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1. Introduction. Fourier analysis provides a way to represent square integrable func-
tions in terms of their sinusoidal scale-components. Fourier decomposition techniques have
become basic tools for a great variety of applications in many fields of science. However, it
has a drawback that renders the Fourier decomposition of an irregular function practically
useless: It is a global decomposition; an isolated singularity dominates the behavior of all
coefficients in the decomposition and prevents us from getting immediate information about
the function away from the singularity.

Local-scale decompositions fare much better in this respect. Typically, one starts with
a finite sequence that is somehow associated to discrete information of a given signal at the
finest resolution level considered. By processing a signal at different resolution levels, one can
rewrite this discrete information in a new way. The new sequence has the same cardinality
as the old one (if a non-redundant scheme is used) and its coefficients represent the details
at each resolution level and a final coarse approximation to the original signal.

Multiresolution representations of L?(R) functions can be computed by decomposing
the signal using a wavelet orthonormal basis. In the wavelet framework, all is done by a
succession of orthogonal basis transformations, therefore the inverse operation, i.e. recovering
the incoming discrete signal from its multiresolution representation, is given by the adjoint
matrices.

Wavelet orthonormal basis are composed of dilates and translates of a single function,
the wavelet. The wavelet is intimately linked to the scaling function, or sometimes called the
mother wavelet. This function satisfies a dilation relation which is in fact responsible for the
properties of the multi-scale decomposition. The construction of multiresolution schemes
based on orthonormal wavelet basis becomes then equivalent to a search for solutions in
L*(R) of very particular dilation relations.

In [8, 9, 10] Harten develops a general framework for multiresolution representation of
data. In his general framework, Harten abandons the dilation relation as the basic design
tool and considers instead two operators, decimation and prediction, as the building blocks
of a multiresolution scheme.

Let us consider a sequence of grids X, corresponding (as increases) to increasing
resolution levels. The decimation operator, D¥~1, is a linear operator that yields the discrete
information contents of the signal at the resolution & — 1 from the discrete information at
level k. The prediction operator, Pf_,, yields an approximation to the discrete information
contents at the k-th level from the discrete information contents at level k — 1. Thus

() DF' : VE o VR DE~!  linear operator

(1) E k-1 k
(b) F k-1 ¢ |4 -V L)
where V¥ is a space with a denumerable basis which is related to the level of resolution
specified by X, (for example, in many one-dimensional applications V* = §% a space of
sequences of dimension related to that of the grid X, %)

The basic property that these two operators have to satisfy is

(2) DIt Pf =1 where I,_, is the identity operator in V¥,

which is nothing but a consistency relation: Predicted values at the k-th resolution level
should have the same information contents as the original values, when restricted to the
k — 1st level. In addition, it is also required that D}~ 'be onto. This requirement is also quite
natural, it means that discrete information at each resolution level can always be thought of
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as the restriction (a term which is borrowed from the multigrid terminology ) of some discrete
information at the next resolution level.

A sequence of decimation and prediction operators {D¥"'} and {Pf.,} satisfying (1)
and (2) define a multiresolution transform, i.e. a (one to-one) correspondence between the
original data and a multi-scale decomposition of it. The inverse multiresolution transform
allows us to recover the original (discrete) data from its multiresolution representation.

The direct and inverse multiresolution transforms are described algorithmically as fol-

lows:
ol = Mot (Encoding)

Do k=1L,...,1
(3) v*~1 = Di~ ot
df = Gp(v* — PE_v*71)

Mo* = {o°,d%,...,d"}
Myt — MMt (Decoding)

Do k=1,...,L
ok = PEv*l + Eyd

(4)

The scale coefficients, d*, are obtained from the prediction errors
et = v* — PE b
by removing the redundant information in them. Notice that
D¥1¢b = D¥Y(v* — PE_0F71) =0,
in other words, €* belongs to the null space of the decimation operator
e N(DF Y ={vlveV*, D;'v=0}.

If dimV* = N,, then dimA(D¥™!) = Ny — Ny_,. Hence, if we select a set of basis functions
in N(D;™)

N(DE™) = span{} 127,

the prediction error ¢*, which belongs to V* and so is deseribed in terms of N, components,

can be represented in terms of its N, — N,_, coordinates in the base {uf}:

Ny=Ng-1
et = E dfpf = Bd; df = Gie*.
i=1
Thus G, computes the coordinates of the prediction error in the basis {p¥} (which does not
need to be orthogonal). Observe that E, G} is the identity operator in N(DF7Y).
At this point it is easy to prove that there is a one to one correspondence between v
and {d*,v*~'}: Given v* we evaluate

k

vk-—l = D:-lvk
(5) & = Gy(I - PL,D¥ )b
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Given v*~! and d* we recover v* by

(6) Piyw* 4+ Bdt = PELDPT + BiGy(I - P D)ot

P:_,lDf_l'Uk -+ (Ik - Pf_l.D:—i)’Uk

-k
v,

This shows that
oF 8 {0, d, ..., dk} = MoE,

In Harten’s framework, the design of a multiresolution scheme is directly related to
the choice of sequences of decimation an prediction operators, subject to (1) and (2). The
construction of these sequences depends on two fundamental tools: discretization and re-
construction. The discretization operator obtains discrete information from a (non-discrete)
signal at a particular resolution level. The reconstruction operator produces an approxima-
tion to that signal from the discrete values.

Let F be the space of functions to be subjected to a discretization process D, which
yields discrete information at the resolution level specified by the grid X. Then

D:F—V =D(F), R:V — F.

We require that D be a linear operator (it is onto by construction).

The function RD [ is regarded as an approximation to f, in the same function space to
which f belongs to. A basic consistency requirement is that the reconstruction from a set of
discrete data must contain exactly the same discrete information, at the specified resolution
level, as the original sequence. This can be expressed as follows:

(M) DRv=v YveV = DR = 1Iy.

A sequence of discretization {D;} can be used to define a family of decimation operators
{Df7'}. In order for this to happen, the sequence of discretization operators has to be nested.
In plain language, the nested property implies that Jower resolution levels contain no more
discrete information than higher resolution levels. In mathematical terms this is expressed
as:

(8) Dkf =0 = Dk_lf ={.

Each decimation operator is then defined as follows: For any v* € V¥, let f € F be such
that D, f = v*; then DE~'v* = D,_,f. Since D, is onto, we can express the above as

D:ulpk == ’Dk_l.

Tt is easy to see that this definition satisfies the properties required of a decimation operator.
We would also like to stress that, in practice, the decimation step is carried out without
explicit knowledge of f.

Discrete data are usually obtained from a particular discretization process. This implies
that very often the nature of the discrete data (i.e. the way in which it was generated) dic-
tates the appropriate multiresolution setting in which this data should be analyzed. The goal
in Harten’s framework is the design of multiresolution schemes that apply to all sequences,
but that are particularly adequate for those obtained by the discretization process used to
define the scheme.



The prediction operators are obtained from the sequences {Dx} and {R+:} as follows:
(9) PEyv Tl = DRy 0 h
then
DEpE W = Di"l’Dk’R.k_lvk_l =Dy Rp_1?¥ P =2F1

and (2) is satisfied.

One of the main concerns in the design of a multiresolution scheme is the guality of
the prediction. The notion of k-th scale is related to the information in »* which cannot be
predicted from v*~! by any prediction scheme. When using a particular one, the prediction
errors, and consequently the scale coefficients d*, include a component of approximation error
which is related to the quality or accuracy of the particular prediction we used.

By expressing the multiresolution scheme in terms of a sequence of discretization and
reconstruction operators, the problem of finding a suitable prediction operator for a mul-
tiresolution setting can be reduced to a typical problem in approximation theory:

Knowing Dy_1f, f € F find a “good approvimation” to Dy f.

The relation between the prediction operator and the reconstruction procedure opens
up a tremendous number of possibilities for the design of multiresolution schemes, where the
primary consideration is the selection of the appropriate discretization. We can consider not
only linear reconstruction procedures, as in most wavelet-type multiresolution algorithms,
but also non-linear (data dependent) ones.

Linear multiresolution schemes within Harten’s framework have been widely studied in
[9, 10, 11} and [3]. In this series of works it is shown that biorthogonal wavelets can be thought
of as the “uniform constant coefficient” case of the general framework. It corresponds to a
choice of some weighted-average discretization in R together with a particular reconstruction
procedure, which is in fact the natural one form the functional analysis point of view (R Dy
is a projection). Orthogonal wavelets are also obtained from Harten’s framework by imposing
an additional constraint: the discretization and reconstruction operators are based on the
samme weight-function.

Unlike the classical wavelet theory, which applies to the infinite domain R, Harten’s
formulation is suitable for both the finite and the infinite case. Furthermore, wavelets use
translates and dilates of a single function leads to a natural restriction to uniform grids.
Harten’s nested discretization framework removes the need to discretize on the dyadic se-
quence of uniform grids in R and allows for discretizations in unstructured meshes in ™
{see [2]).

Relations (5) and (6) are the basic encoding and decoding steps of a multiresolution
scheme. Tn electrical engineering terms, (5) and (8) are the analysis and synthesis steps of a
sub-band filtering scheme with exact reconstruction. The operator Dz”lpiays the role of a
low-pass filter and the operator G(/; — Pt , D) that of a band-pass filter. Usually, these
filters are linear and of convolution type (this is exactly the situation within the wavelet
framework).

The whole purpose of sub-band filtering is of course not to just decompose and recon-
struct. The goal of the game is to do some compression or processing between the decom-
position and reconstruction stages. In this respect, Harten’s framework is far more flexible
than the wavelet framework. The reconstruction operator (and thus the prediction} is not
required to be linear, thus it is possible to obtain adaptive (data-dependent) multiresolu-
tion representations which fit the approximation to the local nature of the data. On the
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other hand, the only adaptativity which is possible within the theory of wavelets is through
redundant “dictionaries”.

There is now a variety of data-dependent approximation techniques (e.g. the ENO
interpolatory technique of [9]) which are designed to minimize regions of low accuracy in
the reconstruction in the presence of isolated singularities. When dealing with ‘irregular’
signals, adaptive reconstruction techniques can reduce the approximation error component
in d¥, thus leading to better compression rates than their linear counterparts.

In this paper we describe and analyze a class of non-linear multiresolution schemes for
the hat-average multiresolution setting. These schemes are based on the Essentially-Non-
Oscillatory (ENO) interpolatory procedure described in [9].

The paper is organized as follows: The class of non-linear reconstruction techniques
we use as design tools is described in Section 2. We briefly review the ENO interpolatory
procedure and Harten'’s Subcell-Resolution technique.

In Section 3 we review some basic results, obtained in [3], about the hat-average multires-
olution setting and set the notation for the remainder of the paper. The ENO-Reconstruction
with Subcell Resolution technique for the hat-average multiresolution framework is described
in Section 4. Special attention is paid, in Section 5, to the application of the Subcell Reso-
lution technique to weak singularities.

The stability theory developed in [12] does not apply to non-linear prediction operators.
The question of stability for the non-linear multiresolution schemes we design is considered
in Section 6.

In Section 7 we show various numerical experiments with comparisons, and finally some
conclusions are drawn in Section 8.

2. Nonlinear Reconstruction Techniques. The scale coefficients are directly related
to the prediction errors, which measure our success in using the reconstruction procedure to
climb up the ladder from low-resolution to high-resolution levels.

If p € F is a function for which R;_, is exact, i.e.

Ri-1(Dp-1p) = p
we have likewise
Pf—l(Dk—m) = Dy Ry—1Dr—1p = Diep,

i.e., the prediction P} _,is also exact on the discrete values associated to the function p. The
quality, or accuracy, of the prediction can thus be judged by the class of functions in F for
which the reconstruction from their discrete values is exact.

If the set of exactness for the reconstruction operators includes all polynomials of degree
p — 1, typically one has also

(10) Rif*(z) = f(z) + O(h])

in regions where f(z) is smooth. We say then that the reconstruction operator is of order
p. The accuracy of the reconstruction technique plays a key role in the efficiency of data
compression algorithms of the type (50) and (51).

An isolated singularity affects the accuracy of the reconstruction in a region whose extent
depends heavily on the type of the reconstruction procedure. For example, the effect of a
discontinuity is felt everywhere (to a greater or lesser degree) when using a truncated Fourier
8eries,



In [8, 9, 10] and [3] many of the reconstruction procedures considered are based on
piecewise polynomial interpolation techniques. For these, the extent of the low accuracy
region around a singularity depends on the stencil of points used to construct the polynomial
pieces. It is clear that whenever the stencil crosses the singularity, (10) fails to hold.

Data-independent (linear) interpolatory techniques use a fixed stencil to construct each
polynomial piece. Since the number of points in the stencil increases with polynomial degree
(order of the interpolation), so does the extent of the low accuracy region.

In [12], Harten et al. introduce a data-dependent piecewise-polynomial interpolation
technique which they refer to as Essentially Non-Oscillatory (ENO) interpolation. The basic
idea of the ENO technique is to enlarge the region of high accuracy by constructing the
piecewise polynomial interpolants using only information from regions of smoothness of the
interpolated function.

For piecewise smooth signals with a finite number of singularities, adaptive, data de-
pendent reconstructions of order p manage to keep relation (10) valid over a larger region
than linear (= data independent) reconstructions of the same order. This implies that the
approximation error component in the scale coefficients is smaller, thus leading to schemes
with better compression properties.

Data compression algorithms based on cell-averaged multiresolution and ENO recon-
structions applied to discontinuous piecewise smooth signals, give much better compression
rates than the corresponding algorithms with linear reconstructions (see [8, 11, 6]). Moreover,
Harten shows in [8, 11} that the cell-average discretization enables us to get a good approx-
imation even in cells which contain a jump discontinuity by using the Subcell-Resolution
(SR) technique of [7].

Tn the same fashion, we shall see that ENO reconstruction (also combined with SR)
technigues in the hat-averaged multiresolution context lead to very efficient data compression
algorithms for piecewise smooth signals with a finite number of §-singularities. The space
of such functions is used in vortex methods for the numerical solution of fluid dynamics
problems.

For the sake of completeness, in the remainder of this section we describe briefly the
ENO interpolation technique and Harten's Subcell Resolution.

2.1. ENO Interpolation. To make the presentation simpler, we consider a grid X =
{z;} in [0, 1] with uniform spacing h = @4, —; (see [1, 13] for generalizations to non-uniform
grids an also to higher dimensions).

Let H(z) € C[0,1]. Using the notation of section 3, we call DH = (H;);, where H; =
H(z;). Let I (z; DH) be any piecewise polynomial function that interpolates H {(z) on the
grid X.

If the interpolatory technique is of order r, we have

I(zyDH) = qj(a:;ﬁH) for = € [z;_1,%;],

where g;(; DH) is a polynomial of degree r — 1 such that g; (%513 DH) = H;_; and
g;(z;; DH) = H;. The set of r grid points used to construct the polynomial piece g;(z; DH})
forms the stencil , S;, associated to the interval [#;_1,2;]. The grid points z;_4 and z; must
always belong to ;.

The essential feature of the ENO interpolatory technique is a stencil selection procedure
that attempts to choose the stencil S; within a region of smoothness of H (z).

For each interval [z;_;, %;], we consider all possible stencils of r > 2 points that include
Tia and T,

{mj—r+17 e -ﬂfj}a ' ",{ﬂ?jul, .- °=93j+r—-2}
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and assign to it the stencil for which H(x) is “smoother” in some sense. We will do this by
fixing i(j), an index that marks the initial point of the stencil. For notational purposes, we
assumne that #(j) is the second point in the final stencil. Notice that if r = 2, §; = {z;_1,7;}
and no selection technique is needed. We assume then that r > 2.

In {9], the authora describe two stencil selection procedures,

Algorithm 1. Hierarchical choice of stencil.

’

i5(f) =17

; (J) _ { z'a(j) -1 if |H(mj—2,Ej—1:$j)l < |H($j—1:-’5j,$j+1)l

! io(d) otherwise

{ (DO l=1,r-3

(i) =1 i |H(@yg)-2:- - Taied)] < H@ag-10- - Tagirre)]

1(5) otherwise

fia(J) = {

\ 7'(3) = ir-Z(j)'
Algorithm II. Non hierarchical choice of the stencil.

Choose 1(j) so that
|H($i(j)»1, see :wi(j)+r—2)| = min{iH(:c,_l, e ;-’51+r—2)!1j -r+2<1<5})

Notice that if j —r + 2 < i(j) < j, then z;_4, z; € §;.

The hierarchical choice of the stencil is the preferred one in most situations. Algorithm
I chooses the stencil according to the monotonicity properties of H (). and its performance
in the pre-asymptotic range is, in general, poorer than that of Algorithm 1. In our context,
this becomes very important since we shall be using the ENO technique on various resolution
levels, some of which may well be in the pre-asymptotic range.

Let us assume that H(z) is a picewise continuous function and that H'(z) has discon-
tinuity at z, € [z,_1,7;] (we say then that H(z) has a corner at ;). When [H'},, =
H'(z4+ 0) — H'(z4 — 0) = O(1), an analysis of the stencil selection procedure (see e.g. 1))
reveals that both Algorithm I and 1I lead to stencils such that

Sjwl nSj+1 = @.

This confirms that both stencil selection procedures lead to interpolatory polynomials that
satisfy

H(z) = q(z; DH)+OW||H'|)) =ze€fwin,zm], 1<j-1, 1z2j+1

However, the smooth polynomial g; (z; DH) can only be a first order approximation to
the function H(z) at the [z;_,,z;] cell.

On the other hand, interpolatory techniques based on a fixed choice of stencil lead to
polynomial interpolants g, that are only first order approximations to H(z) as soon as their
stencil crosses z,. The accuracy of the piecewise polyomial interpolant is thus degraded over
a large region around the singularity (its range depends on the degree of the polynomial
pieces, i.e. the number of points in §;).



It is proven in [5] that, if the only singularities of H(z) are corners and they are well
separated (it is possible to choose a stencil in the smooth part of the function), then the
ENO interpolation procedure leads to a piecewise interpolant that satisfies

dm - a
{ —TI{z : = r—m -
{11) dmmI\;riG,DH) dzmH(m)—i—O{h ) 0<m<r-1

except when z belongs to an interval containing a corner. As a result, the accuracy of the
ENO piecewise polynomial interpolant is mantained over the largest possible region,

If we know the location of the singularity within the cell {or a sufficiently good approx-
imation to it), the definition of the piecewise interpolant I (z; DH) can be modified to keep
the relation

H(z) = Hz; DH) 4+ O(h")

valid over an even larger region. This is the basic idea behind Harten’s Subcell Resolution
technique.

2.2. The Subcell Resolution Technique. Let us assume that H(z) is a continuous
function with a corner at 2, € (%;_1,2;). Then, the ENO interpolants gj+1(z; DH) satisfy

(12) Hz) = ga(@DH)+0(W) o €laynz]

(13) Hz) = e PH)+0(K) = €lzjeil

The location of the corner, z;, can be recovered using the following function:

(14) G;(z) = gj41(z; DH) ~ q,-_l(:::;ﬁH).

Using Taylor expansions in regions of smoothness, it is not hard to prove that
GJ‘(.’EJ'_-_[) . GJ(IJ) =a- (a hd 1)[H']gdh2 + O(hs)

where ¢4 = z; — ah.

Therefore, if & is sufficiently small, there is a root of G; in (x;.1,2;); let 6; € (z-1,%;)
be such that G;(6;) = 0. We consider 6; to be an approximation to zy, but how good is this
approximation? Let us consider the special case

o= { 5 157

Py(zs) = Pa(zs),  Pi(zas) # Prlzd)
max{deg(P,),deg(Pr)) < 7 — 1.

By construction, we must have then
qj_l(z;’ﬁH) = Py(z), qj“(m;ﬁﬂ) = Pg(z).
which implies that #; = z,. In the general case, it can be proven (see [7] or 5]} that
6; — za| = O(A").

Thus, using the ENO polynomial pieces at each side of the singularity, we can recover
the location of an isolated discontinuity in the derivative of a continuous function, up to the
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order of the truncation error. This information can be used to modify the polynomial piece
corresponding to the cell [z;_;,z;] as follows: Instead of taking the polynomial g; (z; DH)
as the approximation of H(z) at this interval, we extend the polynomial pieces at the left
and right neighboring intervals up to the point @;, where they intersect. The new piecewise
polynemial interpolant has the following form

. ailz; ﬁﬁ) T€[p1,m), 1#7
(16) I°%(z; DH) = Qj—-l(i';?H) z € [x;_1,0;]
qj;+1($; DH) T E [Bj,zj].

It is then clear that

IRz, DH)=H(z)), =zmeX

d,’
35‘113% + 0; DH) = o H (@) + Oh™™), 0<m<r—1
at all points except for an O(h") band around z; which is now the only region in which the
accuracy is degraded (instead of the whole interval [z;_,;]). It follows that if H (z) is as
in (15) then I5%(z; DH) = H(z), i.e. the modified reconstruction is exact.
The basic principle underlying the SR technique is in fact very simple:

Use accurate reconstructions at the cells neighboring a singularity to recover the singu-
larity within the cell

and it can be applied also to weaker singularities. Suppose that H(z) has a discontinuity in
its g + 1st derivative (g < r), i.e. H(z) € C? and [H@*))],, = O(1) where z, € [z;_4,2;]. If
the polynomial functions q,,,l(m DH) and g1 (z; DH ) are constmcted using only data from
the smooth part of H(z), or in other words if §;.; N 8,41 = @, then we have

D @ PH = 2 g@) ro ™) selgpza] 0Smsrol
dam d rem
T — g1 (T; DH) = H(a:)+O(h ) T € [z;,Ti41] 0<m<r—1

Using again Taylor expansions, we can prove that
G (z;) - G (z;.4) < 0.

Thus, there is a root of G'(z) in [z;.,,z;]. Furthermore, if the root is#;, it is not hard to
prove (see [5]) that

|6; ~ z4] = O(h™™1).

It follows that replacing I(z; DH) by IS®(z;DH) in (16) with §; being now the root of
G9(z) in [x;_,,;], leads to a reconstruction technique which is exact for the corresponding
piecewise polynomial problem (15) with

P (mg) = P{™(zy), 0<m<qg and P (z,) # P (z,).

The key to the success of the SR technique is the accuracy of the polynomial pieces g;.;.
The ENO technique ensures (12} and (13) when the singularity is a corner. However, when
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dealing with weaker singularities, Algorithm I might lead to a selection of stencil such that
8;-; or Sj41 (or both) cross the singularity. The phenomenon is analyzed in detail in [5]
where it is observed that, to maintain the accuracy of the polynomial pieces, one needs to
switch to Algorithm II in cells neighboring weak singularities.

In practice, we like to work with Algorithm I because of its better overall behavior in
regions of smoothness, Thus one needs to identify those cells that are suspected of harboring
a weak discontinuity and recompute the polynomial pieces at the neighboring cells.

We would like to finish this section with a remark: If H(z) has a corner at a grid point,
say «;, then g; and ¢; 4, are accurate representations of H(x) within their respective intervals;
however if z; is a weaker discontinuity, the results of [5] indicate that S; and/or ;44 might
cross the singularity. This leads to a degradation of the accuracy of ¢; and/or ¢j4,. We

address this issue in section 5.

3. Basic Background on the Hat-average Multiresolution Framework. This
section is a brief review of section 6 in Part I [3]. Here we only describe those elements of
the hat-average setting that we find necessary for the development of this paper. We refer
the reader to [3) for more details and for proofs of all the facts we state below.

Let us consider the unit interval [0,1] and the sequence of nested dyadic grids X -
{mf g;()a 35:': = thg, by = Q_kh’(h Jy = 2kJ0‘

The discretization procedure is based on integrating against scaled translates of the hat
function:

i+z -1<2<0

(17) w(z) = -z 0<=z<1
0 otherwise
that is:
z 1
(18) (Duf)i = ff =< frwf >, wf = .._w(f,_ —ih
hy By

Notice that it is sufficient to consider weighted averages fEfor 1 < ¢ < Ny = Jp — 1 since
these averages contain information on f over the whole interval [0,1]. Moreover, since the hat
function is continuous, a finite number of (isolated) §-type singularities are allowed. Thus

Dk:f—’-)sk,

where F is the space of piecewise smooth functions in [0,1] with a finite number of é-type
singularities in (0,1), and 5* is the space of finite sequences of N, = J, — 1 components.
The hat function satisfies the following dilation relation:

(19) o) = 3le(2e — 1) + 20(20) + w(2+ 1)
This implies that

- 1= 1 1
(20) = ngt‘—-l + “Q”f;i + Zﬁ’wl-

Therefore the decimation matrix (an Nj_; x Nj, matrix) is given explicitly by the following
expression:

- 1 1 1
(21) (D M)y = 1525—1,;' + §5zs,j + 152141,3'-
10




Because of the dilation relation satisfied by the hat function, the prediction errors satisfy

1 1
(22) B]z“i = —56’5-'—1 - §8§s+1-

This leads to the following algorithmic description of the transfer operators G, and E,:

(23) d* = G,ée* di=ebiy, 1<5< Ty

fi = df 1<j<J
24 L B dk €251 5 < J < J
0 : ‘ { ef; = —3(dj+diyy) 1Si8 -1

To complete the construction of a multiresolution scheme, we need a working definition
of the prediction operators. This is accomplished by the reconstruction via second primitive
technigue. A brief description of the technique is as follows:

Let f be a piecewise smooth function in [0, 1) with a finite number of §-jumps in (0, 1).
Define its “second primitive” as

sy
(25) H(z) = / ] F(2)dzdy.

0 [}
Then H{x) is a continuous piecewise smooth function which satisfies the following relation:

(26) ff=< fiwf >= %(H};, —-2HF4+ HE)), 1<i<J~1,
k

where Hf =H(zf) 0<1<J;

The lower integration limits are irrelevant to the final outcome of the algorithm. Given the
values H} = H(0) and HY, = H(1), relation (26) establishes a one-to-one correspondence
between the sets {f¥};)57! and {HF}/A". In fact,

-2 i=j
(27) K f* = MH*, M, ;= 1 [i~-jl=1
0 else.

Thus, knowledge of the hat-averages of a given function f € F is equivalent to knowledge
of the point values of its second primitive (25). We can then interpolate the point-values of
the “second primitive” by any interpolation procedure I.(z; H*) and define

(28) (ReF)(&) = L (as HY).

In general, I (z; H*) is a continuous, piecewise smooth function. Its first derivative will
also be a piecewise smooth function possibly with discontinuities at the grid points of the
k-th level. Thus its second derivative must be considered in-the distribution sense.

If the interpolatory function is defined as

(29) I(z; H*) = I, ;(z; H*) for x € [z¥_,, 2]
we have (in the distribution sense)
_ . Je—1
(30) (Ref*)(z) = I (z) + Z s§6(z — z§)
i=1

11



where I, is defined as

- d*
(31) L(x)= 751 Sz HY)  for z € [2f_s, 25,
and
d d
(32) &= [d—zf,, sz HY) — EEIH(:::; H")] = L'(z} + 0; H*) — I/ (=} — 0; H*),
:c-_*:l:}

We proved in Part I [3] that Ry in (30) is a proper reconstruction procedure in the hat-
weighted multiresolution setting, that is, it satisfies DRy = I,. Moreover, if the order of
the interpolation is r, then the order of Ry in (28)is p =71 —2. The prediction operator is
now computed from R, using (9),

(P;f-lfkwl)j = ('DkRkalf_kul)j =< 'Rk-1fk"1,w; >=
Tpm1~1
< Ik_l,wf >+ Z st < 82 - :cf‘l),w;-‘ > 1<j<h-1
=1

which leads to (for 1 < j < Jp — 1)

' - 1
(33) (PEFF Yy = " (Ik—l(m;':—l; )/ ey 2y (253 H Y+ I _o(zhs Hk"l)) .

Once all the necessary ingredients of the multiresolution scheme have been specified, we can
give an explicit description of the hat-based multiresolution transform and its inverse,

f£ - Mf* (Encoding)

Do k=1L,1
(34) it = 4(fha + ofk + f5y),  1Lig -1
d = fEy — (P e 1€i<Ji

Mf: — M™'MJf" (Decoding)

Do k=1,L
(35) fia= (Pif.-Jk_l)zi-I + df, 1€1< 0
Fro= ot - M fhoa 4 fhipn), 124 -1

To derive these algorithms we have used the fact that

7 = (PP (Bad s = 25 = (s + Fiwn)

The description of the prediction operator in terms of the recomstruction via “second
primitive” links the hat-average and the interpolatory multiresolution settings considered in
[8, 9, 10]. The interpolation technique used to define R; in (28) provides also a reconstruction
operator for an interpolatory setting. Thus, the application of a hat-average multiresolution
scheme to a function f € F is intimately connected to the application of a specific interpo-
latory multiresolution scheme to its second primitive. Both settings play a role in our later
development, thus to distinguish between the two of them we reserve the symbols Dy, Ry,

12



D¥1 and P}_, for the hat-average multiresolution setting and the symbols Dy, Res ﬁi‘l,
BE_, for the interpolatory setting, i.e. given a function H (z) € C[0,1], we have

(D.H), = H}=H(z), 0<i<J
(36) ':fékyk(z = Liz; BY) = L(z; D, H), z€l0,1]
(DE'H*), = Hy=HI, 0<i<Jpy
(B B, = Lo(eh B, 0<i<

4. ENO Reconstruction with Subcell Resolution in the Hat-average Context.
The reconstruction via second primitive technique can be carried out using any interpolatory
procedure. We observed in Section 2 that adaptive non-linear interpolatory techniques such
as the ENO interpolation maintain the full accuracy of the approximation over a much larger
region than linear techniques of the same order. Thus ENO-based reconstruction operators
have better compression capabilities than their linear counterparts.

The region where the piecewise polynomial interpolant attains its full accuracy can be
maximized using Harten’s SR technique. In this section, we show that using the ENO
interpolation with Subcell Resolution as the basic interpolatory procedure in (28) leads to a
proper reconstruction procedure within the hat-average framework (i.e. (7) is satisfied).

We intend to use the ENO-SR reconstruction as our approximation tool in the Hat-
average multiresolution setting. In order to do this, we proceed to describe the prediction
operator related to this reconstruction procedure.

To fix ideas, we consider a grid X = {z;} in [0,1] with uniform spacing b = Z;4 — &
and assume that

f(z) = P(z) + ab(z — z,)
where P(z) is smooth and z4 € (%;-1, ;). Its second primitive (25) has the following form
H(z) = Q(z) + a(z — za)y

where Q(z) is a smooth function such that Q" = P and

(@ =2)y = z—z if z>2
+ T 0 otherwise.

Hence, H(z) has a corner at z4 ({H']s, = a) and is smooth otherwise. An ENO interpolation
of H(z) of order 7 leads to a piecewise polynomial function 1 (z; DH) satisfying (11) except
at the interval containing z4. Notice that

8 = |I"(z; PH)],, = I'(z + 0; DH) = I'(m - 0:DH)=0(h"Y)  1#i-1,]

REMARK 4.1. Because of (26), second and higher order divided diferences of H(z) on
the grid X can be expressed in terms of (Df) and its divided diferences. Hence, the ENO
stencil selection procedure can be carried out without explicit knowledge of (DH) = (H(z;))-

The SR technique substitutes the ENO piecewise polynomial interpolant, I(z; DH), by
I5R(z; DH) as defined in (16). Using Lemma 6.1 in [3] and our observations in section 2, we

can easily derive the ENO-SR reconstruction operator in the hat-average context:

(37) R**(2;Df)= d—‘izngSR(z;ﬁH) = R(; DHY+ Y sib(z — i)+ 3;8(z - 8;)
'.#J."laj
13



where

(38)  8; € (z;_1,2;), G;(8;)=0, G,(z) = g;41(z; DH) — g;_1(z; DH),

( di:!q‘(:r;‘ﬁH) re [:L‘;.ml,a:,]; E #J
(39) %5, DH) = f5q;1(x; DH) =z € [2;_1,6]
£10;41(z; DH) z € [0;,34]

and

d < d N . .
8 = [Eqm(m;DH) - quz(m;DH)] l#j—1,7

T=x

-~ d B d )
3 = [ﬁ%ﬂ(w;'pﬂ') = g1 (E;DH)] .

z=8;

The SR technique is local: R°B(z;Df) coincides with R(z;Df) (the reconstruction
obtained by differentiating the ENO interpolant I(x; DH)) except at the cell containing the
singularity. Our analysis in section 2.2 shows that R5%(x; Df) is exact when P(z) is a
polynomial function such that deg(P) <p—~1=7r-3.

Let us prove that R5R(x; Df) satisfies DRSE = I. Observe that

< R®(z; Df),w, >=< IR(z; DH),w; > + E 8 < b(z—a),w > +8; < 8(z—8;),w, > .

The local character of the SR technique implies then
(40) (DRSR(xipf))x =< 'RSR(@'; Df)),un >=< R(z;Df)),w >= (Df); 1#j—-1,5
On the other hand, integration by parts shows that
(DRS®(2;Df)); = < I5%(z;DH),w; > +3; < §(x —8;),w; >
= —50,(0) + ylH(s1) ~ 2H(z;) + H(z; 1)
+7:‘2“[‘15+1(91, DH) ~ g;-1(0;; DH)] + 3,0, (6;)
i.e.
(a) (DRS™(@; Df)); = (DF); + 2G5(6;) = (O,

In the same fashion, it is easy to see that

(42 (DR (@; D))t = (Pf)s1 = 15G5(65) = (PF)jor

Relations (40), (41) and (42) prove our claim.

To use the ENO-SR reconstruction technique as our approximation tool in the hat-
average multiresolution setting, we need a working description of the prediction operator
which is defined as Pf_, := D, RSB,

14
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@1 (z H*Y) gl H) Gipr (o H* )

k—1 k-1 b—1 k—1
Ty o Tl z T

FiG. 1. The polynomial pieces

Let us consider the sequence of nested dyadic grids X* of section 3 and assume that
z4 € (g5}, 2571}, We have then

. d2
P@ ) = B HY)
» Jpwr™1
= IFR(mH" M)+ ) si'6@—ab )+ 856 - 057Y)
i#i-1,j
where
ot e (=7}, 257),  GEU(O) =0, Gy Hz) = giyi(z H') — ¢i={ (z; H*Y),
Lo @ HY) selpld, 2l 1#)
(@ H ) = gl (@ HY) zelah], o]
Hdi(m HYY el of
and
sk—l - _g‘_ 1(:17 Hk 1) d k-—l(m,Hk-—l) I?’—‘ P 1.4
i dr ‘It+1 ) e -4 ; i1 7 wh
ke d d - -
# = R - fdd@E)]
w=07"
Hence,
(43) (p:—lfkml)t = k--l(m fk 1) wz
Je—1—1
= <IH@@BEN)uf >+ Y stof(el™) + 8 b (0.
=1
i#i—1,5

Since supp(wf) = [z} ,, 2k, ], f of, <zfo=zilorzf, > a2}, =2 (le. I<2j-3or
| > 27 +1) we can apply Lemma 6.2 in Part I to compute < IS% (x; f*~1),wf >. It is then
15



k k k k k 3 k
T3j-4 Eai—3 T3;-2 Tj.1 Tz; T3541 Toi42

$
. Irk—1 . Irk—1
Q'j—-l(z’ H ) Ti+1 (3»': H )
k—1 k—1 ! kel k-1
Tj-2 T Z; Tin

F16. 2. The polynomial pieces in SR

easy to check that

- - i

<EAR@@f el > = 4 [(ISRY (@b - 0, H*) — (IR (af + 0; H*)] +
. ‘

h
h [Iffi(xf—ﬁ Hk“l) - ZISfi(-Tf; H Y + KR (ah; Hk"l)] .

I b

Hence,
< REE (& F¥) 0f >=< Ruca (& F471), 08 > l#2§-2,2 1,23,
or, in other words,
BhafF =P 1£2%-22-1,2)

The local character of the SR technique implies thus that the prediction operator does
not change outside of the area where the §-singularity affects the sampled data.
In algorithms (34) and (35), only the predicted values at the odd-indexed grid points are

computed. If
Ii-1(z; DH) = ¢/} (z) z €[22 7]

then relation (33) becomes (see figure 1)
_ 1 _ _ -
(Peaff N = ’Ti {sz Nah-2) — 2?:" Nahio) + ‘I:k 1(-’5’51)] .

Using the Newton form of the polynomial piece g " (z) and relation (26) it is easy to write
(PE_,f*"')31 in terms of {fF~'} and their divided differences.

At a cell that contains a singularity, the SR technique modifies the polynomial pieces.
A typical situation is depicted in figure 2. The computation of the predicted value at the
middle point of the singular cell can be carried out from (43) by integration by parts. In the
case displayed in figure 2, we obtain

- Sk Fhe 174 - _
9? le [3’55—2,55'53‘-1] (Pifwl.fk 1)2j-—1 = };2’ {Qf+11(3'2‘3) - 29f+11($§j—1) + ‘Jf-f ("”55—2)] .
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Also,
- Ak FE— 1 _
9; le [xgj—lamgj] (Pif—1.fk 1)23'—1 = h2 [QJ+1l(m2J) Zqul(ng 1)+ 95—11(3'5;'-2)] .

Even though we do not have the same polynomial piece on the right hand side of these
expressions, it is not difficult to write either of them in terms of {ff~'} and their divided
differences. We assume that S;_; N 8;4; = @; this should be the case if both stencils belong
to the smooth part of the function. Then

(44) ¢-i(z) = H(m D+ Hlziol, 23] (e — 2571) +
Z“H[mffi,...,mf:#](x-—:cf'_‘ll)m( zél )
(45) gin(z) = ( YO+ Hlzb ) - 257) +
ZH 1 e J+m]($'—$k 1)"'( 3+m-—1)

Because of (26), the divided differences table constructed with the sampled values at a given
resolution level, {f*}, can be related to the table of divided differences of H(z) on that
resolution level. In fact, if we define

{ f{mf,mfﬂ] = i"l;’ (fa’fbl - ﬁk)

f[mf: ree ’$:g+n] = n_}u,- (f[mﬁ-{-l: .. .,27?.;.“] - f[mfs e rm?-i—nwl}) H n>1
it is easy to prove that
(46) f[mf': sy mf+n] = (‘ﬂ. + 1)(”‘ + Z)H[m?—ii sery IB?+"+1].

Thus, third and higher order divided differences in the expressions of g5] can be directly
expressed in terms of the sampled data. For instance, if 95! € [z%,_,,z%;] the right hand

side of (PE_, f*71)5;_; can be expressed as

4'1: 2 p«}-z 3_2: . ;$f:,£,+1] k ot A ot
st - hE ;»:3 (m— 1)(‘m 2) (@j-1 = 25500 (P21 — TiZmas

An analogous expression, including only the sampled data at the k — 1st level, can be
found for 657" € [#;_5, 2%, 4]

To compute (PF_, f*~1),;_; it is not necessary to know the explicit location of the ap-
proximate singularity 0;-‘_1, only its relative location with respect to the grid point z%;_;. In
order to do this, it is enough to check the sign of

Gfml(mgjuz) : G?-I (f-'f’zfj-x)-

Since second order (and higher) divided diferences of H (x) can be written in terms of
Df and its divided diferences, the function G5 = g}7} (z) — i~} (z) can also be expressed
in terms of the samples f*~! by re-arranging its lower order terms (LOT). Using (44) and
{(45) (and dropping the superindex notation), we get

LOT = H(z;)}+ Hlzj,zjp](x — 2;) ~ H(zj1) ~ Hig;_o,2511(z — ;1)
2h2-H{.'L'j“2, .-"Jj_;, :L'J'] + (.-"'.7 - z_,—)2h{H[mj_2, .'L'j_.l, .’Bj} + H[.’Bj._;,.’ﬂj, "‘BJ'-H}}
B fi1 + (x — z)h{f;_1 + £;}-
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5. Subcell Resolution at “Weaker” Singularities. As observed in section 2.2, the
subcell resolution technique can also be applied to correct the recomstruction in cells that
contain weaker singularities (jumps or corners in f(x) for example, which correspond to
discontinuities in H” and H'"). However, one needs to be careful when applying the SR
technigue to these weak singularities.

Let f(z) = g(z) + aé(z — z4), with 24 € (2;_,,%;) and g(z) smooth; then its second
primitive H(z) has a corner at z4. We observed in sections 2 and 4 that, when a = 0(1),
we can use the fact that §;_; N S;4; = @ to mark out those intervals suspected of containing
a delta-type singularity.

In [5], one of us carries out a detailed analysis of the preferred form of the ENO inter-
polation process, the hierarchical form. This analysis reveals that Algorithm I might lead
to a stencil selection such that 8;_; N Sj41 # @, when applied to a function H(z) with a
discontinuity in H” (which would correspond to a jump in f(z) itself). If this is the case,
the interpolating polynomials next to the singularity may be constructed from a stencil that
crosses the singularity. The accuracy of such polynomial pieces is thus degraded, and the SR
technique has no chance to succeed.

In dealing with weak singularities, it becomes very important to isolate cells that are
suspected of harboring a singularity. Once they are identified, the SR technique can be
applied, provided we use accurate representations of the polynomial pieces to the left and
to the right of the “singular” cell. This can be done by switching to Algorithm I, at those
cells (see [5]).

The strategy then is as follows:

1. Sweep through the computational domain and calculate the ENO reconstruction at
each cell using Algorithm I.

2. Use these reconstructions to single out cells suspected of harboring singularities.

REMARK H.1. The criterion

Sj——l n S.'H'l = @

indicates a possible discontinuity in H'(z) within the j-th cell but cannot be used to detect
weaker discontinuities. A more complete detection mechanism is outlined below.

3. Decide if the suspicious cell contains a singularity by using the G- function of the cell.
If the check is positive, we label the cell as “singular”.

3. If needed, re-compute the reconstructions at cells neighboring a “singular” cell to
ensure that the stencil is chosen from the smooth part of the function. In other words,
stencils corresponding to cells close to a “singular” cell should not cross that cell.

4. At each “singular” cell, modify the ENO reconstruction via SR, that is, extend the
reconstructions to the left and to the right of the “singular” cell up to the computed location
of the singularity.

These four steps are to be applied at the interpolation level, i.e. they should be applied to
the second primitive in the hat-average setting, and to the first primitive in the cell-average
multiresolution setting. In practice however, the strategy becomes again a design tool, and
it can be carried out (as it should be) without explicit knowledge of the point values of I (z).
All that is required in the multiresolution schemes are the sampled values of the signal f(z),
that is Df.

Here, we want to devise a strategy that will allow us to detect and identify discontinuities
in H” and H" (jumps and corners in f(x)) and also weak §-singularities, i.e. d-type singu-
larities where a = O(hy) where L is the highest resolution level employed. We shall refer to
these as “small §”. For these, Algorithm I can also lead to singularity-crossing stencils and
to the failure of the plain SR technique.
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When the singularity falls on a grid point, the basic ENO reconstruction procedure is not
modified. However, we should point out that a weak singularity at the corner of a cell also
needs to be identified. If z; = @; is a § singularity with O(1) strength, then §;_; NS; = Pand
all polynomial pieces have the desired accuracy. However, if z; = z; is a weak singularity,
Algorithm I might lead to singularity crossing stencils at the neighboring cells. To maintain
the highest possible accuracy, the polynomial pieces next to a weak singularity should be
recomputed using stencils that stay on a smooth side of the function.

To design a technique which will detect any of the aforementioned singularities, we had
to consider at least the fourth order divided differences of H(xz). To make the notation easier
we define

H[Ian] = H[whml-l—la .. '5wr+n]

Suppose we have a singularity at z4 € [z;_1,2;), say 24 =2; —ah, 0 <a < 1. Then the
fourth order divided differences satisfy:

H[j,4]) = O(1)

. 1—-a ' 0':""12 H a—13 r
-4 = S-S, - G, o)

. _ (30‘, — 2) ] 3(12 — 4a " 4 60.’.2 + 3[1.3 i

. (1 — 305) [ 1 -+ 2a — 30‘:2 " 1 + Ja + 3&2 — 30,3 "
H[j -3,4] = mﬁha—[ﬂ ]d+_4“_8mf;ﬁ_[H lat+ 144% [H s+ O(1)
H[j—4,4] = =—=[H' @ H'] &g, +0(1

i=44 = gl et gl lat gl e+ 00)

H[j - 5,4] = 0O(1).
We define {following the guidelines of [5])
dct4(j) = Inlll{lH[J - 114]]1 |H[J - 21 4:“: |H[J "" 3=4]|1 1H[J - 454“}
deed(j) := min{|H[j—1,4]|,|Hj - 2,4]}, |H[j - 3,411}
dnid(j) = max{{H[j,4]|,|H[j - 5,4]|}
dned(j) = max{|H[j,4]|,|H[F—4,4}l}

The behavior of these quantities for the various weak singularities we want to detect is
displayed in Tables 1 and 2.

case z; € (2;_1,%;)
delta jump corner
3cd() [ Ohe /B O/ _O(/R)
) | o) o1 o)
deed(3) | Olh/R%) _O(L/RY_O(17h)
dned(j) | O(ho/h%) O(1/h%) O(1/h)
TABLE 1
divided differences of order 4

‘We then observe that
T4 & ((I}J'_l, ZI:J') = dC’t‘J:(j) > dn%4(])

zgmz; = deed(f) > dned(F).
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case Ty = Iy Cage Tq 7~ ¥y
delta jump corner delta Jjump corner
dcid(j) o(1) 0o(1) o(1) dcid(j-1) O(1) 0o(1) 0(1)
| dni4(j) o(1) 0(1) 0(1) | dnid(j-1) 0O(1) o(1) o(1) |
dced(i) | O(hy/h®) O(1/h*) O(1/h) dced(3-1) | O(hy/R®) O(1/h%*) O(1/h)
H dned(j) 0(1) 0(1) 0O(1) i dne4(j-1) 0o(1) 0(1) o(1)
TABLE 2
divided differences of order 4
Then, if
(47) deid(7) > dnid(j)

we mark out the interval [z;_,,2;] as suspected of having a singularity in its interior. On
the other hand, if

(48) deed () > dned()

we suspect a singularity at x4 &~ z;

These criteria might fail in several cases. For instance, if we have a jump at z; (", =
O(1)) and [H"],, = 0, it turns out that H[j —2,4] = O(1) and (48) is not true. Also, if
24 = z; — th and [H'],, = 0 = [H"],,, [H"};, = O(1), then deid(7) = O(1) = dnid(j) and
(47) might fail.

To avoid these problematic cases, we analyze also the fifth order divided differences via
Taylor expansions. It follows that the “exceptions” in the fourth-order divided differences are
not correlated with the “exceptions” in the fifth order divided differences. We thus propose a
detection algorithm that combines the information obtained from the fourth and fifth order
divided differences. The final algorithm is given in the appendix.

One we have singled out the suspicious intervals, we must decide if they do indeed contain
a singularity by using the function G;(z).

We know that when H(z) has a discontinuity in its m + 1st derivative at z4 € (z;-1,%;),

it can be can approximated (for sufficiently small A) by the unique root of G_E-m)(z) = qfﬁ (z)—
qf;'f%(z) = 0. Thus, if (2;.1,%;) is suspected of containing a singularity, we check whether
(49) G (z;1) - G{™(=;) < 0.
If this is the case, we conclude that there is a root of Gf,-m)(z) in (2;-1,2;) and we proceed
with the SR technique. Otherwise, no modifications are carried out on the basic ENO
reconstruction. In practice we only try to identify §-type singularities, jumps and corners in
f(z), thus we check (49} for m = 0,1,2.

A careful analysis of the functions Ggm)(az) for m = 0,1, 2 can help to determine whether
or not a weak singularity lies at a suspicious grid point. This analysis is summarized in the
appendix, together with our full detection mechanism.

6. Data Compression and Error Control. In this section we consider strategies for
data compression and a priori bounds on the compression error.

The simplest data compression procedure is obtained by setting to zero all scale coeffi-
cients which fall below a prescribed tolerance. Let us denote

0 |d§|56k

d*); =
( )J df

50
(50) otherwise

tr(df;ek) = {
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and refer to this operation as truncation. This type of data compression is used primarily
to reduce the “dimensionality” of the data. A different strategy, which is used to reduce the
digital representation of the data for purposes of storage or transmission is “quantization”
which can be modeled by

.
i'-- "

]

(s1) (@) = qu(dhie) = 2, - round [“J
k

where round [-] denotes the integer obtained by rounding. For example, if |d¥| < 256 and
¢, = 4 then we can represent df by an integer which is not larger than 32 and commit a
maximal error of 4. Observe that |d¥| < ¢, = qu(d};€;) = 0 and that in both cases

(52) |df — tr(df; ee)] < €, |df — qu(df; ex)] < e

Both strategies give us direct control over the rate of compression through an appropriate
choice of the tolerance levels {¢; }f..,. However once we use the values tff in the corresponding
decoding algorithm (4) we get an error which can often be estimated by analysis but cannot
be directly controlled. The encoding-decoding strategy given by (3) and (4) is therefore
suitable for applications where we are limited in capacity and we have to settle for whatever
quality is possible under this limitation.

However, there are other applications where quality control is of utmost importance,
yet we would like to be as economical as possible with respect to storage and speed of
computation.

Given any tolerance level ¢ for accuracy, our task is to come up with a compressed
representation

(53) {(°,d,...,d"
such that
L fLy L _ fL
(54 75 = o= a1 - P < Ce

for fL which is obtained by decoding the compressed multiresolution representation.

To accomplish this goal one can modify the encoding procedure along the following
lines: For a predetermined decoding procedure, the modification allows us to keep track of
the cumnlative error and truncate accordingly. Given a tolerance level ¢, the outcome of
the modified encoding procedure should be a compressed representation (53) satisfying (54).
This enables us to specify the desired level of accuracy in the decompressed signal. As to be
expected (from considerations of the uncertainty principle), we cannot specify compression
rate at the same time.

Modified encoding procedures for the interpolatory and cell-average frameworks can be
found in [8]. In what follows, we describe a modification of the encoding technique within the
hat-average framework, designed to monitor the cumulative compression error and truncate
accordingly (for simplicity, we consider only truncation). We shall prove that, when used
with the inverse multiresolution transform of the hat-average framework, the modification
we propose satisfies (54).

The predetermined decoding procedure is (35). The algorithmic description of the mod-
ified encoding is as follows:
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(58)

and the prediction error by ef,

(59)

Compute the Multiresolution Analysis of the input data

(85)

. Set

(56)

. Calculate

(57)

Jk

1

‘. \

Let us prove that

(60)

Je—1

DO

k=101

{DO j=1,Jpy~1
{

g

fimt = (o + 205 + fi)

=7

[ DO k=1L
fi—z = (Pi?—zfnk—l).lk—l
= tf(.f—.’f,,-—z - f.ﬂ—la €)

¢ - F Tk
f}k—l - f}:—l + d.f;,_;

DO j=Jia-1,1,(-1)

f{;'—l -
d* = tx(

f'fj—a =

(Pf—lfk_l)nj-l
[fécj—l - f—zj;"-—ll - [f;‘c“l - f;ml], Ek)
A +d

fzkj = 2.’?;_1 - "%(fzkj_l + fzkj-:-l)

Let us denote the cumulative compression error at the k-th level by £F,

g=ﬁ_ﬁ

P Fk P
e =Ji —fi-

1k <t | 5 ooy forj=1,...,Ji; and Vk.

Notice that for each j = 1,...,Jy_; — 1,

(61)
Thus

|€{i-1 '" 8.1,"—1 |

lefis — &7

k _ P P k-1
8233—1 = €351 — tr(625—1 - Sj aek)a

In either case, we have

(62)

where

< & = 5:?5—1

k—1
> € = grfj_l = gj '

i

P _ P k-1 k—1
82_7-__1 = egj‘..]_ - 8_7 + gj

o= +e™  i=leda-l

_pi?w{

P
€241 —

0

E iflef - &7 < e
otherwise.
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Since
Pl <e 1<i< -1,

relation (60) follows from (62).
Expression (60) is also valid for j = J,—;. In this case we have

kK _ P P
5.1.,—1 = €J—-1 tr(e.rk—a:fk)-

Thus,
lefk—li > Ek = |8§k"1’ = 0
le‘i—ll £ g = |£§k—1[ = |6I};k“"li < &
In other words,
0 iflef,l>e
(63) E1=ph1 = { P "
€j,—1 otherwise.

Now, (60) follows from the fact that [p%, _,| < €.
Let us prove now that

(64) Ehl <& +2[ 8 Mooy F=1,00 e — 1.
It is easy to check that
-, 1 .
(65) & =26 - 5(553‘—1 + &), 1<j<Jp — L

Thus, using (62)

-1 1 -
& = 2677 —slofa + £ + 0] + &5
34y 1., 1
= ”2‘5: T §£ik+11 - ‘2‘[P§+1 +p5).

for 1 € j < Jy_; — 2. Therefore

3 1 1 )
(66)  |Ex| < §|5f—1| + ‘5[5!1'1” tiletal <2Aélle+e 1< -2

Analogously, using (65) and (63) we obtain

3, ok
!ng—zl S §t£§k.11—ll + Ek S- 2”8“00 + €.

Recalling that £° = 0, we get from (60) and (64)

L
(67) I oo € +2 | €57 o< ... £ 25 e
=1
hence, taking
L1 1
(68) a=eg™  0<g<;
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we get

o : — 91
(69) ) 75— 7 =l £ IIwS{ G- pe Nl

We can aiso derive a priori bounds for the !, error. We define

Jre—~1

”gk“l =My z |3sk|

f=1

Thus
Jk...l-—l

(70) 4y = Buf1E -1l + 2 (&l + €210}

i=1
Notice that

1 1
L4 ek, = 288+ §5§|‘—1 - ‘2‘5&4_1

3 1
£tk = 287 - ‘2"55’:‘5-1 - -2-52k;+1-

Then
|E5| + 1E5i4] = max(|€% + £5i.41, |EE — E54))
3 1
< 2088+ §l£§s‘—1| + §|Szk-'+1!
and
Jr—1-1 Jya—1

3 1
> [1€35i=a] + 1Eaill 2 21Ef 71 + §f5§i-—1[ + §l£§a+1|

=1 i=1

It

R | Fp—1—1 1
< 2 3 g 42 Y 18+ slEl
i=1 i=1

Substituting in (70) and taking into account (62) and (63) we get

Tpmi—1

ek < Bt {2 S 1+ (@i~ 2+ %)} <2 + e,
=1

and we obtain the same bounds as in the || - ]|, case provided |[£°]]; = 0.

If the reconstruction operators R; are linear functionals, the error-control technique we
have described allows us to control the quality of the decoded data instead of the compres-
sion rate. If the reconstruction operators are non linear (data dependent) this algorithm
guarantees the stability of the data compression procedure, while a simpler algorithm like
(34), (35) does not.

7. Numerical Experiments. In this section, we carry out several experiments to test
the performance of various compression algorithms and compare their results.

In all our experiments the finest grid X L is a uniform grid of J, = 1024 points. The
multiresolution schemes are used with 7 levels of resolution, i.e. L =7 and J, = 8. The scale
coefficients are truncated by (50).

The linear schemes we consider are the following:
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1. Daubechies orthonormal wavelets.

2. The piecewise polynomial reconstruction of Part I [3] using a periodic extension at
the boundary. We proved in [3] that these schemes are the same as the Biorthogonal
wavelets of [4] with the hat-function as the mother scaling function (N =2 in the
notation of [4}).

3. The piecewise polynomial reconstruction of Part I [3] with one-sided stencils at the
boundaries.

The nonlinear schemes are based on the ENO and ENO-SR reconstruction procedures
described in sections 4 and 5.

The truncation strategy, that is the choice of ¢, varies with the type of reconstruction.
For linear schemes, we use ¢, = ¢, Vk and the un-modified encoding algorithm. In the non-
linear case we need to use the modified encoding algorithm of section 6. In this case, our
choice is € = €/2E7*+ which ensures (see (67)) that ||£%||1,« < Le/2. We also explore the
influence of other strategies in the linear and non-linear cases.

In our first set of experiments, we consider a signal that exhibits a particular type of
singularity.
The kink function

(71) @)= lsnCr@ =)l =€)

The step function

1 2
isin(mz) 2<%
(72) filz) = { L )
: -~ sin(wz) = > 3
The é§-function
. T 1
(73) f3($) = Sln(“;‘i"ﬂ?) + 6(56 — 2?741) + mﬁ(m - 37241)

Discrete data is obtained by considering point-values of f;(z) and f,(z) on the grid X*;
the discrete data associated to fy(z) are also its point-values on the grid X* except for
faar = sin(Zzgq;) + 1 and frar = sin(Za741) + 1024, The discrete data are displayed in the
leftmost corner of figures 3, 4 and 5 (for f3(z), only the smooth part and the small ¢ are
displayed).

In the aforementioned figures, and for each multiresolution scheme considered, we also
display the location of the scale coefficients that are different from zero after the truncation
process has taken place. We do so by drawing a circle around (€*, k) where EF = (5~ Dby,
hy, = 2¢~*hy, for each df which is above the tolerance ¢;.

Tables 3, 4 and 5 display the order of the reconstruction procedure that defines the
multiresolution scheme (we refer to the order as p), the compression factor, computed as

number of elements in f*

Compression = —,
number of non-zero elements in fL

the errors (between the original and reconstructed signals) [|£%}]., and ||EF]|; and the choice
of €.

In the sets of figures 3, 4 and 5 we observe that the smooth part of the data is resolved
to the prescribed tolerance at level 2. The significant scale-coefficients in levels 3 to 7 are the
signature of the singularities for each prediction operator. In the wavelet case (orthonormal
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Method [ Order | Compression | Lo.-error | Lj-error_| I |
Orthonormal wavelets 4 19.69 5.24-10"* [ 2.91.10°° .001
Biorthogonal wavelets 4 26.95 2.50-1075 | 2.56 - 10~* 001

_Pi_(zcewise polynomial 4 34.10 2.35.10% | 3.18 . 10~* 001
ENO reconstruction || 4 23.79 5.36-10-3 | 6.80. 1070 | .01/2FF+
ENO reconstruction [ 5 33.00 4.77-107° | 3.95-107° [ .01/2%-H

ENO-SR reconstruction || 4 31.99 3.50-1072 | 3.77-107° § .01 /2% !
ENO-SR reconstruction || 5 56.83 8.80-10~° | 4.25.10°° | .01/21-*¥!
TABLE 3
kink-function
{ Method [ Order | Compression | L-error | L,-error €x ]
Orthonormal wavelets 4 13.65 2.80-107* | 1.36.10~° .001
Biorthogonal wavelets 4 15.05 8.86-10~%| 7.86-10° .001
Piecewise polynomial 4 23.79 2.82.107% { 2.09-10™% 001
ENO reconstruction 4 31.00 7.64-10-7 [ 3.68-10°% | .01/25**!
ENO reconstruction 5 27.65 8.47-107° | 2.73-107% | .01/2%*+!
ENO-SR reconstruction 4 42.62 £27-10-2 [ 9.66-107° | .01/21-F+
ENO-SR reconstruction 5 44.48 4.94-107% [ 3.64-10° | .01 /20~ "H
TABLE 4
step-function

Method [ Order | Compression [ L-error | Ly-error | € |
Orthonormal wavelets || 4 9.57 3.34-10~% [ 1.70-10"° 001
Biorthogonal wavelets 4 10.56 2.02-1073 [ 2.05-10°° .001
Piecewise polynomial 4 13.64 2.07-107% | 1.24.10"* .001

ENO reconstruction 4 24.95 3.30-107% [ 2.19-107% | .01/2°~*¥!
ENO reconstruction 5 24.95 5.28-107% [ 5.34.107° | .01/2F 7+
ENO-SR reconstruction 4 36.53 2.08-10-3 [ 1.41-107° | .01/2%*H
ENO-SR reconstruction 5 37.89 5.45.10-% [ 2.60.10°° | .01/2"*+!
TABLE 5
§-function

and biorthogonal) we also get the signature of the singularity introduced at the boundary by
the periodicity assumption.

In each figure, O stands for ‘Orthonormal wavelets’; BO for Biorthogonal wavelets; PP
for the piecewise polynomial reconstruction described in [3] with one-sided reconstructions
at the boundary. The ENO labels are self explanatory. The order of the reconstruction
procedure follows the scheme identification name, for example O-4 stands for Orthonormal
wavelets of order 4 (4 vanishing moments). The truncation strategy is as specified in tables
3,4 and 5.

Biorthogonal wavelets give a better compression rate than orthogonal wavelets; their
signature appears to be slightly narrower. In addition, removing the periodicity assumption,
j.e. using the piecewise polynomial reconstruction procedures of [3] with one-sided stencils
at the boundaries, leads to larger compression rates, since the signature of the boundary is
basically eliminated.

As observed in section 5, the ENO reconstruction is fooled by the weak singularities (the
corner, jump and small 6), while it isolates perfectly the O(1) & in f3(z). The addition of
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the SR technique improves the compression rate and sometimes does eliminate completely
the signature of each singularity.

We observe that the ENO+SR technique attains the largest compression rate, while
{thanks to the modified encoding algorithm) keeping the error below the specified tolerance
{in this case €,).

In figure 3 the singularity is located at the center of the computational domain. The
influence of the one-sided reconstructions at the boundary is not felt until the coarsest level
is attained, and the SR technique is very effective. The pattern of non-zero elements is about
the same in all the weak singularities we study, if their initial location in the finest grid is
the same.

To observe the boundary effects, we have located the jump discontinuity in fy(z) closer
to the right boundary. Figure 4 shows the pattern of non-zero scale coefficients in this case.
We see that the one sided reconstruction procedures, together with the truncation strategy
imposed by the modified encoding algorithm, leads to a non-empty signature at the disconti-
nuity even when applying the SR technique. We have observed that our detection mechanism
always locates the singularity, but the approximation properties of the one-gided reconstruc-
tions might not be good enough to eliminate completely the signature in the coarsest levels.
The (highly localized) perturbations are then carried back to the higher resolution levels by
the modified encoding algorithm.

Since this framework allows us to choose a different reconstruction technique at each
resolution level, we can apply the SR technique only up to a certain level. For the step-
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( Method “ Order | Ccmpression} L, -error ] L;-error i €k ]

Orthonormal wavelets 4 17.96 1.63-1073 [ 2.81-107° | .01/25-F+
Biorthogonal wavelets 4 22.26 2.50-107% | 7.80-10-° | .01/2%*+!
Piecewise polynomial 4 25.57 2.25-10~° | 5.30-10-5 | .01/2F-*+!
ENO reconstruction 4 14.41 855.10"% 1 9.90.107% | 01/4"—*+!
ENO reconstruction 5 22.73 4.17-1077] 4.86-107° | .01/4%*!
ENO-SR reconstruction 4 17.05 7.37-10°% | 3.26 - 107° | .01/45—%+H!
ENO-8R reconstruction 5 34.10 5.40.107% 1 2.33.107° | .01/4" "
ENO-SR reconstruction 6 31.00 9.52-10~% | 4.08-107° | .01 /4% **!
TABLE 6
kink-function ex-strategies
[ Method [ Order | Compression | Ly-error | Lj-error | € |

Orthonormal wavelets 4 13.65 5.61-10~% [ 1.31-107% | .01/2t-++2
Biorthogonal wavelets 4 14.84 9.86-1075 [ 1.54.107° | .01/27~F+!
Piecewise polynomial 4 22.73 4.29-10"% [ 2.09-107% | .01/20-%+
ENO reconstruction 4 22.24 3.57-107°12.40.107° | .01/4%F+!
ENO reconstruction 5 26.23 3.12-10-% [ 1.15-107% | .01 /4F—*H!
ENO-SR. reconstruction 4 28.42 4421077 [ 4.30-107° | .01/4L-%41
ENO-SR reconstruction 5 37.89 1.96-1072 | 5.29.107° | .01/4%—*+
ENQO-SR reconstruction 6 42.62 3.28.10~% [ 1.41-1075 } .01/4%*+1

TABLE 7
step-function eg-strategies

function, we can obtain absolute compression up to level 4 for p = 4 and up to level 2 for
p =5 (see figure 6); however, the compression rate and the errors are basically unchanged.

In figure 5 we superimpose two §-functions of different strength to an underlying smooth
signal. We observe a difference in the way the ENO technique deals with the O(1) and O(hy)
§-singularities. The signature of the O(1)-6 is just one point, but the small 8 does fool the
hierarchical stencil selection algorithm producing poorer approximations and, in turn, a wider
signature than in the O(1) case. As before, the non-empty signature in the SR-caseis a result
of the proximity of the singularity to the boundary. It can also be eliminated by applying
the SR technique on a limited number of levels (starting from the finest).

Notice that the signature of either singularity in any of the linear schemes is always
larger than in the non-linear schemes.

Tables 6, 7 and 8 display the compression rate and the error for a different truncation
strategy. Comparing the results in these tables with those of tables 3, 4 and 5 we make the
following observations:

1. For linear schemes, the ¢, = € and ¢ = ¢/277*+? strategies lead to essentially the
same results. The errors in tables 6, 7 and 8 are slightly smaller than those in tables
3, 4 and 5, but the corresponding compression rate is slightly smaller too. Similar
results could be obtained by increasing € in the ¢, = € strategy.

2. For non-linear schemes, the strategy ¢, = ¢/2--**! always leads to numerical errors
which are smaller than e, although the theoretical bound is Le/2. A strategy like ¢, =
¢/4* %1 leads to a moderate decrease in the compression rate and an improvement
(of more than an order of magnitude) in the numerical error. It also improves the
effectiveness of the SR technique (see figure 7).
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l Methed ” Order [ Compressionl L -error ] L-error i €} ]

Orthonormal wavelets 4 9.39 3.43-107% | 6.87.10-° | .01/20-*+!
Biorthogonal wavelets 4 10.56 2.02-107% | 2.05-107% | .01/25%+!
Piecewise polynomial 4 13.29 2.02-10~% | 2.05-107% | .01/2L %+
SNO reconstruction 4 24.95 2.45-107° [ 1.75-10~7 | .01 /45-F+1
ENO reconstruction 5 24.95 3.45-107° [ 1.81-107% | .01/4%~5+!
ENO-SR reconstruction 4 37.89 3.51.1071 ] 8.14-1077 | .01/4L—*+!
ENO-SR reconstruction 5 39.35 2.27-107% | 5.49.1077 | .01 /4% *+
ENO-SR reconstruction 6 39.35 6.05-10-% [ 1.22.107% | .01/45++1
TABLE &
8-function ey -strategies
B Method | Order | Compression | Lo, -error | Lj-error | € |
Orthonormal wavelets 4 6.65 3.423-10-% | 2.896-10° .001
Biorthogonal wavelets 4 7.94 2.148-107° | 2.512.107* .001
Piecewise polynomial 4 9.23 1.460-10~2 | 3.524-107* .001
ENO reconstruction 4 10.14 4.388-10-3 | 1.188- 10~ | .01 /2L *+!
ENO reconstruction 5 10.45 3.359.107% | 7.711-107° | .01/2L~*+!
ENO-SR reconstruction 4 13.65 4.846-1073 | 2.053-10~* | .01/20~F+!
ENO-SR reconstruction 5 15.75 4.860- 107 | 8.376. 107" | .01/25~*+!

TABLE 9
Harten’s function

To finish, we consider Harten’s function, with the addition of a small §,

—z sin( % z?) -1<z< —3%

i .
falz) = mé(z — Tges) + | sin(27z)| |z} < 3
2z — 1 —sin(37z)/6 3 <z <l

Figure 8 displays the discrete input data and the pattern of non-zero scale coeflicients cor-
responding to the numerical experiments in table 9.

The number of singularities present in this function make it an interesting test for com-
pression methods. As before, the ENO-SR method attains the highest compression rate while
keeping the error below the specified tolerance.

8. Summary and Conclusions. In [8, 9, 10], A. Harten introduces a general frame-
work for multiresolution schemes based on two operators: Decimation (always linear) and
Prediction (linear or non linear).

In [3] and this paper we consider the decimation operator which is derived from the
discretization process of taking local averages with respect to the hat function.

In the first paper in the series, [3], we considered linear prediction operators based on
centered interpolation and studied the stability properties of the resulting multiresolution
schemes. Here we consider non-linear prediction operators based on ENO interpolation.
We design a modified encoding algorithm whithin the hat-weighted framework that keeps
track of the cumnulative error and leads to stable multiresolution schemes even for non-linear
prediction operators.

Tn the hat-multiresolution context, the ENO technique allows us to detect é-type sin-
gularities, one can then use Harten’s Subceil Resolution technique to improve the accuracy
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FiG. 8. . Top to bottom and left to right: Harten’s function, 0-4;B0-4, PP-{; ENO-{, ENO-5; ENO-SR-4,

ENO-SR-§
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of the prediction. We also design a more elaborate detection mechanism that allows us to
apply the SR technique to jump-discontinuities and to discontinuities in the derivative of the
original signal (corners).

Our numerical experiments confirm our theoretical observations: the non-linear scheres
always give higher compression rates than the linear ones. Highest compression occurs at
resolution levels for which the singularities are well separated, i.e. it is possible to choose
a stencil for the interpolating polynomials that stays within a region of smoothness of the
original signal.
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Appendix I: The Detection Mechanism

We shall describe now the strategy we use to determine whether or not the SR technique
should be applied at a given cell. Our mechanism also detects a singularity at a grid point.
After wide experimentation, we confirm that our strategy successfully detects §-type singu-
larities (of O(1) strength as well as those Jabeled ‘small’), jumps and corners in the (discrete)
incoming signal.

As mentioned in section 5, we use the fourth and fifth order divided differences to isolate
first those cells which exhibit “non-smooth” behavior.

For each j > 1, define

deid(j) = mhl(|H[j-1,4]|,|HU“2,4]!,|H[]'-—3,4]|,|H[j-—4,4}|)
deed(j) = min(IH[j_1’4]|a|HU_234]|$|H[j_314]')

dni4(j) = max(|H[j,4),|H[i - 5,4]])

dned(j) = max(|H[j,4]|,|H[i-4,4]})

and

dei5(5) = min(|Hj - 1,5]), [ - 2,51l 1Bl - 3,511, 1 H [ - 4,51, |H i - 5,5])

dce5(j) = minﬂH[j - 1?5”, IH[J - 215“, IH[J - 3,5]!3 tH[J - 41 5“)
dni5(5) = max(|H[5,5]l,|H[j - 6,5]])
dneb(j) = max(|H[5,5)l, 1Bl - 5,5]).
If
h/2dced(§) > dned(j
(74) { hlfzdcesg‘) > dﬁiség "

there is a possible singularity at = ;. If

(75) R12dei5(f) > dnis(j) or

{ RV 2deid(3) > dnid(s) or
there is a possible discontinuity in (211 2;5)-

The second step is to use the function G;(z) and its derivatives to confirm the presence
of a singularity.

REMARK .1. Note that if @ = 1 (singularity ot z;_,) we would have deed(j) = 0(1) <
dned(j) and deed(j — 1) > dned(j — 1). Since a can be slightly smaller or larger than 1, if
(74) is satisfied the singularity might be at z; or in (x;-1,2;) or (z;, z;41). We thus need to
look for sign changes in G; and Gj4,. The case a & 0 has to be considered analogously.

In our numerical experiments we found that the sign change condition leads sometimes
to the application of the SR technique in smooth places. Tables 10, 11 and 12 (which are
constructed via Taylor expansions) reflect the behavior of the functions GU™ near the three
types of singularities we want to identify. Using the information in these tables we add more
conditions to the definition of a singular cell. All of these conditions are satisfied at the
specified singularities. In our numerical experiments we find that they effectively filter out
fake singularities.

Our strategy is as follows:

If (74) holds, we check each set of conditions specified below. If (75) holds, we check
only the sets (79),(80) and (81). We also check these three sets if (74) holds at j — 1 (see
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Eg & ($j-—~1amj) Ty = :L;i
z G;(2) Gi(z) | Gi(z) Gjl2)
T (0‘. - I)h[Hrlxd [H']Sd _h[H']:Ba {H']Td
z; ah[H']., [H'., | O*?)  {H'],,
Tin || @+ DR[H)., [H', | AHT, [H,

TABLE 10
b-type singulerity in f(x) (H')=, #0).

Ty € (:L'j._.l,.'ﬂj) Zq4=12;

z G;(2) Gi(z) | Gi(z)  Gi(z)
z;y || (a—DAH",, [H", || —B[H"]s, [H'L,
Tj a’h[ ”L:a [H"}ma O(hp+1) [H”]w
i1 || (a+DR[H",, [H'L, || RH"., [H',
TABLE 11
jump in f(z) ((H"]oy #0) .

| Zq € (T_1,%;) Tq=T;

P Gi(2) GI (&) Gi) Gl
o | M@= IPRE™., @—DAE"L, | WH., —hET.,
z; LR H™),, ah[H™),. oYy o)
Tjsy %(a_*_ 1)2h2[Hm]w.; (a+ l)h[Hm],,d %h':.’[I:"mr]m'i h[ m]zd

TABLE 12

corner in f(z) ([H")z, # 0).

remark .1). As soon as one of the conditions in a particular set fails, we reject the outcome
of that set and go to the next set. If none of the sets gives a positive outcome, the cell is left

un-flagged.

G’ ($J+1)G, (m_‘l‘ 1) <0

(76) <
|G;(37 +1)] < IG"(H’ i+l
| |G;(25-1)] < |Gy (m-1))]

( G (mJ-H)G (-'EJ— )< 0

("7 el ($J+1) «G; ("53--1) >0
IG (mJ—H)I < |G (m3+1)|

IG i(zi-1)| < IG [ (@5-1)]

Gi(2;41)G;(2;-1) <0

IG ()] < hmin(|G;(z;-1)|, 1G;(;41)])
0 < min(Gj (:n,_l)G (z;), G; (2541)G; (z;))

IG ()] < min(|G} (25-1)1, 1G5 (41) DA

jump at x;

corner at x;

|G;(2;)| < hmin(|G(;-1)],1G(2;41)])/ ave

(78) 0< mm(G (a:J,,I)G (x;), G;(2;41)G;
|Gj{(2;41)} < |G;(-'53+x)|
|G;(z;5-1)| < 1Gj(z5-1)
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where ave := (|G'(z;_1)] + |G (z;)| + |G (z541)])/3.

~

G; (EJ)G (2;4) <0
mm(]G ("'UJ s IGJ(mJ)l) > h2 _
(19) {0 < min(G ey 258506y (51306 () [ jusnp i (35-1,2,)

|G (25)] < 1G; ()]
|Gi{(z5-1)| < |G} (25-1)]

~

-

G ($J)G (.’EJ 1)< )]

Inm([G (‘”1 Dl |G (EJ)]) > h*
(80) 0L mm(G (GG‘J )G (z;), G ($J+1)G (z;)) ¢ cornerin (z;_1,%;)
1G(e) < 161

G (2;-1)] < |G} (w-1)]

”

G; ( J+1)G (.’BJ) <0
mm(]G (:z:J s |G (a:,+1)[) > hlave
(81) 0< mm(G (:a:J 1)G (z;), G, (a:H,l)G (z;)) ¢ deltain (z;_;,2;)
|G(2:)1 < 1G;(z;)
|G;(z;-1)| < |Gj(z;-1)

REMARK .2. We have seen in section { that G;(z) can be expressed directly in terms
of the sampled data Df. Thus, these conditions can be checked without explicit knowledge
of DH. We must note that the derivation of G; in terms of Df ezplicitly assumes thal
S;1 (1841 = 0. Regardless of the outcome of Algorithm I for these two stencils, when using
G; to confirm the presence of a singularity we always (as we should) use stencils that do not
cross the singularity.

REMARK .3. The use of ‘ave’ in (78) and (81) helps in localizing “small” deltas. The
size of the jumps and corners is assumed to be O(1).

If a singularity is confirmed at a particular location, we proceed as follows:

If the singularity is located in (x;_1,%;) we apply the SR technique. We must also
check the stencils in the neighboring polynomial pieces to make sure that the accuracy is
maintained (they do not cross the singularity). We should then have

(G-1)=5-r—1, +1)=7+1

and we use Algorithm II to determine S;_, and &;4,. It can be proven (using Taylor ex-
pansions) that the stencils obtained with Algorithm I for intervals further away from the
singularity, do not cross it, i.e i(j+n) > j+1land i(j—n) <j—r+1lforn=3,4,...as
long as we are far enough from other singularities.

If the singularity is located at the grid point #; it is sufficient to modify the neighboring
stencils (no SR is needed). We take

Wi)=4-r G+ =75+1

and use Algorithm II to determine i(j — 1) and i{j + 2). Tt can also be proven that S;,,
and S§;_,41 do not cross the singularity for n 2 3, as long as we are far enough from other
singularities.
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