpolatory function is defined as
{83) L(x; HY) = L ;(2; H*) for @ € [z}_y, 2]

in the distribution sense, we have

Je—1

(84) (Rif*)(@) = Iu(z) + D s56(z — zf)
i=t

where [, is defined as

(85) I(z) = Ik_,(a: HY) for z € [z}_q,2}],

and

d d
(86) sf = {d I (2 HY) - k(@ H"’)] = I/ (z} + 0; H*) - L,/(z} — 0; HY).

Obviously, (R f*)(z) € F. To prove that R; in (79) is a right inverse of D, we need the
following lemma:

LEMMA 5.2. Let f(z) be an integrable function and let H(z) be a continuous function in
[0,1] twice differentiable in [z}.,,zF], I = j,7 + 1 such that H"(z) = f(z) almosi everywhere
in [zF ,,zf] forl=4,5+ 1. Then

(87) <fwf>=Ji= hik [H'( 0) - H'(a} + 0)] ! (H1+1 20} + Hf )

Proof. For an integrable function f(z),

- 1 gef z — x¥ 1 [Tin z — zf

o i 4 _ j

B o= [l s e g [ s - T
:z.'k k k k

— _1_ oy - 1fz’+l " -z
- & /mle( e A 2"(2)(1 )da.

The result follows from integration by parts in the expression above. O
Notice that (85) implies that we can apply lemma 5.2 to Iy and I,. We thus obtain,

Jpwl
(DiRef*); = < R f* wf >=< L(z)+ Z §(z — af)st,wf >
ae]
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Jp—1
= < Lia),wf >+ ) of <é(e—af),wf >
=1

1
- = (Lu(akys HY) = 2L(ahs HY) + (2o HY))

1 iy
+ -};--(Ik'(a: -0, HY) — I/ (2f + O, H )+sJ)
1

gplH — 2B} + )= £, 1<5<U— 1,

Hf i
Hence DRy = Ign.
The prediction operator is now computed from R; using (8),

(Prf-lfknl)j = (DkRk—lfk_l)j =< Rk—1fk-1,wf >=
Jp_1-1
<hpwf>+ 5 s'<d@—af)wf> 1<i<h-1
i=1

Lemma 5.2 implies
<hywf> = i(f'k_l(mjf — 0 HF Y - Iy (2 + 0, HETY)
t o o (oa(edoss B = 2Ly (o BEY) 4 T (s )
go that for 7 = 2m we have

I’k-1($f -0)— I’Jc—l(m;‘c +0) = I’k—-i(mﬁrl —0)—I'y_y{ah7 4+ 0) = Wt

< bz —aF ), wf >= 6,
while for j = 2m + 1 we obtain
iz —0) = Fy(@f+0)=0, < é(m—a}"),0f >=0.

Thus, for each 1 < j < Jp — 1

) (PafY =5 (Ik J(Bh_y BV = 28y (eh B ) 4 Ly (s HY)

This expression is particularly useful because, once the interpolation procedure is specified,
it will allow us to write the predicted values in terms of { f*=}. Thus, as in the cell-averaged
framework, there is no need to compute explicitly the point values of the second primitive

(or the values sf).

To complete the multiresolution scheme we need to give an explicit description of the
transfer operators E; and . The value of the scale coefficients d* will be directly related to
the definition of these operators. Notice that dimAN(DE~1) = Ny — Ny = Sy — Jpor = T

Because of the dilation relation satisfied by the hat function, system (47) takes the form

1 1
(89) eh; = “'58’5:'—1 - §€’z°i+1-
Thus, the natural choice of transfer operators described in Section 4 is

(90) d* = Gye* d;’ic =¢h_y, 1<5i< T
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and

(91) ek —_ Ek dk ngjk—I = 1 kdjﬂ "
ef; = —3z(df +dji).
Therefore
8igje1— 5(6i05 + 8ing-n) 1<J < i
(Gk):'j - 52:'-1,3' (Ek)ij = ‘5.',2;'—1 - %51‘,2;' i=1

8i,27-1 — 383,205 -1) J=dpa

On the other hand, we can also define the transfer matrices in a wavelet-like manner,
ie., foreach j,1<j < Ji_y

(92) (ﬂ‘f 1= (“1)1‘3‘23'—?—1: 1<i<J,— 1.

It is easy to see that Ey = [gf,..., 45 _ ] = —3E;. Thus the choice

Gy = (ERE)'E = ~AEtE) By

basically amounts to computing the scale coefficients using enother left inverse of Ej, in S¥,
namely B, = (E; E) ' E}. Since

5 li-dl=1
. 15_5 i:j'_/'-i?Jk—l
MIEEY S i=i=Lhe
0 otherwise,

the computation of the scale coefficients using (), requires solving a tridiagonal system.
Although this is an O(n) task, the extra amount of calculation is not necessary since both
left inverses give identical values when acting on N (DF™!). To see this, let pf be the j-th
column of E,. Since these form a basis of M(DE™!), each & € N(D¥1) can be uniquely
expressed as e* = ) dfpk. Then

BkEk = I = Bk.“"f = 63 and GkEk = I = Gkﬂ-;c s 6_?
Thus
(B — Gr)e* = D di(B, — Gyt = 0 = d* = Gye" = Bre.

Once all the necessary ingredients of the multiresolution scheme have been specified, we
can give an explicit description of the hat-based multiresolution transform and its inverse,

p(fL) = MfL {Encoding)
Do k=1,1
(93) = a2+ i), 1Si< -1
df = fh_y — (PE P " )ais 1<i< Ty

P = M~u(f*) (Decoding)
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Do k=1,L
(94) i = (Pif-—lfk_l)zi—l + df 1<i< ey
B=2fF = W+ ), 1<i< i —1

Using (88), in (93) and (94), the algorithms for encoding and decoding have the general
form of a fast discrete wavelet-type algorithm.
Notice that defining

Fi = (PEaf s + (Bud )z

is equivalent to

N 1 _
fi=2fF - §(f§f—1 + i),

because, from the definition of the odd averages in (94) and (88), we obtain

I 1
i+ ‘2‘(1’5:'—1 + fo) = (PEaff M- E(df +df)
1 - -
+ 5[(P§~1fk-1)2i—-1 +df + (Prf—1fk—1)2i+1 + dfp1]

= (PE P+ P P i+ (P i)
_ Qlﬁ(ff{:} _oHF1 4 I_k+—11 = g fE-1
k

As pointed out in Section 3, stability of the direct multiresolution transform is a conse-
quence of the nested character of the sequence of discretization. Stability of the inverse mul-
tiresolution transform follows from the existence of a hierarchical form for the reconstruction
operator. The hierarchical reconstruction is constructed via the cosmetic refinement hmiting
process (see Theorems 3.2 and 3.3).

Qur design of multiresolution schemes for the hat-average framework is based on the
underlying interpolatory multiresolution schemes. We shall prove next that multiresolution
schemes for hat-average multiresolution settings are stable (that is, the reconstruction ope-
rator has a hierarchical form) provided the underlying interpolatory reconstruction used in
its design has a hierarchical form.

Let us denote by D, and I, the discretization and reconstruction operators corresponding
to the interpolatory framework of Section 4.1, while D, and R, are the discretization and
reconstruction in the hat-average framework,

It is easy to see that, if the interpolation is itself hierarchical, then so is the reconstruction
in the hat-average context,

LEMMA 5.3. If the interpolaiory reconstructions I are hierarchical, then so are the
corresponding reconstructions obtained by (79).

Proof. The hierarchical property of the interpolatory reconstructions means that

Ikﬁka—IHk—l = Ik—IHk_‘l,

where ('ﬁk H); = H(zf) is the discretization by point values operator which defines interpo-
latory multiresolution settings. The above relation can also be expressed as follows:

95) I A =L (a5 HY) 0<j< i, then I(e;A*)=Ly(z, H'Y).
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To prove that

rk d2 I . ITk

Ry f (2) = prcl (s H)

is also hierarchical, observe that (88) can be expressed as

e 1 . _ _
(DkRk—-lfk 1);' = ?;%‘{qu(mf—x;ﬂk 1)“‘“‘ 21&—1(33?5Hk 1)+Iku1($}c+1§Hk i)}
1 - - -
= EE(HJ!;—l — 28 + H,).

Therefore, the set {H}} in (95) ate the point values of a “second primitive” of the function
(Ri_1f*~1)(z) on the k-th grid (notice that, by construction HY = 0k 0% = HE). Hence

d
R DRy 11& 1(35) Ik(ﬂ’ Hk) = ‘i"Ik {23 H* 1) = Ry_ 1fk 1(5'3),

which completes the proof, O

Thus, interpolatory techniques that lead to hierarchical reconstructions in the interpo-
latory multiresolution set-up lead directly to hierarchical reconstructions in the hat-average
framework and, thus, to stable multiresolution schemes.

Let us assume now that that the reconstruction I, of the underlying interpolatory frame-
work admits a hierarchical form I{°. Notice that I{°(z; D, H) is a continuous function which
interpolates H(z) on the k-th grid. Lemma 5.3 implies that

(96) P (7 Duf) = I:Z”(m Dy H)

(where H(z) is a second primitive of f(z)) is a hierarchical reconstruction in the hat-average
framework. We then have

THEOREM 5.4. R in (96) is the hierarchical form of the reconstruction Ry; i.e.
(97) lim R A = RY

L—oo

Proof. Notice that F is a space of distributions, and therefore (97) is a limit in the
distribution sense.
2 is the hierarchical form of I;, thus

IP(z;DH) = Jlim ILAED.H

and the convergence takes place in C[0,1}.
Let us consider ¢(z) € £§°[0, 1], an infinitely differentiable function with compact support
in {0,1]. Then for any f € F

2

2 .- —_ d
(98) < RLAEDLf, ¢ >=< WILA{"D,EH, ¢ >=< [LAED.H, R—Fﬁ > .

Since
2

d -
(99) Jim < LLAEDH o 2¢> < (s PkH), ¢>> < IR (5 DuH), 8>

the proof is complete. [
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The close relationship between the interpolatory multiresolution and the hat-based mul-
tiresolution analysis can be further exploited. In fact, the latter directly inherits much of the
algebraic structure of the former. To see how this works, let us notice first that

Loo(zh H¥Y) = L_y(ef~YL H ') = HF ' = Hj.
Thus
(100) ngml(f) = ﬂcg s = (P Mg

hz [H23 2H§j-—1 + H;fj-—d] -

h2 (Ik 1(2’2; mHk 1) 21;; 1(321’ hﬂk 1)+Ik 1(3:2”Hk 1))

= "T(Hé’j—z — I} (ah_ HY YY) = *go:e'z’j—l(ff)-

In the above relation, ef( f) are the prediction errors in the multiresolution scheme associ-
ated to the hat averages, while ef(H) are the prediction errors in the related interpolatory
multiresolution scheme,.
Let us see now how to obtain multi-scale decompositions in the hat-average multiresolu-
tion framework from multi-scale decompositions in the underlying interpolatory framework.
Consider {{f¥}/57*}f_, a hat-average multiresolution analysis of a function f € F, and

let {{H}F}{*,}E., be the corresponding interpolatory multiresolution of its second primitive.
Any linear interpolatory reconstruction satisfies

(101) IL(z; HY) = ZkH]'“@f(m), @ (z) = Li(=; &%)

Because of (76), it is easy to see that
Hy — HE = B + R (fE+ ff + -+ f).
Thus, differentiating (101), we get

_ d? _
(102) kak(m) = ZHJ’G dmz{pf

f

Hld ¥ ("‘”"*"Z (H1+E(HI+1 ) dz 2{!01(“5)

Ht Zﬂd 250,(m)+z (E(J_i)ft)h’kd RAC))

- fu1
Je~1 T d‘2 "
= Hf Zid 2%(3')+ E 4y (i“j)fﬁ@@e (z)
i=j+1
Ju—1

- Z fJF‘P}C("E)a
i=§

where

(103) pi(z) = Z (I - z)hkd =f () = hy dd2Ik(a: Z By (L = 0)6F)
I=itl I=it1

d -
hkwIk("‘U} 'Dk(a: —_ ﬂ??)_'_).
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To deduce (102) we have assumed that I, is an interpolatory reconstruction that reproduces
first order polynomials exactly. Then

d: 1 g LI d? .
ZJ oai(e)= h—k@%(ﬁ?gihk@"): T (@i D) = 0

Notice that in order to get a consistent reconstruction in the hat-average case, i.e. Ryl =1
we need to consider interpolatory techniques that are at least third order accurate, i.e. that
reproduce exactly polynomials of at least second degree.

Relation (102) implies that R;S* = span{¢},. .., ¢k, }, with ©¥ as defined in (103). I
{I,;D;} is hierarchical, then (26) and (27) lead, in the interpolatory context, to the following
expression

Jre—1
(104) Ik(3§Hk) —Ik-1($;Hk—1) = Z d}’(H)cﬁ'ﬁj_l(m).

i=1

Lemma 5.3 implies that the reconstruction for the hat-average set up which is obtained from
I is also hierarchical. Then differentiating (104) and taking into account that

2 .
d(f) = —ﬁdf(ﬂ), 1<j< Jes

we obtain

(105) (Raf)) — (Raor ) (a) = 22 E G e}
Hence

(106) (Ref*)(@) = (Ra-r F* 1)) = Z i ()5 (),

and so

(107) (Rof e = 3 Rt + zz o)

with oF as in (103) and

(108) v =L gt (@), 1<5< I

The functional structure in the hat-average framework can, thus, be deduced directly from
the interpolatory framework.

Up to this point, we have not specified the kind of interpolatory procedure to be used
in each multiresolution set-up. In the next section we describe the reconstruction operator
obtained from the piecewise interpolation of Section 4.1.1 (see [2] for reconstructions derived
from interpolation by splines).
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5.1. Piecewise polynomial interpolation. Following the notation in Section 4.1.1,
let gf(z; H*,r, s) be the (unique) polynomial of degree r that interpolates H (z) at the points
As in Section 4.1.1, we shall use centered stencils, i.e 7 = 2s — 1, except at those intervals
where the centered choice would require function values which are not available.

When the given function is periodic, centered stencils can always be chosen; thus we
define I, as follows

Ik(w?Hk)zq;(m;Hk,T,S)’ E?E[mf_hmﬂ, 1 SJSJk

In the non periodic case, I, is defined using one sided stencils for some of its polynomial
pieces. The definition of I in this case is given by (61).

Notice that if f(z) = Q(z), a polynomial function of degree ¢, then H(2) = P(x) where
P(z) is also polynomial of degree ¢ + 2 that satisfies P"(2) = Q(=). Then

I(z, H*) = H{z)
for ¢ + 2 < r, which implies (because of (79)) that

Rilz; f*) = f(=).

Hence, polynomials of degree up to 7 — 2 are reconstructed exactly and, therefore, the
reconstruction is formally of order p=r —1=7r ~ 1= 25— 2.

In what follows we give an explicit description of multiresolution schemes for the hat-
average framework which are based on the piecewise interpolatory techniques of Section
4.1.1.

As in Section 4.1.1, we start by considering the periodic case. A periodic function can
be treated as a non periodic one. However, when possible, centered reconstructions are
preferred because their approximation errors are usually smaller than those of their non-
centered counterparts.

To treat periodic functions, it is simpler to include also the hat-average of f at one
of the endpoints of the interval (the hat average at the other endpoint is the same due to
periodicity) in the multiresolution scheme. Then in the periodic case we consider the range
of D, to be the space of sequences with J, components, i.e.

Dkf (f: )z_.ia fz’k =< f,wf > .

A straightforward, but rather lengthy, algebraic computation leads to the following mul-
tiresolution algorithm:

u(f") = MJ* (Encoding)

Do k=1L,1
(109) fit= %(Eciuq +2f5 + FBi)s 1<e<Jyy
ds' ;f;c ﬂl( ;+1_1+fk 1) 1<i<d

F* = M~ pu(f*) (Decoding)

Do k=1,L
(110) b= dE + L AL A Y, 1<i<
fh=25 - %(ﬁi—l + f;&n), 1<i<Jyy
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where p is the order of Ry and
p=2 = [i=3
(111) r= 4 = ﬁl ™ 321)62 - ‘“"5:"3"

lp:ﬁ = ﬂl 255:62 255$ﬂ3:§§_

In the non periodic case, the algorithm above needs to be modified to account for the
boundaries. The first i-loop in (109) and the second é-Joop in (110) run only from ¢ = 1 to
N, = J;, — 1. For p = 2s — 2, there are s intervals at each boundary that require one-sided
reconstruction procedures, This implies that, at each resolution level, the scale coeflicients
df,1<j<s—1,J,_1—-s+2<j < Jp_, are to be computed in a special manner. The
necessary modifications for p = 2,4 and 6 at the left boundary are as follows:

_ ko 3—:: 11 Fk-t1
p=2 { di = “( 3f27)
ko __ k 1 _ 7‘k—1 31 Fr—1
ped {dl = A-&BL -5 -{——23 —5fih)
w ko %t Fh—1 | 37 fh—1 _ Fh1
dz = f3 """“(32 1 +32 2 32 32f4 )
 _ 595 £i __ 788 Fk—1 4 830 k 1 _ 554 Fk—1 | 207 k 1 Fhk—1
dl = fl — \2s6 1 T T + 256 — ZE6J4 + 256 - 256f6 )
— [ 397 294 fk—1 170 f£hk—13 k 1
p==6 d; = (256 + 756 5 L — o563 T ameta - + 255f Y
k. _  fk k 1 87 262 Fk—1 _ 114 gk-1 35 Fk—1 _ 5 fk-1
d3 - f5 (255 +2562 +2—563 ~ 25644 + 256 /5 25646

Modifications at the right boundary can be obtained by symmetry.

The stability of these algorithms follows from the stability of their associated interpola-
tory schemes and Theorem 5.4,

The case p = 2 corresponds to r = 3, i.e. I} uses third degree polynomial pieces. Figure
3 shows M~1(°,0,+--,0) with J, = 8, L = 7 and v’ = §;,4 = 1,2,3. The limiting functions
for u® = 6;,1 = 4,5 are translated versions of the limiting function for 4 = 3, The limiting
functions for 4 = 6,7 are the symmetric reflections of the i = 2,1 limits with respect o the
right boundary. The limiting functions exist but they are not continuous.

The case p = 4 corresponds to 7 = 5. Figure 4 displays M=% 0,.--,0) with J; = 8,
L = 7and u° = §,i = 1,2,3,4. All limiting functions are affected by boundary effects.
When J, > 16, we have 4 limiting functions at each boundary altered by boundary effects;
the rest are translates of the same function (in fact they are scaled translations of the recursive
subdivision limit corresponding to the periodic case). Numerical results for J, =16, L = 7
and p = 4 are displayed in Figure 5.

Under periodicity assumptions, all ! are translated versions of the same function ok
whose support is [—phg, pho}. The limiting functions obtained starting from higher resolution
levels are scaled versions of the ones obtained starting the limiting process at a lower resolu-
tion level. These facts can be explained using recursive subdivision theory, and we shall do
so in the next section.

In the non-periodic case, we retain the periodic limit whenever the new non-zero refined
values at each resolution level can be computed without using one-sided reconsiructions. For
a reconstruction of order p, there are p limiting fanctions affected by boundary effects. These
functions have compact support. In fact, support ¢f = [0,(p+ ©)h] for i = 1,...,p. More-
over, when increasing the resolution level, these limiting functions are also scaled versions of
the same functions in lower levels (see Figures 4 and 5).
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Fig. 3. Hat-average limiling functions. Jo =8, p = 2.
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F1G. 4. Hal-average limiting functions. Jo =8, p = 4.
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F1G. 5. Hat-average limiting functions. Jo = 16, p=4.

Figure 6 displays the relevant limiting functions for J, = 16, L =7, p = 6. All limiting
functions have been obtained applying the inverse multiresolution transform to the initial
sequence {67,9,...,0). We show the limiting functions at the left boundary fori =1,...,p
and the first function, ¢ = p + 1, which is not affected by one sided reconstructions at the
boundary. Their right boundary counterparts are their mirror images with respect to the
right boundary.

In Figures 7, 8, and 9 we show M ~%(0,4,,0,...,0) for I =7 and J; as specified. These
are the ‘generalized wavelets’. There appear to be p/2+ 1 limiting functions affected by each
boundary. Outside the influence of the boundary, all limiting functions are translated versions
of the same function. This basic ‘wavelet’ is precisely the one obtained in the biorthogomnal
framework with the hat function as one of the scaling functions (see next section).

6. Periodicity: The connection with Biorthogonal Wavelets, When dealing with
piecewise-polynomial reconstructions based on polynomial interpolation, the periodicity as-
sumption implies that we consider the same choice of stencil for all points and all resolution
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levels. This implies that the reconstruction operator is translation invariant and independent
of the resolution level. Then we have
THEOREM 6.1. Let R; be a linear operator which is translation invariant

(113) (Ribf )@ — ahy) = (Re8f)(z) Vg€ Z
and independent of the level of resolution
(114) (Ry5)(2) = (Re—1b571)(22) k.

Then, the quantities < wf, Ry_165~1 > are independent of k, and if we define

(115) T =< wf, Reabi ™! >,
then
(116) (PE-1)ij = Yi-2j-

The proof is an easy exercise (see [17]). )
Under these premises the predicted values, f* = PF_; F¥=1, can be computed as follows:

fe . FE—1
(117) ,,kfz‘ 2 Y, L,
f2i+1 = ')’2r+1fi—r .
Therefore, the prediction process takes the form of a uniform binary subdivision scheme. The
mask of this scheme is given in terms of the prediction operator, which is now independent

of k and can, thanks to the periodicity assumption, be considered as an infinite matrix. We
have, in fact,

v; = (Pbg);,

where P is the infinite matrix representation of the k-independent prediction operator.
As mentioned in Section 4.1.1, there is always a compactly supported continucus function
¢(z) associated to a convergent subdivision scheme S which is obtained by refining the
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sequence 6. The sometimes called ‘fundamental’ (or S-refinable) function (z) satisfies the
dilation relation

(118)

7

ple) = Z_'Yj‘P(Qm —3)= D _(Pbo); (22 — 5).

The relation between the limiting processes in the interpolatory and hat-average frame-
works stems, in fact, from the relation between the subdivision schemes defined by the
prediction operators in each of these frameworks.

Following the notation of last section, let B, = DyI_1 be the prediction operator in
the interpolatory framework, while we reserve P{_;to denote the prediction operator in the
hat-average case. Notice that relation {88) can be expressed as follows:

(PE_ff 1) =

_ (P H*V)ipy — 2(}’335”1]{1;-1)‘ + (Pf—lﬂk_1)i-1
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which implies that the subdivision scheme defined by P¥_;is the ‘second divided difference’
scheme of the interpolatory subdivision scheme defined by P} . In the refinement subdi-
vision terminology, if S is the scheme defined by P} |, then the scheme defined by PF_,is
D,5.

This fact has important consequences. First, S converges uniformly to C* limit fanctions
if and only if D, S converges uniformly to C*~2 limit functions, provided S is reproduces poly-
nomials of degree less than or equal to », or, in our terminology, provided the interpolation
is exact for polynomials of degree up to v (see e.g. [7] or [14] for details and generalizations).
Moreover, if » > 2, the limit function for D,S is the second derivative of the limit function
for §.

In our notation these facts can be expressed as follows:

(119) H(z)= lim AFH°€C®, =  f(o)=lim A5f°€C

(120) f(z) = H'(=),

where f° is the set of second divided differences of H°.

A convergent stationary subdivision scheme is completely determined by its fundamental
function. It is shown in [14] that the relation between the fundamental function associated
to 2,5, which we denote by ¢(2), and the fundamental function associated to §, which we
denote by @(z), is as follows:

P(z) = ./:1 -/;Hl o(2)dzdy  hence,  @"(z) = @(x+1)—2¢(z)+ @(z - 1)

The fundamental function of the scheme satisfies the dilation relation (118). Using (109)
it is easy to deduce that the fundamental function associated to the hat average prediction
operators defined in Section 5.1 (under periodicity assumptions) satisfies

121)  ¢@) = (2-A)e(2e)- Eﬁ’”’“ lp(2 — 20) + (20 + 20)

s—1

+ Y Aile(2z— 20+ 1) + p(2z + 21 - 1)]

I=1

The coefficients §3; are those defined in (111).

For p = 2 (r = 3), @(z) is differentiable and @'(z) is Holder continuous with exponent
1 — ¢, with € arbitrarily small. ¢"(x) does not exist at any dyadic rational (see [11] or
[12]), thus the limit of the binary subdivision scheme D,.S cannot be continuous. In fact the
solution of the dilation relation (121) in this case is an L? function (see [8]) and 1,5 converges
weakly in L, (see [7]). Observe that R}’ is nevertheless well defined, which accounts for the
stability of the associated multiresolution scheme.

For p = 4 (r = 5), @(z) is a C? function, thus D;$ converges uniformly and R{" (=, ")
is a continuous function. For the case p = 6 (r = 7), our numerical results indicate that
the second divided difference scheme converges to a continuous function (which seems to be
smoother than in the p = 4 case), and thus the original interpolatory subdivision scheme
must converge uniformly to a function which is at least C*. Convergence can be proven
analytically using the results of [11].

Convergence of the interpolatory subdivision scheme corresponding to Pt implies exis-
tence of the hierarchical interpolation I°(z; H*). In turn, theorem 5.4 implies the existence
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of Ry and the stability of the hat-average multiresolution scheme corresponding to Pf _;.
We do remark that stability follows solely from the existence of R;°; however, the connection
with stationary subdivision provides also the form of the hierarchical reconstruction.

We saw in Section 3 that

R 15 = 20 flel

with ¢f := R (x;8F). Using the fundamental function of the scheme we get

00 o :

o= R (380) = ol )
k

i.e.

- _ T B
(122) RE (@3 1) = 20 el =)

The multiresolution schemes which correspond to the bases of biorthogonal wavelets in [8] can
be cast as particular examples of Harten’s framework (see [18, 19]). In 8] the decomposition
and reconstruction filters are constructed using fwo scaling functions satisfying two different
dilation relations (which have to satisfy a biorthogonality condition). In terms of Harten’s
framework, the discretization process used to define the scheme is as in (32), w(2z) being one
of the scaling functions, while the reconstruction procedure is defined by the right hand side
of (122), ¢(z) being the other scaling function. If

w(z)=2) ow(2z - 1), o(z) =Y ye(2e - 1)
I ]
the biorthogonality condition is equivalent to

(123) Z&r‘m-zm =bmo
1

The prediction operator PF_, is given by
(P,f,_lvk)‘- = Z’Yi—vaﬁv
m

The hat function and the functions satisfying (121) for p = 2,4, 6 are the two scaling
functions in one of the families of biorthogonal wavelets (the spline examples, see [8] or [9]).

The observations above imply that the biorthogonal algorithms derived from the pairs of
scaling functions w and ¢ are in fact the hierarchical form of the centered-stencil piecewise-
polynomial reconstruction in Harten’s framework. The prediction operators in these two
schemes are the same (see also Theorem 3.3), thus both schemes are equivalent. Since
periodicity is an essential ingredient of the formulation, it is clear that these biorthogonal
schemes will have poor approximation properties for non-periodic data.

We proved in Section 4 that the sets {wf} and {¢f} are biorthogonal, i.e.

< W?, SO? >= 6“, V@,VL

In terms of the coefficients of the decimation and prediction matrices, the last relation can
be written as (123).

Notice that the biorthogonality conditions are never imposed in Harten’s framework.
They come as an automatic consequence of the relation DR, = I.
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Notice also that (26), which in this case reads
"Pf = Z(Ek)ijsofc = <P'z°j-1 - %(ng - ‘ng—z)v
leads to
¥ = ¥z~ 9,
where ¥(z) satisfies

B(e) = —50(20) + 922 +1) - 50(2 +2)

7. Conclusions. We consider the multiresolution setting derived from discretizing by
local averages with respect to the hat function and define a reconstruction technique which
enables us to construct multiresolution schemes that are adequate for this multiresolution set-
ting. It is observed that these multiresolution schemes are appropriate to obtain multi-scale
decompositions of piecewise smooth functions with a finite number of §-type singulazities.

In this paper we consider only linear reconstruction techniques. Even in this simple set-
ting, the development of multiresolution schemes based on discretization and reconstruction,
the two basic building blocks of Harten’s framework, leads to a set-up in which multiscale
decompositions are easily understood in terms of approximation theory. Troublesome ques-
tions in wavelet theory, like boundary handling, admit also a relatively simple approach, once
rephrased as approximation problems.

We obtain multiresolution schemes for functions defined in a bounded interval. Their
stability properties are analyzed using the general framework developed in [17, 18] as well
as the connection between the hat-weighted and interpolatory multiresolution settings. The
link with the theory for stationary subdivision is exploited to show that, under periodicity
assumptions, we recover several well known multiresolution schemes within the biorthogonal
framework of [8].

Harten’s framework allows also to consider nonkinear reconstruction operators. We con-
sider the multiresolution schemes derived from these in Part II {3].
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