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Abstract.

A generalized Schwarz alternating method(SAM} is propused, which passes a convex corabination
of Dirichlet data « and Neumann data -g—:":, ie. Au -g-:—:—, at the artificial boundary, where A is some
'positive’ operator for well-posedness. A concrete convergence analysis is done on two model elliptic
problems in two subdomain case by Fourier analysis and pseudo-differential operator theory. We
will clearly see how the operator A, overlapping size and the relative size of the subdomains will
affect the convergence speed. No overlap case is also considered and comparison is made to the
classical SAM. These methods can then be easily extended to the general coercive elliptic partial
differential equations in general two subdomain cases by the equivalence of elliptic operators. Also
some interpretations in other domain decomposition context is given. Numerically, in order to
have good convergence rate and easy implementation, first and second order approximations of the
Dinichlet to Neumann operator by local operators are constructed using asymptotic expansions. The
optimal convergence rate can be explicitly determined by the partial diflerential equations.
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domain decomposition, Schwarz alternating method{SAM), Dirichlet to Newmann operator,
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1. Introduction. In domain decomposition method, the full problem is decom-
posed(decoupled) into subproblems by decomposing the whole physical domain into
subdomains where the subproblems in each subdomain ean be more easily and effi-
ciently solved. The crucial step is how to compose{couple) the solution of the sub-
problems together so that we can get the solution for the whole problem. Some
compatibility conditions have to be imposed for the Dirichlet data and Neumann
data between each subdomain. Schwarz alternating method for elliptic PDE is one
of the most important theoretical basis for domain decomposition method in both
parallel computations and computations in complicated domains.

The classical SAM miethod is an iterative method which solves the subproblem
in each subdomain alternatively and compose(couple) the subproblems together by
overlapping each subdomain where function value (Dirichlet data) is exchanged at the
artificial boundaries. The classical SAM method is convergent for elliptic PDEs and
its convergence rate is related to the size of overlap of the subdomains. This is mainty
due to two reasons: first, maximum principle and second variational interpretation
(iterated projections into subspaces of a Hilbert space). (see [14],{10],[11]). The main
drawback of the classical SAM method is that its convergence speed is quite sensitive
to the overlapping size.
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Recently many new variants of classical SAM have been proposed for domain
decomposition method with or without overlap. (see [5],[1],[6],{18]) Our paper is
motivated by the new modified SAM method, proposed by P.L.Lions ([1 2]), which ex-
changes a convex combination of Neumann and Dirichlet data at the artificial bound-
ary. It has been proved to be convergent in very general setting even with no overlap.
The proof is based on technical energy estimates and Sobolev inequalities. Yet no
estimations on the convergence rate has been done. Here we will treat all these in
a more general frame work and analyze its convergence property. We will see its
improved convergence property is due to the *positive’ property of the Dirichlet to
Neumann operator.

A very interesting application for the generalized SAM, which is under further
investigation, is to interface problems where the solutions to the elliptic PDE and
their derivatives may be discontinuous across some interfaces due to the disconti-
nuities of the coefficients or/and singular source along the interfaces. This kind of
interface problems occur very often in real applications, e.g. multiphase fluid prob-
lems, immersed boundary problems. A domain decomposition along the interfaces is
very natural since now we can solve well behaved problems in each subdomain using
any good numerical scheme and only couple the subproblems together by the pre-
scribed interface condition. In this situation the classical overlapping SAM can not
work well due to the discontinuities. Even the traditional non-overlapping method in
domain decomposition will not work since the Steklov-Poincaré operator or the Schur
complement at the interface is not well defined.

For simplicity we first consider the case where the whole domain 2 is decomposed
into two subdomains £ and Qz (i.e. © = Q5 UQy) with the two artificial boundaries
Ty, I'y intersecting OS2, (see figure 1)

= Q1 ——>t
p=—— Q2 ——>=>1

The elliptic PDE with Dirichlet boundary data is:

PDju=f inQ
u=g on 0f)

(1)
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where P(D) is some elliptic differential operator. We generalize the classical SAM
method to the following two formulations:

(i) additive(parallel) iteration.
Set u) initially in €;, = 1,2 and construct ul iteratively,

P(Dw} = f in 4
9 u? = g on 891\1‘1
@) oul ) dufy~?
n n—
Ajui 4 A By - A1U2 + Ay B, on IT'y
and
P(Dws = f in {2y
u"2‘ = g on 892\1“2
(3) Gul . Huf=!
Ag‘ug 4+ Ag anz = Agul ! + Ag 8:12 on I's
n=12,...,

(ii)multiplicative(successive) iteration.

Yet 1° initially in  and construct u%“’l in ; and ugk"'z in Q5 iteratively,
P(Dyi**t = f in
@) w2 = g on 9 \TI'1
2k41 a”fﬂl 2k dug*
Ajug + M By = Aui"+ A1 n; on 't
and
P(DY2¥? = f in §2y
wbt? = ¢ on O2\Iy
5 Hy2kE+2 2k+1
( ) Azugk” + )‘2._”_;2 - Agu%k"'l + Ag—-w—'—aul on [y
2 61’12
k:()!i,z!""

u™ in § can be composed in many ways from uf and uj such that v € H 1(§2) and,
u® = ol in @\ (1 NQ), u® = uf in D7\ (1 N Q). A1, Ay are some operators on
4. A1, Ag are two constants. It is easily seen that if Ay = Ap =T and Ay = A2 = 0,
then it is the classical SAM. If Ay = Ay = constants > 0 and A; = Ay = 1 then it is
the modified SAM proposed by P.L. Lions (see {12]). Also we can let A;, Ai’s change
with each iteration. In particular we can pass Dirichlet data and Neumann data al-
ternatively and we get the Dirichlet to Neumann type or the relaxization procedure
in domain decomposition context. {[13]) Many variants of the classical SAM method
can be regarded as a particular choice of A; and A;. In general we can think of nonzero
A1, Az as absorbed in Ay, Ay, We will take Ay = Ap = 1 for the rest of the discussions.

Remark: Although the practical implementation of additive scheme and multiplica-

tive scheme can be quite different, the convergent analysis in our paper is about the

same for both schemes. We will mainly do analysis on the additive scheme for the
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casier bookkeeping. The corresponding results for multiplicative scheme, if different,
will be mentioned without proof.

In our generalized SAM, at the artificial boundary a Robin {Fourier) type of
boundary condition is imposed. In order to have well-posedness for each subdomain
problem, we need some requirement on the operators A, i=1,2

Definition: A bounded linear operator A : H1/2(8Q) — H='/2(8Q) is said to
be positive for the second order elliptic differential operator P(D) if for

Yu P(Du =0 then ] whu >0
an
1t is said to be strictly positive if [y uAu >0, if u # 0.

If we denote A(z,7) to be the pseudo-differential operator of A, then if A is (strictly)
positive,

Az, n) = (>)0, Yz € 00, ¥y

Tt is not hard to see that the restriction operator Au = ulan is a trivial strictly positive

operator. If P(D) = —A then the Dirichlet to Neumann operator Au = gﬂ;an is a
positive operator, "

It is very easy to see the following lemma is true for the well-posedness of the two
subproblems in {13, Q9

Lemma 1.1, If A; s HY2(06) — HY2(89y), i = 1,2 are positive operaior,
then the two boundary value problems (2),(3),(4),(5) are well-posed.

So we can actually imagine that the right choice of the positive operator should
be some interpolation between the restriction operator and the Dirichlet to Neumann
operator. The perfect choice of Ay (Az) is the Dirichlet to Neumann operator in Q2(21)
which gives the convergence in two steps.

LEMMA 1.2. The second-order elliptic PDE P(D)yu = f in § can be solved by
domain decomposition without overlap in finite steps if Ay (Ag) is the Dirichlel to Neu-
mann operator al the artificial boundary for the corresponding homogeneous PDE in
Q20 ). (see figure 1)

Proof: We will show that in two steps we can get the exact solution u in 2. Let
el = u - u", i = 1,2 be the error function. Then e} will satisfy the following homo-
geneous equation and boundary condition:

P(D)el =0 in
el =0 on 0\I'y
1 0
6—61- +Ae] = —BCJ o} Aleg on F1, where ny is the outer normal for Ty
3711 dny

similarly we have the following problem in Qa,

P(D)el =0 in §o

el =0 on 8Qs\I'y

ae% 1 Be? i} .

—& 4 Agey = —— + Azey on Ty, where ny 15 the outer normal for T'y

B’nz aﬂ.g
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Since A; (A3) is the Dirichlet to Neumann operator for I',(T'z) in Q2,(11), s0 we
must have,

Hel Jel
A2 4 Are) = g A =0
36& Beg
("—an1 + Ag ?-—-» —'gi "i"Azﬁg =0)

then we get e} = 0 in @ (e} = 0 in Q). ie. we get the exact solution in two steps.

Remark: In general the Dirichlet to Neumann operator is a global operator and
to find its action on u is equivalent to solve a Dirichlet problem. But in 1-D for
ordinary differential equations with constant coefficients it can be easily found(see
[18],[2]). For more general elliptic PDE in some simple geometry it is possible to
incorporate this into the solving procedure by some appropriate finite element for-
mulation(see [9]). Also we will try to use some local operators to approximate it in
gection b.

Since we are concerned with the convergence, we only need to look at error func-
tion e® = u—wu", e = u—u?, i = 1,2 which satisfies the corresponding homogeneons
equation and homogeneous boundary conditions. So from now on without loss of gen-
erality we can assume that f = 0, g = 0 in (1) and see how ui converges to 0 in
Q, i=1,2

2. Convergence Analysis of the Generalized SAM for two model prob-
lems. In this section we will use Fourier analysis on the Laplace equation in two
special geometries in two subdomain case. The choice of these two maodel problems
can let us see very intuitively why the generalized SAM should work and how the
convergence rate depends on A;, the overlapping size and the size of the subdomains,
since for these two model problems the explicit formula of the convergence rate can
be derived. Using the spectral equivalence of the elliptic differential operators we will
see that the analysis for these two simple model problems can be generalized to more
general elliptic PDEs and geometries in two subdomain cases or even in some general
multi-domain cases.

Model Problemi:

—Au=0 inQ
uw=0 ondfd

Q:{(E:y)t_ll Sﬂfﬁlz;oﬁyﬁ%"}
Q={(zy)|-h<e<s0<y< ), Q={(z,9)| -6 <z <h,0<y < om)
0<é< mz'n(h,lg)

Ty ={(z,9)|z =6 0<y < 2n}, Ta={(z,y)|lz = —6, 0 <y <2r},

Claim1:
For model problem1 the generalized additive Schwarz alternating method, (2) - (3).
(M = Az = 1) is convergent if Ay = Ap = A s strictly positive. If there is overlap,
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2
2 T1
1 S , >
s 1 =
= Q2 ——3>t

then there is a constant 0 < p < 1 such that
“ w—u HH‘(ﬂe}g P l! - u?_z [!H’(ﬂ.‘) i=1,2

where p depends on A, the size of Q;{l;) and the overlapping size 6, If there is no
overlap {6 = 0) then

lim “ [ Bt u? E]Hl(ﬂ;)_” 0 i= 1,2

11— 00

nlLl’l;lQ “ u— u? “HU’(I";)-" 0 i= l, 2
Proof: After Fourier transforming in y in £ g, we have,
(6) - ﬁ;:m(ﬂ:, 77) + T]21i,'(.’l!, 77) =0,i=1,2

where ; is the Fourier transform of u;, 17 is the Fourier mode for y. Multiply both
sides by 1; and integrate by part we have the following relation,

6
/ il [P 07 [ [* do = Redr™ g le=s
") 7

f 1 1f22 l2 _H?z ! o |2 dr = —RCE\;FUEE !22—‘5
-5

These two relations actually are the Fourier transform of the following variational

Ju
uZ:/ du
fnlv -

ie. the H! seminorm of solution is bounded by some boundary integral and the
Dirichlet to Neumann operator is positive.
From (6) and the homogeneous boundary condition on 8§ we have,

identity

" (@) = AP()(e — e Phe ) 2 € [, 6]
dy"(o,m) = A (n)(e=>* — e N2e%) @ €[5, o]

where A(n) = |nl,n = *1,%2,..., which is the Fourier transform of Dirichlet to
Neumann operator for our PDE if l; = oo, i = 1,2. According to equation (7), we
6



[
( jf! E ,{;."1: =2 +?}‘2 ! ‘:fln !2 do — ) ! -4?(‘!}') !2 (62'\6 _ 8—4)\!16—2)\6)
8) ol
/ fdal |7 0P [ | do= 2 | AR () |* (620 — e™ e ™2Y)

Y

Denote A(7) to be the Fourier transform (pseudo-differential operator) of the operator
A AL Ty,

17+ A" lems= AFDIO@) + AN + (A(n) — An))e 22D e=20)]

g + A" |oms= — AW — A))e™ D7 + (A(n) + A(m))e™ 12X
So if we impose the generalized boundary condition at 'y we have

(©) pn) _ (M) = A + (A(m) 4 A())e N0
T~ (n) F AP + () — A(y))e PO AF

From the boundary condition at 'y, similarly we have,

(10) () _ () = A@DeTX + (A(n) + A(g))e DA
A7)~ () + A(n))er0F + (A(n) — A(m))e=2AMlae=AmE

Now we have the convergence rate for A7, 1= 1,2 is,

HO) l= A3 (n)
AT 1457 ()

def
A) =

TG(T]) 6 ll) 12:

(11) \/ (A(n) — A(m))e= 20 + (A(n) + A(n))e—2A(Miaghlm)é

(M) + A())eXmE 4 (A(n) — A(n))e= 220k e— M0}

(M) — A(n))e= 28 4 (A(n) + A(n))e=2A(Mh (i
() + A[)eAt? + (A(n) — A))e= Mg AN

Now we observe the following two facts for the two fractions in (11):

(i) two terms in the numerator and in the denominator have the same product.
(i)} The term with the largest absolute value and the term with the smallest absolute
value are in the denominator. Since 6 < min(ly, lz), and A(n) is strictly positive.

From the simple algebraic fact we know the norm of each fraction is less than 1.8¢
(12) ra(n,8,l,ls,A) <1 VYpandbé>0

Even if § = 0, i.e. there is no overlap, rg(1,6,11,12,A) < 1. And it is a decreasing
function of 8, because the larger the 6 the bigger the difference between the two terms
in the denominator, If there is overlap, i.e. § > 0, then

An) — A(n)
An) + An)
,

lim T'G(Ti;é; Ii:IZ:A) -—2A(n)6 wrr ()
frl—co
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since A(7n) is a psendo-differential operator from H 3(8Q) — H™3(8Q) , So

sup ra(n,é, iy, A)=c<1
7

then we can simply take p = ¢, since from equation (8), we have

N
Ju]

I vuf I2an= [ Al = YA | AT () P (AP - em Pl
i ' n

and by Poincaré inequality we have the estimate of the convergence rate in H! norm.

If there is no overlap i.e. § =0, and lim M —» 1 then
tni—co | A(n) + A7)
| lEim ra(n, 6,01,13,A1,A2) =1 {e.g. Aj = constant > 0)
o0
But now we have u? € H({;), so
311? wdlom, n Lop. 6“? n , —
'51: € H7(Ty), uf e H (I“) = Y Uy € Ll(I‘,) n=0,1,..
and Sop M) | AF(m) P (1 — &) <00

Now Ve > 0, we can have a positive integer M sach that

ST | AN (1= e <

fnl>M

Ll

Also we can find N large encugh such that forn > N,

S A 1 AR P - ey < 2

[nj<M

since (12) is still true. Then
| 7f oy = Do) L AR 2 (1 - e *)

= ST M AP P-4 ST Am) | AF() P (1 — e~

[nl<M Infz M

< o O AMMIAMP (L= <

€
2
nlzM

again by Poincaré inequality this shows that the domain decomposition algorithm is
convergent even with no overlap. By the trace theorem or just look at the expression

Il ey = 2+ laDF1af (0, m)l*
n

= Y @+ - M) < O 7l [Zagan
- _
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We can get the convergence of uf |r, — 0 in H*/?(I';). That completes the proof.

We can actually do the similar acalysis {or just ket A = oo, A = 0) to get the
convergence rate rp(n) for passing Dirichlet data, (classical SAM), and rn{n) for
passing Neumann data at the artificial boundary.

13 def e— A8 — o= 2A(0)1 gA(n)8 e=Mn)s — o=2M(n)lz gM{(n)é
(13) ro(n) = M) o gm2A(n)1e—A(m)S X\ AN _ e=2A(mia g A1)

(14) rn(n) def e~ A(mE | e—2M(m)1 gA(0)4 N e— M) 4 g—2A(n)lz g A(n)8
N =\ A0 | =22 (i - Mmé AT 3 e~ 2A(Nia g— MG

Tt is easy to see that, if there is overlap, i.e. if § > 0 then
0<T’D(71)<TN(TI)< L, and 6—0, TN(’I)—"I» T'D(U)—’l» vn

So without overlap, these two algorithms alone do not have contraction factor on the
error and thus do not converge. It is also not hard to see that the convergence rate
re(n) for the generalized SAM is a weighted form of the classical SAM rp(n}.

If we do some asymptotic analysis for the most interesting case when I} mla > 6,
then

A =AM | —eamys
6@ = 5 |°
rp(n) ~ e W
rn(n) ~ PP

Remark: Here we see that with small overlap the classical SAM only have a good
convergence property on the highly oscillatory part in the solution, which corresponds
to the well-known facts that iterative methods for elliptic PDE smooth out the so-
lution very quickly. For the generalized SAM we can also have a good control of
the smooth part or any range of modes in the solution by an appropriate choice of
operator A approximating the Dirichlet to Neumann operator.

Definition Two positive operators Aq, Ag are said to be equivalent in some IHilbert
space H if

< Cy < Cy  suchthat Yu€ H 0 < Cr{Ayu,u) < (Agu,u) < Ca(Aru,u)

where (-, -} is the inner product in the Hilbert space.

COROLLARY 2.1, For the generalized SAM (2) - (3), if the operators A; is equiv-
alent 1o the Dirichlet to Neumann operator in HY/2(8Q;), then we have uniform con-
vergence, i.e. 0 < rg(n, 611,12, A1, Ag) < p < 1,¥n,é.

Another interesting case is when the Dirichlet boundary condition at the physical
boundary is changed to the Neumann boundary condition. Actually for generalized
9



SAM we will get exactly the same result.

COROLLARY 2.2. For the generalized SAM (2) - (3), if the Dirichlct dala a1 99
is changed to Neumann data, then Claim1 still holds.

Remark: All these analysis can be easily extended to higher dimension case or the
case where the whole domain can be split into two strips instead of two rectangles.

Model Problem?2:

—Au=0 inQ
u=9_0 ondQd

Q= {(z,y)|r1 < V22 + 4> <12}
O = {(z, )i S V2 F 2 <148}, Qo= {(z,9)|1 - 6 < V22 + 3% < ra}
0<rm<1-6<L1<14+6<r <0

Ty = {(z, 9)VZ2 + £ = 1 + 6}, Ty = {(z,y)}V/a? +* = 1- 6}

Claim2:
For model problem2 Claim1 holds for the generalized additive Schwarz alternating

method, (2) - (3).

Remark: If 0 < 1 < ry < co then it is very easy to see that model problem2
can be reduced to model problem1 by an analytical transformation. But in the case
ri = 0, i.e. 4 NOQ = 0 which is a very typical case in two or multi-subdomain
situation, we can not use the standard Poincaré inequality as in the proof of claim1 to
bound the H' norm by the H? seminorm. We are going to use the following lemma
which is a direct extension of the lemma2 in [12] and proof can be found there.

10



LEMMA 2.3. Let Q be a bounded, open, smooth domain in RN and vy be an
open(relative to O§2) subset of 0Q. If A : H3(89) — H~3(09) is a bounded positive

operaior, ihen ihere is a posilive constuni C such that

du
(15) o laner © (10 ey + 1) G+ 80l )

for all u € HY(Q) satisfying: Au =0 in Q weakly, where n denotes lhe oufward unil
normal to 5.

Proof of Claim2:

2 2
In polar coordinates A = o 19 18

. : 5—;“2- + 258 + = So if we do Fourier transform in ¢, we
can write u} in the following form.

o
no__.n n m n —my imb : . —_
uf =¢ + E (ai’mr +b,-'mr Je in £, 1= 1,2

m=1

where ¢; m, bi,m,ci* are determined by the boundary condition. By the homogeneous
Dirichlet boundary condition at 912, we have

Zm wm

noo_ n n . _in —
1m = "% mT1 a3m = '"b2,m'r2 m=12...

By divergence theorem
Suf
2 1.n
|vull® = U T
-/5.11 T 8n

ouf
niz _ Zatan .
-[_lzlvu2{“fr‘2 anu2

Denote A(m) to be the Fourier transform of the positive operator A in #. From the
generalized boundary condition at the artificial interface I'y (r =1+ 6) we have

@l g (1 + 8™ = 7 (1 4 6777

(16) -
1Bl sl = 672 = (1= 6]

25 -+ AGm)ry ™ (14 )™ + [ 125 — A(m)](1 +8) ™
[ + AL+ 8y + [ — AGm)Ir (1 + 8

n
al,m

n—1
b2,m

(a7

Similarly at I'z(r = 1 — §) we have

(125 + A(m)]ri™ (1 = 6)~™ + {125 — A(m)](1 - &)™
[225 + Am)J(1 — 6)~™ + [{Z5 ~ A(m)}ry (1 - &)

bn
(18) 2

n
1]
i,

m

and ¢} = c}}. By the homogeneous boundary condition ¢} = 0 for n > 2.
We can define the convergence rate for the generalized SAM method for our

11



problem in each mode to be,

_lam
B3|

‘ afl‘,m (’?)

o} (n)

de
rg(m, 8,71,72, A) f

-
:

1—6 [r;2+ 6™ + (1 +8)™) (1486~ —r> (1 + 6™
< \/’m (1+ ; [(; Z5)m +ry2m(1 - a)m] ' (1—8)m - r§'2m(1 - a)m)

2l 2 (14 6™ + (L +8)"™] = A(m)[(1 + 8)~ — r3*™(1 + 6)™]
'i%[(l - 6)—m + Tg_zm(l — 5)M] + A(m)ﬂ _ 5)—m _ T,L-;-Zm(l . é)mj

(3™ (1 = 6)=™ + (1 = §)™] — A(m)[(1 — )™ — ri™(1 - 8)~™]
ZHA+ 8™ +rim(1+ 67T+ Am)[(1 + &)™ —r{™(1+ 6)7"]

(20)

146 [(rm(A-8)-"+(1-8m] (=8 —rim(1-8~"
\/’" (1 y [(f+ 5y + 17 (L+ 6)- ] C 4o — (it 6)—m)

If we look at each possible combination of (20), by the same reason as in the proof
of Claiml we can easily see that

rg(m, 6,71, 12, A) < 1, Ym>1,6>0

except for the combination of

[(1 + 8)~m — 721+ 6)m] 146 [(rfm(l — §)=" 4 (1 — 6)"']
Q=6 ™™ (1= 1-6 [+ +rim(1+8)™™

[ [ o]
=V LAz — (- sy LA+ + (46

By the homogeneous Dirichlet boundary condition, we must have m > 1. So

(L= 6)™ > 1> (1487 > rg 21+ 6™ 2?7 (1= ™

So in all we have

(21) rg(m,8,ri,re,A) < 1, Ym>1, 620
B~ A(m) S — AMm) | (1-6\"
: t . - 1w § 144 )
if6 > 0, then tim rG(m, d,r1,72,A) J 25+ A(m) | | 55+ A(m) | \1+ 6 —0

So

sup rg(m,d,r,re,A)=ec <1
gEm<oo

12



H 0 < r < 7o < oo by Poincaré inequality || uf [|mian< C || Vi liza(a.) then
we can take ¢ to be the convergence rate for the generalized SAM method in H L

if ¢ = 0, le in ) we do not sce the boundary information, we need to use
lemma 2.3 in €.

3u1
lusllzaey < CUIEVu llzaan + 1 g + Aw HH-%(,«;I))

Su
< G vtz + 5;‘2‘ N ryy + 11 A2 [1H-%(Fl))

< C(ll vur fragany + 1 vz llmgas))
< C(|| v Nragany + 1 V22 Hran)

where ¢ denote some generic constant.

If § = 0, (21) is still true. Then by the same argument of Claiml and again the
use of lemma 2.3 (if r, = 0) we can complete the proof of elaim2. 1

Claim3:
For model problem1 (or 2), Claiml (or 2) is true for the generalized multiplicative
Schwarz alternating method, (4) - (5).

Remark: If we look at (8), (10), (17) and (18), each expression is not necessary less
than 1 when the relative size of each subdomain is arbitrary, i.e. cach one sided(half}
iteration may not be contractive. Bui a complete iteration will balance this effect
and as a whole the generalized SAM is still convergent which agrees with the general
energy estimate by P.L.Lions. (see [12]) In most usual application, we have compara-
ble size of subdomains which are much larger than the overlapping size. Then each
iteration will contribute about the same to the convergence.

3, Extension to General Equations in General Two Subdomain case.
For the more general equation, we replace the simple Laplace operator by the following
elliptic operator,

(22) P(DYu(z) = — v {a(z) 7 u(@)) + b(z) - V(=) + e(z)u(x)

where ® € RV, a(a), b(z), c(xx) are smooth and a(x) > 0, ¢(x) > 0. Though we can
not do Fourier analysis for (22). But as long as we have the coercivity assumption as
in [12], i.e. 3 ¢ > 0, such that Yu € H(Q)

@) [ o) U@ +(e) - Tu(eluts) + (oo 2 ¢ [ |9 )i

If u(z) satisfies the homogeneous equation, P(D)u(z) = 0, then by divergence theo-
rem we can get

) [ a7 u(@)f +0) - gu(e)ule) +ela)i(@)de = [ B @)

By Poincaré inequality we can bound the H ! norm of the solution by the boundary
data. Now the only difference is that we have two bounded positive weight functions
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a(x) and c(x). But we have the spectral equivalence of the general elliptic differential
operator to the Laplace operator in finite domain (see [8]). Thus we also have the
spectral equivalence for the corresponding Dirichlet to Neumann operator.

For the general geometry in two subdomain case, if the artificial boundaries are
orthogonal to the real boundary, then by a smooth transformation we can transform
them to one of the geometries in the model problems. If the artificial boundaries are
not orthogonal to the real boundary or there are corners in the artificial boundaries,
i.e. the Dirichlet to Neumann operator maybe singular at some points, then the con-
vergence rate may deteriorate, which depends how singular it is, but the generalized
SAM still converges as long as the Dirichlet to Neumann operator is a positive op-

Jul? Lo . . .
erator and / %u? < 0o which is true by the trace theorem for Lipschitz domain.
r; Ot

“This can be seen from either the proof of the model problem or the proof of P.L.Lions
by using energy estimate.(see [12})

THEOREM 3.1. The generalized additive or multiplicative SAM (2)-(5) (M =
Xz = 1) for elliptic differential operator (22) in iwo subdomain case is convergent if

A=A HEOQ) — H-5(0Q) i=1,2

is a striclly positive operator. If there is a uniform overlap, i.c. dis(T'1,T2) =6 >0
then there is a constant (0 < p < 1 such that

How—uf E|H1$ I "u—u? “Hl in )y, i=1,2

where p depends on A, the size of Q, the overlapping size § and the partial differential
equations.

If we look at the analysis in the model problems, we can actually see that the
convergent property of the generalized SAM is better than the classical SAM due to
two reasons,

(i) The gencralized SAM inherits the same factor from the classical SAM, that is
because of the overlap, maximum principle or iterated projections takes effect.

(i1) The "positivity” of the Dirichlet to Neumann operator, which gives convergence
even without overlap.

Both reasons are still true in the general case. In the most interesting case the
subdomains are of a comparable size and is much larger than the overlap. Then by
asymptotic analysis we can see that the the overlap will give a contraction rate of
e~ (see [11]), where § is the size of the overlap. The constant c will depend on the
differential operator and the relative size of the subdomains. Also if we expand the
solution in terms of the eigenfunctions of the elliptic operator, then ¢ will be bigger
for the larger eigenvalues, i.e. the highly oscillatory parts. So the classical SAM can
have a very slow convergence speed for the smooth part of the solution which is the
most important part of the elliptic PDEs. But if coupled with the second factor in the
generalized SAM, then we also have a good control on the smooth part of the solution,
if the coefficients and boundary are smooth which do not give rise to singularity in
the Dirichlet to Neumann operator. Now let us do some formal analysis on these two
factors in the general case using operator formulation.
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Let us denote
Qo= NON2 Q1= W\Qe Qoz = D2\
We define the projection operator
P HY ) — HY{(Q:)
to be the restriction from ; to £2;;. Denote D,-(Ij,-) to be the Dirichlet to Neumann
operator in () on Ty, Define R; to be the restriction operator from H L)
to HY2(T;). Define R} to be the right adjoint operator of R;, i.e. RiR} = I and
Vg € HYX(TY),
P(D)Rig)=0, Rig=gatl; Rig=0at 0 \T;

Denote R;, R} to be the corresponding operator in

I we look at one cycle of iteration on the error function ef = u — u in §; for
the generalized additive SAM (2), (3), formally we have

(25) €F = RE(A: + Di)Y HAs — Dj)R; Py RY(Ay + D)™ (4 — D)R:P(eF7%)

{i,7} = {1,2}, i # j. In two extreme cases,
(i) In classical SAM case, (25) is reduced to

ef = RiR; PRy RiPi(e} ™)

(il) In no overlap case, (25) is reduced to
ef = RE(A: + Di) " (As — D;)(A; + D3)™ (A — Di)Relef ™)

So the convergence of the generalized SAM can be thought as the product of
the two factors if the overlap size is small. The first factor of convergence is the
projection operator. Using the equivalence of elliptic operator, we can see from the
model problems that the contraction of the projection operator depends on the relative
size of the overlap and the subdomains, We can also use the maximal principle to
see this as in [11], since the error function uf satisfy P(D)u} = 0. The second factor
is (Ay + D,‘)_I(A,- - ﬁj) which is due to the convex combination of u and g—z at the
artificial boundary,

(26) u? = (A} + Di)_l(Al e J?z)ug—i at Ty
ul = (Ag + D2)"(Ay — Dy)uf™! at Ty
and
@7) (A1 -+ D)7 MM — 1:32) = I—(Ar+ D) (Dy + Dy)

(A2 + D2)"1 (A2 — D1) I—(Az+D3) "} (Da + Dy)

il

where A;, D;, D; are all positive operators. The contraction rate for the second factor
is totally determined by the spectral behavior of A;'iD_.,- and A_,,TlD,-.

Remark: We can also analyze this expression in more detail by eigenfunction de-
composition as in the model problems. Some discussions on the eigendecompositions
of the interface operators after discretization can be found in [3},[4].
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4. Interpretation of the Generalized SAM in Other Domain Decompo-
sition Context. We first interpret the generalized SAM in the linear algebra context.
As formulated in [16],[15] we can regard the SAM after discretization as using black
Jacobi(additive) or Gauss-Seidel(muitiplicative) to solve an equivalent enhanced linear
system instead of the original linear system. Suppose we need to solve linear system
Az = f after discretization of the corresponding elliptic PDE. In two subdomain case,
the linear system can be partitioned as

Ayr An Ay A T f
(28) An An Ar  Ap o | _| F
Apr App Apr A Ly fa
Ay Ay Ay A Ty fa

Let ny,n7,ny, n2 be the dimension of the subvectors respectively. Usually ni, n, <
ny, ny and the subvectors z;, z, contain only unknowns in the ” vineity” of a subdomain
interface. This linear system can be easily transformed to a enhanced system

Ay A Ay 0 0 A Ty fi

Ay An A 0 0 Ap T fi

(29) 0 Cp Cp —Cy -Cy 0 & |_| 0
0 - r] _Crf' Cri’ Crr 0 5! 0

A 0 0 Ar A A Ty I

Az 0 0 Ay Ay Amx Ty fa

1t is shown in [15] that (29) is a preconditioned enhanced system that is equivalent to
. . def —Cy Cir

28) iff matrix C = (

( ) GrI _‘Crr

and a discretization with local support then Ajp, A, Ap1, A2 may all vanish even

with a minimal overlap. So the only coupling for the enhanced system (29) is by

(C'n C'h)(zr)_(cn Cn)(ﬂ?r)

Cri Crr Ty h Crn Cyr Lr

which can be viewed as an analogous version of the continuous coupling at the inter-
face. If we take Cy = Ini, Cor = Inp, Cir = Cr; = 0 then this is the classical SAM
version. We can also use the 1st or 2nd order localized version of the generalized SAM
in section 5. ‘The choice of coupling matrix C can be thought as interfacial precondi-

tioning whose purpose is to decouple the enhanced system as much as possible. If we
know the discrete version of the Dirichlet to Neumnann operator then we can totally

) is non-singular. If we choose z;, z, properly

equations

(30)

decouple it into two subsystems.

Another interpretation of this result is as following: the classical proof of conver-
gence of the domain decomposition method by iterated projection only relies on how
to decompose the whole function space V into subspaces of function Vi, such that
V = %;V;.(see [10},[17]). For domain decomposition the estimate of the convergence
rate only depends on the overlapping size and the geometry of the subdomain. What
we show here is that if we pass a ”convex” combination of Dirichlet and Neumann
data at the artificial boundary, using the ”positivity” of the Dirichlet to Neurnann
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operator, we obtain a projection which gives an extra contraction in the energy(H1
normy).

5. Numerical Implementation of the Generalized SAM. We sce from the
previous sections that the convergence rate of the generalized SAM depend on the
geometry of the subdomains, the overlapping size of the subdomains, the PDE and on
the choice of the positive operator at the artificial boundary between each subdomain.
We have already shown that theoretically the best choice is the Dirichlet to Neumann
operator which is a global operator in most cases and is not practical in numerical
implementation. Motivated by the absorbing type boundary condition proposed by
Engquist and Majda([7]), we will use some local operator to approximate the Dirichlet
to Neumann operator by asymptotic expansion. We again start with a model problem

{ —Autu=f inQ

(31) u=g on df}

where €, Q;, Q3 and the generalized SAM are exactly the same as in model problem1
in section2. From the analysis in model probleml we know the comvergence rate of
the generalized SAM in each frequency mode is

A(n) — An)
A(n) + Aln)

in the case I; & I > 6. Now A(n) = /1 + n?. Since for elliptic differential equation
the smooth part of the solution converges very slowly, we expand A(n) at 0.

1
A(n):\/1+n2=1+§n2+0(n”)

So use the first order expansion we can get our first order numerical scheme

rg & —ZA(’J)J

(32) Al =1 = Au=u

Use the second order expansion we get our second order numerical scheme

1
(33) A(q):1+§n2 = Au=t— o

meaningfual,
Now let us do some concrete analysis on the discretized problem. Suppose the
grid size is h < 1 and has one overlapping grid (minimum overlap for numerical

scheme), § = h. Then the highest possible frequency mode is maz = 7 Then

V1+n? —A(n
V14 0%+ Adn)

Differentiate this expression and find the equation for the critical value . is

(34) nA(n) — (1 + 9)A'(n) = ph(1+1° — A*(n))
17
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For the first order approximation {32), we have 7. = \/% and so

W VIR L oA
¥ TRl

2
For the second order approximation (33) we have 7. = \/—?; and so

VIR — (14 R )—2h«/1+2h-‘
ARt (LAY

It seems that the first and second order approximation are not much different.
But they are both conservative estimates for the worst cases. In real numerical com-
putation the second order scheme converges really faster than the first order scheme if
everything is smooth, since then the solutions for the clliptic problems are smooth and
that is where the second order approximation to the Dirichlet to Neumann operator
is better. We can also see that the corresponding classical SAM has the convergence

a1 — 8h

rate

rp &2 max PReiU) LPVIPLLIPVR [y
0 <max
Also we notice that the worst convergence occurs near n = 0, which is the most
significant part of the solution. That is why the classical SAM is very sensitive to the
overlapping size.

Although we have improved the convergence by generalized SAM, it is clear that
the convergence rates for the first and second order schemes still depend on the over-
lapping size, though we still can improve it by choosing a more suitable constant.
Now let us address the question of optimality of our numerical schemes by some care-
ful asymptotic analysis. In the following presentation ¢ always means some constant
which is independent of mesh size A and they are not necessary the same.

(i) first order scheme. Let A(y) = ch” and plug it into the equation{34) for the
critical point.

(35) 7 = ch? + ch* 1~ 1 or e =10
So if
(a) @ > 1 then
re(0) = 1= ch® - Mo (1—ch®)(1~2h)~ 1—2h
¢ ke ~

(b)0 € @ < 1 then
ra{0) = (1 — ch*)(1 - 2h) = 1 — ch®

and at n° & ch®!

V14 che—1— ch® Rt
161 = Tyt m (1 - ch™55)(1 = ch*F) w1 - ch' 5
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So the best choice is o = -;- => rg=1- chi
(¢) —1 € & < 0 then

rg(0) = (1~ ch™®)(1 —2h)~ 1~ ch™®
at 2 ~ ch*™t

VI oho™ —oh? _an/TFET (- Y1 — b T w1 — bt
Vit cho T 4 che’ M (L-eh (L meh )l e

ra(ne) =

So the best choice is @ = —-% = rg=1-— ch¥
(d) & < —1 then

re(0) = (1 —ch™®)(1—2h)~1—2h

For the first order scheme the optimal convergence rate is 1 — ch® when we take
A=Oh3)or A= O(h™%). But we prefer to take A = O(h™3) since the critical value
2
in this case is at 7, = O(h~3) which is at a much higher frequency than the other
choice.

(i) second order scheme. Let A(n) =1+ ch®p®. Again plug it into equation{34)
for the eritical value,

(36) PR gt 4 (2eh®H - b — ch™)p? 4+ (1 — 2ch®) =0 or n=0
80
o (h+ch® = 2ch*) &k /(A + ch® = 2ch*+1)? — 4c2h2eH1(1 — 2ch?)
e = 2c2h20+1 or e =0

and at § = 0, r¢(0) ~ 0. We now divide the situation into four cases and do some
tedious asymptotic analysis again.

(a) If o € 1,

o _ (Rt ch® = 2ch°H) & /(R + ch® ~ 2chot1)? — dePh2eti(l —2ch?) . _a;
T = 92 p2atl e
and

/ Nz 5y act =
1+4ch :1 —(14‘0’10:) o-2hV/ 14en™ *F >1—ch
V1 +ch= "5 4 (14 ch*T)

e~

M HE-1<a<0,

nf e ch={atl)

and rgzl—chi_Ta_?_i-—ch%
(c)0<a<l,

n r ch~ (D) or nZ s ch™®



1wax

and rg = maz{l—ch™=

So the best choice is when & = 132 je a =

(1= ch®)(1 - chl™ %))
1 and rg &~ 1 —chs.

27T T2 2
(HHa>1,
n? m ch™2® or n2 ~ch™!
and rg~1— ch®
So the optimal choice for the second order scheme is
52
(37) Au=u—chi 61’1;

(7 is the tangential direction at the interface) for the generalized SAM and we can
have a convergence rate which is 1 — chi.

Remark1l: All these analysis can be extended to more general coercive elliptic PDE
by the spectral equivalence. In the variable coefficients case, we can (i) either use our
first or second order approximation to the homogenized (averaged) equation (ii) or
just use the local approximation at the interface. If the coefficients are highly oscilla-
tory, then the first choice is better since the large scale behavior of the solution is more
close to the homogenized equation and the highly oscillatory part can be controlled
by the solver in each subdomain. i the coefficients are smooth, we suggest to use the
second choice since we are using local operators {o approximate the global one anyway.

Remark2: In each subdomain instead of using exact solver which is also expen-
sive, we can again use some efficient iterative scheme. Just as in the case of classical
SAM, we only need the non-exact solver is accurate enough, i.e. the error e satisfies
P(D)e = f and f is small enough such that for e we still have the maximum principle
(or iterated projection) and the positivity of the Dirichlet to Neumann operator.

Remark3: One advantage of using local operator is that we can easily incorpo-
rate it into the existing domain decomposition codes, since it does not change the
structure in the interior of each subdomain. (see [15]}

Remark4: We can get an accelerated version of the generalized SAM by using dif-
ferent AP in each nth iteration. Then at each iteration a different range of frequency
modes can have the best convergence rate, which is similar to the idea of multigrid.
We can have a very fast convergence which is almost independent of mesh size. How
to choose A7 for optimal convergence is under further study.

6. Conclusion. Due to the positivity of the Dirichlet to Neumann operator the
generalized SAM can have improved convergence properties over the classical SAM
so that the generalized SAM for domain decomposition can converge without overlap
of subdomains. Since a local operator can not approximate a global operator uni-
formly in general, we can not expect a convergence rate which is independent of the
overlapping size for the generalized SAM.

We will discuss the extension of generalized SAM to multidomain cases and the
application to interface problems in some other papers.
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