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An adiabatic approach is used to derive a new law for self-
focusing in the nonlinear Schrédinger equation which is valid
from the early stages of self-focusing until the blowup point.
The adiabatic law leads to an analytical formula for the lo-
cation of the blowup point and can be used to estimate the
effects of various small perturbations on self-focusing. The re-
sults of the analysis are confirmed by numerical simulations,

The study of blowup of solutions of the nonlinear
Schrodinger equation (NLS)
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has been ongoing for more than thirty years, ever since
Kelley used eq. (1) to predict the possibility of catas-
trophic self-focusing of optical beams [1]. Here, ¥(z,r) is
the electric field envelope of a laser beam propagating in
media with a Kerr nonlinearity, z is the distance in the
direction of the propagation, r = /22 + y? is the radial
coordinate and Ay = 8*/0r* +(1/r)(0/0r) is the Lapla-
cian in the transverse 2D plane. The initial approach
in self-focusing analysis was to assume that the solution
maintains a Gaussian profile. This approach was success-
ful in predicting the critical power for self-focusing (but
only up $o a constant!), finding the critical dimension for
blowup etc [2]. However, in critical transverse dimension
D = 2 the Gaussian approximation fails to capture the
delicate balance between the focusing nonlinearity and
radial dispersion which increase in magnitude while al-
most completely canceling each other. Indeed, resolving
the local structure of v near the blowup point Z. had
long defied research efforts until Fraiman and indepen-
dently, Landman, LeMesurier, Papanicolaou, Sulem and
Sulem showed that as the beam approaches Z, it follows
the loglog law [3]:
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where L corresponds to the beam width and is also in-
versely proportional to the amplitude j1]. Although NLS
singularity was resolved mathematically, it turned out
that even when the solution has focused by a factor of
1019 the loglog law is still not valid. However, the va-
lidity of NLS as a model for beam propagation breaks
down much earlier when the field intensity reaches the
material breakdown threshold. Even at sub-threshold
intensities, some terms that have been neglected during
the derivation of NLS from Maxwell’s equations (non-
paraxial terms [4,5], time dispersion [6,7] etc.) may be-
come important. These terms may be small in magnitude

yet have a large effect on self-focusing and even lead to
its arrest. Therefore, there is still a need for a deserip-
tion of NLS self-focusing which is valid in the domain of
physical interest and that can be extended to the analy-
sis of small perturbations, In this letter we derive a new
adiabatic law that satisfies both requirements.

Previous studies [3,8] have shown that as the beam
propagates forward, it splits into an inner part 4 which
self-focuses towards the center axis and an outer part
Yny which diffracts and diverges. Until the beam gets
close to the blowup point, self-focusing is a non-adiabatic
process in which 4, transfers most of its excess power
above critical to 9,y while focusing and approaching the
quasi self-similar form:
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where L(z), the function to be determined, is used to
rescale 9, and the independent variables:
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From the corresponding equation for V it follows that
V ~ R+ 0O(p), where R is the positive solution of

AJR-R+R*=0, R(0)=0, R(eo)=0 (4
and F is the adiabaticity parameter
g=—-L3L,, . {(5)

During self-focusing 8\, 0. Near the blowup point the
rate of sell-focusing accelerates and the following hold
[8,9]: ) 0 < B € 1. ii) B is proportional to the excess
power of #, above critical:
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where N, = [R?rdr = 1.86 is the critical power for
self-focusing and M = (1/4) [ R* r3dr 2 0.55. 1iii) The
Hamiltonian of ¢, is given by:
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where V = 8/8r. iv) Power losses of v, (t0 tny)} be-
come exponentially small compared with its focusing rate
(8N,/8¢ ~ —exp(~n/+/B)), indicating that near the
blowup point self-focusing is essentially an adiabatic pro-
cess.



Our new approach is to use the dual interpretations
for 8 (5,6) and the multiple scales method. If we ignore
the slow-scale power loss (8, ~ —exp(—7//B)/L?), adi-
abatic self-focusing follows the fast-scale equation:
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If we multiply (8) by 2L,L~3, integrate and use (7), we
observe that in addition to N,, H, is also constant over
the fast-scale:

g , H,
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Multiplying by L? and integrating one more time leads
to the new adiabatic law:
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By setting L = 0 in (9) we can get an equation for the
blowup point Z,:
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(10)

In the case of a collimated beam (3o real) L;(0) = 0,
H,(0) ~ —MfBg/L% (7) and the ‘pure’ adiabatic law is:
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H we add a lens with focal length F' at z = 0, the initial
condition becomes ¢ = poexp(—ir?/AF). Therefore,
Lo = Lo, fo ~ Bo and H,(0) ~ H,(0) + MLE/F? (6,7),
where the tildes denote the corresponding parameters for
¥o. Thus, the new blowup point is {10):
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Note that 1/Z. = 1/Z, + 1/F, in agreement with Ta-
lanov’s lens transformation property for NLS [10].
The adiabatic law (9) can be rewritten in the form

L:\/2\/E(chz)+%(zc—z)2. (12)

As z approaches the singularity point, the quadratic term
becomes negligible and (12) reduces to Malkin’s law [8]:

L=v2/B(Z.— 7). (13)

Thus, {12) and (13) agree asymptotically but (12) be-
comes valid earlier, since in addition to beam power it
also incorporates the initial focusing angle. Likewise, the
loglog law can be derived as the asymptotic limit of (13)
[8]. Therefore, the three laws are not in disagreement;
only their domain of validity differ.

Note that all adiabatic relations (9-13) are only O{f)
accurate due to the approximations (6,7) used in their
derivation. In order to maintain this accuracy in (12) or
(13) the slow scale (non-adiabatic) changes in 5 and H,
have to be included.

While eq. (11) was derived under the assumptions that
1, has approached its asymptotic form (3) and 8 < 1,
we can try to extrapolate it to predict Z, for general
initial conditions. The value of 8 is ‘determined’ from
(6) with N, ~ [lpo]® and that of Lo by ‘matching’
Yolr) ~ Rr, = Ly R(r/L). For example, if we im-

pose [ |Vipo|? = [ VIRL,|?, then Lo = A/ Nef [ [Vabol?
and
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FIG. 1. The relative error in L based on the new adiabatic
law (eq. 12, solid line), Malkin’s law (eq. 13, dotted line) and
the loglog law (eq. 2, dash-dot line) and § (eq. 6, dashed line).
Initial condition is ¥o = 1.02R{r}.

In the simulations eq. (1) was solved using the method
of dynamic rescaling {11] and § was evaluated using (6)-
In Figure 1 we plot the relative error in the prediction for
L based on the new adiabatic law (12}, Malkin’s adiabatic
law {13) and the loglog law (2). The initial condition is
Yo = 1.02R(r), whose power is 4% above critical and
whose profile is close to the asympfotic one (3). The two
adiabatic laws become O(f) accurate and agree asymp-
totically, with (12) being accurate from the beginning
and (13) after focusing by a factor of 10. After focus-
ing by 100,000 B has only decreased by 30% and the
loglog law is still not valid. Note that if we add a fo-
cusing lens term (v = 1.02exp(—ir® /4F)R(r}) only the



new adiabatic law would maintain the same accuracy. In
Figure 2 we compare ‘pure’ adiabatic self-focusing (11)
and ‘almost’ adiabatic self-focusing ((12) with the slowly
varying f(z) and H,(z) and Z, from the numerics) for
the same initial condition. While both (11) and (12)
are in reasonable agreement with the numerical solution
in the prefocal region, only {12} maintains 0{f8) accu-
racy near the focal point (Figure 1). In Figure 3 the
adiabatic predictions for Z, (14) are compared with sim-
ulations using the initial conditions: A: ¢ = cR(r), B:
1o = cexp(—r?) and C: ¢ = cexp(—r?), where ¢ is var-
ied so that 1 < p € 2. Naturally, the best agreement
is in Figure 3A where 9o is closest to the asymptotic
profile. However, even in Figure 3B-C the agreement is
quite good, considering that we neglected non-adiabatic
changes, that o is not close to (3) and that the excess
power above critical is not small. As Figure 3B indicates,
the accuracy of the formula of Dawes and Marburger [12]

Z, = 0.367[(p"/* — 0.852) — 0.0219] /2 (15)

and of (14) are of comparable magnitude. However, (15)
is only valid for the special case of Gaussian initial con-
ditions and was derived by curve fitting values of Z. ob-
tained from simalations.
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FIG, 2. Comparison of the ‘pure’ adiabatic law (11, dotted
line) and the ‘almost’ adiabatic law (12, dashed line) with

the numerical solution of NLS (solid lire). Initial condition is
tho = 1.02R(r).

"The adiabatic approach can be extended to analyze the
effects of small perturbations on self-focusing [9]. For
example, we have recently shown [5] that nonparaxial
effects become important and lead to the arrest of self-
focusing when a/) = O(\/N./Mpp/47) where ¢ and A
are the pulse radius and wavelength, respectively. Since
simulations of (1) suggest that typically in the adiabatic
regime B = 0(0.1), arrest due to nonparaxiality will oc-
cur when a ~ A/2. A similar approach can be used to
analyze at which point small normal time dispersion will
affect self-focusing by combining the results of this paper
and [6]. Therefore, for given initial conditions it is possi-
ble to determine which of these two mechanisms will be
the first to affect self-focusing.
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FIG. 3. The location of the blowup point Z. as a function
of beam power p according to adiabatic theory (14, solid line)
and numerical simulations {circles) for A: ¢ R(r) B: ¢ ezp(—17)
(dotted line is (15)) and C: cexp(—r*).
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